
Long-term Performance of Ceramic Matrix Composites 
at Elevated Temperatures: 

Modelling of Creep and Creep Rupture 

July31, 1996 

Research sponsored by the U.S. Department of Energy 
Office of Fossil Energy 

Advanced Research and Technology Development Materials Program 

Report Prepared by 

W. A. Curtin, B. Fabeny, M. Ibnabdeljalil, N. Iyengar, K. L. Reifsnider 
Materials Response Group 

Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 2406 1-02 19 

under 

Subcontract 19X-SA946CY WBS Element VPI-1 

for 

OAK RIDGE NATIONAL LABORATORY 
Oak Ridge, TN 3783 1 

Managed by 
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION 

for the 
U.S. DEPARTMENT OF ENERGY 

under Contract No. DE-ACO5-96OR22464 

. . .... ~. , 



Portions of this document may be illegibIe 
in electronic image products. Images are 
produced from the best avaiiable original 
document. 



0. Abstract 

This Topical Report describes work to develop constitutive models for the time-dependent 
creep deformation and ultimate failure of ceramic composites under simple loading conditions at 
elevated temperatures. These models contain explicit dependences on the constituent material 
properties, and their changes with time, so that reliable predictions of composite performance can 
be made based on the expected performance of the individual components (matrix and fibers). 
Three critical processes in ceramic composites at elevated temperatures have been modelled. 

The first process studied is creep deformation of the composite as a fbnction of the stress 
and time-dependent creep characteristics of the fibers and mat* and the failure properties of 
these components. General evolution formulas are derived for the relaxation time of matrix 
stresses and the subsequent steady-state creep rate of the composite, including the deleterious 
effects of fiber damage at elevated loads. Failure times are also predicted, and the model is tested 
against recent data on Ti-MMCs. Specific calculations on a composite of Hi-Nicalon fibers in a 
Melt-infiltrated Sic matrix are presented. 

The second problem addressed is creep deformation of the "interface" around broken 
fibers. As creep relaxes the stress carried by broken fibers, the stress carried by the remaining 
fibers increases and drives fbrther fiber damage and, ultimately, composite failure. An analytic 
model for the interface shear stress versus time after fiber breakage allows the characteristic time 
scale for this phenomenon to be studied as a fimction of material properties. These results have 
then been incorporated into numerical simulations of composite failure to map out time-to-failure 
versus applied load for several sets of material parameters. 

The third problem addressed here is probably the most crucial for current materials: the 
lifetime of the composite under conditions of fiber strength loss over time at temperature. Both 
the slow-crack growth model and the Coleman model of fiber degradation are considered, and 
analytic representation of the creep and rupture behavior of the composite are dervied in both 
cases. Simple approximate relationships are obtained between fiber life and composite life that 
should be a useful tool for fiber developers and testers. Strength degradation data on Hi-Nicalon 
fibers is then used to assess composite lifetime versus fiber lifetime for Hi-Nicalon fiber 
composites. 

The work described here provides a comprehensive and consistent framework for the 
determination of composite durability versus the microscopic constituent properties of the 
reinforcing fibers, matrix, and interface. Although a major issue of interface oxidation is not 
addressed here, the present work provides a means to assess potential lifetimes of candidate 
materials systems if oxidative degradation can be prevented, and thus helps define the ultimate 
opertating limits of ceramic matrix composites at elevated temperatures. 
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1. Introduction 

Ceramic Matrix Composites are currently being developed in the Fossil Energy 
Materials Program for use as heat exchangers, hot gas filters, and other components [ 1,2]. 
The operating conditions envisioned in these applications are both high temperatures 
(1200C and above) and complex chemical environments for long times, which are quite 
demanding. Successfbl material development therefore requires a detailed understanding 
of the deformation and failure of such composites. In particular, the relationship between 
the properties of the constituent materials (matrix, fiber, and interface) and the integrated 
composite must be established to assess the potential success of current material systems 
and to further optimize these systems to attain the necessary performance goals. With this 
in mind, we have worked to develop constitutive models for the time-dependent creep 
deformation and ultimate failure of ceramic composites under simple loading conditions at 
elevated temperatures. These models contain explicit dependences on the constituent 
material properties, and their changes with time, so that reliable predictions of composite 
performance can be made based on the expected performance of the individual 
components (matrix and fibers). 

This topical report summarizes the accomplishments toward the above objective. 
We have focussed on the modelling of three critical processes in ceramic composites at 
elevated temperatures. 

The first process is creep deformation of the composite as a hnction of the stress 
and time-dependent creep characteristics of the fibers and matrix, and the failure 
properties of these components. We emphasize the case in which the matrix creep is 
faster than the fiber creep, which is the desirable limit because matrix cracking and 
environmental ingress can be avoided, prolonging composite life. The major question 
addressed is the time for relaxation of the matrix stresses and the subsequent steady-state 
creep rate of the composite, including the deleterious effects of fiber damage at elevated 
loads. For materials in which the matrix creep is slower than that of the fibers, the 
characteristic times required to reach matrix cracking and, hence, environmental ingress, 
are also determined. General evolution formulas are given, the predictions tested against 
recent data on Ti-MMCs, and specific calculations for the case of Hi-Nicalon fibers in a 
Melt-infiltrated Sic matrix are presented. 

The second problem addressed here is creep deformation of the "interface" around 
broken fibers, after the transient tensile creep behavior described above has ceased. Once 
tensile stresses have crept away, shear stresses remain across the fibedmatrix interface and 
as these relax the stress carried by broken fibers is decreased and the stress carried by the 
remaining fibers increases. The increasing stress drives fbrther fiber damage and 
ultimately composite failure ensues at long times, after some associated creep-like 
behavior. We have developed an analytic model to describe the interface shear stress 
versus time after fiber breakage which allows the characteristic time scale for this 



phenomenon to be studied as a fbnction of material properties. The results have then been 
incorporated into numerical simulations of composite failure to map out time-to-failure 
versus applied load for several sets of material parameters. In general, Werface" 
relaxation is a long-time degradation mechanism which may not be important (due to 
faster life-limiting mechanisms) in materials with matrices creeping faster than the fibers. 
However, improved fibers may ultimately succumb to such a degradation mechanism and 
so it is necessary to assess such limiting lifetimes. 

The final problem addressed is probably the most crucial for current materials: the 
lifetime of the composite under conditions of fiber strength loss over time at temperature. 
Considerable data has been obtained recently by the NASA and Perm State groups on the 
degradation of various fibers at elevated temperatures and various atmospheres, tested in 
the laboratory at convenient gauge lengths. What is the composite lifetime given such 
fiber data? The answer is not trivial because the de-of-mixtures does not strictly apply to 
ceramic composites; the composite failure depends on accumulated fiber damage at a 
critical gauge length different from that investigated in the laboratory. Large differences 
in the failure time between individual fibers and composites can arise depending on the 
constituent material properties. We have carried out two sets of mechanistically-based 
calculations to address this issue. In the first, we adopt the slow-crack growth model of 
fiber degradation and develop an analytic representation of the creep and rupture behavior 
of the composite. In the second, we adopt the generalized Coleman model of fiber 
strength degradation in time. In both cases, simple approximate relationships are obtained 
between fiber life and composite life that should be a usehl tool for fiber developers and 
testers. We then use strength degradation as measured by NASA to assess composite 
lifetime versus fiber lifetime for Hi-Nicalon fibers at various applied loads. The two 
modelled degradation mechanisms give similar life predictions for the same experimental 
fiber data, indicating that the detailed fiber strength loss mechanism is not critical to a 
basic understanding of the composite degradation. For Hi-Nicalon fibers the predicted 
composite lifetimes are about 4-20 times longer than the typical fiber lifetimes at 
laboratory gauge lengths, depending on load levels and specific degradation mechanism. 

None of the above models account for the oxidative degradation of the fiberlmatrix 
interface. This problem is the major one facing CMC materials designers but is difficult to 
incorporate into models of composite fracture. The reason for the difI3cult-y is that loss of 
the interface restores strong fibedmatrix bonding, which in turn drives brittle or 
monolithic-like failure. Such failure must be treated using appropriately modified fracture 
mechanics considerations and does not depend on, for instance, explicit fiber strength loss. 
The calculations and predictions presented here are thus applicable for longer-term 
planning of composite design. The interface oxidation problem must be solved by 
appropriate system design and chemical inhibition, and once overcome the mechanisms of 
degradation discussed here will become of paramount importance. The results obtained 
here can thus be considered to define ultimate operating limits of the materials. If these 
limits are not acceptable for specific applications then fbrther material optimization or 
changes will be needed in the fbture even if the immediate short-term failure problems are 
solved. 

In the following Section, we describe each of the above accomplishments, while 
Section 3 provides a brief summary and discussion of our major results. 
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2. Long-term Composite Performance 

2.1. Creep of Fiber-reinforced Composites 

2.1.1. Model Development 

Here we examine the time-dependent deformation of composites reinforced with 
continuous fibers which exhibit successive, stochastic fiagmentation under increasing 
applied load. We present a simple one-dimensional model of a viscoelastic-plastic matrix 
reinforced with continuous viscoelastic fibers aligned parallel to an axis of tensile loading 
in a manner identical to the model of McLean [3]. In addition, we incorporate the effects 
of fiber damage using a non-hear constitutive model of the fiber bundle deformation 
which includes the stochastic failure of fibers and the influence of fibedmatrix slip around 
fiber breaks. We then present detailed quantitative analyses of the case particularly 
applicable to ceramic composites: a viscoelastic-plastic matrix reinforced with viscoelastic 
fibers and subjected to a step tensile loading. To test the model, we compare numerical 
solutions of our model to experimental data on Titanium Matrix Composites recently 
obtained by Weber, Du and Zok [4], and find reasonable agreement in the creep rates, 
failure times, and general deformation history. We then predict the evolution of creep 
strain and fiber damage in. a Hi-NicalodMelt-infiltrated Sic composite at 1200C to 
demonstrate the intrinsic time scales for stress relaxation. 

We are concerned with the time evolution of the average axial components of 
stress and strain in a composite subjected to a uniaxial tensile loading and uniaxially- 
reinforced by a volume fraction f of continuous viscoelastic fibers of radius r which are 
aligned parallel to the axis of loading. We consider viscoelastic-plastic 
which exhibit the constitutive relationships 

matrix and fibers 

Here,&,,, is the axial strain in the matrix, and a, is the axial stress in the matrix. and af 
are the respective quantities for the unbroken fibers, and a superscribed dot indicates a 
derivative with respect to time. Eq. 1 applies when a, < a, (a, = cracking stress of the 
matrix). When a,,, = a,, the matrix cracks irreversibly and so a,=U is then assumed. E/ 
and E,,, are the Young's modulus of the fibers and matrix, respectively. G and q ,  and H 
and p ,  are parameters that characterize the inelastic behavior of the matrix and fibers, 
respectivefy, which exhibit power law creep behavior. The mechanical analogue of Eq. 1 
is a hea r  spring connected in series with a nonlinear dashpot, which resembles the linearly 
viscoelastic Maxwell material. Eq. 1 does not account for a distinct primary creep regime 
or time-dependent recovery. More general creep relations with specific time dependence 
can be considered, and will be utilized to represent the Hi-Nicalon fibers discussed below. 

We assume that structural integrity of the composite is maintained so that 
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for all time t . This implies that the strain rates, Eqs. 1, in both the constituents are equal 
for all time t . Load conservation across an arbitrary cross-sectional plane of the 
composite implies that 

(3) 

for all time t . Here, aqp is the applied stress and is the total stress supported by 
the fiber bundle at the cross-section under consideration. 

The fiber "bundle" consists of fibers that are broken at various locations. We 
consider those composite materials in which the fibedmatrix interface is either debonded 
upon matrix cracking or fiber cracking, such that after fiber breaking the fiber slips relative 
to the matrix as governed by a constant shear stress T across the slipped portion of the 
interface. This shear stress across the fiber-matrix interface allows for load to be 
transferred back into fibers that are broken. The recovery length required for the stress in 
a broken fiber to rise from a value of zero at a break to the stress it would support if 
unbroken, a/ is I f .  Thus, regions of fiber within of a break still carry some tensile load 
between 0 and of. Considering any arbitrary cross-section of the composite, the 
quantityaf-,, is therefore the sum of the stresses canied by fibers that have breaks that 
are farther than *If  from that cross-sectional plane and by fibers that have breaks within 
*Zf of that cross-sectional plane. The first group of fibers are considered to be 
"unbroken", and are subjected to the stress of ,  while the fibers of the last group support a 
.range of lesser stresses according to the exact location of any breaks in the fibers that are 
within f Z f  of the cross-sectional plane. In a detailed analysis Curtin [5] showed that if 
(i) the fraction of fibers that have more than one break within fZf of the cross-sectional 
plane is relatively small, (i) there are no stress concentrations in fibers adjacent to broken 
fibers (i.e. the fibers exhibit global Zoad-sharing), and (ii) the finite population of fiber 
strengths is adequately described via a Weibull distribution, then 

(4) 

for all time t . The characteristic strength appearing in Eq. 4 is 

! 
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In Eq. 5 ,  a,, is the characteristic strength of the Weibull strength distribution of fibers 
tested at gauge length 4, and the Weibull shape parameter rn describes the variability in 
fiber strengths. The characteristic strength a, is the fiber strength at the critical gauge 
length 

The nonlinear damage law of Eq. 4 is the main ingredient of our damage-based creep 
rupture model. The non-linear term in brackets accounts for the probability of fiber 
damage within a slip length 'I for fibers under remote load CT , and for the average 

law has been previously demonstrated for time-independent uniaxial tensile strength in 
both ceramic and metal matrix composites. 

It can now be made clear why the creep relation for the fibers depends on yrather 
than on a-to~a~. The quantity af is the stress on the portions of the fibers which are not 

in the composite, and creep deformation only occurs in these same portions and is 
controlled by of. The quantity crfitotal contains the additional stress carried by the 
broken portions of the fiber bundle, but these regions of fiber respond by slip to any 
deformations imposed by either creep or additional applied loads. 

In total, Eqs. 1 4  constitute a closed system of algebraic and differential equations 
for the history of of which can be solved when the history of the applied stress or strain is 
known. Here, we subject the composite to a step tensile loading defined by 

reduced stress carried by such broken fibers. The applicability o t this damage formulation 

sliding re i ative to the matrix, and hence T i s  directly proportional to the elastic fiber strain 

(7) 

whereaupp > 0. We find it advantageous to define the scaled, nondimensional variables 

The choice of ac as the unit of stress is made because of its appearance in the damage law; 
it is not related to any characteristic matrix stress. In most cases of interestyo, is much 
larger than any stress sustainable by the matrix; thus the characteristic dimensionless times 
which arise in applications are usually on the order of (a, / crmc)'-' >>1. 

Combining Eqns. 1-4, we obtain the rate of change of stress in the unbroken 
portions of the fibers as 

(9) 
d&j 
dt̂  

(f) = 

f o r d  time t^ > 0. 
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As an aside, ifthe composite was not susceptible to fiber ftacture or fiber creep, 
and was loaded in the same manner, the equation governing the evolution of fiber stress 
for all time ? > 0 would be simply 

E/ 
which can be integrated analyticdy to obtain the deformation; this is essentially McLean's 
model for the creep of fiber-reinforced composites. Comparing with Eq. 9, we see that 
fiber damage always leads to higher stresses on the unbroken fibers, and greater composite 
creep rates, but that the transfer of stress onto the fibers is slowed by the creeping 
deformation of the fibers themselves. 

The initial conditions for Eq. 9 are as follows. If the matrix does not crack initially 

(small applied loads), i.e. if suPp S -E-- , then 3 E, 
Em 

Ifthe matrix undergoes cracking on the initial loading then s,,,, = 0. With the appropriate 
value for &,,,,,, the initial fiber stress is the solution of 

c. ar0 is not simply equal to - aup'f , for that would imply that no fibers break initially, 

regardless of the magnitude of the applied stress. Finally, because the fiber stress has a 
maximum value governed by the damage law, no solution to Eq. (12) exists if the applied 
stress exceeds the "fast-fiacture" ultimate tensile strength of the composite: 

Ec 

1 
m + l  

Ifthe applied stress is larger than this value then the composite fails immediately upon 
loading. 

We discuss here the (generally optimal) case in which the fiber creep rate is slower 
than that of the matrix. Then, the matrix gradually relaxes by creeping and load is 
transferred to the (damaging) fiber bundle; the matrix does not undergo matrix cracking if 
it survives the initial applied load, thereby protecting the fibers from external 
environmental ingress. The stress in the matrix does not decay to zero as t + +a , but 
rather to a value at which the matrix and fibers creep at the same rate, and hence the 
composite never ceases to creep. The total creep strain versus time is obtained by 
integrating Eq. 9 numerically to get 
the creep rate, and then integrating 

and substituting the result into Eq. 1 to obtain 
In all cases, afier some initial 1 over time. 
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transient behavior, the composite tendr toward a stee-state creep rate k,,, = H#+, 
where the long-time fiber stress is the solution to 

Although some fibers break, which influences the overall creep rate, the damaged fiber 
bundle is still able to carry the entire applied load. 

In ceramic matrix composites under fist loading conditions, the matrix generally 
cracks well prior to composite failure and thus the composite strength is the bundle 
strength of the fibers alone. In such a situation, then, the present model predicts that a 
ceramic composite will either (i) fail instantly on loading, if the applied stress is above the 
fast-fracture strength, or (i) will have an infinite life with some steady-state creep rate 
after an initial transient period, if the applied stress is below the fast-fiacture strength. 
Therefore, creep redistribution of upplied iensile loads does not cause failure in WCs. 
In practice, of course, several additional effects cause time-dependent rupture in CMCs: 
creep relaxation of the interfacial sliding stress (which occurs on a much longer time scale 
then the tensile stress relaxation) and fiber strength degradation. We will discuss these 
below, and here only note that the present theory is particularly useful for predicting the 
evolution of creep strain and load transfer between fibers and matrix under conditions 
when fiber strength degradation occurs over a longer time scale then the tensile creep 
relaxation. 

2.1.2. Application to a Metal-Matrix Composite 

To demonstrate the general applicability of the model for predicting composite 
creep rates and failure, and thereby validate some underlying assumptions, we apply the 
model to predict the response of Titanium-matrix composites. Data on a Ti-6Al-4V alloy 
matrix reinforced by a 0.32 volume fraction of continuous, aligned Sic fibers (BP Sigma) 
to a constant tensile stress and constant strain rate loadings at 600°C has been obtained by 
Weber, Du, and Zok [4]. Although not a CMC, the same general principles of 
deformation and strength apply here, with the simplification that the creep rate of the 
fibers is negligible @=O in Eq. 1). In addition, matrix yielding occurs at elevated loads 
rather than matrix cracking, which adds an additional load-carrying capability of (I-f)am 

strength of Eq. 13 and the UTS of the MMC, which is higher by ( 1 - f ) ~ ~ ~ .  in which failure 
can occur by creep-driven transfer of load fiom the matrix to the fibers. 

By extracting fibers fiom the as-processed composite and by analyzing the 
transverse tensile creep of the composite, Weber, Du, and Zok determined that the 
constituent parameters at 600C were as follows: 

to the composite strength. In this case, there is thus a load range between the fiber bund Y e 



Fibers: El = 360 GPa ; r = 50pm 
a, = 1470 MPa ; 4 = 1 m ; m =  5 

Matrix: E,,, = 71.76 GPa ; =28OMPa 

G = 4.12 lo-” Pa-%” ; q = 3 

Interface: r= 20 MPa 

With these values, the characteristic fiber stress and composite UTS are then 

ac=3742MPa ; cub= 1023 MPa 

including the matrix yield stress contribution to the UTS. The stress below which no 
failure can occur, the fiber bundle strength, is 833 MPa. The strain at which the fiber 
bundle fails is calculated to be 0.844%. 

A second composite was heat-treated in air at 600 “C for 100 hours, and the 
fibers were then removed by matrix dissolution and tested in tension. The heat treatment 
caused growth in the flaws present in the fibers, and weakened them in a fairly uniform 
manner, such that after 100 hours at temperature 

a, = 1290MPa ; Lo = lm ; m = 5  . 

If these values are taken as the fiber strength distribution, then the corresponding 
characteristic stress is ac=3356 MPa, the “fast-fiacture” strength is 937 MPa (although 
not really relevant to fast-fracture, of course), the stress below which no failure occurs is 
then 747 MPa, and the characteristic fiber bundle fkilure strain is 0.75%. Since the present 
model does not incorporate such degradation of fiber strength occuring over time scales 
relevant to creep in an actual composite at high temperatures, we have indirectly examined 
the effect of this phenomena by predicting response of composites reinforced by the two 
fiber strength distributions, as-processed and heat-treated. We expect the results from 
these two cases to bracket the measured response of the test specimens over the time scale 
of 100 hours. 

Using the values given in ( 1 9 ,  the initial-value problem given by Eqns. 7-9 was 
integrated numerically, and the predicted deformation behavior compared to the 
experimental data at applied stresses of 750, 800 and 850 MPa. The measured and 
predicted strains versus time are shown in Figure 1; the predicted deformation is in rather 
good agreement with the data at early and intermediate times for the as-processed fiber 
strength values. At longer times, the discrepancy in strain grows for 750 MPa but the 
agreement using the 100 hour fiber strengths is quite good. These results validate the 
general model we have developed. 

The deviation between predicted and observed strains relative at 850 MPa even at 
short times is rather surprising, as is the short lifetime. One rationalization of this result is 
that perhaps this particular specimen contained initial fiber damage or permanent fiber 
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Figure 1. Creep strain versus time for a Titanium matrix composite at applied stresses of 
750, 800, and 850 MPa. Open symbols - data of Weber et al. (Ref 4); solid lines - 
predictions using as-processed fiber strengths; dashed lines - predictions using heat-treated 
fiber strengths. 

bending, both phenomena commonly induced during processing of such metal matrix 
composites. Initial damage or bending reduces the tensile strength, an issue well studied 
by Wadley and coworkers. It also leads to enhanced strain at time t=O, and an increased 
creep rate and shorter life compared to the present predictions. The incorporation of fiber 
damage and bending, as discussed by Duva et al. [6] ,  into the present model can be 
accomplished by an appropriately modified fiber damage law. 

Figure 2 shows the predicted tensile failure time as a hnction of applied stress 
(although plotted in the traditional manner of stress versus time), along with the observed 
failure times as measured on samples of 1" and 4" gauge length. At short times, the 
predicted fast fracture strength is actually lower than the measured value of 1120MPa on 
1" gauge length composite samples, and comparable to that of the 4" gauge length 
samples. The general trend of rapidly increasing lifetime with small decreases in applied 
stress is roughly captured, and nearly over the correct range of stresses. The predicted 
results using the two different fibers strengths do nearly bracket all of the measured 
lifetimes versus stress over both sample gauge lengths, and hence part of the steeper 
decline in strength with time may be attributable to the fiber degradation, although the 
time dependence of the fiber degradation is currently unknown. 
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Figure 2. Applied stress versus composite lifetime for a Titanium matrix composite. 
Open symbols - data fiom Weber et al. at 1" (triangles) and 4" (squares) gauge lengths; 
solid lines - predictions for as-processed and heat-treated fiber strength distributions. 

2.1.3. Application to a Hi-NicalodMelt-infiltrated Sic  CMC 

Here we apply the model of Sec. 2.1.1 to predict the deformation in a ceramic 
matrix composite composed of woven mats of Hi-Nicalon fibers embedded in a Melt- 
infiltrated Sic matrix, with 40% volume of fibers, at 12OOC, and under various uniaxial 
loadings. Since the transverse fibers do not play any appreciable role in the deformation 
or failure process, we consider this material to be adequately represented by a uniaxial 
material with +0.20 volume fraction of fibers in the loading direction. The Melt- 
infiltrated matrix is selected because some creep data is available, whereas the creep 
behavior for CVI Silicon Carbide, a primary matrix material in the Fossil Energy Program, 
is not well-established at present. 

The creep behavior of Hi-Nicalon have been determined by DiCarlo et al. [7] and 
characterized by the general form 

(18) if = A p d ( t  +to)p-' exp(-pel RT) 
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which exhibits continuous "hardening" or decreasing creep with increasing time for p<1. 
We have added an additional offset time to to the original equation of DiCarlo et al. 
because their original result yields an infinite creep rate at time t=O which is not physically 
possible. The offest time is determined such that at t=O the fiber creep and the matrix 
creep are equal. This to is generally a short time (on the order of minutes to a few hours) 
relative to the major creep deformation times and does not affect our results in any 
important physical way. Finally, although the DiCarlo et al. form includes primary creep 
relaxation for which the assumption of superposition implicit in our model cannot be 
formally justified, we utilize our creep evolution model to estimate the major 
consequences of stress redistribution on the creep deformation of these materials. 

The melt-infiltrated matrix is assumed similar to that tested by Weiderhorn et al. 
[SI, which exhibits a power-law rate similar to Eq. 1 with the prefactors G-1x10-39/(s- 
Pa4) and q 4  for stress lower than aboutl5OMPa. Other relevant constitutive properties 
of the fibers, matrix and interface at the 1200C temperature were taken as 

Fibers: E/ = 300 GPa ; r = 7.5,m 
a,, = 2000 MPa ; 4 = 1 inch ; m =  5 

Matrix: E, = 300 GPa ; 0, = 250Mpa 

Interface: 'c= 10 MPa 

For these values, the fast-fracture composite strength at temperature is 458 MPa. We 
consider applied stresses at lower values, and explicitly lower than the (estimated) matrix 
cracking stress. At such low loads, the extent of fiber damage is not too large and has 
.fairly small effects on the overall deformation history. Thus, the assumed fiber strength 
parameters will not have a critical effect on the general trends of the results. 

The evolution of stress in the fibers during creep follows an equation similar to Eq. 
9 but the second term in the numerator, associated with the fiber creep, is modified to 
account for the different form of the fiber creep rate used for these fibers. The evolution 
equation is integrated numerically and the combined with the creep law itself to obtain the 
creep strain in the composite, and stresses in the fibers and the matrix, versus time. 
Results for three different stress levels of 100 MPa, 140 MPa, and 200 MPa, are shown in 
Figure 3. Interestingly, the time scale for stress relaxation and creep is fairly long, so that 
it is inappropriate to estimate creep life simply by considering the fiber creep rate at an 
effective applied stress of (aa df); the "primary" portion of the creep is extensive. This 

times and so the transfer of stress from matrix to fibers occurs only very slowly as the 
fibers creep harden. The q=4 exponent for the matrix creep also implies that the creep 
rate does slow down significantly as the matrix stress drops only moderately, which also 
contributes to the prolonged creep region. 

The time required for 1% creep deformation, a common design limit, is evident in 
Figure 3. The 1% creep life of the composite is on the order of several hundred hours 
(625 hours at 140 MPa) and complete transfer of stress from matrix to fibers has not 

behavior is obtained because t R e fiber and matrix creep rates are not too different at short 
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Figure 3. Strain versus time for Hi-NicalonlMelt-itrated CMC as predicted by the 
present model at various applied loads. Note that transfer of stress from matrix to fibers 
occurs gradually. The time to obtain 1% creep strain is on the order of a few hundred 
hours in this stress range. 

occurred within this time. The estimated creep life from Eq. 18 for the fibers alone, and 
assuming the fibers carry a load of Oapp/f starting from t=O, is only 99 hours at 140 MPa, 
quite a bit smaller than the values predicted here. Thus, the present analysis should be 
used to obtain realistic rather than overly-conservative estimates of creep life. 

The low stresses on the fibers during this "transient" regime also have implications 
for stress rupture. Since the fiber strength degradation rate is very sensitive to stress level 
(see below), the low stresses during the transient creep regime slow down the rate of fiber 
degradation relative to the rate that would prevail at an effective stress of (Gapplf). 



2.2 Creep and Failure via Interfacial Shear Stress Relaxation 

Once a loaded composite has reached a "steady-state" condition at which the 
matrix tensile stresses have been decreased to near zero and the fiber bundle is carrying 
essentially all of the load, other longer-term deformation modes can be manifest. Here, we 
consider relaxation of the shear stress across the fibedmatrix interface around those fibers 
which have broken. The general scenario of deformation is as follows. When a fiber 
breaks, the fibedmatrix (flm) interface is debonded (if not already debonded by matrix 
cracking) and the matrix slides relative to the fibers subject to the constraint of the residual 
frictional sliding stress T along the interface. The matrix in the vicinity of this broken fiber 
is thus subject to a shear stress T at the flm interface and the matrix can relax this stress by 
creep. A decrease in the shear stress then implies that there is additional slip along the 
fiber to maintain the axial equilibrium condition away fiom the break. The slip length 
along the fiber is lAt)=rc@.s(t) if the far-field fiber axial stress is of and the shear stress is 
a function of time. As shear decreases and slip increases, the broken fibers carry less and 
less "pullout" load and over longer and longer gauge lengths. This decrease in load 
carrying capability implies an increasing stress on the remaining unbroken fibers. 
Eventually, some of these fibers will then also break, initiating shear relaxation around 
their perimeters and increasing even fbrther the stresses on the remaining intact fibers. 
This process of breakage, slipping, relaxation, and fh-ther breaking culminates in rupture 
of the material after a sufficient amount of damage and relaxation has occurred. This 
process is described in more complete detail below. 

Before the composite degradation can be studied numerically or analytically, it is 
clear that a form for the interfacial shear stress along a broken fiber and versus time is 
obtained that incorporates the shear creep behavior of the matrix and the slip along the 
fibedmatrix interface. Such a shear stress must also be expressible in a closed form so that 
it can easily be employed in the numerical simulations. Du and McMeeking [9] have 
recently addressed the problem of matrix shear stress relaxation around a broken fiber in a 
composite, and have derived a differential equation for the axial fiber displacement u(z,t) 
as a hnction of position away fiom the fiber break and time. Their result is 

--- - dr+391GS 1 du(z,t) -- 
w dt G, dt 

where G, is the matrix shear modulus and w is the fiber spacing. Unfortunately, full 
solutions of this differential equation are not obtainable analytically and moreover the 
resulting shear stress is explicitly dependent on the axial location z. 

Numerical solutions for various cases by Du and McMeeking demonstrate that the 
shear stress is only very weakly dependent on z, and this motivates us to consider a 
simplifling approximation which yields a solvable differential equation for a z-independent 
shear stress. Specifically we envision that because the fiber is fiee at the broken end, the 
displacement of the slipping part of the fiber occurs in a rigid manner and the magnitude of 
the displacement is controlled by the displacement at the end of the slip zone t 'lf where 
strain compatability with the matrix is established. Mathematically, this is expressed by 
the condition 
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l i(2,f)  = I /  E, 

where eC is the composite strain. Kelly and Street used the more restricted integrated 
form of this displacement law, uflFc, in early work on the deformation of 
discontinuously reinforced composites [ 101. Using the relationship between slip length If 
and ‘c, and substituting the above ansatz into the differential equation above, leads to a z- 
independent equation for T(t): 

This ordinary differential equation can be integrated analytically for integer n>l, yielding a 
polynomial equation for .c(t). For n=2,3, which are of relevance to many materials, the 
polynomials can be solved analytically. Thus, we have obtained an approximate closed 
form solution for the interfacial shear stress versus time under conditions of full relaxation 
of the matrix tensile stress. Predictions of the slip length versus time are compared with 
those obtained fiom the full differential equations of Du and McMeeking in Figure 4, and 
it is evident that the agreement is reasonable. In particular, our approximation captures 
the appropriate time scale quite accurately. We also note that the results of Du and 
McMeeking are not some simple power law of time, and our analytic result indicates the 
competition of two different powers. 
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Returning to the composite as a whole, as a fist  brush at seeing the basic 
degradation process one can simply consider that the shear stress T appearing in the 
characteristic strength parameter oc is merely a h c t i o n  of time as obtained above. As r, 
and hence oc, decreases the composite strength (Eq. 13) decreases and ultimately the 
strength reaches the level of the applied load and failure occurs. This is the present 
manner in which fatigue behavior of CMCs is understood, because a major fatigue 
mechanism at low temperatures is simply interface wear and a concomitant decrease in r 
with cycles [l 11. Given a form for r(t), then, the failure time can then be estimated 
directly. 

The above simple estimate is incorrect for several reasons. First, the value of T 
decreases around any individual fiber only once that fiber breaks, and hence in a real 
composite there is, at any instant of time, a broad spectrum of r values that depends on the 
history of the fiber breakage. Second, the ultimate strength expression given previously is 
predicated on the existence of only a few breaks per characteristic length 6,. Since 6, 
now depends on time, it is possible that this condition is violated during the damage 
evolution. To investigate these features in detail has, to date, been prohibitively difficult 
analytically and so we will utilize numerical simulations of composite failure to study this 
overall degradation mode. The numerical simulations are based on the Global Load 
Sharing model developed and described by the Curtin in several recent publications [ 121, 
and are rather straightforward but will not be discussed here. 

Using the above response of the interfacial shear stress, we have simulated 
composite creep and failure using the numerical model derived previously. The simulation 
proceeds as follows. An initial load is applied, and instantaneous fiber breaks at weak 
defects along the fibers are introduced to produce the initial starting state of damage and 
strain in the composite at the chosen applied load. Time is then incremented and the slip 
along the interface near existing broken fibers is updated according to -c(t). The reduced 
slip increases the stress on the other fibers which then break at a sequence of times ti and 
each begins interfacial relaxation following the hnction .c(t-ti>. The cumulative effect of 
slip and fiber damage determines the creep strain (which does not include the explicit fiber 
creep contribution established in Sec. 2.1 above, however), and failure occurs quite 
naturally when the stress on the remaining fibers exceeds their collective strength. 

Results for strength versus time for two cases representative of Hi-Nicalon fibers 
in a matrix with n=2,3 as creep exponents are shown in Figure 5 .  The strength decreases 
very slowly with time, the behavior being roughly a power law behavior. The time scale 
for this relaxation (lo7 seconds and larger) is rather larger than the tensile creep time 
scales obtained in Sec. 2.1, thus validating the assumption that the matrix tensile stresses 
have been relaxed by the time the shear creep mechanism becomes important. The 
degradation by shear creep is a rather long-time process but provides an absolute upper 
bound to the composite fifetime for tensile failure. 

Since creep load transfer is so slow in the Siliconized Sic matrix material, the 
above degradation mechanism does not play an important role over the time scales 
required to obtain 1% tensile creep strain. We have therefore not performed any 
calculations for more specific materials. 
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Figure 5. Time to failure by interfacidmatrix shear creep versus applied stress, 
normalized by the ultimate tensile strength, for a Hi-Nicalon fiber and a melt-infiltrated 
matrix with creep exponents n=2,3. 

2.3 Composite Failure by Fiber Strength Degradation 

High strength ceramic fibers are known to undergo strength loss at high 
temperatures and under loads. The issue addressed here is how the strength loss of 
individual fibers leads to overall composite failure in time under load. While experimental 
data by DiCarlo et al. [7] clearly demonstrates the trends in strength loss with variations in 
load, temperature, and atmosphere, the actual physical mechanisms of strength loss are not 
evident. Here, we consider two different potential mechanisms for accounting for strength 
loss and use these models to predict the failure of possible Fossil Energy composites. The 
two mechanisms are (i) slow crack growth from pre-existing flaws and (ii) creep damage 
development. The adjustable parameters arising in the models of these two mechanisms 
can be selected to match observed strength degradation on individual fibers and then the 
model forms are used in predicting composite behavior. 

The important issue in determining composite failure is the strength loss of the 
fibers over the critical gauge length 6,, rather than the strength loss found in laboratory 
tests at a convenient testing gauge length Lo. Considering composite failure thus requires 
understanding both strength degradation and gauge length effects simultaneously. The 
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models for fiber degradation consider the gauge length effects explicitly and therefore 
provide a means for relating laboratory data to expected composite performance. 

2.3.1 Failure by Slow Crack Growth in Fibers 

A crack in a brittle ceramic can undergo steady growth in the presence of an 
applied load and an embrittling environment. Such flaw growth is generally represented 
by a crack growth rate versus the stress intensity K prevailing at the crack tip of the form 

dc -=Ajfp 
dt 

Here, K=YGap (t)c1/2 is the stress intensity and Oapp(t) is the "applied" stress on the flaw 

to individual fibers of gauge length Lo, we recognize that the initial largest flaw size co in 
the fiber is also the flaw that determines the initial, or fast-fracture, tensile strength cro of 
the fiber, through the relationship Kic=YOocol". Starting with a flaw of size co, then, 
and under a time-dependent load we shall call T(t), integrating the crack growth rate in 
time leads to a flaw size c(t) and an associated fiber strength a(t) given by 

at time t. The i aw grows until K=Kic, at which pomt fast-fiacture occurs. Applying this 

For a singIe fiber of length Lo and fast-fiacture strength cso tested in a single fiber tension 
test at a constant tensile load aapp, the time to failure tfis determined as the time at which 
the fiber strength is equal to the applied load, a(t&rapp, leading to the well-known time 
to failure [ 131 

In the composite, the fibers experience a time-varying load T(t) which arises from 
the load transfer fiom previously failed fibers being cast onto the remaining fibers. T(t) is 
proportional to the strain on the unbroken fibers, and hence the composite strain. Also, 
there exists a distribution of initial fiber strengths as represented by the Weibull population 
and in the composite it is the strength around the characteristic stress ac that is important. 
If under quasistatic tension the number of fiber failures per unit length 6, at stress cs is 
given by the usual Weibull expression (a/oc)m then, under a general time-varying load, 
the number of fiber failures per length 6, at stress a and time t is given by the "damage 

t lfi 
0(t)fl-2 +($- 1)(AY2&t-2) dtT(f)P - 

0 I ld, 
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Overall equilibrium between the applied stress, the broken but sliding fibers, and the 
unbroken fibers then dictates that, at any instant of time, the total damage 5 and the stress 
T must satisfjl the relationship 

This form is a constitutive law for the composite, because T is proportional to the 
composite strain, and is slightly more accurate than the expression used in the creep 
modelling (Sec. 2.1, Eq. 4 with T v d .  Under constant loading (Oapp fixed in time), Eq. 
27 combined with the damage parameter evolution of Eq. 26 represents an integral 
equation for the time varying stress T(t). Unfortunately, this equation cannot be solved 
analytically, although some progress on a related problem of fiber bundles with no matrix 
has been studied by McCartney and Kelly [14]. Numerical solutions to the integral 
equation are easy to obtain, however, and give the time dependent stress T(t) and 
composite strain T(t)/Q. The failure time tf is reached when there are no solutions to 
Equations 26 and 27 - i.e. enough damage has formed that the damaged fiber bundle can 
no longer support the applied stress. The time scale for failure is normalized by the 
underlying time 

t, = (g- l ) ( A Y 2 7 q y a , )  

and the stress T is normalized by the characteristic stress oc, 
Because the initial applied stress sets an initial slip length 6=roapdT, and because 

the composite damage evolution is controlled by failures in the fibers over this length 
scale, the best time scale characteristic of the failure process in the composite is the time 
required to fail a 9ypical" individual fiber of length 6 under stress Oapp, Weibull scaling 
of the fiber strength with length implies that the typical initial fiber strength 06 at this 
length can be expressed as cr6 = a,(L, /~5) l '~ .  Thus, the time scale for fiber failure at 
this length, t6, is given by Eq. 25 but with the substitution of 06 for oo: 

where the stresses are all normalized by the characteristic fiber strength oc. The 
composite failure time is generally related to the characteristic time t6 more closely than to 
any other time scale. Examples of the evolution of strain and failure in a ceramic 
composite for various values of p, with m=5 and at an applied stress of one-half of the 
tensile strength, are shown versus time normalized by t6 in Figure 6. 

Considering all of our results for failure time obtained fiom integrating Eqs. 26 and 
27 for combinations of the key parameters f3 and m, we have found an empirical 
relationship between the time to failure of the composite and the characteristic time t6. 
Using this empirical relation, we have databed a relationship between the composite 
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Figure 6. Normalized composite strain T/oc versus normalized time t/t6 for fibers 
degrading by the slow crack growth mechanism, for fibers of Weibull modulus m=5 and a 
slow crack growth exponent j3=5 (longest life), 10, 15 (shortest life). 

failure time tdcomposite) and the time to failure $fiber; Lo,aapp/f) of a single typical 
fiber of gauge length Lo tested at the stress Oapdf which has the form 

where the stresses are normalized by oc, as indicated by the carats over the stresses. This 
relationship holds for applied stresses below about 70% of the fast-fiacture strength. 



Prediction of composite life is thus obtainable quite simp@ and rapidly porn 
experimental &ta onjibers tested in the laboratory, independent of many other details of 
the failure process. 

As an example, we consider the Hi-Nicalon fiber composite under a temperature of 
1200C. The stress-rupture data for Hi-Nicalon in air and argon at this temperature has 
been obtained by DiCarlo et al. in the form of a "Larson-Miller" plot for stress versus a 
dimensionless parameter related to the logarithm of the fiber He, and is reproduced in 
Figure 7. The slope of the life versus stress curve determines the value of p=5. We take 
the fast-fracture strength at temperature to be a0=2000 MPa with a Weibull modulus of 
m=5. The interfacial sliding resistance is taken as ~ 1 0  MPa, and the longitudinal fiber 
volume fiaction is e 0 . 2  (2-d material with 40% total volume fraction). The value of the 
characteristic strength ac is then 3170 MPa and the fast fracture composite strength is 
predicted to be 453 MPa, using the various definitions from Section 2.1. 

Figure 7. Stress rupture data on Hi-Nicalon fibers, in the form of applied stress versus 
logarithm of rupture time, fiom DiCarlo et al. (Ref 7). 

Now consider the composite under an applied load of 150 MPa, presumed above 
the matrix cracking limit for this system. The effective stress on the fibers is 150 
MPd0.2=750 m a .  Inserting these values into the above equation yields the prediction of 
a composite l i e  3.6 times longer than a typical individual fiber. From the single fiber data 
at stress 750 MPa, the fiber life is approximately 142 hours and hence the composite 
lifetime is 5 1 1 hours. 

At an applied load of 100 MPa (still assuming matrix cracking), the effective fiber 
stress is 500 MPa and the ratio of composite to fiber life is 4.6. Note that the ratio 
depends on the applied load; the life of the composite is comparatively longer at lower 
loads. From the data of DiCarlo et al. the typical fiber life at this stress is 1072 hours, and 
hence the composite life is 4930 hours. 
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The high temperature fast-fracture strength statistics of the Hi-Nicalon fibers has 
not been made available to us, and hence our numbers here are estimates. For 
demonstration, however, we emphasize the important role of the fiber Weibull modulus in 
determining composite life. Ifthe Weibull modulus is decreased to m=3, but for the same 
fast-fiacture strength of 2000 MPa, then the characteristic strength relevant to failure in 
the composite is actually rather higher, crC=3992 MPa. Carrying through the calculation 
of composite life to single fiber life at stress 150 MPa then yields a factor of 8.5 increase in 
life; i.e. the composite life is 1200 hours. At 100 MPa the increase in life is a factor of 
12.8 such that the predicted life is 13,700 hours. The increase in predicted life comes 
about because at the short characteristic gauge length relevant to failure in the composite, 
the fiber is much stronger than at the fixed 1" length. Thus, the flaw sizes are smaller and 
their growth in time is much slower, leading to a longer composite lifetime than one would 
expect based on the fiber life at the 1" gauge length. 

If the Hi-Nicalon fiber strength is lower than estimated, then the lifetime is not 
necessarily shorter. Taking the 1" strength to be only a0=1750 MPa with the original 
m=5 leads to oc=2837 MPa. At the applied stress of 150 ma, the ratio of composite to 
single fiber life is still 3.6. The procedure of normalizing by the fiber life eliminates some 
of the sensitivity to actual fiber strength. Note, however, that if the fibers are damaged by 
processing then the in-situ strength and its degradation are not related to the strengths 
measured on single fibers in the laboratory. Any prediction of composite life based on ex- 
situ fiber strength is then very qualitative. Assessment of post-processing, in-situ fiber 
strengths by, for instance, fiacture mirrors would allow the present theory to be applied by 
using the slow crack growth parameters A and j3 obtained ex-situ to determine 
strength degradation of the processing-induced flaws of the in-situ fiber. 

.2.3.2 Failure by Fiber Creep Damage 

The strength degradation of many fibers can be adequately described by 
empirical model of Coleman in which the probability of failure of a fiber of length L 
tested at stress CJ is given by [ 151 

the 

the 
and 

In Eq. 31, the reference parameters are such that to is the time to failure of a fiber of 
length Lo which has been held at stress oo. The exponent p is the Weibull shape 
parameter for time and m*=ml@+l) where m is the usual Weibull modulus for strength. 
The assumption in the Coleman model is that during time at load damage forms ("creep" 
damage) and accumulates, leading to strength decrease. The initial fIaws in the fiber play 
no role in this damage mechanism, and are assumed to be unchanging with time. Thus, the 
above model becomes appropriate at time scales over which the new creep damage is 
sufficiently large that the fiber strength is reduced below its initial value. 

aapp and length Lo as 
In the creep damage regime, one can express the characteristic fiber life at stress 



Laboratory data on fiber lifetime follow an identical relationship, and the power-law 
exponent p can be clearly derived from such experimental data (see Fig. 7 for data on Hi- 
Nicalon fibers at various temperatures and applied loads). 

The degradation in composite strength caused by fiber strength loss following the 
Coleman model above has been studied extensively in recent work by Ibnabdeljalil and 
Phoenix [15]  by a time-dependent generalization of the Global Load Sharing simulation 
model of Curtin [12] We utilize their results directly here, and have performed additional 
numerical simulations for the specific cases relevant to fiber with low values of by as 
indicated in Figure 5.  

Ibnabdeljalil and Phoenix have defined the characteristic time tc, which is the single 
fiber lifetime of a length 6, tested at stress oc and follows fiom the above Weibull scaling 
as 

where the Weibull relationship between strengths and lengths of C T ~ / ~ ~ = ( L & J ~ ~ ~  has 
been used. The composite lifetime at stress CT has been obtained by simulation studies, and 
is found to follow the simple form 

-3 

where outs is the tensile strength as given, in normalized form, by Eq. 13. The exponent 
p is reIated to the single fiber We exponent fl by a linear relationship depending on the 
fiber Weibull modulus m, and sE;1(ln2)-1/m*. For m=5, we have found p=l.lSp+O.356 
but a general asymptotic relationship is 

(3 5 )  a=p+- B 
m+l 

Writing auts=fcp(m)oc where cp(m) is given in Eq. 13, and normalizing the composite 
failure time tfby the siigle fiber life at length Lo and stress CT, we finally obtain the ratio of 
composite life to laboratory fiber life given by 

t (composite) . . R  -k 

This result is extremely similar in structure to that obtainedfrom the Slow Crack 
Growth modk-l for fiber strength degmhtion studed in 3.3. I ,  i.e. Eq. 30 above, in spite 
of the drfference in degradarion mechanism. Such a similarity is good, because we hope 
not to need the precise fiber degradation mechanism to determine the Composite 
strengfh; we merely wish to relate laboratory Jiber and composite lifetimes. The 
diflerences between Eq. 36 and Eq. 30 are i h t  the numerical prefactor is slightly 
diflerent and the exponent is /3-2 in Eq. 30 andp+I in Eq. 36. 
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3. Discussion and Summary 

We have investigated three potential damage evolution modes in ceramic matrix 
composites: 

(i) composite creep deformation which leads to stress transfer between matrix and fibers; 
(ii) maWiterface shear creep which decreases the load carried by damaged fibers; 
(iii) fiber strength degradation in time by creep and slow crack growth mechanisms. 

The second damage mode is demonstrated to be a long-term failure mode in materials 
which do not have fiber strength degradation, and is the least important of the three modes 
considered here. The other two degradation modes lead to different types of failure: 
creep-limited and rupture-limited "failures". The interplay between them may be 
complicated; we have provided models to calculate the creep and rupture lives separately, 
and the importance of each mode depends on the loading conditions. If matrix cracking is 
induced, then creep load transfer ceases and the fiber degradation mechanism controls 
failure (in the absence of debilitating oxidation of the interfaces) with a potential long-term 
effect of the shear creep (mode (i) above). If matrix cracking is not induced, then the 
load transfer fiom matrix to fibers delays the onset of fiber strength degradation. 

We have applied the above models to the special case of 2-d Hi-Nicalon fibers in a 
Melt-infiltrated matrix composite. We can now make the following more general 
comments based on those results. If the initial loads are such that the matrix does not 
crack, or the load is applied sufficiently slowly that the matrix creeps enough to avoid 
cracking, then the fibers do not experience the maximum load OaPflf over the 111 stress 
history. Because the fiber strength degradation rate is very sensitive to stress level (see 
Figure 7), the actual fiber degradation will be much less than the estimates made here. A 
comparison of the lower bound for the stress rupture life of 5 1 1 hours at 150 MPa and the 
upper bound 1% creep life of 675 hours at 140 MPa suggests that the €2-NicalodMelt- 
infiltrated composite is primarily creep-limited rather than rupture limited. Similarly, at 
the lower applied stress of 100 MPa the lower-bound stress rupture life of 4930 hours is 
approximately the same as the upper bound 1% creep lie. It would be possible to utilize 
the input fiom the creep evolution equations as a time-dependent load on the fibers to 
quantify the stress rupture more filly (and in fact combining the damage-evolution integral 
equation with the creep stress evolution is also possible). 

The above considerations indicate that this particular composite system is creep- 
life limited rather than fiber-strength limited for the particuIar material parameters used 
here. Decreasing the matrix creep rate will fbrther increase the creep life and decrease the 
rate of fiber strength degradation at the same time; this is thus a very desirable design goal, 
as long as the matrix creep rate remains slower than that of the fibers. A parametric study 
of the interplay between creep deformation and stress rupture under a time-varying (creep) 
fiber load could be carried out if such a scheme is deemed necessary. 

No calculations have yet been carried out for creep in CVI-Sic matrix materials 
[16] because no reliable information on the creep rate of CVI-Sic has been made 
available. Discussions with Dr. Jim DiCarlo suggest that the CVI-Sic is fairly creep 
resistant, and may creep more slowly than the current generation of fibers. Such a 
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situation would drive early matrix cracking, and then accelerated creep (by the fibers) and 
fiber degradation by stress rupture. For sufficiently slow matrix creep rates, the stress 
rupture We would then be identical to that estimated above because the stress rupture 
results are independent of the nature of the matrix. The life of Hi-Nicalon fiber 
composites at stresses of 100-150 MPa may thus be limited, whether via creep or rupture, 
to lifetimes of 500-5000 hours, even in the absence of the known oxidative embrittlement 
problems. 

Specific data on CVI-Sic or Melt-infiltrated matrix creep rates may, however, lead 
to very slow creep load transfer which does not drive matrix cracking or faster fiber stress 
rupture. In the ideal case of perfectly matched creep rates, the stress rupture life can be 
estimated from above by assuming an "applied stress" of E f a /  E, on the fibers; the creep 
life is obtained from the fiber data at the same load. For the Melt-infiltrated/Hi-Nicalon 
material at 150 MPa, this limit woufd lead to a ratio of composite life to single fiber life of 
9.5, but with the single fiber life evaluated at the stress of only 150 MPa, rather than 750 
MPa in the case of complete load transfer. The composite life would then be 1 . 3 ~ 1 0 ~  
hours; such a large time results from the very long fiber life at such a low stress. The 1% 
creep life is obtained directly from the fiber creep data, and yields a lifetime of 41,700 
hours, which is again quite long because of the low stress on the fibers. [Since the fiber 
experiences creep hardening, the matrix would need to exhibit a similar behavior for this 
simple calculation to be precise]. These estimates again indicate creep life as the limiting 
fsctor even under the "ideal conditions" of no fibedmatrix load transfer over time. 
However, they also suggest that even with current Hi-Nicalon fibers it is possible that 
matrices could be designed to obtain closely-matched creep rates and give long composite 
lifetimes. Damage tolerance will not be improved by this strategy, however; matrix 
damage leading to the load being borne by the fibers will cause fiber strength degradation 
at the rates predicted here, independent of the creep rates, and thus the lifetime will be 
roughly equal to the rupture times calculated here. 

The predictive models described here can be applied to determine the time- 
dependent deformation of any potential composite materials, given the constituent 
property information. Hence, the likelihood of achieving design goals with the current 
constituent materials, or modifiedloptimized materials, can easily be assessed. Further 
calculations and predictions on Fossil Energy program materials can be carried out, using 
the models and formulas given above, if knowledge of the underlying constituent material 
performance is known. The most needed input at present is the creep behavior of the 
CVI-Sic. However, it may also be possible to use the present creep models to back- 
calculate the matrix creep behavior &om the measured composite response on 
unidirectional materials. 

The micromechanical models developed here describe the degradation and creep of 
unidirectional ply-level lamina. The results from these models can thus also serve as input 
to component-level life prediction methodologies, such as the MRLifem code developed 
by the Materials Response Group at Virginia Tech, to complete the connection between 
constituent material properties and durability of actual component structures to be utilized 
in Fossil Energy applications. 

25 



4. References 

1. P.G. M a y e  and M.R Bary, Externally Fired Combustion Cycle A DOE 
Clean Coal Project: Eflective Means of Rejuvenation for Older CoaI-Fired Stations, Intl. 
Gas Turbine and Aeroengine Congress and Exposition, Paper # 94-GT-483, ASME (New 
York, 1994). 

2. RR Judkins, D.P. Stinton, RG. Smith, E.M. Fischer, J.H. Eaton, B.L. Weaver, J.L. 
Kahdce, and D.P. Pysher, Development of Ceramic Composite Hot-Gas Filters, Intl. Gas 
Turbine and Aeroengine Congress and Exposition, Paper # 95-GT-305, ASME (New 
York, 1995). 

3. M. McLean, Creep Deformation of Metal Matrix Composites, Composites Science and 
Technology 23, 37 (1985). 

4. C.H. Weber, Z.Z. Du, and F.W. Zok, High Temperature Deformation andFracrUre of 
a Fiber Reinforced Titanium Matrix Composite, Acta Metallurgica, to appear in 1995, 

5. W.A Curtin, .Ilteory of the Mechanical Properties of Ceramic Matrix Composites, J.  
American Ceramic SOC. 74,2837 (1991). 

6. J.M. Duva, W.A Curtin, and H.N.G. Wadley, An Ultimate Tensile Strenghth 
Dependence on Processing for Consolidated Metal Matrix Composites, Acta Metallurgica 
43, 1 1 19 (1995). 

7. J.A DiCario, H.M. Yun, G.N. Morscher, and J.C. Goldsby, M d l s  for the 
Thermosfnrcfural Properties of Sic Fibers, in High Temperature Ceramic-bfatrk 
Composites It Manufacturing and Materials Development, eds. AG. Evans and R 
Nasfain, American Ceramic Society (Westerville, OH) 1995, p. 343. 

8. S.M. Weiderhorn, D.E. Roberts, T.J. Chuang, and L. Chuck, Damuge-enhanced Creep 
in a SiliconizedSilicon Carbide: Phenomenology, J .  Am. Cer. SOC. 71,602 (1988). 

9. Z.Z. Du and RM. McMeeking, Creep ModeZs for Metal Matrix Composites with Long 
BrittZe Fibers, J.  Mechanics and Physics of Solids 43,70 1 (1995). 

10. A Kelly and K.N. Street, Creep of Discontinuous Fibre Composites: 2. Theory for 
the Steadystate, Proc. Royal Society of London A328,283 (1972). 

11. 
Composites, Acta Met. Mater. 43, 859 (1995). 

A G. Evans, F. W. Zok, and R M. McMeeking, Fatigue of Ceramic Matrix 

12. W.A Curtin, Fiber Pullout and Strain Localization in Ceramic Matrix Composites, 
J. Mechanics and Physics of Solids 41,35 (1993). W.A Curtin and S.J. Zhou, Influence 

26 



of Processing Damage on Perjomance of Fiber-Reinforced Composites, J. Mechanics 
and Physics of Solids 43,343 (1995) 

13. A. Kelly and N. MacMillan, StronP Solids, 3rd Edition, (Clarendon Press, Oxford, 
1986). 

14. A Kelly and L.N. McCartney, Proc. Royal Society A374,475 (1981). 

15. M. Ibnabdeljaid and S.L. Phoenix, Creep Rupiure of Brifile Matrix Composites 
Reinforced with Time-Dependent Fibers: Scalings and Monte Cad0 Simulations, J. 
Mechanics and Physics of Solids 43,897 (1995). 

16. D.P. Stinton, A.J. Caputo, and R.A Lowden, Synthesis of Fiber-Reinforced Sic 
Composites by Chemical Vapor Infiltration, Am. Cer. SOC. Bull. 65, 347 (1986). 

27 



5. Appendix - Distribution 

CERAMIC COMPOSITES DISTRIBUTION 

3M COMPANY 
Ceramic Materials Department 
201-4N-01 3M Center, 
St. Paul, MN 55144 
M.  A. Leitheiser 

AIR PRODUCTS AND CHEMICALS 
P.O. Box 538 
Allentown, PA 18105 
S .  W. Dean 

ALLISON GAS TURBINE DIVISION 
P.O. Box 420 1 

Indianapolis, IN 46206-0420 
P. Khandelwal (Speed Code W-5) 
R. A. Wenglarz (Speed Code W-16) 

AMA RESEARCH & DEVELOPMENT 
CENTER 
5950 McIntyre Street 
Golden, CO 80403 
T. B. Cox 

ARGONNE NATIONAL LABORATORY 
9700 S .  Cass Avenue 
Argonne, IL 60439 
W. A. Ellingson 
J. P. Singh 

ARGONNE NATIONAL 

P.O. Box 2528 
Idaho Falls, ID 83403-2528 
S. P. Henslee 

LABORATORY -W EST 

BABCOCK & WILCOX 
Domestic Fossil Operations 
20 South Van Buren Avenue 
Barberton, OH 44023 
M. Gold 

BRITISH COAL CORPORATION 
Coal Technology Development Division 
Stoke Orchard, Cheltenham 
Glocestershire, England GL52 4ZG 
J. Oakey 

CANADA CENTER FOR MINERAL & 
ENERGY TECHNOLOGY 
568 Booth Street 
Ottawa, Ontario 
Canada K 1 A OG 1 
R. Winston Revic 
Mahi Sahoo 

DOE 
DOE OAK RIDGE OPERATIONS 
P.O.Box 2001 
Oak Ridge, TN 3783 1 
Assistant Manager for 
Energy Research and Development 

DOE 
DOE OAK RIDGE OPERATIONS 
P. 0. Box 2008 
Building 4500N. MS 6269 
Oak Ridge, TN 37831 
M. H. Rawlins 

DOE 
OFFICE OF BASIC ENERGY SCIENCES 
Materials Sciences Division 

19901 Germantown Road 
Germantown, MD 20874-1290 
H. M. Kerch 

ER-131 

DOE 
IDAHO OPERATIONS OFFICE 
P. 0. Box 1625 
Idaho Falls, ID 83415 
J. B. Malmo 



Ceramic Composites Distribution 
- 

DOE 
MORGANTOWN ENERGY TECHNOLOGY 
CENTER 
P.O. Box 880 
Morgantown, WV 
R. C. Bedick 
D. C. Cicero 
F. W. Crouse, Jr. 
R. A. Dennis 
N. T. Holcombe 
W. J. Huber 
T. J. McMahon 
J .  E. Notestein 

26505 

DOE 
OFFICE OF FOSSIL ENERGY 

1990 1 Germantown Road 
Germantown, MD 20874-1290 
J. P. Carr 

FE-72 

DOE 
OFFICE OF VEHICLE AND EP 
CE- 15 1 Forrestal Building 
Washington, DC 20585 
R .  B. Schulz 

ERG I 

DOE 
OFFICE OF SCIENTIFIC AND TECHNICAL 
INFORMATION 
P. 0. Box 62 
Oak Ridge, TN 37831 
For distribution by microfiche as shown in 
DOE/TIC-4500, Distribution Category: 
UC-114 (Coal Based Materials and 
Components) 

Revised: May 24,1996 

DOE 
PITTSBURGH ENERGY TECHNOLOGY 
CENTER 
P.O. Box 10940 
Pittsburgh, PA 15236 
A. L. Baldwin 
G. V. McGurl 
L. A. Ruth 
T. M. Torkos 

DOW CORNING CORPORATION 
3901 S. Saginaw Road 
Midland, MI 48686-0995 
H. Atwell 

EC TECHNOLOGIES 
3614 Highpoint Drive 
San Antonio, TX 78217 
D. J. Kenton 

ELECTRIC POWER RESEARCH 
INSTITUTE 
P.O. Box 10412 
3412 Hillview Avenue 
Palo Alto, CA 94303 
W. T. Bakker 
J. Stringer 

EUROPEAN COMMUNITIES JOINT 
RESEARCH CENTRE 
Petten Establishment 
P.O. Box 2 
1755 ZG Petten 
The Netherlands 
M. Van de Voorde 

GA TECHNOLOGIES. INC. 
P.O. Box 85608 
San Diego, CA 92138 
T. D. Gulden 



Ceramic Composites Distribution 

GEORGIA INSTITUTE OF TECHNOLOGY 
Materials Science & Engineering (0245) 
Bunger-Henry Building, Room 276 
Atlanta, GA 30332-0245 
T. L. Starr 

IDAHO NATIONAL ENGINEERING 
LABORATORY 
P. 0. Box 1625 
Idaho Falls, ID 83415 
B. H. Rabin 

LAVA CRUCIBLE-REFRACTORIES CO. 
P.O. Box 278 
Zelienople, PA 16063 
T. Mulholland 

LAWRENCE LIVERMORE NATIONAL 
LABORATORY 

Livermore, CA 94550 
W. A. Steele 

P.O. BOX 808, L-325 

LOS ALAMOS NATIONAL LABORATORY 
P.O. Box 1663 
Los Alamos. NM 87545 
J. D. Katz 

NATIONAL INSTITUTE OF STANDARDS 
AND TECHNOLOGY 
U.S. Dept. of Commerce 
Bldg. 220, Rm A215 
Gaithersburg, MD 20899 
S. G. Malghan 

NATIONAL MATERIALS ADVISORY 
BOARD 
National Research Council 
2 10 1 Constitution Avenue 
Washington, DC 204 18 
K. M. Zwilsky 

Revised: May 24,1996 
. _________._~ - ~ 

OAK RIDGE NATIONAL LABORATORY 
P.O. Box 2008 
Oak Ridge, TN 37831 
P. T. Carlson 
N. C. Cole 
R. R. Judkins 
R. A. Lawson (8 copies) 
E. L. Long, Jr. 
D. P. Stinton 
M.  R. Upton 

OFFICE OF NAVAL RESEARCH 
Code 43 1, 800 N. Quincy Street 
Arlington, VA 22217 
S. G. Fishman 

SANDIA NATIONAL LABORATORIES 
Department 62 1 1, MS 07 10 
Albuquerque, NM 87185 
R. J .  Buss 
G. A. Carlson 
A. G. Sault 

SHELL DEVELOPMENT COMPANY 
P.O. Box 1380 
Houston, TX 7725 1- 1380 
L. W. R. Dicks 

TENNESSEE VALLEY AUTHORITY 
Energy Demonstration & Technology 
MR2N58A 
Chattanooga, TN 37402-280 1 
C. M. Huang 

THE JOHNS HOPKINS UNIVERSITY 
Materials Science & Engineering 
Maryland Hail 
Baltimore, MD 21218 
R. E. Green. Jr. 

! 



Ceramic Composites Distribution 
-. . . - . . . . ~ .. 

Revised: May 24,1996 

THE MATERIALS PROPERTIES COUNCIL, 
INC. 
United Engineering Center 
345 E. Forty-Seventh Street 
New York, NY 10017 
M. Prager 

THE NORTON COMPANY 
High Performance Ceramics Division 
Goddard Road 
Northborough, MA 01532-1545 
N. Corbin 

THE TORRINGTON COMPANY 
Advanced Technology Center 
59 Field St. 
Torrington. CT 06790 
W. J .  Chmura 

UNION CARBIDE CORPORATION 
Linde Division 
P.O. Box 44 
175 East Park Drive 
Tonawanda, NY 14151-0044 
Harry Cheung 

UNITED TECHNOLOGIES RESEARCH 
CENTER 
MS 24, Silver Lane 
East Hartford, CT 06108 
K. M. Prewo 

UNIVERSITY OF TENNESSEE 
Dept of Materials Science and Engineering 
Knoxville, TN 37996-2200 
Peter Liaw 

UNIVERSITY OF WASHINGTON 
Department of Materials Science and 
Engineering 
101 Wilson, FB-10 
Seattle, WA 98195 
T. G. Stoebe 

VIRGINIA POLYTECHNIC INSTITUTE & 
STATE UNIVERSITY 
Department of Materials Engineering 
Blackburg, VA 24601 
W. A. Curtin 
K. L. Reifsnider 

WESTERN RESEARCH INSTITUTE 
365 N. 9th Street 
P.O. Box 3395 
University Station 
Laramie, WY 82071 
V. K. Sethi 

WESTINGHOUSE ELECTRIC 
CORPORATION 
Research and Development Center 
13 10 Beulah Road 
Pittsburgh, PA 15235 
S .  C. Singhal 



This report has been reproduced directly from the best available copy. 

Available to DOE and DOE contractors from the Office of Scientific and 
Technical information, P.O. Sox 62, Oak Ridge, TN 37831; prices available from 
(423) 576-8401. 

Available to the public from the National Technical Information Service, U.S. 
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 


	0 Abstract
	2 Long-term Composite Performance
	2.1 Creep of Fiber-reinforced Composites
	2.1.1 Model Development
	2.1.2 Application to a Metal Matrix Composite
	2.1.3 Application to Hi-NicalodSiC CMC

	2.2 Failure by Matrix/Interfacial (Shear) Creep
	2.3 Failure by Fiber Degradation
	2.3.1 Slow-crack growth model of fiber degradation
	2.3.2 Coleman model of fiber degradation


	3 Discussion
	4 References

