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SUMMARY 

A mathematical framework is developed for the study of materials containing axisymmetric inclusions 
or flaws such as ellipsoidal voids, "penny-shaped" cracks, or fibers of circular cross-section. The general 
case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially 
uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the 
macroscopic materia1 properties of this simpler microstructure naturally should be transversely isotropic. 
An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth- 
order tensors associated with a given material vector is applied to deduce the explicit functional dependence 
of the material properties of these "aligned" materials on the shared symmetry axis. The aligned and uniform 
microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties 
could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must 
therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are 
identified, a principle of superposition of strain rates may be applied to define an expectation integral for the 
composite properties of a material containing arbitrary anisotropic distributions of axisymmetric 
inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which 
the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion 
directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties 
(such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large 
distortions of anisotropic materials. 

INTRODUCTION 

This paper discusses several tools and viewpoints that have proved useful in the analysis of microcracked 
bodies and which seem additionally applicable to the analysis of materials containing axisymmetric 
inhomogeneities such as reinforcing fibers of circular cross-section, ellipsoidal voids, or even cone-shaped 
inclusions. The analysis to follow assumes that a closed-form solution can be obtained for a contrived 
material in which all of the inhomogeneities are distributed uniformly with a common axis ofsymrnetry. 
Naturally, the properties of such an aligned material should be transversely isotropic about the shared axis 
of symmetry. The fourth-order aligned compliance tensor is shown to be expressible as a linear combination 
of a transversely isotropic integrity basis. Importantly, these base tensors are presented as analytical 
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functions of the orientation vector, which permits their use j expectation integrals for the compliance of 
realistic materials containing inhomogeneities distributed anisotropically in many orientations. 

Once the arbitrarily anisotropic elastic compliance tensor has been found, it’s natural to seek a coupled 
yield function. If, for example, reinforcing fibers cause a material to become stiffer in some particular 
direction, then one would expect the yield stress in that direction to change as well. We demonstrate that the 
yield surface of a composite material may be viewed as a distortion of the yield surface of the underlying 
substrate. We offer a conjecture for the distortion function that exhibits the qualitatively desirable trait of 
aligning the plastic anisotropy with the elastic anisotropy. 

Finally, this paper closes with an exact closed form solution for the stress in a material containing aligned 
fibers in &weak matrix. This counterexample demonstrates that many commonly adopted assumptions about 
the nature of the Cauchy elastic stiffness tensor may be inappropriate for large distortions of anisotropic 
materials. Namely, for this material, the Cauchy stress must be uniaxial in the fiber direction. Consequently, 
it is shown that the unrotated Cauchy stress (frequently employed in frame-indifferent constitutive laws) 
must be uniaxial about the unrotated fiber direction. Since the unrotated fiber direction does not generally 
coincide with the initial fiber direction, the axis of symmetry for the unrotated Cauchy stiffness tensor 
changes in time. Consequently, the tangent Cauchy stiffness contains kinematic terms that are not material 
properties. Furthermore, the tangent Cauchy stiffness tensor does not even possess the major symmetry 
commonly assumed in the literature. 

A CANONICAL “ALIGNED’ COMPOSITE 

In the next section, we deduce an expression for the compliance of an arbitrarizy anisotropic cracked or 
reinforced material. As a starting point, consider a material having a spatially uniform array of 
axisymmetric inclusions all of a given orientation, n. This imposed geometric symmetry demands that the 
macroscopic material properties be unchanged upon any rigid rotation about n. In particular, the elastic 
compliance must be transversely isotropic with respect to n, and (Brannon, 1996a), it must therefore be 
expressible as a linear combination of a transverse integrity basis { B . . . , B5 } defined as follows: 

(B, ) i jk l  = jnknE 

(B2)ijkl = 6 i j 6 k l -  nin j a k Z  - aijnkn1 + nin jnknl 

(B3)ijkl = ninjlikl + Gijnknl - 2n-n Z J  nknl 

1 
(B4)qkl = 2 -(n.n t k J 1  6 .  + njnlaik + nin16jk + njnkijil) - 2ninjnknl 

1 (B5)i,ik, = Z(6ik6j l  a i l 6 j k )  

1 
- 2 -(n-n L k J l  6 .  -+ njn16ik + ninltijk + njnktjil) + ninjnknl 

In other words, no matter what physical arguments are used to deduce the composite elastic properties, 
there must exist five coefficient functions ak(c, p, fi) such that the aligned compliance M can be written 
in the following form: 



Here, c symbolically denotes the flaw or inclusion geometry (such as a reinforcing fiber diameter or a 

crack radius), Po collectively denotes the elastic properties of the substrate, and fi is the number of 

inhomogeneities per unit mass. The fourth-order tensor Mo is the isotropic compliance of the underlying 

substrate matrix material. The expression (2)  shows the explicit analytical dependence of the aligned 

compliance on the alignment orientation n. This expression purposely avoids adopting any particuZar form 

for the five a, coefficient functions. Different researchers may derive different - even conflicting - 
expressions for the compliance of a body having same-orientation inhomogeneities. We merely insist that 

these coefficients exist. All admissible solutions must be expressible in the form (2); they will differ only in 

the specific forms chosen or derived for the five coefficient functions aK(c, Po, k) . 
In terms of an orthonormal spatial basis {el, e2, e3 } which is defined such that e3 = n (not 

necessarily aligned with the laboratory basis), the Euclidean Voigt components of the last term in the 
compliance expression (2) are 

a 2 + a 5  a2 (33 0 0 0 

a2 a 2 + a 5  a3 0 0 0 

a3 a3 a1 0 0 0 

0 0 0 a5 0 0 

0 0 0 0 a4 0 

0 0 0 0 0 a 4  

(3) 

The rows and columns correspond to the second-order symmetric ordering { 11,22, 33, 12, 23, 31 }. Note 
that the Euclidean Voigt components of any base tensor BK in (1) can be determined from (3) by setting 
aK= 1 and all other a-coefficients to zero. 

The component forms (1) are useful in practice because they are algebraic functions of the privileged 
direction n. They are, however, somewhat difficult to interpret physically. For conceptual discussions, 
observing how the basis transforms tensors (such as the stress) is far more revealing. Specifically, when the 
B, tensors operate on any symmetric second-order tensor 0, and the results are expressed in terms of the 
material basis {el, e2, e3 = n> , we see that 



Note that B extracts the part of 9 that acts in the direction of the axis of symmetry n while B, projects 
9 to its part that tends to shear the axis of symmetry. The base tensor B5 extracts the transverse part of 9 
(i.e., the part that lies in the plane perpendicular to n), while B, yields the transverse trace o1 I + (3,, times 
the transverse identity. Unlike the other base tensors which essentially project 9 in particular directions, the 
base tensor B, maps the axial component (3,, to the transverse 11 and 22 positions; furthermore, B, maps 
the transverse trace C T ~  + uZ2 to the axial 33 position. Thus B, represents the only means of allowing axial 
input to affect lateral response, or vice versa. It would play a pivotal role, for example, in predicting “crack 
buckling,” in which cracks pop open due to lateral compression in their own plane. 

The transverse integrity basis (1) is distinguished from so-called fabric tensors because it has nothing to 
do with material constants such as Poisson’s ratio. It is a purely mathematical construct resulting from 
transverse symmetry only. If desired, the basis can be orthogonalized (in fourth-order tensor space) by 
replacing B, by B, - f B2 and B, by B2 , which corresponds to decomposing the transverse projection 
of 0 into its planar isotropic and deviatoric parts. 

COMPLIANCE FOR RANDOM-SIZE RANDOM-ORIENTATION INHOMOGENEITIES 

Real materials do not contain same-size same-orientation inhomogeneities. We now introduce some 
tools that will allow us to extend the general solution (2) for the compliance of a body containing same- 
orientation inhomogeneities to a realistic body having inclusions or flaws of many sizes and many 
orientations. The orientation of an axisymmetric flaw or inclusion is described by the unit normal n parallel 
to the axis of symmetry or, alternatively, by corresponding points on the unit sphere. For example, the unit 
normal n={ l,O,O> corresponds to the point (1,0,0) on the sphere. Many axisymmetric inhomogeneities are 
“neutrally oriented,” meaning that diametrically opposite points on the unit sphere are equivalent. For 
example, a crack with normal n behaves the same as a crack with normal -n. Put differently, any material 
function f(n) for neutrally oriented inhomogeneities should have the property that f(-n)=f(n). Oriented 
axisymmetric inhomogeneities (such as cones) are not bound by this additional symmetry restriction. Any 
function of orientation n may be regarded as a function on the unit sphere. Any contiguous set of orientations 
may be described by a contiguous patch of area on the unit sphere, hereafter referred to as a “solid angle” 
(which includes the diametrically opposite area for neutrally-oriented inhomogeneities). 

Consider a body of unit mass containing a total of N inhomogeneities. In a realistic model, a randomly 
selected flaw could have any orientation n and any geometrical attribute c which we will take in this section 
to be a characteristic size such as a crack radius or fiber diameter. As with fiber-reinforced composites, oil 
shale, or partially spalled metal, some sizes and some orientations may be more common than others. This 



variation is described through the use of a joint distribution function, p(c,n), defiied by its interpretation 
when integrated: 

The fraction of inhomogeneities that have a size c between a and b and 
an orientation n within some solid angle A!2 on the unit sphere is 

b 

j fp(c, n)dc dQ * 

AQ a 

To account for clustering, the function p(c,n) might conditionally depend on the spatial location. Since 
flaws can nucleate, grow, and coalesce, p(c,n) might also be a function of time. Of course, the integral over 
all possible inhomogeneity sizes and orientations (i.e. over the entire unit sphere and from c=O to -) is unity. 
Flaws having more than one geometrical attribute (such as conical flaws defined by height and radius) would 
be described by a similar integral over more independent variables. 

The size and orientation distribution functionp(c,n) will now be combined with the aligned compliance 
(2) to derive the compliance for a body containing flaws of many sizes and orientations. Consider a body 
containing an array of random-size and random-orientation flaws. Applying a principle of superposition of 
strain rates for a dilute array of cracks, the increase in compliance is taken to be the sum of the increases for 
each possible crack size and orientation times the fraction of cracks of that specified size and orientation. 
For a continuous distribution, the compliance M is computed by the expectation integral 

CQ 

M = f JM(c, Po, fi, n ) p ( c ,  n)dc di2, 
Q O  

where M(c, Po, N, n) is given by (2), so that (6) may be written 
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M = Mo(po) + jBK(n) GK(n, N, Po)di2 , 
K = l  Q 

m 

- 
where aK(n, fi, Po) = j aK(c ,  Po, f i ) p ( c ,  n)dc . 

0 

(7) 

For nondilute arrays of flaws, it seems reasonable to expect the compliance to nevertheless be of the above 
form, with the dependence on N being nonlinear to account for crack interaction (which is sometimes 
surprisingly inconsequential due to competing effects of amplification and shielding). The expression (7) 
shows that ifthe solution for alignedflaws is known, then so is the solution for randomly distributed flaws, 
provided of course that flaw interactions permit a superposition of strain rates. Recent work (Brannon, 
1996a) has shown that various choices for (or approximations of) the distribution function can lead to 
heretofore diverse classes of material models. For example, if the flaws have no preferred orientation, the 
distribution function p(c, n) becomes independent of n. Therefore, cK in (8) becomes independent of n. 
The integral over n in (7) reduces to integrating each BK(n), which can be done in closed form given the 
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analytical expressions in (1). The final result for the compliance is isotropic with composite shear and bulk 
moduli, p and K, being related to the associated substrate matrix moduli, po and KO by 

1 1 2 -  - 
P P o  l5 
- - - + - (2a, + 2EZ - 453 + 6E4 + 755) 

The expressions (9) are very general in that they hold for a random distribution of any type of axisymmetric 
inhomogeneity. The analyst need only determine the appropriate coefficient functions for an aligned 
microstructure in order to immediately know the associated elastic properties for uniformly oriented 
inhomogeneities. 

As in the work of Seaman (1985), one could use (6) to analyze the effect of a predominant inclusion or 
flaw orientation embedded in a substrate containing uniformly oriented flaws. The present analysis could be 
easily generalized to allow the predominant flaw to be of a different type than the substrate flaw (as for spall 
of a dilutely fibrous material). However, general anisotropy can be modeled only by allowing arbitrary 
dependence of the distribution on n, in which case the integral over orientation in (7) can be evaluated 
numerically by discretizing the unit sphere. Dienes (1987) simplifies this procedure by taking only two of 
the five aK functions in (2) to be nonzero and by assuming an analyticd form for the size dependence of 
the distribution function so that the integral in (8) can be computed u priori in closed form. 

COUPLING ELASTIC AND PLASTIC ANISOTROPY 

In the absence of better approaches, sophisticated treatments of elastic anisotropy are often 
inappropriately paired with far more simplistic isotropic yield models or, at best, with kinematic hardening 
models that only shift a nominal isotropic yield surface in stress space. Since a yield surface can be defined 
as the boundary of stresses attainable from the current stress via a recoverable elastic path, it seems natural 
for the nominal yield surface to inherit the anisotropy of the elastic properties. If, for example, the elastic 
compliance is orthotropic, then the yield surface should also be orthotropic with respect to the same 
privileged directions. Here we extend the conjecture of Schreyer and Zuo (1995) that the yield behavior of 
a material may be coupled to the spectral directions of the elasticity tensor. In the discussion to follow, it is 
important to recognize that two difSerent yield functions f l  (0) and f2(g)  are equivalent if the inequalities 
f l  (9) < 0 and f2(0) < 0 describe the same set of stresses. For example, f l ( g )  = g:g - k2 is equivalent 

Consider a material consisting of an isotropic substrate having a nominal yield function fo(q).  Upon 
the addition of a small amount of adulterants such as inclusions or voids, the new yield surface defined by 
f (9)  = 0 should be only a slight distortion of the substrate yield surface defined by f,(o) = 0. Assuming 
the set of elastically attainable stresses (i.e., the interior of the yield surface) always remains simply 
connected, the yield surface for any amount of adulterant can be viewed as a distortion of the yield surface 
of the underlying substrate. Mathematically, there must exist a simple distortion function g such that f (9) 
is equivalent to fo(g(q)) . The distortion function g captures the change in the yield surface due to a change 
in the eZusticuZZy attainable stresses, so it seems reasonable to assume that any changes in the elastic 
properties should produce consonant changes in the plastic properties. At least qualitatively, this coupling 

to f2(q) = ( q : g ) / k 2 -  1. 



could be described by a distortion function of the form g ( g )  = L:g where L is a fourth-order distortion 
operator that possesses the same eigenprojectors as the elastic compliance M. The eigenproblem for the 
compliance M is defined 

Suppose M has m distinct eigenvalues {A1, . . .) h,) . If an eigenvalue h, has multiplicity n, , major 

symmetry of M guarantees the existence of n, associated orthonormal eigentensors {A . . . , A a ) . The 

eigenprojector Pa associated with ha is defined 

1 n 

Any M may be written in terms of its eigenspace as 

M = hlP ,  + ... +Amp,. (12) 

Hence the proposed yield distortion tensor L would be expressible as a similar combination of the same 
projectors. That is, 

f ( o>  = f,(L:o) 

where L = L I P l  + ... + L,P, 

The Lj coefficients would be measured in the laboratory. The form (14) here proposed for the yield 
surface distortion is based on phenomenological symmetry arguments. Karafillis and Boyce (1993) use an 
expression of the form (13) in the context of metal plasticity, but the quantity L:CJ (there called an 
“equivalent isotropic stress”) is not specifically coupled to the elastic properties. A yield function of the form 
(13) appears in a proposal by Tsai and Wu (197 1) for transversely isotropic materials, where (in effect) they 
use a Mises nominal function f . They require L to be transversely isotropic, but they do not impose the 
restriction (14). Hence their yield function requires five experimentally measured yield stresses, one of 
which they warn cannot be determined uniquely. Since transversely isotropic tensors can have no more than 
four distinct eigenvalues, Tsai and Wu’s indeterminacy might be resolved by imposing the restriction (14). 

Extensive experiments to determine complete yield surfaces are often costly, so it seems worthwhile to 
pursue phenomenological theories that could predict the Lj coefficients in (14). For small volume fractions 
of inhomogeneities (not necessarily small number fractions), the Lj coefficients might be given by a 
function G of the change in the elastic properties in the corresponding direction: 

The form of the unprescribed function G would be dictated by microstructural arguments, The expression 
(15) couples elastic and plastic anisotropy in an intuitively appealing way that is surely superior to an 
isotropic yield model. It can be justified for certain simplistic yield criteria. Consider, for example, an 
isotropic material that is dilutely reinforced with a substance having a comparatively higE yield strength. 
This material could be said to have yielded once the matrix material has yielded. If the reinforcing fibers are 



distributed isotropically, then both the 
spectral analysis reveals that 

site and the matrix compliances are isotropic, and therefore a 

M = h,P, +h,P, 

1 

1 1 
where h, = --, A, = __ 

3K' 

Here, p and K are the composite shear and bulk moduli, respectively. For an isotropic matrix material 
described by a Von Mises criterion, yield occurs when the magnitude of the stress deviator reaches a critical 
value IC,, or equivalently, when the magnitude of the strain deviator reaches a critical value 1c0/2p0, where 
p0 is the shear modulus of the matrix material. If the same critical strain were to be taken as the yield strain 
for the reinforced material, the magnitude of the stress deviator at yield would be 
K = 1co(p/p,) = ~,(hY/31~) and therefore, the function G in (15) would be given by G(x)  = x. 
Alternatively, if one were to advocate an energy criterion for yield, similar arguments would lead to the 
conclusion that G ( x )  = x1I2. More sophisticated arguments that account for specific microstructures 
would certainly lead to different forms for the function G. Again, the special form (15) seems reasonable 
only if the inhomogeneities comprise a small fraction of the total composite volume (as for cracks, fine 
whiskers, or thin laminates). The general conjecture (14) seems to have much broader applicability since it 
is based solely on the elastic material directions. 

LARGE DEFORMATION ISSUES 

In this section, we study a simple microstructure for which an exact solution for the stress can be derived 
as a function of the deformation gradient F, no matter how large. This simple analysis disproves many 
common assumptions about the nature of constitutive functions. The counterexample to follow proves that 
the tangent Cauchy stiffness tensor might contain many unexpected terms and is not even major-symmetric. 

Initial Cross-sectional 
area A, - 

= JAJL 
Figure 1: An idealized array of fibers in a negligibly stiff matrix (e.g., air). The fibers dis- 
tort to a new orientation parallel to m. The cross-sectional area A, originally normal to the 
fiber direction distorts to a new orientation parallel to n (not a unit vector). The right side 
of the figure shows the distorted shape as seen in the plane spanned by n and m. 



Consider a material consisting of stiff fibers uniformly distributed in a very weak matrix (air). Single 
fibers are presumed well-characterized. That is, if a single fiber is stretched so that its current length divided 
by its initial length is h, then the force in that fiber is given by some known function F(h) satisfying F( 1)=0. 
Suppose all the fibers have an initial orientation parallel to a unit vector M, and they are distributed 
uniformly with v fibers per unit initial cross-sectional area. Then the representative volume element 
sketched in Fig. 1 contains a total of vA, fibers. A homogeneous deformation F will distort those fibers to 
a new orientation parallel to 

The fiber stretch h is simply the magnitude of m: 

For fibers with negligible bending stiffness, the macroscopic Cauchy stress 9 must be uniaxial in the 
deformed fiber direction. The stress equals the force per fiber F(h)  times the number of fibers vA, , divided 
by the deformed cross-sectional area perpendicular to the fiber direction, JA,/h,  where J is the 
determinant of the deformation gradient F. Utilizing Nanson’s relation between initial and deformed areas 
(see Malvern, 1969), it can be shown (Brannon, 1996b) that the exact solution for the Cauchy stress is 

and, therefore, the exact solution for the so-called unrotated Cauchy stress (eij --= R $ R z  apq ) is 

Here, R and v are the rotation and stretch from the polar decomposition, F = R v . The exact solution 
for the second Piola-Kirchhoff stress ( Z i j  = JF$opqF$) is 

These exact solutions demonstrate that the stress is a nonlinear function of strain even if the fiber force 
function F(h)  is linear (affine). In other words, nonlinearity of large-distortion constitutive laws arises as 
much from kinematics as from inherent material nonlinearities. An implicit goal of special stress and strain 
measures is to (approximately) capture these kinematic contributions. Taking rates of these exact solutions, 
it can be shown that there indeed exist exact fourth-order tensors Eijhl and cijkl such that 

where 
Taking the rate of (21) shows that the exact tangent Piola-Kirchhoff stiffness tensor 

is the rate of the Lagrange strain and a is the unrotated symmetric part of the velocity gradient. 
is 
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This tensor is transversely isotropic with respect to the initial fiber orientation, and it possesses only one 
nonzero component in the fiber direction (an intuitive result). In contrast, the exact Cauchy stiffness tensor 
&jki (given by a very complicated expression) turns out to be transversely isotropic with respect to the 
unrotated but time-dependent fiber orientation, 5. The Cauchy stiffness does contain a nonzero term in the 
fiber direction; but (unlike the Piola-Kirchhoff stiffness) it additionally contains unexpected nonzero 
components. Distortion causes the axis of symmetry Z to rotate in the unrotated frame. Hence, because the 
Cauchy stress is always uniaxial, its rate is not uniaxial, which leads to additional nonaxial kinematic 
components in the Cauchy tangent stiffness tensor. Finally, the exact Cauchy stiffness tensor isn't even 
major-symmetric, as is commonly assumed in the literature. The lack of major-symmetry arises from the rate 
of the Jacobian J, which contributes nonsymmetric terms of the form oij t ik , .  

The Piola-Kirchhoff tensors are much better behaved from the standpoint of material directions, so they 
might be a better choice for problems involving severe distortion of highly anisotropic materials. In 
particular, the vector n in the second section of this paper may best be interpreted as the reference vector N 
with Eq. (6) being the Piola-Kirchhoff compliance. Even so, nonlinearities in the stiffness magnitude 
(whether kinematical or mechanical) must be incorporated into any sensible theory. If the tensor (23) were 
cavalierly assumed constant and then inappropriateZy applied to problems with large stretch, the uniaxial 
force-displacement curve could contain a zero slope, causing numerical instability. This behavior may 
account for the popularity of the Cauchy stress in numerical calculations. If the Cauchy stiffness ci jk l  were 
assumed constant and then naively applied to large uniaxial stretches, the resulting force-displacement curve 
would be logarithmic, in fortuitous agreement with behavior typically observed in the laboratory. We have 
shown that the same cavalier Cauchy stress law would not fare so well in anisotropic distortion experiments. 
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