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This paper implements a economic methodology to measure the marginal abatement costs 
(MAC) of pollution by measuring the lost revenue implied by an incremental reduction in 
pollution. It utilizes observed performance, or “best practice”, of facilities to infer the MAC 
rather than engineering cost analysis. The empirical results are based on data fiom an earlier 
published study on productivity trends and pollution in electric utilities Cyaisawarang, 19941 to 
test this usefulness of this approach and to provide insights on its implementation to issues of 
cost-benefit analysis studies needed by the DOE. 

[Fare, 19931 shows that the output distance function, which is a mathematical representation 
of the underlying production technology, is dual to the revenue function. This duality may be 
exploited to infer the relative and absolute shadow prices for pollution outputs. These shadow 
prices are the lost revenue fiom electricity sales, evaluated at the observable electric price, and 
may be interpreted as the marginal abatement costs of pollution. 

The paper extends the results of others [coggins, 19961 in several ways. The first is the use of 
non-parametric methods to obtain the shadow prices. The second is the application of the 
directional output distance hnction. The third is extending the size of the data set to include a 
wider range of power plants. The non-parametric method does not impose any restrictions on 
the functional form or sign of the MAC. This allows for the possibility economic benefits, i.e. 
cost reduction, corresponding to emission reduction. The non-parametric approach is based on 
a linear programming (LP) problem which computes the value of the directional distance 
function. The shadow prices of electricity and SO2 are obtained from sensitivity analysis of the 
LP and are used to derive the MAC for SO2 for 62 baseload coal fired power plants. 

To assess the hture applicability of this methodology for DOE, it is desirable to qualitatively 
compare these results fiom ‘similar’ analysis using traditional engineering cost studies. This 
comparison finds the two methods in reasonable agreement, suggesting that this method, which 
can be easily extended to include multiple pollutants, can be a useful source of information for 
policy studies. 
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This project implements a economic methodology to measure the marginal abatement costs of pollution by 
measuring the lost revenue implied by an incremental reduction in pollution. It utilizes observed performance, or “best 
practice”, of facilities to infer the marginal abatement cost. The initial stage of the project is to use data from an earlier 
published study on productivity trends and pollution in electric utilities (Yaisawarng and Klein 1994) to test this approach 
and to provide insights on its implementation to issues of cost-benefit analysis studies needed by the Department of 
Energy. 

The basis for this marginal abatement cost estimation is a relationship between the outputs and the inputs of a firm 
or plant. Given a fixed set of input resources, including quasi-fixed inputs like plant and equipment and variable inputs 
like labor and fuel, a firm is able to produce a mix of outputs. Some of these outputs are joint products and tend to be 
produced simultaneously. Examples include refineries that produce gasoline and residual fuel oil, meat packing plant 
which produce beef and cow hide, and power plants that produce electricity and air pollution emissions. In the refinery 
example both products are desirable outputs and the firm optimizes the mix of production based on a unrestricted 
production technology and the market price of the products. In the meat packing plant example, there may be a positive 
value for cow hide as an intermediate product, e.g. inputs to a leather producer, or the firm may have to divert resources 
to dispose of the by-product. In this case the hides are not freely disposable and how they are treated depends on their 
value, positive or negative, to the firm. The power plant could freely dispose of air pollution emissions, except that they 
are regulated and input resources are required by law to reduce, or ‘dispose’ of the emissions. It is the regulations that 
place restrictions on the production choices available to the firm. This paper uses this theoretical view of the joint 
production process to implement a methodology and obtain empirical estimates of marginal abatement costs. These 
estimates are compared to engineering estimates. Futher areas of research are identified. 

Methodology 

The cost methodology presented here is based on the analysis of the observable production choices available to the electric 
power industry. Graphically figure 1 illustrates the unrestricted production set, Le. the combinations of electricity, 
‘goods’, and air emissions, ‘bads’, that a plant could produced with some vector of inputs, X. The boundary of this set is 
ABC, which represents the maximum feasible production level of both goods and bads. This might be similar to the 
production set of a refinery or any other firm that produces several outputs. Regulation of emissions set limits on the 
disposability of these bad outputs, so the regulated production set is the subset of the unrestricted production set. The 
boundary of the regulated production set is OBD. The essential feature of the regulated production set is that to reduce 
emissions, given a fixed set of resources, some loss in desirable production occurs. 

Work sponsored by the United States Department of Energy, Office of Energy, Environmental, and Economic Policy 
Anaysis under contract number W-3 1-109-Eng-38 
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Figure 1 Distance Function Approach to Marginal Abatement Cost Methodology 

Mathematically the production set may be described by the output distance function, introduced by (Shepard 
1970). The function is defined as 

Do(x,u)  = infcf : ( u l f )  E P ( x ) )  (1) 

where x and u are input and output vectors, respectively, and P(x) is the prodluction set. P(x) c811 be either a restricted or 
unrestricted production set. Graphically the output distance function can be see as the amount by which outputs, u, can be 
expanded and still be in the production set, as shown by plant 1 in figure 1. 

(Fiire et al. 1993) show that, since the revenue function is dual to the output distance function, the gradient vector 
for the distance function gives information regarding the shadow (revenue) prices of the desirable and undesirable outputs. 
If the shadow price of the desirable output equals the market price, then the shadow price for undesirable outputs may be 
computed as 

where 
rb is the shadow price of the bad output and 
rg is the shadow (and market) price of the good output. 

One approach is to use observable data to estimate a differentiable functional form of the output distance function and 
apply (2). An alternative approach is to use non-parametric methods to caastruct a piecewise linear version of P(x) , 
derive the shadow prices from a non-parametric estimate of aD0(x ,u ) /duc  . This is the initial approach used in this 
study. 

The usual method to estimate the output distance function non-parametrically is to solve the linear programming 
problem 
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= An activity vector. 

Observed inputs for a single plant, 
Observed "good" outputs for a single plant, 
Observed "bad" outputs for a single plant, 
Matrices of inputs for the entire sample, 
Matrices of good and bad outputs for the entire sample, and 

This linear programming problem is based on activity analysis and constructs a convex hull of the observed data to create 
the unrestricted production set, P(n). The dual values of the output constraint are estimates of the derivative required in 
(2). Graphically we see that the duals are described by the slope of the line tangent to the production set boundary, shown 
in figure 1. 

The practical problem with this approach is that this method is applicable to the unrestricted production set, P(x), 
and that the shadow values one may obtain are both negative, as shown for plant 1. If regulations are binding on all 
plants, then the dual value for undesirable outputs will be positive, while the dual for desirable outputs is positive. We 
wish to alter this approach so as to obtain the 'correct' shadow values. To do this we follow (Turner 1994), who develops 
a sub-vector output distance function. 

Note that the output vector u is now partitioned into desirable and undesireable components and that the optimization is 
only over the desirable portion of the output vector. Turner proves a similar form of duality for the sub-vector output 
distance function as in equation (2). A similar linear programming problem can then be solved: 

z 2 0  
$2520 

Note that the inequality constraint on undesirable outputs has been also replaced by an equality constraint. This reflects 
the assumption that bad outputs are not freely disposable (Fiire, Grosskopf, and Love11 1985). 

As a final consideration in the specification of the distance function, we also adopt the approach used by 
(Yaisawarng and Klein 1994) on the input side. Inputs as well as outputs can be specified as weakly disposable. The 
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sulfur content of the fuel can be viewed as a weakly disposable input. This changes the inequality constraint in the above 
LF’ from 

Z . X I X O  
to 

2 4 ,  Ix, 0 

z.x, =x, 0 
where the subscript d represent the ‘desirable’ inputs of labor, fuel, and capital, and s represents the undesirable percentage 
of sulfur in the fuel. 

Based on the data from (Yaisawarng and Klein 1994) this LP was solved for each of the 61 observations for the 
year 1989. This reveals that only 13 out of 61 plants were operating in the restricted portion of the output set and have 
negative shadow prices. This result is consistent with those obtained by Turner, who obtained 344 out of 962 negative 
shadow prices’, although she obtains negative shadow prices for a larger subset of her data. The range of shadow prices 
are from $74 to over $12,000 per ton. Ignoring the outliers on both ends, the average is $1120 per ton and the median is 
$876. 

The large fraction of non-negative shadow prices may be illustrated by comparing figure 1 and an alternative 
restricted production function in figure 2. In this figure we see that many more plants are operating in the unrestricted 
area of production, given the plant inputs of labor, capital, etc. The implications of these results is that for the observed 
plant resources, much lower emissions are feasible, as shown by the horizontal arrow, rather than the vertical arrows. 

T 

A 

Undoainbk output. (bad.) 

Figure 2 Alternative Production Output Set 
If we change the formulation of the distance function to represent reductions in undesirable outputs, rather than increasing 
desirable outputs we expect to only identify segments of the restricted production set, where shadow prices are negative. 
This type of analysis was performed for the 62 plants in the data set and the: results confirm the ‘picture’ represented in 
figure 2. When the following optimization problem 

1.Data used by Turner was generating unit level, not plant level. 
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Min # subject to 

z.G>go 

Z . X I X 0  

Z .  B =  4.6' 

was run2, all resulting shadow prices were negative; the values of 0 were rather low, 72% on average, and magnitude of 
the shadow prices was very high, median values of $2,668/ton. The simple implication of the low values of 8 are that 
emissions could be reduced by over one quarter, given current plant resources, i.e. at 'no cost'. 

While both of these approaches have some intuitive appeal, each are based on a narrow focus of the 
productiodenviroment frontier. It would be useful to define the distance function in a more general way. Chambers, 
Chung, and Fare (forthcoming) refine the theoretical basis for this type of efficiency measurement; the directional distance 
function. The directional distance function provides a more integrated approach to modeling economic and environmental 
performance. This formulation of the distance function allows for the type of inefficiency that is typified by Porter and 
others, who maintain that there is significant opportunity to reduce environmental impacts and increase productivity, 
simultaneously.' Figure 3 illustrates the directional distance function. As in figures 1 and 2 above, the output set is 
denoted by P(x), the good output by y and the bad by b. 

The directional output distance function, as any distance function, is a function representation of the technology. 
Shephard's distance function applied to the output vector (y,b) places it on the boundary of P(x) at A. The directional 
output distance function on the other hand takes (y,b) in the "g" direction and places it on the boundary at €3. Here the 
directional distance function increases the good output and decreases the bad. Formally, it is defined as 

(8) 6JX*Y,b;g) = SUP {P : (Oi,b) + Pg) E P(x)}. 

In Figure 3 this amounts to the ratio of the distances (BC/Og). 

One can prove 

(9) c.,(x,y,b;g)> 0 if and only if (y,b) E P(x). 

Which is required to establish the completeness of the directional distance function as a model of the joint production 
technology. Based on this relationship one can also prove the revenue function duality required to compute the ,pnrginal 
abatement costs as was done above. It is easy to see that the approach of Turner and the second approach implemented 
here are simply variations of (9) where g=(l,O) and g=(O,-l), respectively. 

At this time no formal proof of the duality theorem was undertaken, although it is likely to be very similar to that proven 
by Turner and follows the same intuitive logic. 

Empirical measurement of the extent of these opportunities is an important part the public policy debate and the 
directional distance function is the appropriate theoretical tool for this modeling. We employ this framework to identify 
the relevant portion of the production frontier and compute the marginal abatement costs. 
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b (bads) l o  
Figure 3 Directiond Output Distance Functions 

The directional distance function, where g=(l,-l) can be estimated from the following Lp; 

Max p subject to 
z*G2(1+p)-g0 

2 . B = (1 - p )  - bo 
Z . X I X 0  

z 2 0  
p 2 0  

which was done for each plant in the test data set. As one would expect, the results for the shadow prices and efficiency 
measures are somewhere between the other two cases.4 Since this approach alppears more theoretically encompassing and 
satisfying, these results are exarnined in more detail. 

Directional Distance Function Results: 

The directional distance function places 29 observations, about 1/2 of the data set, on the frontier. This implies 
that 1/2 of the plants in the test data operate efficiently and could not reduce air pollution and increase output, given the 
resources available at the plant. The average value for p for the remaining ob:servations is 6.7%. This means that those 
plants not on the frontier could reduce emissions and increase generation by an average of 6.7%. Five plants had values of 
p greater that 1096, one of which was 20%. These results are within normal variation in plant level heat rates, so are not 
at all unreasonable5. 

One should note that each of the earlier problems as special cases of the directional distance function. 
Heatrates, the amount of fuel use per k W h  generated can vary due to plait age, design, and operating characteristics. 

This result does not imply that a plant with a less efficient design could costlessly transform itself into a more efficient 
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The directional distance function generates negative shadow prices for about 112 of the data set6. This is in 
contrast to only 13 observations using the method proposed by Turner. To compute an absolute shadow price for SO,, we 
must have a price for desirable output. For this analysis a price of 5 centsAcWh was assumed. The average price used by 
Coggins and Swinton was 5.2 centsAcWh. It would be desirable to have a representative wholesale price for each plant. 
Such a price would better represent the level of costs particular to that plant. However, such data was not in the test data 
set. 

The range of marginal abatement costs for this group is shown in Table 1. We see that the results vary widely, 
but are slightly more modest than those obtained using the previous methods. When we look at the weighted average 
prices (weighted by total plant emissions) we see that the $355/ton estimate is slightly higher than the $293/ton weighted 
average estimate from (Coggins and Swinton 1996). The large difference between the weighted average and the numerical 
average abatement cost illustrates a major source of divergence between the ‘low’ estimates and the ‘high’ estimates. To 
better assess the ‘reasonableness’ of the results it is useful to examine the abatement costs estimates relative the magnitude 
of the plants emissions. 

Table 1: Summary Statistics For Non-Negative Marginal Abatement Costs Estimates (29 Plants) 
Minimum Maximum Mean Median Weighted Average a 

$35 $12,312 $1,703 $787 $355 
a Weighted by total plant SO, emissions. 

Figure 4 shows the marginal abatement plotted against the cumulative plant level emission. The abatement costs 
estimates are a log scale. This may be thought of as a crude approximation to the supply of allowances. This is a very 
crude approximation. To accurately aggregate the allowance supply curve, each plant’s entire marginal abatement cost 
curve would be summed. Instead, figure 4 simply plots each plant’s point estimate of marginal abatement costs against its 
entire emissions. The appeal to figure 4 as an allowance supply curve in only to present a context. 

plants, which account for about 42% of the emissions in the test data set. Figure 4 shows that over 60% of the emissions 
have marginal abatement costs less that $100. 
approximated as exponential curve (shown on figure 4). It is quite apparent that marginal costs rise quite steeply for plants 
that contribute only a small share of overall emissions. 

with a more ‘traditional’ engineering cost analysis. (Molburg 1996) com Utes the incremental average cost of scrubbing or 
switching to low-sulfur coal for all coal fired units in the U.S. This data was plotted against the incremental emission 
reduction for each reduction option at each unit and was normalized to 100%. This comparison suggests that the cost 
estimates at the ‘high end’ are in fairly good agreement, i.e. it is very expensive to abate those ‘last few’ tons of SO,. The 
principle difference between the two analyses is in the abatement costs below $I,OOO. The analysis by Molburg suggests 
that most of the emission reductions fall between $100 and $1,OOO, while the cost estimates from the distance function lie 
at both extremes, but with little between. There are two possible reasons for this; 

The figure is further normalized so that the emission are plotted as a percent of the total emissions for the 29 

The abatement costs as a function of cumulative emissions can be 

Figure 4 also provides a comparison of the abatement costs estimates derived from the distance function analysis 

f 

The test data for the distance function has a small number of plants, while the engineering analysis covers a 
large number of unit level data. 
The low marginal costs in the distance function analysis are attributed to the entire plant emissions. 

A larger data sample might very well generate a ‘smoother’ set of marginal cost estimates. Theory requires the production 
set, which is the basis of the distance function approach, to include the origin. When non-parametric methods are used, as 
was done here, then very sharp differences in the abatement costs estimates can occur (see figure 5 for an example). 
Larger sample sizes may provide estimates that have fewer large discontinuities. 

The other problem is that the marginal abatement costs is obtained from point estimates of two derivatives. 
Figure 4 plots the results from the point estimates against the entire plant emissions. If the low marginal cost eventually 

plant, but simply that the methodology gives results that are consistent with observed differences in plant enginking and 
operations 
* 29 plants had negative shadow prices. This was not the same group of plants that were on the frontier. 
7 Methodology is described in the aforementioned report. Data was provided by the author in a private cornmurkation. 



rise, as illustrated in figure 5, then the results in figure 4 will be biased downward, since the entire emissions of the plant 
would not be able to be reduced at that low marginal cost. 

Engineering Analysis 

Distance Function 

Exponential Fit of Engineering 

--_... 

Wton (log scale) 

Marginal Abal ement Cost 

_....... 

0% ' 10% 20% 30% 40% 50% 60% 70% 80% 
Curnrnulative Emissions 

90% 100% 

Figure 4 Comparison of the Directional Distance Function Estimates of the non-negative Marginal Abatement Costs 
with Engineering Analysis 

This is only half of the results obtained from the directional distance function. The other half of the plants in the 
test data set had positive shadow prices, in apparent conflict with economic theory. There are several empirical reasons 
why marginal abatement costs might by negative (Le. have positive shadow prices for SO& Among these are: 

Inconsistency in the regulations between plants compared in the data set. 
Inefficiency or lack of optimization in fuel costs and fuel choice the to the economic regulation of power 
generation. 

Inconsistency in the regulations between plants compared in the data set would cause the problems in implementing this 
methodology. The methodology is based on the notion of a single production set that is restricted by environmental 
regulation. The range of different environmental regulations that the power plants in the test data operate under in the year 
1989 may be too diverse upon which to base a single restricted production function analysis. The large estimates of 'free' 
emission reductions based on the second version of the shadow price estimation approach is good evidence of this. 

The average was 2.3 
ibs/mBtu. Clearly many plants in the data set were operating in a virtually unregulated fashion in 1989. This is no longer 
the case, since high emission plants have already come under Phase I of the: new CAAA. For this method to be more 
accurate, the plants in the data must come under a more common regulatory structure. To some extent, this is the strength 
of the Coggins and Swinton (1995) study. They only examined coal fired pllants without scrubbers, hence had a smaller 
amount of technical variation in control options. They also claim a common regulatory structure, although emission rates 
range from 0.7 to 3.5 lbs SO,/MBtu. However, one cannot say what the value of this common set of plants is on the sign 
of the shadow prices, since the methods used by Coggins and Swinton restrictx shadow prices to be non-negative. 

The emission rates for SO, in the test data set ranged from .5 to 6.7 Ibs S02/h4btu. 
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Figure 5 Comparison of High and Low Marginal Cost Regions of a Piecewise Linear Production Set 
The second reason for positive shadow prices is the potential that the economic regulation of electric generation 

has created disincentive to optimize fuel choice in the face of changing coal markets. Long term contracts tend to ‘lock in’ 
existing coal choice. The presence of fuel adjustment clauses also eliminate any profit incentive to fmd cheaper coal 
supply, regardless of environmental concerns. The simple matter is that some plants may actually have opportunities to 
reduce costs and emissions, if the incentives were in place to do so. (Ellerman 1995) argues that allowance prices have 
been much lower due to reduction in delivered low-sulfur coal prices, particularly because of falling rail rates. 

If these results are not spurious, but reflect underlying opportunities for changing coal choice as an option to 
reduce costs and emissions, the question arises: How large a coal price differential are implied by these results? To 
examine this we compare the magnitude of the (total) marginal abatement cost to the total fuel expenditures. The marginal 
abatement costs estimates for plants with positive shadow prices are multiplied by the total emissions at the plant and 
divided by fossil fuel expenditures. The average is 36 cents/mbtu and the median is 14 cents/mbtu. In 1989, the average 
delivered price of coal was 144 centslmbtu in 1989, so that the median increase is only about 10%. 

Imolication of Preliminary Analysis and Future Directions 

Given the nature of these preliminary results one must answer several questions. 
It is possible to explain the large fraction of positive shadow prices obtained by this methodology and data? 
How do we reconcile the estimates (which are negative) with emission trading that has occurred at $200/ton 
and lower? 

While some modest values of positive shadow prices may be based on actual opportunities to reduce costs and emissions, 
the primary reason for these positive shadow prices is the lack of uniformity in environmental regulations in 1989 for the 
plants in the test data set. This is no longer the case under the Title IV of the CAAA. Under more uniform regulatory 
incentives, we would expect data on recent performance to have fewer positive shadow prices. Nevertheless, non- 
parametric methods can be sensitive to outliers. A bootstrap procedure might reveal sensitivities in the estimates to 
particular observations in the data. 

The high estimates of shadow prices may be an artifact of the non-parametric methods. If the input data is not 
sufficiently rich to identify several plants to represent the production set, then the slopes of those segments of the 
production set are likely to be steep and the resulting shadow prices high, as illustrated in figure 5 .  A smoothly 
differentiable, parametric approach might be more desirable. Another simple reason is that the data used by the previous 
researchers is not detailed enough to construct shadow prices. We consider each of these issues and how to proceed to 
improve the analysis. 
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Data quality and completeness is always an issue in empirical analysis. The data used in the test does not include 
non-labor operating costs. This an important cost of scrubbing which may be underrepresented in the input specification. 
The other issue is frequently debated economists question on the measurement of capital. The data provided for this test 
computes capital additions in each year and deflates by the Handy-Whitman index. This procedure to computing capital 
needs to me examined. Scubber costs can be 10%-15% of the total plant cos~ts, so we do not wish to loose this element of 
capital in any noise in the data. 

Finally, it is important to include all of the elements of pollution in ithe model specification. SO, is only one, and 
a highly variable part, of the plants emission profile. Particulate and Nox control is also important to power plant 
operations and increasingly the focus on (current and future) emission control regulations. 

' 
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