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CONSTANT FAN-IN DIGITAL NEURAL NETWORKS 

ARE VLSI-OPTIMAL 
V. Beiu 

Los Alamos National Laboratory, Division NIS-1, Los Alamos, 
New Mexrco 87544, USA 

The paper presents a theoretical proof revealing an intrinsic limitation of digital VLSI technology: 
its inability to cope with highly connected structures (e.g. neural networks). We are in fact able 
to prove that efficient digital VLSI implementations (known as VLSI-optimal when minimising 
the AT2 complexity measure - A being the area of the chip, and T the delay for propagating 
the inputs to the outputs) of neural networks are achieved for small-constant fan-in gates. This 
result builds on quite recent ones dealing with a very close estimate of the area of neural networks 
when implemented by threshold gates, but it is also valid for classical Boolean gates. Limitations 
and open questions are presented in the conclusions. 
Keywords: neural networks, VLSI, fan-in, Boolean circuits, threshold circuits, Fn,* functions. 

1 Introduction 
In this paper a network will be considered an acyclic graph having several input 
nodes (tnputs) and some (at least one) output nodes (outputs). The nodes are 
characterised by fan-in (the number of incoming edges - denoted by A) and fan- 
out (the number of outgoing edges), while the network has a certain size (the 
number of nodes) and depth (the number of edges on the longest input to output 
path). If with each edge a synaptic weight is associated grid each node computes 
the weighted sum of its inputs to which a non-linear activation function is then 
applied (arlzficial  neuron), the network is a neural network (NN): 

n- 1 

%k = ( Z O ,  ..., 3, - 1) E Rn, k = 1, ..., 772, and f ( % k )  = u w;zi + 8 , . (1) 

with wi E IR the synaptic weighis, 0 E IR known as the threshold, and sigma a 
non-linear activation function. If the non-linear activation function is the threshold 
(logistic) function, the neurons are threshold gates (TGs) and the network is just a 
threshold gafe circuit (TGC) computing a Boolean function (BF). The cost functions 
associated to a N N  are depth and size.  These are linked to  T NN depth and A M size 
of a VLSI chip. Unfortunately, NNs do not closely follow these proportionalities as: 

8 

8 

That is why the s i t e  and depth complexity measures are not the best criteria 
for ranking different solutions when going to silicon [ll]. Several authors have 
taken into account the fan-in [I, 9, 10, 121, the total number of connections, the 
total number of bits n.eeded to represenl the weights [8, 151 or even more precise 
approximations like the sum of all the weights and thresholds [2-71: 

( i = o  ) 

the area of the connections counts [ a ,  31; 

the area of one neuron is related to its associated weights. 

/n-1 \ 

all neurona \ i d  

An equivalent definition of ‘complexity’ for a N N  is w? [16]. I t  is worth 
mentioning that there are also several sharp limitations for VLSI implementations 
like: (i) the maximal value of the fan-in cannot grow over a certain limit; (ii) the 
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maximal ratio between the largest and the smallest weight. For simplification, in the 
following we shall consider only NNs having n binary inputs and IC binary outputs. 
If real inputs and outputs are needed, it is always possible to quantize them up to 
a certain number of bits such as to achieve a desired precision. The fan-in of a gate 
will be denoted by A and all the logarithms are taken to base 2 except mentioned 
otherwise. Section 2 will present previous results for which proofs have already 
been given [2-73. In section 3 we shall prove our main claim while also showing 
several simulation results. 
2 Background 
A novel synthesis algorithm evolving from the decomposition of COMPARISON 
has recently been proposed. We have been able to  prove that [2, 31: 
Proposition 1 The computation of COMPARISON of two n-bit numbers can 
be realised by a A-ary tree of size O(n/A) and depth e)(log n/ log A)  for any integer 
fan-in 2 5 A 5 12. 

A class of Boolean functions FA having the property that VfA E FA is h- 
early separable has afterwards been introduced as: ”the class of functions fa of 
A input variables, with A even, fA = fA(gA/2-1,eA/2-1, ...,g 0, eo),  and comput- 
ing fa v:$’ [gj A (A,=jtl A/2-1 e,)]”. By convention, we consider e; def - 
1.  One restriction is that the input variables are pair-dependent, meaning that 
we can group the A input variables in A/2 pairs of t f lo input variables each: 
(gA/z - l ,  eA/2-1), ..., (go,eO), and that in each such group one variable is ‘dominant’ 
(i.e. when a dominant variable is 1, the other variable forming the pair will also be 

F A =  { ~ A I ~ A :  {(0,0),(0,1),(1,1)}A/2_+{0,1},~/2~~*, 

,gi 3 e i , i =  0,19...7A/2- 1 

1): 

. 1 AI2-1 [ (A/2 - l e , ) ]  

. f A =  v g j ~  A 
j=O k=j+l 

Each fA can be built starting from the previous one f a - 2  (having a lower fan-in) 
by copying its synaptic weights; the constructive proof has led to [5]: 
Proposition 2 The COMPARISON of two n-bit numbers can be computed 
by a 4-ary tree neural network with polynomially bounded integer weights and 
thresholds ( 5  nk) having s i ze  U(n/A) and depth U(logn/logA) for any integer 
fan-in 3 5 4 5 logk n. 
For a closer estimate of the area we have used equation (2) and proved [5] :  
Proposition 3 The neural network with polynomially bounded integer wetghts 
(and thresholds) computing the COMPARISON of two n-bit numbers occupies an 
area of O(n -2A/2/A) for all the values of the fun-in (A) in the range 3 to O(1ogn). 
The result presented there is: 

2A/2 8nA - Gn - 5A logan .-- A T 2 ( n , A )  S - . ( n l o g z n - 2 A / 2 )  (3) 
log2a - 0 A A - 2  A log2 A 

and for A = logn this is the best (Le. smallest) one reported in the literature. 
Further, the.synthesis of a class of Boolean functions Fn,m - functions of n input 
variables having rn groups of ones in their truth table [13] - has been detailed [4]: 
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Proposition 4 
with polynomially bounded integer weights (and thresholds) of depth 

and size O ( m n / 4 ) ,  and occupying an area of O(mn.  2*/A) if 2m 5 2* for all the 
values of the fan-in (A) in the range 3 to O(1ogn). 
More precisely we have: 

3 

Any function f E Fn,m can be computed by a neural network 

O(log(mn)/log 4 )  

and logn - 1 logm+ 1 
T ( n ’ m 7 A ) = [ l o g A - l ] + [  logA I=’( logA ) 

A(72, m, 4 )  < 2712- (4n/;2* - + 5(n - 4 ) ~ i & $ 2 ~ / ~  

which leads to: 

2m-  1 
4 ( A - 2 )  

mn log?(mn) 1 2A ( A . l o g 2 A  
AT2(n ,m,A)  = 0 (4) 

For 2m > 2* the equations are much more intricate, while the complexity values 
for area and for AT2 are only reduced by a factor (equal to the fan-in [6, 71). If we 
now suppose that a feed-forward NN of n inputs and E outputs is described by rn 
examples, it can be directly constructed as simultaneously implementing k different 
functions from Fn,m [4, 6, 71: 
Propos i t i on  5 Any set of k functions fEF,,;, i = 1 , 2 6 . ,  rn, i 5 m 5 2*-’ can 
be computed by a neural network with polynomially bounded integer weights (and 
dhreshoh) having sire O(m(2n + k)/A), depth O(log(mn)/ 1ogA) and occupying 
an area of O(mn . 2A/A + mk) if 2m 5 2A, for all the values of the fan-in (A) in 
the range 3 to O(1ogn). 
The architecture has a first layer of C O M P A R I S O N S  which can either be imple- 
mented using classical Boolean gates (BGs) or - as it has been shown previously 
- by TGs. The desired function can be synthesised either by one more layer of 
TGs, or by a classical two layers A N D - O R  structure (a second hidden layer of 
A N D  gates - one for each hypercube), and a third layer of k OR gates represents 
the outputs. For minimising the area some C O M P A R I S O N S  could be replaced by 
A N D  gates (like in a classical disjunctive normal form implementation). 
3 
Not wanting to complicate the proofs, we shall determine the VLSI-optimal fan-zn 
when implementing COMPARISON (in fact: Fn,l functions) for which the solution 
was detailed in Propositions 1 to 3. The same result is valid for Fn,,,, functions as 
can be intuitively expected either by comparing equations (3) and (41, or because: 

m 

Which is the VLSI-Optimal Fan-In? 

the delay is determined by the first layer of C O M P A R I S O N S ;  while 

the urea is mostly influenced by the same first layer of C O M P A R I S O N S  (the 
additional area for the implementing the symmetric ‘alternate addition’ [4] can 
be neglected). 

For a better understanding we have plotted equation (3) in Figure 1. 
P ropos i t i on  6 The VLSI-optimal (which minimises the AT2) neural network 
which computes the COMPARISONof two n-bit numbers has small-constant fan-zn 
‘neurons’ with small-constant bounded weights and thresholds. 
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Figure 1 The AT2 values of COMPARISON - plotted as a 3D surface - versus 
the number of inputs n and the fan-in A for: (a) many inputs n 5 1024 (4 5 A 5 
20); and (b) few inputs n 5 64 (4 5 A 5 20). It can be very clearly seen that a 
‘valley’ is formed and that the ‘deepest’ points constantly lie somewhere between 
Amiririn = 5 and 4maztrn = 10. 

Proof: Starting from the first part of equation (3) we can compute its derivative: 
log? n - -  - d(AT)’ 

dA x (8nA3 log A - 22nA2 log A + 12nA log A 
A2(A - 2)2 log3 A 

16 F 24 
111 2 In 2 - 5A3 log A + 10A2 log A - -nA2 log A + -nA log A 

- -nlogA 24 + -A2 10 logA - -nA2 32 + -nA 88 -, -n 48 
In 2 111 2 In 2 In 2 In 2 

i--A2--A) 20 40 
In 2 In 2 

which - unfortunately - involves transcendental functions of the variables in an 
essentially non-algebraic way. If we consider the simplified ‘complexity’ version of 
equation (3) we have: 

which when equated to zero leads to In A(A In 2 - 2) = 4 (also a transcendental 
equation). This has A = 6 as ‘solution’ and as the weights and the thresholds are 

17 
The proof has been obtained using several successive approximations: neglecting 
the ceilings, using a ‘simplified’ complexity estimate. That is why we present in 
Figure 2 exact plots of the AT2 measure which support our previous claim. It can 
be seen that the optiinalfan-in ‘constantly’ lies between 6 and 9 (a Aoplim = 6...9, 
one can miiiiinise the urea by using COMPARISONS only if the group of ones 
has a length of a 2 64 - see [4-71). Some plots in Figure 2 are also including 
a TG-optimal solution denoted by SRI< [14] and the logarithmic fun-in solution 
(A = iogn) denoted B-lg [5]. 
4 Conclusions 
This paper has presented a theoretical proof for one of the intrinsic limitations of 
digital VLSI technology: there are no ‘optimal’ solutions able t o  cope with highly 
connected structures. For doing that we have proven the contrary, namely that 

bounded by 2A/2 (Proposztion 4 )  the proof is concluded. 
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Figure  2 The AT2 values of COMPARISON for different number of inputs n 
and fan-in A (BA): (a) for 4 5 n 5 32 including the SRK [I41 solution; (b) 
detail showing the optimum fan- in  for the same interval (4 5 n 5 32); (c) for 
32 5 n 5 256 including the SRK [I41 solution; (d) detail showing the optimum 
fan- in  for the same interval (32 5 n 5 256); (e) for 256 5 n 5 1024 including 
the SRK [14] solution; (f) detail showing the optimum j a n - i p f o r  the same interval 
(256 5 n 5 1024). 

constant fan-in NNs are VLSI-optimal for digital architectures (either Boolean or 
using TGs). Open questions remain concerning 'if' and 'how' such a result tould 
be used for purely analog or mixed analog/digital VLSI circuits. 
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