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Abstract

Structural system identification is concerned with the development of systematic procedures
and tools for developing predictive analytical models based on a physical structure’s dynamic
response characteristics. It is a multidisciplinary process that involves the ability (1) to define
high fidelity physics-based analysis models, (2) to acquire accurate test-derived information
for physical specimens using diagnostic experiments, (3) to validate the numerical simulation
model by reconciling differences that inevitably exist between the analysis model and the ex-
perimental data, and (4) to quantify uncertainties in the final system models and subsequent
numerical simulations. The goal of this project was to develop structural system identification
techniques and software suitable for both research and production applications in code and
model validation.
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1. Introduction

The development of suitable mathematical models for dynamic structural analysis is
an integral part of the overall structural design and analysis process. If reliable, predictive
models can be developed, they can be used subsequently for a variety of tasks. Examples
include the evaluation of competing structural design alternatives, developing structural
subcomponent environment specifications and designing control algorithms when elastic
structural vibration is an issue. Obviously, the application possibilities are diverse, but
the long-term goal of programs such as this is to achieve the ability to perform virtual
tests to support weapons qualification in lieu of hardware prototyping.

The ultimate arbiter for establishing how accurately a given model represents a phys-
ical structure is the structure itself. However, building and testing hardware specimens
for any purpose, including model validation, is a costly and time consuming affair. Thus,
a small subset of the possible support and loading configurations of interest are utilized in
the validation process. This process, termed structural system identification, is depicted
graphically in Figure 1.1. It entails the development of an analytical model of correct
model form (i.e., it incorporates the proper physics representing the system) possessing
suitable parametric quantities to allow a posteriori model adjustment; an appropriately
designed diagnostic experiment tasked with extracting necessary physical phenomena
for use as validation criteria; and, a reconciliation process in which analysis predictions
and experimental data obtained in controlled laboratory tests are compared and any
differences are resolved.

The subject effort in structural system identification was concerned with the de-
velopment of systematic procedures and tools for reconciling and understanding these
differences. Further, motivated by the imprecise nature of measuring physical system re-
sponse, the multidisciplinary system identification approach attempted to investigate and
quantify uncertainty in test data and to use these measurement uncertainties in assessing
the confidence in the physical parameters in the final, reconciled analysis models.

In the remainder of this document a discussion of these closely related, though
technically diverse, tasks is presented. Overviews of each are provided in Chapters 2—
4. More in-depth details are presented in the text of published articles contained in
Appendix A. Appropriate reference citations can be found in this documentation as
well.

This Sandia research effort received significant interest and inquires for technical
support and collaboration from government agencies, such as NASA and DoD agencies,
as well as from several commercial agencies in the automotive, aerospace and offshore oil
production industries.
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2. Diverse Technical Breadth

The structural system identification process is broad in scope: analysis models must

be developed, experimental data must be gathered and reduced, and differences between
the two must reconciled. In this chapter, a brief discussion of each of these is presented.

2.1 Experimental

The task of obtaining high quality experimental data and reducing this data ap-

propriately requires great care. For structural dynamics model development, these steps
often result in experimentally derived modal models. A number of issues are relevant:

e It is nontrivial to ensure that the structure, in its test configuration, is the same
structure that is being modeled. For example, it is physically impossible to test
a structure under idealized free-free boundary conditions. Steps must be taken to
mitigate the effects of these BC uncertainties along with any other deviations from
the ideal.

Typically, measurement degrees of freedom (DOF) in a test setup are far fewer
in number than are present in a finite element analysis model. Excitation and
measurement locations must be selected so that information about the modal model
is maximized. At the core of this is the ability to excite and to measure all of the
modal frequencies and mode shapes in the frequency range of interest; and to be
able to establish correspondence between companion modes in the analysis model
in the reduced set of DOF.

At present, the current state-of-the-art process for deriving a modal model from
test data can be thought of as a two-level fitting process. First, frequency response
functions (FRF) are obtained through spectral analysis methods using acquired
time history data. FRF’s relate the response at the measurement DOF to the
input and the excitation DOF in the frequency domain. Modal parameters are
then determined from these FRF data via any of a number of nonlinear estimation
algorithms. Each of these steps can be sensitive to decisions made by the data
analyst as well as to numerical and algorithmic uncertainties.

Each of the above issues has been addressed during the course of the structural

system identification project. One significant software tool that originated from these
concerns is Optimal Test Design (OTD), a Matlab-based package specifically designed to
address the selection of optimal response and excitation DOF for modal testing.




2.2 Modeling/Analysis Software

Even though no technological restriction on model type exists, Sandia analysis mod-
els generally take the form of finite element models (FEMs). For such models, there are
a number of methodologies capable of reconciling any differences that exist between test
and analysis in a manner that accounts for the uncertainty in both the experimental
data and the model parameters. A primary focus of this research was one estimation
methodology that is ideally suited to determining physical parametric quantities that are
present in the FEMs. A software package, NASDSA, was developed to extract the neces-
sary information from MSC/NASTRAN models using its pre-existing design sensitivity
analysis (DSA) mechanisms. Two other codes were also developed: NASSID—a trans-
lator for communicating output from NASDSA to the parameter estimation code, SSID
(a Sandia software tool using Bayesian estimation that will be described in Section 2.3);
and SD2NAS—a package which facilitates the return to MSC/NASTRAN from SSID
with an updated parameter set.

2.3 Test/Model Reconciliation Codes

The approach taken was to update user-specified parameter sets using modal data
(modal frequencies and elements of mode shape vectors) as criteria, or measurements.
FEM-based physical parameters are the state variables upon which the measurement
predictions rely. The update method chosen is the probabilistic nonlinear parameter
estimation scheme known as iterative Bayesian Estimation. Similar to other iterative
approaches, this technique requires that a linearized relationship between the measure-
ments and state for each iteration cycle be supplied. In the linearized formulation, the
state parameters enter into the physics through first order sensitivity matrices which are
calculated local to the current estimates of the FEM parameter values. Each estimation
cycle results in new paramaters updates and, using these new values, a first-order Taylor
series approximation to the updated system mass and stiffness is then performed. Finally,
an new eigensolution is calculated for use both in comparing current analysis eigendata
to that of the pre-selected test eigendata and in the generation of the sensitivity data for
the ensuing estimation cycle.

SSID, an acronym for Structural System IDentification, is a Sandia software package
which performs the tasks outlined in the previous paragraph based on specifications input
by an analyst. SSID has gone through several significant revisions and code rewrites
during the course of the system identification program. This code now represents a
state-of-the-art parameter estimation capability. Recent applications entail models on
the order of 50-75,000 DOF and include government as well as commercial applications.
Current capabilities include:

e Sparse matrix storage and linear algebra incorporating software from Prof. Yousef
Saad at the University of Minnesota;




e A Lanczos-based eigensolver, ARPACK, developed at Rice University by Prof. Dan
Sorensen, et. al.;

e A sparse, direct solver based on a new Cholesky decomposition technique. This
solver is a derivative of SPARSPAK and is the contribution of Dr. Esmond Ng at
ORNL;

e A sophisticated mode tracking algorithm developed by Mike Eldred of Sandia,
Structural Dynamics and Vibration Control Dept. Modal criteria require that
mode correspondence between test and analysis models be established.




3. Selected Publications

In Appendix A, several publications are presented that serve as examples of the
types of applications that were addressed during the period of performance of the LDRD.
References are provided in the individual articles as well as more in-depth technical detail
on the topics of interest. A significant number of these publications have led to widespread
interest in this research external to Sandia, and have helped to establish Sandia as a
recognized leader in this area in the technical community. Furthermore, this work is now
an essential element of the broader research topic of uncertainty quantification at Sandia.

10



4. Concluding Remarks

Structural system identification for structural dynamics applications has been a topic
of interest for many years. For example, The Aerospace Corporation and The Jet Propul-
sion Laboratory were investigating techniques for use in qualifying payload models as
early as the late ’60s. Offshore o0il companies explored use of the technology for appli-
cation in monitoring the structural health of offshore oil rigs in the early 70s. Sandia’s
initial foray followed closely behind these efforts. However, practical application and
more in-depth technology development were hindered by the lack of cohesive and general
software tools necessary for laying the foundation for the development of a more exten-
sive and uniform experience base. As a direct result of work under the current program,
this is now possible at Sandia through the use of software and methodologies developed
through this research. These resources have resulted in work partnerships and Memo-
randa of Understanding with other government agencies and National laboratories, as
well as Cooperative Research and Development Agreements with commercial concerns.

11
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A MODAL TEST OF A SPACE-TRUSS :
FOR STRUCTURAL PARAMETER IDENTIFICATION*

Thomas G. Carne and
Randall L. Mayes
Sandia National Laboratories
P. 0. Box 5800
Albugquerque, NM 87185

ABSTRACT

The Jet Propulsion Laboratory is developing a
large space-truss to support a micro-precision
interferometer. A finite element model will be
used to design and place passive and active
elements in the truss to suppress vibration. To
jmprove the model’s predictive capability, it is
desirable to identify uncertain structural
parameters in the model by utilizing experimental
modal data.

Testing of both the components and the system was
performed to obtain the data necessary to
jdentify the structural parameters. Extracting a
modal model, absent of bias errors, from measured
data requires great care in test design and
implementation. Testing procedures that are
discussed include: verification of non-
constraining shaker attachment, quantification of
the non-linear structural response, and the
design and effects of suspension systems used to
simulate a free structure. In addition to these
procedures, the accuracy of the measured
frequency response functions are evaluated by
comparing functions measured with random
excitation, using various freguency resolutions,
and with step sine excitation.

IKTRODUCTION

The Jet Propulsion Laboratory (JPL) has been
developing the technology for a mission known as
the Focus Mission Interferometer, which is a
large, partial aperture telescope [1]. The truss
structure which supports the optical
instrumentation spans thirty meters, Proper
optical performance requires controlling relative
positions to the nanometer level. Figure 1 shows
an artist’s depiction of the Focus Mission
Interferometer. The Micro-Precision
Interferometer (MPI} is a half-scale, ground-
based testbed for the development and test of the
technologies necessary for the Focus Mission

Interferometer. The MPI testbed has only a

® a portion of this work was performed at
sandia National Laboratories under the support
of the U.S. Department of Energy contract
number DE-ACO4-76DP00789.

Marie B. Levine-West
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

sing]e-siqed optics boom rather than double-sided
as shown in Figure 1. The MPI also contains the
scaleg metrology boom and the tower, thus
creating a truss-structure with three nearly
orthogonal elements. (7m x 6.3m x 5.5m) The
metrology boom is perpendicular to the optics
boom but Qas a slightly acute angle with the
tower. Figure 2 shows the MPI in the test

laboratory.

Figure 1: Focus Mission Interferometer

The partial aperture telescope simulates a full
aperture system with performance increasing with
the distance between the apertures. However, in
order to maintain the performance, the
translations and articulations of the optical
equipment must be controiled to the nanometer
Tevel in spite of a vibratory environment due to
onbgard equipment. Vibration suppression will be
achieved through a layered approach, consisting
of yibration isolation, structural control, and
optical control [2].

The finite element model will be used extensively
to design the vibration suppression system, and
consequently it is critical that it be accurate
and predictive. The model will have a variety of




uses including: helping to determine the
attachment locations for the various spacecraft
components, simulating the various control
designs, evaluating configuration changes, and
identifying the optimal placement of active and
passive elements.

Figure 2: Micro-Precision Interferometer
Testbed

To develop a finite element model with the
desired fidelity, a system identification process
will be used to identify uncertain structural
parameters in the model {3, 8]. The emphasis
will be on the structural parameters rather than
the mass and stiffness matrices, because we want
to develop a predictive structural model which is
applicable even when physical changes are made to
the system including adding large masses, adding
structure, moving optical instruments, or the
insertion of damping elements. Measured modal
data will be a key element in the system
identification process, and consequently
precautions must be taken to ensure that the data
are appropriate. These procedures and some of
the results from the testing are described in
this paper. First, some component testing is
described which was performed to gain information
on the local behavior of the strut elements, in
particular, the end-joint fiexibility. Then the
system testing will be described with the various
procedures to ensure relevant experimental data.
Lastly, some of the results from the identified
finite element model will be included and
compared to the test data, aithough the
?od?;/tgit reconciliation is covered extensively
n [3, 9]).

COMPONENT TESTING

The MPI is a truss constructed by assembling a
large number of similar strut elements,
replicated throughout the structure. These
struts are interconnected at aluminum node balls
with a threaded connection that is locked using a
B-nut. Figure 3 displays an expanded view of the

connection hardware which creates the joints
between the struts and the node bails. Although
the individual struts could be easily modeled,
the stiffness of the joint which interconnects
all of these elements would be most difficult to
analytically predict. The interconnecting joint
stiffness may not be important for the first few
modes of vibration (a pinned joint assumption
would probably be sufficient); however, these
joint stiffnesses will certainly become important
for the higher modes. This concern motivated the
formulation of a separate component test plan.
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Figure 3: Detajl of Interconnecting Joint

The component test plan had two objectives. The
first objective was to provide modal data that
could be used to identify the nominal stiffness
parameters associated with bending and axial
deformations of the struts, strut end-caps, and
particularly the B-nut connection joint. The
second objective was to provide modal data that
could lead to deterministic quantifications of
phenomena that would cause variations from the
nominal parameters. The phenomena included:
amplitude of vibration, static strut loading, B-
nut installation torque, and B-nut Tength.
Reference [3] contains more details of these test
procedures and results than can be included here.

Figure 4 shows seven different configurations of
the balls, struts, and B-nuts that were tested to
provide modal data for the identification of the
component structural parameters. By using
multiple configurations, this provides redundant
data for a better identification of the
parameters. Each configuration was suspended by
soft bungee cords and string so that the rigid
body modes would be sufficiently separated in
frequency from the first elastic modes. A photo
of one of the configurations {is displayed in
Figure 5. For each configuration the first axial
and first bending modes were wmeasured using
transient excitation in both the axial and
lateral directions. Modal data was extracted
from frequency response functions (FRF’s), and
Table 1 lists the results of these tests. The
modal frequencies along with the mode shapes were
used in conjunction with finite element models of
these configurations to identify the structural
parameters, in particular the joint flexibilities

[3].
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Figure 4: Seven Configurations for
Component Testing

Jable 1: Modal Parameters
from the Component Tests

Bending Properties Axial Properties

‘ Config- Freq Damping Freg Damping
uration _ {(H2) {&) {Hz) (&)
1 12.26 1.0 826.3 0.1
2 15.91 0.5 942.2 0.1
3 13.95 0.4 1013.2 0.1
8 12.09 0.5 828.% 0.2
i ] 133.56 0.6 1202.3 c.3
7 165.5 0.4 1518.5 6.1

MODAL TEST OF THE ENTIRE STRUCTURE

In contrast to the component testing, which was
designed to exercise localized behavior in simple
structural elements, the system test exercises
the entire MPI structure with all the structural
elements interacting. The primary objective of
the system test was to provide laboratory
measurements of the structural dynamics and to
provide data for the reconciliation of the
analytical mode! and the test. This objective
may sound trivial, however for a system
identification test, one must concentrate on
providing data that can be used for
reconciliation, not just test data. One must be
sure that the model describes properly and
completely that which is being tested and that
the structure being tested is in the model. As

usual, a modal test was used for the system test
(in contrast to, for example, static testing or
freguency response testing) since the modes can
define the structural dynamics, are fairly easy
to compute with the wodel, and tend to globally
exercise the structure. Figure 6 show the MPI in
the laboratory at JPL; one can easily see the
interconnecting struts and node balls in this
photo.

Figure 5: Configuration 4 Suspended in Lab

The structure was supported in the laboratory to
simulate free boundary conditions which would
best mimic the operational environment of the
MPI. Initial plans were to measure all elastic
modes below one hundred Hz, but the upper limit
was reduced to sixty Hz due to the high modal
density occurring in the range above sixty Hz.
Another feature of this system identification
test was the use of multiple configurations of
the structure, both to test the validity of the
jdentified model and to provide additional
experimental data in which the structure was
being exercised in a different manner. The
various configurations included both the addition
of significant mass items and the inclusion of
extra struts in the structure. In this report we
will show results from just the primary
configuration.

Supporting the structure, so that free boundary
conditions were well  approximated, was a very
important aspect of the pre-test planning. If
the support does not have minimal effects on the
elastic modes, then the support structure must be
included and modeled with sufficient detail to
account for the effects on the elastic modes.
If the support approximates well the free
boundary conditions, then only a simplistic model
of the support needs to be included to account
for the small changes to the modes. For this
test the MPI was supported from three points with
soft coil springs to produce rigid body modes of
less than one Hz. The coil spring suspension
will be discussed further in this section; this
suspension did introduce additional structural
dynamics to the total structure (MPI plus
supp?rt) that were not originally included in the
model.

After examining the mode shapes, frequency
response functions, and mode indicator functions
as predicted by the model, two shaker locations




were chosen at the ends of the optics and
metrology booms. The directions of the input
forces were in the planes of the end-faces of the
booms and oriented to produce twist of the booms.
Figure 7 show one of the shakers attached to the
MPI, using 2 long flexible rod to limit side
Toads and moments on the force transducer.
Portable fifty-pound shakers were used for
excitation. The modal test of the primary
configuration was actually performed by two
separate test groups (Sandia and JPL) using
different instrumentation, excitation, and data
acquisition hardware separated by months of time.

The primary objective of the Sandia test was to

accurately evaluate the mode shapes for system
jdentification, whereas that of the JPL test was
to determine the variations in the modal
parameters resulting from different testing
technigues. Later in this sections the results
from the two tests are compared.

Figure 6: MPI In Test Lab

Instrumentation Plan

For the Sandia test, every one of the eighty node
balls of the truss structure was instrumented
with a tri-axial accelerometer; while for the JPL
test only 127 accelerometers were available.
More detailed mode shape information was
collected for the Sandia test due to the
uncertainties in the data requirements for the
model reconciliation task. In addition to the
eighty balls of the truss another twenty-four
accelerometers were included at various locations
incliuding the midpoint of some of the longer
struts and at suspension points.

For the JPL test, the placement of the
accelerometers was selected to optimally measure
the desired mode shapes. A wodal analysis was
first performed using the finite element model
with the full set of degrees of freedom (dof),
and the resulting mass-normalized mode -shapes

were stored. The rotational dof‘s and those
dof’s which would not be instrumented were then
removed through Guyan reduction. Then a second
modal analysis on the reduced model was

" performed, and the cross-orthogonality of the

reduced modes with the original modes is verified
by computing:

Y
err

Figure 7: Shaker Attachment to MPI

where M, and @& are the Guyan reduced mass
and eigenvector matrix, and #f 1is the matrix of
eigenvectors of the full order system in which
the components corresponding to the
uninstrumented dof’s have been omitied.

Ideally, the resulting cross-orthogonality matrix
should be the identity matrix for the modes of
interest. In practice, if the diagonal values
are greater than 0.9 and the cross terms are
small, it can be assumed the the omitted dof’s
can be reduced without inducing modal coupling or
affecting the reliability of the measured mode.
This iterative process is continued until the
best dof’s for instrumentation have been
identified. For the MPI, 116 accelerometers were
distributed over sixty-nine of the eighty nodes.
The optimally placed sensors produced a cross-
orthogonality of 0.93 or better for twenty-two
global modes below 130 Hz. Ten additional
accelerometers were placed at the mid-spans of
the six longest struts to measure their Tocal
behavior.

Reciprocity and Linearity
After the MPI was completely instrumented with




accelerometers and cabling, reciprocity was
measured between the two shaker attachment
locations. An acceleration-to-force FRF was
measured from the driving-point accelerometer at
Shaker 2 to the force transducer at Shaker 1 with
Shaker 2 disconnected from the structure. Then
the reciprocal FRF was measured with Shaker 1
disconnected. Reciprocity requires a linear
elastic structure, but by disconnecting the non-
exciting shaker it can also detect shaker
attachment effects. Figure 8 displays an overlay
of the two reciprocity functions. One function
is plotted with a sotid line, and the second
function is plotted with a line plus circles.
Examining the figure, one can see -that the
reciprocity functions are indeed very repeatable
evidence that the structure is linear at the
excitation levels of interest and that the
shakers had been attached without changing the
-structure. :
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Figure 8: Overlay of Two Reciprocity
Functions

Jo verify the linearity of the structure over a
broader amplitude range, the structure was
excited with a transient input and then allowed
to free-decay for twelve seconds. An
accelerometer signal was measured, sampling at
512 Hz, while the response decayed frox
approximately 0.2 to 0.02 g's. By exciting the
structure in different locations in specific
directions, one could primarily excite
particular modes. A time history from one of
these tests is shown in Figure 9. The time
histories were then digitally filtered so that
one of the lowest modes would dominate the
response, This data was then analyzed in
overlapping segments using ERA [4] to calculate
the dominant modal frequency as a function of
time and consequently as a function of vibration
amplitude. The calculated modal frequency for
each segment is plotted for the two modes in
Figures 10 and 11. The vertical axis on the plot
has been tremendously expanded so that the
variation in the calculations can be observed.
The solid line on the plot is the best fit
straight line through the data points and clearly
reveals that these two modal frequencies are

independent of the amplitude of vibration for the
levels tested. :
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Figure 9: Decaying Response Time-History

Data Acquisition and Results

After the Teciprocity and linearity evaluations
were performed, the actual modal test proceeded
with measurement of the FRF's. Although groups
of accelerometers were sequentially switched into
the data acquisition system, the instrumentation
remained unchanged throughout the entire modal
test to ensure the structure remained unchanged
during the test. Burst random inputs were used
as the excitation. Figure 8 shows the
reciprocity FRF’s, but these are not atypical 9f
the measured FRF's. From the total set of FRF's
the modal parameters were estimated, using
Polyreference [5] for the JPL test and a
combination of Polyreference and a frequency
domain mode-shape algorithm [6] for the Sandia
test.

The modal frequencies from the two tests are
compared in Table 2 with notations describing the
characteristics of each mode; only the elastic
modes are included in the table, For the first
eleven modes, the measured frequencies are
remarkably consistent, consideripg_tpat different
people, hardware, and data acquisition were used
on these two tests. The average d1fference
between these.eleven modal frequencies is only
0.4 percent.
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Figure 10: Lowest Modal Frequency Versus Time
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TABLE 2 - MEASURED MODAL FREQUENCIES
FROM THE SANDIA AND JPL TESTS

MODAL FREQUENCIES (Hz)

MODE SANDIA JPL
NO. TEST TEST NOTATION

1 7.75 1.77 System Mode

4 11.65 11.64 *

3 12.67 12.71 "

4 29.36 23.55 "

5 34.06 34.22 "

6 37.34 37.50 "

7 42.25 42.56 "

8 46.04 46.12 "

9 48.09 48.01 Spring surge

10 49.50 49,68 System mode

11 50.63 50.97 "

12 51.69 52.15 Strut local bending
13 51.97 §2.52 Probably orthogonal

local bending

14 53.00 £3.21 System mode

15 53.95 £3.92 System or spring
16 56.82 £6.93 Spring surge i
17 §7.26 - Very low amplitude
18 58.02 58.08 System mode

19 60.04 60.00 System mode

Note that mode 9 is described as a spring surge
mode; this mode was due to structural dynamics
within the coil spring. This is behavior in the
structural support that is definitely
undesirable, as it greatly complicates the
identification of modes of the structure using
experimental data only. This structural dynamic
property of the springs had not been included in
the finite element model of the suspension (the
suspension was modeled as massless, linear-spring
elements). In fact, these modes were
particularly troublesome because they appeared to
be system modes, but with relatively low
ampiitudes. However, in the reconciliation
process there were no analytical mode which
corresponded to these modes. - Experimentally, the
spring surge modes were jdentified by repeating
the modal test with foam rubber wrapped around
the spring coils, thus increasing the damping

internal to the spring. With the damping
material inserted, two of the modes literally
disappeared from the frequency response
functions, .and these are indicated as spring
surge in the table as modes 9 and 16. )

Mode 12 in the table is unique in that it is the
Tocal strut mode for the longest strut in the
truss {lowest frequency). The Sandia test found
that mode approximately 0.5 Hz lower in frequency

‘than the JPL test. The Sandia test used

instrumentation at the center of the strut that
was approximately eight grams heavier than the
JPL test, and with the aluminum tube weighing
approximately 900 grams, the mass loading effect
should reduce the frequency by approximately
0.9%. This explains the difference between the
two measured values. Mode 13, which has been
identified as the orthogonal strut bending mode,
also reveals a difference of about 0.55 Hz.
Examining the remainder of the table shows some
additional system modes, a mode that Sandia
identified, but JPL did not (probably another
spring surge mode), and mode 16 which was clearly
jdentified as a spring surge mode. ODverall, the
fine correlation between the two tests is
extremely reassuring regarding the validity of
the modal data.

The mode-shapes for the modes listed in Table 2
were identified using the FRF’s, and Figure 12
displays the first six modes. The deformed shape
has been plotted over the undeformed mesh
indicated with a dashed line. The first three
modes have various scissoring motions involving
different booms and the tower, while subsequent
mode-shapes become more complex in their
descriptions.

As the last step in the analysis of the modal
data, FRF’s are synthesized using the
experimental modal parameters as the basis.
These are compared to the original measured data
to evaluate how closely the modal model synthesis
fits the measured data. Figure 13 and 14 show
two of these comparisons. In both figures, there
are two functions plotted. The solid line is the
measured data, and the line plus circles is the
synthesis. Figure 13 is for the cross-driving-
point FRF, and Figure 14 is for a response in the
tower due to input at the end of the metrology
boom. One can see that the both syntheses
reproduce the measured data quite well which
gives great confidence to the data analysis
portion of the modal test.

, Frequency Response Functions

In an effort to qualify the experimental
technique which used the burst random excitation,
the FRF’s were also measured using step sine

-excitation. In Figure 15 two driving point FRF's

have been overlaid, one using burst random with
twenty-five averages and other using step sine.
Both have a freguency resolution of 0.93 Hz, and
the magnitudes are plotted from six to sixty Hz.
They virtually overlay each other, although if
one could look very closely, the peaks and
valleys are a little sharper with the step sine.
Of course, this particular structure is somewhat
jdeal in that it is very linear and 1lightly
damped. The data acquisition time for the step
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Figure 12:
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Figure 13: Synthesis of Cross-Driving Point
FRF Overlaid on Measured FRF

To further evaluate the FRF measurement
procedures, a driving point FRF was again
measured with burst random excitation; but in
this case the frequency resolution was varied.
Figure 16 show three FRF’s overlaid, plotted from
five to fifteen Hz, that have been measured with
three different frequency resolutions, 0.093,
0.041, and 0.014 Hz. Upon close examination one
can see that the peaks and valleys have been
missed somewhat by the FRF’s with the coarser
frequency resolution, although recall that this
structure is very lightly damped. Using these
FRF’s, the modal frequencies and dampings were
identified (Table 3}. There appear to be no
trends in the data, just variations due to the
estimation process. In fact, the identified
frequencies are incredibly consistent, with the
damping values varying more, but not in any
consistent manner. Of course, the consistency of
the identified parameters is to be expected if
one examines Figure 16 closely. Even though the
peaks have been missed with the coarser
resolution, the remainder of the FRF function
overlays almost perfectly, which shows that there
has not been significant leakage for the coarser
resolution.

Table 3: Effect of Frequency Resolution on
Identified Modal Parameters

AF = 0.094 Hz Al = 0.041 Hz AF = 0.014 Hz
Freq Damp Freq Damp Freg Desmp
(Hz2) (%) (H2) (%) &) (%)
7,768 0.17 7.766 016 7965 | 019
11.64] 0.13 11.540 0.16 11.640 0.14
12.706 0.10 12.707 0.13 12703 0.13

COMPARISON OF MODEL AND TESY

The identification of the finite element model is
the primary thrust of [9], consequently only a
few details of the results will be included here.
The objective of the identification process is to
validate a model that is accurate up to sixty Hz,
and that process is currently ongoing. In Table

4, initial modal frequencies and MAC values for
the first eight elastic modes are included.
Here, the non-squared version of the MAC [7] is
used as defined by

LN
M = MAC,, = ———
AC el 1641

TABLE &4: COMPARISON OF TEST AND
ANALYSIS MODAL DATA

MODE Test Analysis Frequency

No. freguenc Freguen rror (& MAC
1 7.75 7.86 1.4 0.998
2 11.65 11.68 0.3 0.997
3 12.67 12.77 0.8 0.997
4 29.36 29.29 -0.2 0.998
5 34.06 34.18 0.4 0.999
6 37.34 37.37 0.1 0.995
7 42.25 42.43 0.4 0.996
8 46.04 46.08 0.1 0.996

The agreement between the test and analysis,
shown in Table &, appears to be quite good.
There are very small differences in the
frequencies, although the biggest difference is
for the first mode. The MAC values are very
close to unity, an indication of good
correspondence of the mode-shapes. However, it
is important to understand that a MAC comparison
of two mode-shapes is very forgiving of random
errors.
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Figure 14: Synthesis of a Tower FRF
Overiaid on Measured FRF

CONCLUDING REMARKS

The JPL MPI structure {is a very linear,
repeatable, and lightly damped structure and
thus. it is an excellent testbed for evaluating
'system identification concepts. The system
‘jdentification process requires testing,
analysis, and test/analysis reconciliation.
Testing for .the MPI was divided into component-




level and system-level experiments. The primary
objective of .the component testing was
identification of the joint stiffness which would
be virtually impossible to wodel a priori. The
system level test exercises the entire structure
and is the final "test” of the reconciled model.
However, both the test and the model should be
equal partners in the reconciliation process.
The system test of the MPI was performed by two
separate teams using different equipment and
separated in time by weeks. The agreement in the
modal frequencies for the first nineteen elastic
modes up to sixty Hz was very reassuring.
Synthesized FRF’s, using the identified modal
parameter, agreed very well with the measured
FRF's lending more confidence to the identified
modes. There were problems with the suspension
system,. in that the springs had very lightly
damped modes within the frequency band of
interest, making clear descriptions of some
éystem modes difficult.
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Figure 15: Step Sine FRF Overlaid on Burst
Random FRF

For a successful system identification process,
there are a few key points that need to be
stressed. Communications between the analyst and
the experimentalist is essential, for each must
know the compromises and assumptions the other
has made. The experimentalist must plan and
measure the data with the reconciliation process
in mind, not just produced data. One needs to be
sure that the model describes that which has been
tested, and that the test article is that which
has been modeled. Finally, in planning
instrumentation, one should instrument all
support connections to the structure all the way
to solid ground.
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1. Introduction _

Structural controls and dynamics research will have to face great challenges in the coming
years to meet increasingly high precision requirements on the stability, pointing and measurement
accuracy of future space missions [1]. In particular, attention will be given to methods which will
be able to reliably estimate models of large flexible structures in space, and accurately predict
nanometer-level response due to micro-g disturbances in a low gravity environment over a very
wide frequency and thermal band. Such concern arise in problems involving structural
optimization, and optimal placement of dampers and active members for vibration suppression [2].
These predictive models will have to be constructed from knowledge gained from both ground and
on-orbit tests.

Recent advancements in the fields of experimental methods, modal identification and model
updating are progressively improving the ability of analytical models to predict dynamic response
and performance [3,6]. However, each of these areas of research are conducted separately.
Typically, the model identification technique is validated from a single set of "measured modes",
response time histories or frequency response functions. Little attention is usually given as to how
these modes were excited and identified or what kind of input excitation was used to produce the
structural response. Also, considerations such as the reliability of these "measured data", or how
well the data represents the parameters within the analytical model are rarely addressed. Accuracy
to the level required for high precision space missions can only be achieved if the experimental
testing, data reduction and analytical model updating are integrated together into a single process.

A study was undertaken at the Jet Propulsion Laboratory (JPL) to identify candidate
approaches to the reliable development of high fidelity predictive models of flight systems, such
as the Focus Mission Interferometer (FMI), for which it is necessary to develop the capability to
predict on-orbit motions to within an order of a nanometer [7]. The investigation studied the
feasibility of integrating test and analyses methods for tuning of predictive flight models from both
ground and on-orbit data. One of the objectives of the study was to select the class of models, the
set of parameters, and the integrated procedure which could best predict the on-orbit response at
any degree-of-freedom (dof) and over a wide frequency range. The structural test/analysis
recursive system identification procedure, STARS-ID, described herein, proposes to obtain
accurate flight prediction from a reliable ground model which is then altered for on-orbit
environmental conditions [7]. Precision in the ground model is achieved from multiple iterations
of the test/updating procedure, in which each iteration focuses on the identification of a selected
set of parameters. The need for statistical information regarding the reliability of the performance
prediction is also addressed. The paper describes the STARS-ID process, and its current
implementation on tests initiated at JPL. '




2. The Micro-Precision Interferometer (MPI)

JPL’s Control Structure Interaction (CSI) team is developing the capability to create Micro-
Precision Controlled Structures for flight systems such as optical interferometers [8]. These
systems will be single payload structures with fixed truss geometry and are expected to fly in low
earth orbit. The structures will be assembled with identical bays and components through multi-
directional ball-joints, and secondary structures will be attached for the electronics and optical
metrology equipment. Some members in the structure will be replaced by passive dampers or
active members for vibration suppression and control purposes.

High fidelity predictive modelling for such structures must then consider identification
techniques for modular designs of appendages and applicability of sub-component analysis. Many
closely-spaced modes, resulting from manufacturing and assembly imprecision of the identical bays
and struts, are expected to corrupt the higher frequency range, and complicate the identification
process. Uncertainties and possible nonlinearities from the joints in ug gravity under ug internal
disturbances must also be considered. On-orbit testing techniques could be implemented through
controlled internal dynamic disturbances from the active members, and optical path length
distortions could possibly be used as a performance index for predictability not directly related to
modes or structural properties. Furthermore, moving sub-components, such as optical trolleys,
could be used for on-orbit multiple-configuration testing.

Several testbeds exist at JPL to validate CSI vibration suppression, optical control, and
structural optimization technology required for the FMI. All have the structural characteristics
listed above, and could thus also provide a useful tool for STARS-ID technology validation. The
MPI testbed is representative of a space-based interferometer comprised of two booms and a
vertical tower, 7mx6.3mx5.51, weighing 210kg (Figure 1). The testbed to date is a bare-truss
structure, suspended by three linear extensional springs simulating the free-free on-orbit
environment. The MPI will evolve in distinct phases over a number of years. A major structural
configuration change marks each phase, each of which will be followed by a dynamic
characterization of the modified structure and appropriate analytical model updates. The plan for
repeating this test sequence a number of times provides an ideal opportunity to perfect STARS-ID
modelling and identification approaches.

bvvmmenman s

Figure 1. The Micro-Precision Interferometer Testbed at JPL.




3. Structural Test/Analysis Recursive System Identification: STARS-ID

The STARS-ID process to obtain high fidelity predictive models on-orbit is summarized
in Fig. 2. Each step, numbered from I to 12, represents existing areas of research in experimental
and analytical structural dynamics, and are discussed in detail in [7]. Choices within each field are
made on the premise of integrability to STARS-ID and applicability to accurate performance
prediction for FMI-type structures. Based on the class of models selected to characterize the
predictive structural performance measure (Steps 1-2), the on-orbit model will be obtained by first
identifying the parameters from ground experiments (Steps 2-7), and then will be revised to
accommodate on-orbit conditions (Step 8). Model parameters can either identified directly from
measured data (Steps 3 & 5 ), or can be identified through the intermediary of modal parameters
identified from the measured data (Steps 3-4-5). Because of uncertainties and lack of experience
regarding the behavior of large flexible bodies in space, it will be necessary to perform a set of
flight experiments to improve the model (Steps 9-11). Behaviors or parameters which cannot be
accurately predicted from ground-based experimental tests include nonlinearities in micro-g
environment and response variations from thermal effects. Statistical methods are incorporated to
assess the reliability of model parameter estimates resulting from random and systematic errors and
model uncertainties and to quantify their effect on the predicted structural performance. Ultimately,
these models must be flight verified to confirm their predictive accuracy and reliability (Step 12).

1 7 8
[ANALYTICAL MODEL MOST PROBABLE . ON-ORBIT MODEL w/
SELECTION GROUND MODEL ADJUSTED PARAMETERS
v A 4
2 9
STRUCTURAL MODEL. i —{ ON-ORBIT TESTING }--- -,
PARAMETER ¢ !
EVALUATION ‘
PARAMETER Y l
. UPDATING 10 ;
v & MODEL i MODAL v
3 REFINEMENT IDENTIFICATION ‘ :
]
GROUND TESTING o ! :
METHODOLOGIES | . :
Y J MODEL UPDATING |-——-.
------------ — »-- TEST/MODEL
CORRELATION " v
v
4 i PREDICT
MODAL MODEL | PERFORMANCE
IDENTIFICATION - ORJECTIVES

Figure 2. Flow-diagram for STARS-ID.

Existing techniques and methodologies pertinent to each of these field have been extensively
reported and studied in [7]. Only certain critical issues and those methods that have been
implemented to date on the MPI testbed will be reported hereafter. '




3.1. Analytical Models for STARS-ID

~ Choices within each of the topics in Figure 2 are made on the premise of improvement in
the prediction accuracy to on-orbit conditions. The first issue that must be resolved is the selection
of the class of analytical model appropriate for on-orbit prediction. Classes of structural models
based on identifying input-output transfer functions or impulse response functions can accurately
evaluate the structural response at measured sensor and actuator locations from a particular set of
tests, and is widely used in control systems design. However, they cannot be used to predict the
response at other unmeasured input-output combinations or for different environmental conditions
such as changes in gravity and temperature.

Among the most commonly used models for dynamic input-output representation, the ones
suitable for prediction should be described by parameters which have a physical interpretation and
are independent of the testing conditions and environment. In theory, structural models defined
through the finite element method (FEM) could be used in conjunction with experimental
information to update the physical parameters such as modulus of elasticity £, mass density p, and
geometric properties 4, L, ... The dynamic loading, gravitational and environmental conditions
could then be altered in the analytical model to predict on-orbit response. Furthermore, FEM
techniques can be used to derive a full model of a large flexible structure from ground tests on its
individual sub-components which are then assembled into the numerical model for on-orbit
prediction of the complete structure [7].

The general equations of motions used to describe structural response with the FEM is:

[M] {g} + [C]{q} + [K] {q} = {F} (1)

where, fM] is the mass matrix, [C] is the damping matrix, /K] is the stiffness matrix, {g} is the
displacement time history response of the structure, and {F} are the time histories of the applied
forces. Within the FEM formulation, the physical parameters enter the equations of motions at the
element level. Some of these parameters, such as lengths and cross-sectional areas, can be directly
measured off the test structure, thus reducing the identification process to the more ambiguous
global parameters such as those related to material properties, boundary conditions and joint
mechanisms. Damping is typically assumed to be either proportional to /M] and /K] for real normal
modes of the structure, or is assumed to be lumped for coupled modes. In either case, the models
used to describe damping are approximate and do not represent the exact damping mechanisms
occurring in most space-like structures. Obtaining analytical models for damping mechanisms, and
means to identify damping in actual structures are difficult problems which are currently being
investigated by a number of researchers [7].

Modelling the dynamic behavior of the joints is also a difficult and uncertain process.
Separating joint nonlinearities from the otherwise linear behavior of the structure may be a viable
way to represent the linear behavior of the joints from ground tests, and then add the nonlinear
contributions for on-orbit response prediction.

Another critical issue is the definition of the minimum number of dof’s required in the final
model for accurate on-orbit prediction (Step 2). Within STARS-ID the model complexity and
accuracy is progressively built-up through multiple testing and parameter updating sequences.
Constructing the initial FEM model is a crucial first step to designing an accurate predictive
model. The initial model must represent as closely as possible the structure that will be updated
after each test. If the errors between the initial numerical model and the experimental response are
too large, then the parameter updating might diverge and be unsuccessful. '

- However, it must also be understood that the accuracy of the prediction can be greatly




improved if from the very beginning the actual structure is designed with parts that can be easily
modelled, and is built to behave in a linear and consistent manner. This includes the suspension
mechanisms which should not couple or interfere with the dynamics of the tested structure.

3.2. Testing Methodologies with Application to the MPI Modal Tests

The purpose of a dynamic test (Step 3) is to observe the dynamic behavior of structures
through measured time histories or frequency response functions (FRF’s), with the aim of
identifying modes (Step 4) or directly updating model parameters (Step 5). The reliability and
accuracy of the identified parameters are strongly dependent on the procedures used to conduct the
dynamic tests. Many techniques now exist for modal testing and data reduction, and most of these
methods work well on simple structures. The current procedures used to perform a good modal
test are fairly standard, as described in detail in [7]. Some of these methodologies have been
implemented for the MPI modal tests.

Following the STARS-ID approach, an initial model of the MPI was designed using &0
nodes (1 per node ball) and 250 rod elements (1 per strut). The struts were assumed to be
interconnected at the node balls through a pinned connection. Although the initial model is crude,
and could not properly represent the bending of the struts and the joint stiffness, it later proved
to be adequate in predicting the lower modes of the system (Table 1). Improvement in the higher
mode predictability was obtained by performing separate component tests on several strut-joint
assemblies [12]. Using parameter identification methods, these sub-component modal tests provided
the nominal stiffness parameters associated with bending and axial deformations of the struts and
joint flexibilities. '

Based on the predicted analytical mode shapes, FRF’s and mode indicator functions, two
shaker locations were chosen at the ends of the booms. The directions of the input forces were
diagonal to the end-faces of the booms and oriented to produce the best response, including
torsion, in the predicted modes up to 100 Hz. Two portable fifty-pound shakers were used for
excitation at levels of approximately 1/5f.

Two independent modal tests were performed on the MPI [14]. In the first series of test,
the MPI was fully instrumented at the full 240 dof’s by installing tri-axial accelerometers at each
of the 80 node balls of the structure, and 40 other accelerometers were situated at a variety of
strategic locations, such as mid-strut locations for longer members and suspension system
attachment points. The main purpose of these tests was to achieve the detailed mode shape
information required for the test/analysis reconciliation task. These tests measured the dynamic
behavior of the MPI up to 100 Hz, using random input excitation at a resolution of 0.25 Hz.

In a second series of test, the MPI was instrumented at only 117 dof’s, the location of
which was optimally determined by approximating each node as a single degree of freedom
oscillator, and by considering the ratio of the diagonal terms M; /K, as the equivalent
eigenfrequencies. The dof’s associated with the highest frequencies are removed from the analytical
model using Guyan reduction. If the cross-orthogonality error between the reduced mass matrix
and the full eigenvectors at the reduced dofs is less than 10%, then it is assumed that the sensors
can adequately measure the target modes. This method has proved to be satisfactory for structures
such as trusses which have sparse matrix representation. Eleven additional accelerometers were
placed at the mid-spans of the six longest struts to measure the local behavior of these elements.
The emphasis of this second series of experiments was to determine the effect of the excitation
methodology on the accuracy of the identified modes. Step-sine and random excitation tests were
performed at frequency resolutions of 0.093 Hz, 0.041 Hz, and 0.014 Hz, and sine-dwell tests
were performed around target modes.




Tests were also performed for 13
M EXPERIMENTAL ANALYTICAL . . . .. .
. MEASUREMENTS PREDICTION snd UPDATING different structural configurations to validate
: Tt | Tem Moo || poTac | vt | Mac | the identified model and to provide additional
Set #1 Set 2 Model odet est #1 .
= experimental data for the STARS-ID
LT T ewe 9} TR 1P 0 methodology. Multiple structural
2 e | s | swem # 08 L NS L 9% 1 configuration are recommended to verify the
e e S wwem Q127 | 27 L 99 1 predictability of the analytical model, and
= L B L oweem |74 L B3 L O & will be used to improve its accuracy. For the
5 34.1 34.2 system 32.9 34.2 0.999 - -
— - MPI modal tests, the various configurations
e I e 2 P22 consisted of the addition of masses equal to
— e BF2a 0% one-third of the boom weights at the boom
8 46.0 46.1 systemn 44,7 46.1 0.996 . . .
tips, the inclusion of one or two extra
9 48.1 48.0 sus] ion o 0 o .
= diagonal struts within the flexible tower, and
10 9.5 49.7 system 47.1 49.4 0.989 . .
N iy o o - combinations of both added mass and struts
' ' o9 | s "1 at several locations on the MPIL. To
12 51.7 52.1 syst / local 0.770 . . .
determine the coupling effect of the local
13 53.0 52.5/53.2 system 53 s1s | 0968 .
e | s | 559 | eymsom - osi dees, a 240gm mass was added in .the
s 1 ses S ] ] 1 middle of the Ilongest strut weighing
6 % s aywem w6 | so | ose || approximately 900gm. The test results for the
v I wo | o0 | emews || a0 | @3 | o | Primary configuration are explained in detail
in [14], and are briefly summarized
Table 1. Modal frequencies (Hz) identified hereafter.
from two independent tests, with comparison to the Structures can only be accurately

pre-test and updated analytical model predictions. represented by modal models if they behave

as linear systems. Linearity of the MPI was
confirmed in both series of tests by matching the reciprocity FRF measurements between the two
shaker locations. Excellent agreement between the overlaid reciprocity FRF’s also proved that the
* dynamic coupling of the attached shakers did not affect the modal response of the MPI. As a
further evaluation of the linearity of the structure, the MPI was excited with a transient input, and
then allowed to free-decay from a level of 0.2g to 0.02g. Modal frequencies were evaluated for
overlapping segments of the time histories, and were shown to be independent of the amplitude
of vibration for the levels tested.

The actual MPI modal tests were then performed. Uncorrelated burst random inputs at the
two shaker locations were used as inputs. In a first test, FRF’s were averaged from 12 short bursts
of approximately 0.7sec with 3.3sec decay at a resolution of 0.25Hz. In a second test, the FRF’s
were averaged from 25 longer bursts of 6sec with 8sec decay at a resolution of 0.093Hz.
Comparison of the FRF’s demonstrated that the leakage and noise level was significantly reduced
in the second test because of the longer burst and decay times and greater number of averages.

The modal parameters were then extracted from the measured FRF’s using a combination
of Polyreference and a frequency-based mode shape algorithm [13]. In this phase of the study, only
modes below 60Hz were considered because of high modal density beyond that value. The modal
frequencies from the two sets test are compared in Table 1, with notations describing the
particulars of the modes. Damping will be discussed later. For the first twelve modes up to 52z,
the measured frequencies are remarkably consistent, considering that different people, hardware,
and data acquisition systems and parameters were used on these two tests. The average difference
is only 0.4 percent. Beyond 52#z, differences in the identified frequencies could be the result of
heavier hardware and cruder frequency resolution used for the first test set. The mode shapes



Figure 3. Experimental (top) and Analytical (bottom) Mode Shapes for the First 6 Modes.

obtained from the first test with measurements at 280 dof’s are shown in Figure 3 for the first 6
modes. The first 3 modes have various scissoring motions involving different booms and the tower,
while subsequent mode-shapes become more complex in their descriptions.

The identified modal parameters are then used to synthesize analytical FRF’s H; (w)
between input dof i and output dof j at frequency w :

al : ¢ir ¢'r
H(w) = Z 2 ;

. (03]
r=1 @ [1 ~(w/w,) + 2j{ (v/w,)]

where w, is the identified undamped natural frequency of mode r, £, is the damping ratio, and
¢, is the eigenvector. These are compared to the original measured data. Figure 4 shows this
comparison for the FRF measured at one of the driving points, in which all the modes of the
structure between 5Hz and 65Hz are represented. The match between the measured and synthesized
FREF is quite good, which lends great confidence to the data analysis portion of the modal test.
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Figure 4. Comparison between the measured and analytical driving point FRF [5-65 Hz].
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Figure S. Comparison between the measured driving point FRF obtained with step-sine and
burst random excitations for [6-60Hz] at AF=0.093Hz.

In an effort to qualify the experimental technique which used the burst random excitation,
the FRF’s were also measured using step-sine excitation. In Figure 5, the driving point FRF’s have
been overlaid between 6 and 60Hz. Both tests were performed with a resolution of 0.093Hz, and
the burst random test used 25 averages with 6sec bursts and 8sec decays. They virtually overlay
each other, although the peaks and the valleys are a little sharper with the step-sine. The data
acquisition time for the step-sine was approximately 12 times longer than the burst random.
Consequently, for this type of structure, accuracy comparable to the step-sine technique can be
achieved much faster with burst random methods if long enough burst and decay times and
sufficient number averages are performed.

To further evaluate the FRF measurement procedure, a driving point FRF was again
measured with burst random excitation, but in this case the frequency resolution was varied.
Figure 6 shows overlaid FRF’s plotted for 0.093Hz, 0.041Hz, and 0.014Hz. Upon close
examination one can see that the peaks and the valleys have been missed with the coarser
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Figure 6. Comparison of the measured driving point FRF’s for burst random excitation as a
function of frequency resolution (AF=0.093, 0.041, 0.014 Hz).
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resolution test. However, identification

M : )
o || AF=0.093Hz AU R 5 AF=0014Hz } of the modal parameters with the three
D ]
g | Freq | Damp | Freq | Damp | Freq | Damp §ets of FRF’s dqes not show any trends
# | @2 (%) * (I2) (%) (Hz) (%) in the frequencies and damping as a
' function of measurement resolution
1] 7768 | 017 7.766 0.16 7.765 | 0.19 » o
(Table 2). In fact, the identified
2 f| tieal | 013 ) 11640 | 016 ¢ 11640 | 014 | frequencies are incredibly consistent,
3 | 12.706 0.10. || 12707 | 0.3 12.703 | 0.3 with the damping varying just slightly
Table 2. Effect of experimental frequency . more. This indicates that leakage does

resolutionv on the identii_'ication of the
modal parameters

not affect the identification from the
coarser data in this particular case.

Further investigation will be carried out
to analyze the differences in the mode shapes as a function of frequency resolution.

A separate series of tests also investigated the effect of the suspension system on the overall
dynamics of the system. To simulate free-free boundary conditions, the MPI was suspended from
three points with assemblies consisting of steel coil springs and light weight steel cables. The
suspension was designed to induce "rigid body" modes of 0.7Hz or less to avoid coupling with the
lowest MPI elastic mode expected at 7.8Hz. In the original configuration, the springs were lightly
damped by friction induced by a steel safety wire. Later, the safety wires were removed and the
two-shaker burst random tests were reiterated on the MPI with the undamped suspension system.
Finally, the spring coils were fully wrapped with lightweight foam padding thus significantly
increasing the friction, and the tests were reiterated on the MPI with the damped suspension
system. Figure 7 overlays a driving point FRF for identical burst random tests performed with and
without suspension damping. The 2 measurements are quite different, and the undamped tests are
characterized by extra sharp peaks induced by spring surge. A pre-test analysis predicted surge
modes at 7.86Hz, and 9.66Hz, with higher harmonics at multiples of these frequencies. Sine dwell
tests performed around some of the predicted surge frequencies confirmed through visual
inspection of the springs that the observed extra peaks in the undamped tests resulted from surge.
- In particular, the surge mode at 7.86Hz is strongly coupled to the first elastic mode of the MPI
measured at 7.77Hz. Furthermore, the modes identified in the original configuration at 48.0Hz and
56.9Hz (Table 1) completely disappeared once the suspension was heavily damped.
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To understand how the suspension

M Dt > ) ¢ are mode couple with the structure, the modal
[o] uspension uspent! uspension . . .
> . - properties of the MPI were identified for all
E Fr Fr . .
' i & ain - = & three damping configurations. The results
A o o 7 o1s 25 oss || are listed in Table 3 for all the structural
o e o et " e o fnode's up to 58Hz. It can be seen tha.xt the
identified modal frequencies are consistent
3 127 o.1 12.75 0.14 2.7 0.10 . .
: ]| regardless of the suspension configuration.
4 29.55 0.1 29.53 0.10 29.56 0.17 R
However, in the undamped case, those
s. 342 0.09 34.26 0.1t 34.21 0.08 - .
system modes that are coupled to the surge,
. s b .55 . . . g
e e 22 =2 > | such as the modes at 7.75Hz and 46.14Hz,
=== A B 25 1 2= I also have high damping values of the order
il B = =2 hiad == 22 I of 0.3% to 0.5%. In all other cases, the
>l @9 i 222 e 28 | 95 I damping identified for the structure is of
10 50.97 0.12 51.00 0.23 51.00 0.17 the Ol'der Of 0'1% tO 0.2%.
11 52.15 0.13 52.23 0.12 52.13 0.12 In Conjunction with the STARS-ID
Ll s 030 5262 037 5249 030 process, future work will investigate the
53.21 0.7 $3.17 030 s3.14 0.6 kind of input functions which would be
u | so 0.4 53.83 0.0 53381 o3 || most appropriate for accurate modal
16 58.08 0.15 5185 032 se.11 0.66 extraction and/or structural parameter
identification. This leads to the notion of an
Table 3. Identified modal frequencies and optimal excitation pattern design, for which

damping as a function of suspension

. the optimization criteria may be the
damping

identifiability of specific modes (weighted
or not for their importance) or of specific structural parameters (which can also be weighted for
there importance). The "optimal input design" also entails an “"optimal actuator location and
direction”. Work in this area is reported in more detail in [7].

Just as the actuator location and excitation pattern are related to the controllability of the
parameters, optimal sensor location are related to observability. In many respects, the problem of
sensor location is also closely related to that of dof reduction methods for FEM models. Like the
actuator location problem, location of the sensors must be selected on the basis of an optimality
criterion which matches the purpose of the test. Other methods than the ones used for the MPI
modal tests have been reported in [7].

3.3. Test/Model Correlation ,

The next step in the STARS-ID process is to compare the test results to the analytical
prediction (Step 5). The accuracy of the predictive model is strongly dependent on the procedures
used for model verification and error localization, on the parameter identification/updating process,
and on the ability to extract the model parameters from the experimental data. The selection of
appropriate prediction measures, as well as model/test correlation indicators are discussed in [7].
The first task is to determine which modes should be paired for comparison and correlation. The
second task is to assess the "closeness” of the identified mode pairs by quantifying the
discrepancies. The traditional metric for mode agreement is the modal assurance criterion (MAC).
It is a convenient metric since it does not require mass normalization of the modes and it reduces
the mode pair agreement to a single scalar value. The MAC is a measure of the linear dependence
between the analytical and experimental eigenvectors, @, and ., respectively:




o, @,

MAC = —=_ 3)
|®a] 2]

where T denotes the transpose, and ‘ . ‘.is the Euclidean norm. Othér advanced metrics and
model correlation techniques which provide additional insight into mode correspondence and
characterize mode shape pairs are reported in [7] and [15].

3.4. Parameter Updating and Model Refinement

The parameters must then be updated to match the experimental results. In STARS-ID the
predictive accuracy is achieved by updating the model from independent sets of data and for
various structural configurations. Among the many existing parameter updating schemes, special
attention is given to those most suited for multiple test configurations and statistical reliability
estimation [7]. ‘ ' -

Following the classification of Roy er al. [16], FEM updating techniques from measured
modal information fall into 2 categories: global and local. Global methods directly modify the
coefficients of the mass and/or stiffness matrix of the FEM model. Local methods perform
corrections of the physical parameters, such as element geometric properties, E and ». The
proposed analytical model must correctly represent the dynamic behavior of the structure, and only
the value of the parameters is altered to fit the experimental results. Among the types of local
methods, those based on sensitivities are the most appropriate for implementation in STARS-ID.

Sensitivity methods linearize the relations between the modal parameters and the physical
parameters to be modified, followed by a least squares minimization. Research in this area has
been performed by J. Collins and T. Hasselman, G. Lallement, J. Piranda, R. Fillod, R. Glaser,
E. Dascotte, B. Caesar, M.L. Wei, T. Janter, and N. Creamer [7]. Adjustments to the physical
parameters are performed by minimizing the error between the analytical and the measured modal
response of the structure through the sensitivity derivatives. The update is accomplished iteratively
or optimally, depending on the number of physical parameters and on the number of measurements
available.

Collins er al [10], and later Hasselman [11] developed a Bayesian parameter estimation
technique which is formulated in an iterative process and uses the measured natural frequencies
and mode shapes to modify the physical stiffness and mass properties of the analytical model. The
merits of this method are that all operations are performed with the full FEM model. However,
this results in computational requirements which may be very high and updating should not require
more than a limited number of iterations. Thus, it is important that the initial estimates of the
analytical model be very close to the actual properties, and that the analytical model itself allow
a true representation of the dynamic behavior of the structure. This method preserves the
connectivity of the original analytical model during the iteration. It is implemented in the computer
code SSID which updates the model parameters from eigenproperties using an efficient Lanczos
eigensolver. It is conveniently set up for recursive algorithms and statistical evaluation of the
results, and it makes provisions for future parameter updating capabilities from measured FRF or
input/output time histories for STARS-ID.

The current application uses modal information only. It assumes that the differences
between the experimental and analytical frequencies and mode shapes are small, and result from
both model errors and experimental errors, e. The errors between the eigenproperties of the
measured data 4, = < A,, ¢, >7 and the model eigenproperties u, = < A\, , ¢, >" can be
approximated by a first order Taylor expansion about the current analytical values r; of the design




parameters r (p, E, I, ... ) obtained after the i* iteration:

Al A,
= + T{r—ri} + € C))
2, e, .
r—rt

where T is the sensitivity matrix at the current parameter values r=r;:
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The weighted errors in the measurement and and in the physical parametér are minimized using
the Bayesian estimator :

J = @ -u)' S, (@-u) + G -r)'8, (y-71) (6)

where the weighting coefficients S, and §,, are the cross-correlation matrix of the physical
parameters and the eigenproperties, respectively. In the general case where there is more data than
parameters, it can be shown that the set of physical parameters r can be estimated recursively
from:
-1 -1 -1 -1 -1
R = Tt [S2 « TTSST] S (rg - m) ¢ TTSS (u, - )] M
Convergence is reached when r,,, equals r; to within a pre-specified accuracy. The posterior

covariance matrix describing the statistical reliability of the most probable parameter estimates r*
is then obtained from Equation 5:

Sy =87 + 1TSS T]" ®

Because the covariance matrix of both the prior and posterior estimates are computed, SSID
could be efficiently modified to perform model updating from multiple tests in which the posterior
covariance matrix from Test i is used as a more accurate weighting function for Test i+1.
Furthermore, the posterior covariance matrices could also be used to determine the accuracy of
the updated parameters and reliability of the assumed FEM model to fit the measured data. This
new approach is currently under implementation within STARS-ID.

The above model updating technique applied to the sub-component tests defined the joint-
strut assemblies in terms of 5 elements, the parameters of which were incorporated into the full
system model. For the MPI testbed, the pre-test rod model with 240 dof’s was refined to a beam
model with approximately 10,000 dof’s. The model updating technique was then applied to the full
model to match the measured modal properties and mode shape of the test set #1. Table 1 shows
that the measured modal frequencies are very close to those of the updated analytical model, with
differences of the order of 1%. The rows corresponding to the spring surge were left blank, since
the analytical model did not represent the suspension mechanism. The analytical mode shapes also
closely match the experimental measurement as illustated in Figure 3, and as demonstated by the




MAC values listed in Table 1. The model
Met. Boom Opt. Boom in Tower updating results for the MPI are described in-

24 kgs @ 16kgs @ Added Strut

Mmoo

more detail in [12,15]. Discrepancies that still
remain require further refinement of the
D L5 98 7.03 687 § 816 | 8% | analytical model. This will be resolved by
2 || 97 95 ws | 1ws || ues | us | performing full system parameter estimation
3 || 126 123 11.8 1.6 127 | 12s || on the physical elements that were not
identified in the component level tests and by
including the suspension in the full system
model. ‘

Table 1 aslo demontrates that the pre-
test Tod model with only 240 dof’s predicted the actual modes of the MPI fairly well, and
contributed to the success of the updated model. The robustness of the pre-test model was further
verified by comparing its prediction for known perturbations in the MPI. Modes identified from
actual test performed with added mass at the tips of the booms and extra diagonal struts in the
towers are compared to the analytical predictions of the first three modes in Table 4. It is shown
that the predictive accuracy of the model is excellent. Using the recursive form of the proposed
Bayesian estimation technique to match the modal information from the multiple configuration tests
will further improve the reliability of the model.

Test Model Tet |. Model Test Model

Table 4 Comparison of the analytical prediction
to the measured experimental modes for various
structural configurations.

4. Conclusion

A systems approach, STARS-ID, was presented in which accurate FEM models of flight
systems obtained from ground-based tests could be used for on-orbit performance prediction.
STARS-ID methodologies were successfully tested on the MPI truss structure at JPL.The physical
parameters are updated from multiple ground-based experiments involving deterministic changes
in the structural configuration. For this purpose, model correlation methods based on local
sensitivity techniques are recommended for sequential or simultaneous implementation of the
multiple configuration tests. Within this classification, methods based on Bayesian estimation
techniques are recommended for statistical inference. For future flight missions, statistical methods
within STARS-ID will become necessary to determine the most probable set of physical parameters
based on the experimental data, and will be required to assess whether the reliability bounds of the
predicted performance fall within the requirements.

The accuracy and reliability of the structural parameter estimates are strongly related to the
experimental procedures and the modal identification techniques. STARS-ID advocates
experimental techniques which are capable of isolating structural modes from suspension effects,
identifying local modes and separating closely-spaced modes. It was demonstrated how methods
such as stepped-sine testing about particular modes, and sub-component or element testing could
contribute significantly to the increase in accuracy of the updated structural model. In the future,
considerations such as optimal sensor/actuator location, and excitation force design targeted at
specific modes or parameters must also be investigated to enhance the reliability of the analytical
models.
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Abstract

The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of
control-structure interaction technology in the design of space-based interferometers.
A layered control architecture will be employed to regulate the interferometer optical
system to tolerances in the nanometer range. An important aspect of designing and im-
plementing the control schemes for such a system is the need for high fidelity, test-verified
analytical structural models. This paper summarizes coordinated test and analysis ef-
forts aimed at producing such a model for the MPI structure. Pretest analysis, modal
testing and test-analysis reconciliation results are summarized for a series of tests at both
the component and full system levels.

Overview

The Jet Propulsion Laboratory (JPL) Control Structure Interaction (CSI) Program is re-
spounsible for the investigation of control challenges faced by future large precision optical
systems in space. A search to select a specific mission on which to apply the CSI tech-
nology adopted an advanced concept known as the Focus Mission Interferometer (FMI).
The FMI is a large, spacecraft-based, partial aperture telescope capable of both imaging
and astrometry (resolving and measuring the angle between two objects, respectively).
This advanced concept was the object of a preliminary analytical study tasked with
determining the CSI technologies that would be required to meet the mission’s science
requirements [1]. In this analytical study, a truss structure spanning 30 meters sup-
ported both spacecraft and instrument hardware. Proper instrument operation required
controlling and measuring the positions of optical components distributed throughout
the structure to the nanometer level. To achieve these requirements, a control architec-
ture evolved which collectively provided the necessary vibration attenuation capabilities.
Subsequent efforts have been directed at verifying this control scheme in hardware.

The Micro-Precision Interferometer (MPI) Testbed is a ground-based, half-scale hard-
ware version of the FMI (see Fig 1) comprised of two booms and a vertical tower with
dimensions of Tm x 6.3m x 5.5m. The primary objective of the testbed is to confirm the
viability of a space-based interferometer concept by incorporating CSI technology.

'John Red-Horse, Dept 1434, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185




Figure 1: Photograph of MPI Structure

The testbed will evolve in distinct phases over a number of years. A major structural
configuration change marks each phase. Each of these changes involves a sequence of
events, which includes design, fabrication, assembly, and integration of new components
followed by characterization of the resulting structure and appropriate analytical model
updates. The plan for repeating this sequence a number of times provides an ideal
opportunity to perfect testbed design, characterization, and modeling approaches. The
testbed to date is a bare truss structure, suspended by three linear extensional springs.
Late in 1992, the first set of optical components will be mounted to the structure marking
the beginning of a two year intensive control experimentation effort. In 1996, a second
round of optical components will be designed and mounted to the structure. This latter
component set will provide the testbed with all the elements necessary to demonstrate
complete instrument functionality.

In its simplest form, the space-based interferometer articulates or translates optical
elements so that a partial aperture telescope emulates a traditional full aperture system.
Instrument performance improves with increase in diameter of the full aperture, or anal-
ogously, distance between the partial apertures. The advantage of the partial aperture
system is that it achieves comparable performance to the full aperture system though at
a significant reduction in the required structural mass. However, to satisfy the instru-
ment’s performance requirements, the optical component translations and articulations
must be precisely regulated in the presence of an induced vibratory environment.

The MPI Testbed provides a means of experimentally verifying system level effects be-
tween different vibration attenuation methods. These methods together form the layered
control architecture involving vibration isolation, structural control and optical control
techniques [2]. A six axis isolation system will attenuate typical spacecraft disturbances




such as tape recorders, reaction wheels, and articulating solar panels. The interface be-
tween the testbed disturbance sources and the structure allows for the mncorporation of
different isolator designs including hard and soft mount approaches and active and/or
passive isolator designs [3]. The structural control methods provide a means of vibration
attenuation in targeted frequency ranges that will enhance the performance of the optical
control systems. This is done by replacing various truss elements with active or passive
damping elements. The testbed’s optical system is a Michelson Interferometer, the com-
ponents of which will be distributed across 7 meters of structure. The optical design will
evolve from a ground-based operational interferometer (Mark III) which is bolted-to bed
rock at the summit of Mt. Wilson [4]. The wave front tilt and stellar path length control
subsystems are the primary optical control loops. Successful interferometer operation re-
quires that these control systems have high disturbance rejection across a broad range of
frequencies in spite of the structure’s dynamics. In addition, the optical system contains
a complex metrology system to sense the position of critical components.

Accurate characterization of the testbed in conjunction with successful model up-
dating procedures should facilitate the generation of high fidelity finite element testbed
models. The need for such models is particularly important when addressing control
objectives in the micro-dynamic regime. The resulting models will need to provide: (1) a
tool to aid in the design of future testbed configurations, and (2) a high confidence sim-
ulation environment for the design and evaluation of system and subsystem level control
approaches. For example, the current mechanical design challenge is to develop mounting
hardware for optical and spacecraft components and to determine the locations at which
to attach this hardware to the structure. The resulting global and local dynamic behavior
must not complicate the alignment of optical elements and must not limit the bandwidth
of subsystem control loops. Accurate modeling is essential for successful implementa-
tion of specific control methodologies as well. Examples include the placement of active
and passive elements, as well as the design of Multiple-Input/Multiple-Output structural
control schemes for which the measurement of plant transfer functions is impractical.

Generating a high fidelity analytical model is implicitly dependent on the charac-
teristics of the physical structure. The CSI Program at JPL has extensive experience
in the design, fabrication and assembly of linear, lightly damped precision truss struc-
tures [5, 6]. These objectives are achieved by properly selecting structural materials,
proper joint design and adopting precision assembly procedures. Drawn aluminum tub-
ing was the material selected for the MPI Testbed struts based on its homogeneous
construction and strict manufacturing tolerances which allow for accurate characteriza-
tion. Even the best tubing available is not perfectly straight, therefore a bonding jig was
designed to hold the end fittings collinear during the adhesive injection and curing pro-
cess. Figure 2 shows how these struts are joined with the node balls using the adjustable
B-Nut hardware. Precision measuring devices were developed, capable of determining
node to node distances to within a tolerance of .Imm. These linear measuring devices,
used in conjunction with an optics table which provided a planar reference, resulted in
an assembled structure with tolerances in the submillimeter range. |

The field of Structural System Identification is concerned with producing accurate
analytical models. Examples of work in this area can be found in {7, 8]+ In general,
such models should be capable of representing the physical structure through numerous
configuration changes; in this case, those encountered during the design phase in the
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Figure 2: Detail of MPI Components

testbed and those expected in the actual operation of the telescope. This paper discusses
the testing, modeling, and model updating procedures applied to the initial configuration
of the MPI testbed structure for which it is a bare, suspended space frame.

The approach taken was to identify the structure by determining a suitably rich
physical parameter set through a coordinated, three-pronged effort involving pre-test
analysis, test, and reconciliation phases. For a variety of reasons, the identification was
performed in two stages: first, a component level identification procedure was performed,
then the results from this initial phase were incorporated into the identification of the
full system.

Component Level Identification
Modal Tests

The bare MPI structure is constructed of a few basic components that are replicated
throughout the structure. Therefore, it seemed plausible that accurate finite element
models (FEM) of these components would lead to an accurate model of the assembled
structure.

The component level test plan had two objectives. The first was to provide data
to determine the nominal physical parameter values associated with the bending and
axial stiffnesses of the struts, strut end caps, and B-Nut connectors which attached each
strut to the node balls. The second was to provide data for deterministically quantifying
phenomena that might cause variations in the parameter values. The phenomena that
were chosen to address were: (1) Dynamic amplitude of vibration, (2) Static strut loading
(e.g. from gravitational or nonuniform thermal loads), (3) B-Nut installation torque, and
(4) B-Nut installation length. In this section, we concentrate on results rela.tmg to the
first ob Jectlve——determxmng the nominal stiffness parameters.




Nominal Component Parameter Characterization

Figure 3 shows the seven configurations of the node balls, struts and B-Nut assemblies -

Figure 3: Seven Tested Subsystem Configurations

that were tested. All except Configuration 4 were used to provide data to meet the first
objective described above. Each configuration was suspended by soft shock cords and
string so that the rigid body modes would be well separated in frequency from the first
elastic mode. In each configuration a small impact hammer with a force transducer was
used to impact one of the end balls longitudinally to excite the first axial mode. Each
configuration was impacted laterally at the middle ball (or the middle of the strut if
there was no middle ball) to excite the first bending mode. Frequencies and damping
were extracted for the first elastic mode in each impact direction from frequency response
functions (FREF’s) of the accelerometers to the input hammer force. Five averages were
taken to form each FRF estimate. Table 1 lists the results of these tests.

Linearity Checks

For six of the configurations, a linearity check was performed. The variation in frequency
was mapped as the amplitude decayed freely from an impact with the hammer. Eight
seconds of data were taken for the axial impacts and 16 seconds were taken for the lateral
impacts. The roots were extracted from the first 25% of data, then the next 25% and so
ou. The structural elements appear to be linear for all practical purposes. The variations



' Bending Properties Axial Properties
Configuration || Freq (Hz) | Damping (%) | Freq (Hz) | Damping (%)
l 12.26 1.0 826.3 0.1
2 15.91 0.5 942.2 0.1
3 13.95 0.4 1013.2 0.1
) 12.09 0.5 825.5 ' 0.2
6 133.56 0.6 1202.3 0.3
7 165.5 0.4 1518.5 | 0.1

Table 1: Nominal Modal Results for the Component Tests

in frequency for these configurations were all less than 0.2% for axial modes and 0.4%
for bending modes.

Summary of Remaining Results

Configuration 4, where a short strut was placed between two large masses, was used
to determine how variations in the selected phenomena affected the response natural
frequencies. The results of initial tests in this configuration, directed at investigating
the effects of changing B-Nut length and torque level showed that the joint between
the ball and the large masses experienced an apparent change in stiffness. Significant
tightening of this joint led to results that agreed well with analytical predictions. Varying
the angle of the support cables in Configuration 4 provided a means to test axial static
load effects. Results were plausible for the bending behavior, but proved inconclusive for
the axial modes. This ball mass torque level problem, which explains the omission of
Configuration 4 from Table 1, is thought to explain these inconclusive static load data.

Analytical Parameter Identification

Here the task was to identify the structural elements at the subsystem level from the
results of the modal test series. This identification results in both an appropriate model
form as well as estimates for the accompanying nominal parameter values.

Parameter estimation was accomplished for all subsystem configurations and parame-
ters (i.e., those affecting both axial and bending response) using a design sensitivity based
approach (DSA) as implemented in the SDRC software package, CORDS [9]. As a vali-
dation step, a subset of these parameters was also estimated using a Bayesian estimation
algorithm as implemented in the program SSID [10].

Model form was addressed by estimating across multiple subsystem configurations, si-
multaneously in the case of CORDS, and consistently across individual configurations for
SSID. The premise of this approach is that parameterizations can not support accuracy
across a variety of configurations if the model form of the structural subsystem does not
capture the correct qualitative structural behavior. The final model form was comprised
of point masses for the node balls with rigid elements from these points to their geomet-
rical radii and three beams: one each for the B-Nut assembly, end cap, and strut. Each
beam element accounted for mass via nonstructural mass specifications which decoupled




it from the physical parameters for each beam: cross sectional areas and moments of
inertia. : ,

The reconciliation procedure was separated into two phases with the axial and bending
characteristics considered independently. Due to the cited problems with torque level
between the large masses and node balls, the original Configuration 4 test results were
not considered in the subsequently described reconciliation analyses. However, as a post
study verification of model form, Configuration 4 with a'long B-Nut assembly (for which
the torque problem had been addressed) was considered.

Axial Characteristics

For this parameter set correlation was performed using the DSA approach. with data from
each of Configurations 1 through 7 (with the exception of Configuration 4) stacked in a
single response vector. The results are summarized in Table 2. A consistent update was

Config/ Axial Results Bending Results
Item | Initial | Final | Test Freq (Hz) || Initial | Final | Test Freq (Hz)
1 815.2 | 825.7 826.3 13.20 12.25 12.26
2 928.7 | 941.7 942.2 - 17.04 15.83 15.91
3 1003 1015 1013 14.99 13.92 13.95
6 - 1162 1181 1202 148.9 133.4 133.5
7 1470 1490 1519 198.6 167.2 165.5

Avow: ] 0.3003 | 0.3123 - — = —
Abww: | 0.0700 | 0.0672 - = — —

Ib'n.ut - - - 40(10—4) 4—01(10_4) —_—
endeap — — — 0.0477 0.00856 —
llongbnut - - — 40(10—4) 377(10_4) b

Table 2: Component-Level Reconciliation Results

achieved with good test-analysis model agreement across the configuration set.

Bending Characteristics

The DSA approach was also taken for estimating the bending parameters. In addition, -
-the Bayesian approach described above was implemented for which formal consideration
was given to both modal frequency and shape data. A particularly striking result was
that both methods produced effectively identical parameter estimates. These results are
also shown in Table 2, where one can observe the good correlation for each member of
the configuration set.

Configuration 4 Revisited

Configuration 4 from the original test series was not considered in the reconciliation
process due to the effects of the connections between the large masses and the node




balls. However, this test was repeated with longer versions of the B-Nut assembly for the
purpose of gaining insight into the effects of B-Nut length on the response characteristics.
An attempt was made to reconcile the test and analysis models for one particular B-Nut
length (3.1in). Both methods yielded good agreement for the axial properties, but the
bending characteristics proved problematic. Estimation was performed using the first
three bending modes without achieving consistent results. A close examination of the
third bending mode shape showed that a qualitative response property, namely rotational
motion between the large end mass and the node ball, was not being captured by the
initial model form. Resolving this issue and re-estimating yielded consistent results which
are shown in Table 3.

Freq No/ | Initial Final Test
Item FEM FEM (Hz)

1 6.07 6.23 6.21

2 8.76 9.02 9.04

3 112.1 114.9 115.2

| Jiomgbnae | 4:0(107%) [3.77(10°) | — |
Table 3: Config 4 (long B-Nut) Reconciliation Results

System Level Identification
Modal Testing

In contrast to the component testing, which was designed to exercise localized behavior
n simple structural elements, the system level modal test was intended to exercise the
entire MPI structure with all structural elements interacting. The primary objectives of
the system level test were to obtain laboratory measurements of the dynamic properties
of the structure and to provide the data necessary for building an accurate analytical
model.

The structure was supported by soft springs in the laboratory to simulate a free-free
environment which would best mimic the operational environment of the MPI. Initial
plans were to measure and identify all elastic modes below 100Hz, but the upper limit
was reduced to 60Hz due to the high modal density occurring in the range above 60Hz.

Supporting the structure so that free boundary conditions were well approximated was
a very important aspect of the pre-test planning. For this test the MPI was suspended
from three points with assemblies consisting of steel coil springs and light weight steel
cables which produced rigid body modes in a range below 1Hz.

After examining the pre-test mode shapes, FRF’s, and mode indicator functions pro-
vided by the analysis model, two shaker locations were chosen at the ends of the two
booms. The directions of the input forces was diagonal to the end-faces of the booms
and oriented to produce torsional response. Two portable fifty-pound shakers were used
for excitation. Every one of the eighty node balls of the truss structure was instrumented
with a tri-axial accelerometer. Additional accelerometers were also placed at a variety




of strategic locatious, such as mid-strut locations for longer members and suspension
system attachment points, to achieve the detailed mode shape information necessitated
by the uncertain data requirements of the test/analysis model reconciliation task.

After the MPI was completely instrumented with approximately 280 accelerometers,
reciprocity was measured between the two shaker attachment locations. An acceleration-
to-force FRF was measured from Shaker 1 to the driving-point accelerometer at Shaker 2
with Shaker 2 disconnected from the structure, and conversely. Reciprocity requires a lin-
ear elastic structure, but by disconnecting the nonexciting shaker it can also detect shaker
attachment effects. Figure 4 displays an overlay of the two reciprocity measurements.
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Figure 4: Shaker Reciprocity Checks

Examining the figure, one can see that the reciprocity FRE’s agree quite well—evidence
that the structure is linear at the excitation levels of interest and that the shakers had
been attached without changing the structure.

After the linearity evaluations were perforined, the actual modal test proceeded
with measurement of the FRF’s. Although groups of accelerometers where sequen-
tially switched into the data acquisition system, the instrumentation remained unchanged
throughout the entire modal test to ensure the structure was unchanged during the test.
Burst random inputs were used as the excitation. From the total set of FRF’s, an initial
test-derived modal model was extracted, using a combination of Polyreference [11] and
a frequency domain-based mode shape algorithm [12]. After an initial reconciliation at-
tempt with the analytical model was made, a second data reduction was performed. The
data for these models are discussed in conjunction with that of the analysis model in the
next section. -

Note that subsequent tests underway at JPL have indicated that many of the unre-
solved modes that are present in the test models are due to the elastic behavior of the
suspension system. In particular, test mode 9 was found to be a spring surge mode—



elastic motion associated with axial compressive waves in the spring. This type of be-
havior is definitely undesirable, further complicating the task of identifving the structure
itself using experimental data only. Tliese suspension system modes were particularly
troublesome because they were clearly present in the measurement data and were hard to
discern from the system modes of the structure even though they occurred with relatively
low amplitudes.

As the last step in the analysis of the modal test data, a number of FRF’s were gen-
erated using the experimental modal parameters. These resynthesized FRF’s were com-
pared to the original measured data to evaluate how closely the modal model synthesis fit
the measured data. Figure 5 shows one of these comparisons for the cross-driving-point
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Figure 5: Cross Driving Point FRF’s—Measured and Resynthesized

FRF, which was typical of most of the resynthesized FRF’s. Visual inspection indicates
that this resynthesis reproduces the measured data quite well, lending great confidence
in the data reduction portion of the modal test.

Analysis

As a result of the system identification at the component level, the full system analyt-
ical model agreed well with the initial test-derived model—especially for the first eight
system modes. Thus, initial focus was on resolving various discrepancies that existed
at higher frequencies through re-examination of the test-derived model. Future studies
will concentrate on a final, refined estimate of parameters in the full system. This study
underscores the need to consider both models, test and analysis, as equals in the recon-
ciliation process. An important fact is that any change in the test model inferred from
the reconciliation process does not necessarily imply that a full retest will be needed. For
example, it may indicate a need to perform a revised data reduction on the existing test:
data, for which there is some subjectivity on the part of the experimentalist.




For the structure under consideration, an initial test model was extracted {rom the
test data and compared with the analytical model, which had been assembled {rom the
identified subsystem elements. This initial reconciliation process motivated refinements in
the test model. Discrepancies that still remain require further refinement of the analytical
model. This will be resolved by performing full system parameter estimation on physical
elements that were not included in the component level test series and by including a
model of the suspension system in the full system model.

Test/Analysis Mode Comparison

There are two aspects to comparing a set of test and analysis mode shapes, correspon-
dence and accuracy. The first task is to determine which modes should be paired for
comparison and correlation. The second task is to assess the “closeness” of the identified
mode pairs by quantifying the discrepancies. Moreover, when acceptable correspondence
cannot be established, their relation to the surrounding modes must be established. The
traditional metric for mode agreement is the modal assurance criterion (MAC) also re-
ferred to as the mode shape correlation coefficient [13]. This metric is convenient since it
does not depend on normalization of the modes and it reduces the mode pair agreement
to a single scalar value. Although there is some ambiguity in its definition, this paper
uses a non-squared version of the MAC defined as
_ _  9ide
MAC= MAG = B8 )

where ¢, and ¢, are single analytical and experimental mode shape vectors, respectively,
T denotes the transposition operator and |- | is the Euclidean norm. The MAC does have
its deficiencies however. For instance, no one has been able to establish a clear numerical
range over which MAC’s guarantee correspondence. Other advanced metrics are being
developed which provide additional insight into mode correspondence, quantify similarity
to surrounding modes and characterize errors in mode shape pairs. Studies employing
these metrics will be reported in [14].

Results

With the tools cited above the process of finding Test Set 1 modes which corresponded
to analysis modes was undertaken. The first eight modes, six of which are shown in
Figure 6, were system modes with a high degree of correlation. Table 4 quantifies many
of the results. The first and second columns sequentially list the FEM and test modes
by increasing frequency and are aligned with their best counterparts—accepted mode
pairs are indicated with a (%) in the far right-hand column. A dashed line with an
embedded mode number in either of these columns indicates that two comparison modes
had their highest MAC values for that mode number with the higher of the two taking
precedence. The dashes in the remaining columns are also an indication that this has
occurred. Examination of the table shows that three analysis modes, 16, 19, and 20 had
no apparent counterparts in the test-derived modal model; nor did test modes 9, 11, and
13. Plots of displacement shapes for FEM modes 19 and 20 indicated that they were
the orthogonal pair corresponding to test mode 11, a local mode. MAC calculations had




Figure 6: First Six Pairs of Test and Analysis Modes

failed to give this result due to the omission of mid strut nodes in the test displacement
set. In fact, the MAC value of 0.9441 for FEM mode 20 and test mode 14 is explicit
evidence of the need for extreme caution when establishing modal correspondence based
on this criterion alone. Qur overriding goal became to find the test mode corresponding
to FEM mode 16.

Test Set 2 was then extracted from the measurement data. The results associated
with this set are shown in Table 5 where the first eight mode pairs have been omitted
for brevity (they are identical to those of Table 4). In the test mode column, three new
modes are shown in bold. In this new set, FEM mode 16 now has a counterpart in test
mode 11. ‘

While this resolved the issue of correlating analysis modes to those present in the test
model, there are still a number of modes that are present in the test mode set that have
yet to be resolved. These modes have been the object of some concern and additional
test procedures have been performed that seem to indicate that they are associated with
the suspension system. This subject remains under investigation.

Concluding Remarks

The JPL MPI Testbed is an example of a repeatable, linear, high precision structure.
As such, it affords an opportunity to refine analytical modeling and structural system
identification procedures.

To facilitate an accurate structural characterization the testing and the test-analysis
reconciliation processes were separated into two stages, one each for the component and
system levels. The first stage involved a component level test-analysis series which focused
on two primary objectives: (1) the identification of an appropriate model form for the




FEM (est Set 1 Maximum | Maximum | Frequency
Frequency/# Fr‘equexicy/# FEM MAC | Test MAC | Error(%)
7.36/7 7.75/1 0.9984 0.9984 1.42(x)
11.68/8 11.65/2 0.9966 0.9966 0.26(*)
12.77/9 12.67/3 0.9971 0.9971 0.79(x)
29.29/10 29.36/4 - 0.9978 0.9978 -0.24(%)
34.18/11 34.06/5 0.9985 0.9985 0.35(%)
37.37/12 37.34/6 0.9950 0.9950 0.08(*)
42.43/13 42.25/7 0.9960 0.9960 0.43(%)
46.08/14 46.04/8 0.9955 0.9955 0.09(*)
-15- 48.06/9 ’ — 0.7474 —
49.37/15 49.50/10 0.9890 0.9890 -0.26(*)
51.11/16 51.69/11 0.7696 0.7696 -1.12
53.80/17 53.00/12 0.9677 0.9677 1.51(%)
-17- 56.87/13 » — 0.7714 —
56.72/18 58.01/14 0.9628 0.9628 -2.22(x)
58.58/19 -15- 0.6824 — —
59.14/20 -14- 0.9441 — —
60.26/21 60.04/15 0.9836 0.9836 0.37(*)

Table 4: MPI FEM/Test Set 1 Comparison .

Node Ball/B-Nut/End Cap/Strut subsystem and (2) the estimation of a suitable set of
“nominal” physical parameter values for this model. Modal test results were presented
for the various configurations that were considered.

The test-analysis model reconciliation approach was based on estimating physical pa-
rameters in finite element models of each configuration. Such an approach provides an
advantage over other methods by allowing results to be extrapolated to different config-
urations. For the current task, parameter estimation was performed via two techniques:
a design sensitivity based approach using modal frequency information and a Bayesian
approach which also incorporated mode shape data. A multiple configuration reconcil-
lation approach resulted in an update of the model form and initial nominal physical
parameter values for the structural subsystems which were to be incorporated into the
system model. '

The second stage concerned the identification of the full system model. Results of the
system level modal test were presented. Structural system identification techniques were
instrumental in refining the initial experimental modal model development. These devel-
opments underscore not only the essential need for communication between the analyst
and the experimentalist, but also the equal footing on which both test and analysis rest
in the system identification process. The full system model was produced by replicating
the model form and parameter estimation results from the component level results. The
initial system showed good agreement with modal test results for the system modes in
the frequency range of interest. '




FEM Test Set 2 Maximum | Maximum | Frequency
Frequency/# | Frequency/# | FEM MAC | Test MAC | Error(%)
-15- 48.06/9 = = 0.7605 —
49.37/15 49.50/10 0.9890 0.9890 -0.26(*)
51.11/16 50.63/11 0.9364 0.9364 0.95(*)
-16- 51.69/12 — 0.7696 —
53.80/17 53.00/13 0.9677 0.9677 1.51(*)
-17- 53.96/14 — | 0.9116 —
-17- 56.82/15 — 0.7658 —
-18- 57.26/16 = 0.7150 —_
56.72/18 58.01/17 0.9628 0.9628 -2.22(*)
58.58/19 -18- 0.6824 — —
59.14/20 -17- 0.9441 — —
60.26/21 60.04/18 0.9836 0.9836 0.37(*)

Table 5: MPI FEM/Test Set 2 Comparison

Finally, it is imperative that the analysis model capture the qualitative properties
exhibited by the test article and that instrumentation planning be done accordingly
to ensure these phenomena are measured in the test. For this case, testing was done
with the structure suspended via “soft” springs—an approximation to an analytical free-
free condition. However, initial indications were that the structural dynamics of the
suspension suspension system greatly affected the acquired test data. Future work at the
system level will examine such issues in greater detail.

Further plans also include: (1) addressing the issue of when the system identification
procedure should be considered complete. For example, our focus has been on reconcil-
ing modal models, but other characterizations of the response such as those described
by FRF’s and state-space models might be more suitable, (2) consideration of physical
uncertainty in the prediction of system response, (3) local mode characterization and mit-
igation, (4) structural modification verification, and (5) establishing metrics for selecting
optimal excitation, measurement and suspension system locations.
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Abstract

The JPL Micro-Precision Interferometer (MPI) is a
testbed for studying the use of control-structure inter-
action technology in the design of space-based inter-
ferometers. A layered control architecture will be em-
ployed to regulate the interferometer optical system to
tolerances in the nanometer range. An important as-
pect of designing and implementing the control schemes
for such a system is the need for high fidelity, test-
verified analytical structural models. This paper fo-
cuses on one aspect of the effort to produce such a
model for the MPI structure, test-analysis model rec-
onciliation. Pretest analysis, modal testing, and model
refinement results are summarized for a series of tests
at both the component and full system levels.

Introduction

Background

New generation structural design applications, ranging
from concurrent design engineering to large space struc-
tures integrated with structural control schemes, has
placed increasing reliance on accurate computational
modeling capabilities. This has motivated renewed em-
phasis on the ability to model analytically structural
dynamics phenomena. The processes associated with
the development of high precision analytical models, re-
ferred to collectively as structural system ideniification,
are complex indeed. They encompass the diverse tasks
of testing, analysis and model reconciliation. Testing
aspects include building a suitable physical specimen,
making accurate measurements, and deriving a test
model from the measured data; while analysis gener-
ally entails developing a finite element model (FEM)
of the hardware in the tested configuration. Both of
these areas have separately enjoyed periods of immense
growth. Until very recently, however, the reconcilia-
tion of differences that inevitably exist between the test
and analysis results have been handled by heuristically
based, ad-hoc procedures. Such approaches are rapidly
being replaced by more quantitative methods.

!john Red-Horse, Dept 1434, Sandia National Laboratories,
P.O. Box 5800, Albuquerque, NM 87185

One path to model reconciliation, often referred to
as parameter identification [1], is concerned with the
development of systematic tools for use in estimating
parameters in an analysis model which appropriately
update it to achieve better agreement with test data.
Two general methodologies exist in parameter identifi-
cation of dynamic structural models. The first of these
techniques falls into the class of non-iterative, or one-
step methods [2, 3]. These methods estimate individual
entries of the associated system mass and stiffness ma-
trices; and as such, do not require any model design
sensitivity information. They are based on a closed-
form minimization problem and require only measured
modal information and the mass and stiffness matri-
ces from the finite element model. The updated mass
and stiffness matrices exactly reproduce the experi-
mental modal frequencies and mode shapes at prede-
termined points on the structure. To date, no one-
step method accounts for the existence of uncertainty
in the data. The second of these classes, which in-
volves the estimation of physical parameters, contains
procedures that are based on iterative estimation meth-
ods [4, 5]. These methods include generalized nonlinear
least squares schemes, which assume deterministic data,
and algorithms based on Bayes estimation, which ap-
proach the problem from a probabilistic point of view.
Estimation schemes based on the latter approach ac-
count for uncertainty in both the experimental data
and the model parameters.

The subject of this paper 1s the test-analysis model
reconciliation of the Jet Propulsion Laboratory’s (JPL)
Micro-Precision Interferometer (MPI) testbed.

Micro-Precision Interferometer

As a major component of NASA’s Focus Mission space-
craft development project [6], the JPL Control Struc-
ture Interaction (CSI) team is developing capabilities
specific to the design of Micro-Precision Controlled
Structures for flight systems such as optical interfer-
ometers [7]. These systems, including the target sys-
tem known as the Focus Mission Interferometer (FMI),
will be single payload structures with fixed truss ge-
ometry and are expected to fly in low earth orbit.
The structures will be composed of identical bays and
components connected through multi-directional ball

Copyright ©1993 by the American Institute of Aeronautics and Astronautics, Inc. All Rights Reserved.




joints. Structural subsystems will support the nec-
essary electronics and optical metrology equipment.
Some members in cach structure will be replaced by
passive dampers or active members for vibration sup-
pression and contro! purposes.

Several testbeds exist at JPL to validate the vari-
ous CSI technology goals required for the FMI [8]. Al
of these testbeds possess the structural characteristics
listed above, thus providing a useful application for
-system identification technology validation. The MPI
truss is a partial, scale model of the FMI comprised of
two booms and a vertical tower, 7Tmx6.3mx5.5m, weigh-

ing 210kg. A more definitive discussion of the MPI, and -

its role in the JPL CSI mission can be found in [9].

Of particular interest are the controlled manner un-
der which this structure was manufactured and as-
sembled, and on the configuration change management
scheme that JPL intends to employ. Stringent relative
path length requirements imposed by the use of inter-
ferometry necessitate the implementation of both ac-
tive and passive structural vibration control schemes.
To reliably investigate a number of these schemes,
the analytical models should be capable of represent-
ing the physical structure through numerous configu-
ration changes—both those encountered during the de-
sign phase in the testbed and those expected in the
actual operation of the telescope.

System Identification Approach

The philosophical approach in developing the models
was to seek to identify the structure by determining
both an appropriate model form and a corresponding
physical parameter set through a coordinated three-
pronged approach linking the test, analysis and recon-
ciliation phases described above. It is an approach that
must be totally integrated in the development of large
space structural applications [10]. While it is not the
subject of this article, the procedure implicitly requires
the evaluation of uncertainty intervals associated with
the estimated pararneters [11, 12].

For a variety of reasons, the identification was per-
formed in two stages: First, a component level identifi-
cation procedure was performed. Second, results from
this initial phase were incorporated into the identifica-
tion of the full system.

Specific tasks include pre-test analyses, joint charac-
terization modeling and testing, suspension system de-
sign, modal testing and parameter estimation, finite el-
ement modeling, test-analysis reconciliation and quan-
tification of thermal and gravitational effects.

The current study concentrates on the issues relating
to the reconciliation effort. The first stage considered
model reconciliation for a series of modal tests at the
subsystem level while the second stage was concerned
with the full systern model. For the subsystem level
reconciliation, two iterative identification procedures

were exercised: Bayes estimation {13], implemented in
the software package SSID [14], and Design Sensitiv-
ity Analysis (DSA) as it is implemented in the SDRC
software package CORDS [15].

Each of the above procedures utilizes output from the
general purpose finite element program MSC/NASTRAN.
CORDS requires only DSA information, while SSID re-
quires a great deal more. Specifically, one must ob-
tain the system mass and stiffness matrices along with
the mass and stiffness matrix sensitivities for each de-
sign parameter. Acquiring this sensitivity information
from NASTRAN requires a customized DMAP solution se-
quence and a translator capable of communicating it
(NASSID [16]). SSID then uses the information for per-
forming eigenanalyses and in the computation of eigen-
value and eigenvector sensitivities internally using a
modal summation approximation. Note that both esti-
mation programs also perform approximate model up-
dates internally, although SSID does this at the system
matrix level using a truncated Taylor series approxi-
mation. This system level approach has the additional
advantage of requiring far fewer loops back into the fi-
nite element code than is necessary for CORDS. In fact,
for cases where the system mass and stiffness matrices
are linear in the parameters, there is no need to return
to NASTRAN since the Taylor series update will be exact.

Full system level model reconciliation considered only
the Bayesian estimation scheme. A primary concern for
such systems is the correct formulation of the problem
statement. For modal models this requires one to es-
tablish the correspondence between modes in the test
and analysis models. For complicated structures this is
a nontrivial step.

Component Level Identification

Modal Tests

The MPI testbed is constructed of a few basic compo-
nents that are replicated many times throughout the
structure. Therefore, it seemed plausible that accurate
finite element models of these components would lead
to an accurate model of the assembled structure. These
components are located and identified in Figure 1.
The component level test plan had two objectives.
The first was to provide data to determine the nominal
physical parameter values associated with the bending
and axial stiffnesses of the struts, strut end caps, and
B-Nut connectors which attached each strut to the node
balls. The second was to provide data for determinis-
tically quantifying phenomena that might cause vari-
ations in the parameter values. The phenomena that
were chosen to be addressed were: (1) Dynamic ampli-
tude of vibration, (2) Static strut loading (e.g. from
gravitational or nonuniform thermal loads), (3) B-Nut
installation torque, and (4) B-Nut installation length.
In this section, we concentrate on results relating to
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Figure 1: MPI and Exploded Subsystem Components

the first objective—determining the nominal stiffness
parameters.

Nominal Component Parameter Characterization

Figure 2 shows the seven configurations of the node
balls, struts and B-Nut assemblies that were tested.
All except Configuration 4 were used to provide data to
meet the first objective described above. Each configu-
ration was suspended by soft shock cords and string so
that the rigid body modes would be well separated in
frequency from the first elastic mode. In each configu-
ration a small impact hammer with a force transducer
was used to impact one of the end balls longitudinally to
excite the first axial mode. Each configuration was also
impacted laterally at the middle ball (or the middle of
the strut if there was no middle ball) to excite the first
bending mode. Frequencies, damping and mode shapes
were extracted for the first elastic mode in each impact
direction from frequency response functions (FRF’s) of
the accelerometers to the input hammer force. Five av-
erages were taken to form each FRF estimate. Table 1
lists the results of these tests which were subsequently
used in the parameter identification schemes. Further
information on the component-level tests can be found
in [17].

Analytical Parameter Identification

Here the task was to identify the structural elements at
the subsystem level from the results of the modal test
series. This 1dentification results in both an appropriate

mode} form as well as estimates for the accompanying
nominal parameter values.

Parameter estimation was accomplished for all sub-
system configurations and parameters (i.e., those affect-
ing both axial and bending response) using a DSA ap-
proach. As a validation step, the parameters affecting
the lateral response characteristics were also estimated
using a Bayesian estimation algorithm.

Model form issues were addressed by simultane-
ously considering multiple subsystem configurations in
CORDS, and by seeking consistent results for all indi-
vidual configurations in SSID. The premise of this ap-
proach is that parameterizations cannot support accu-
racy across a variety of configurations if the model form
of the structural subsystem does not capture the correct
qualitative structural behavior. The final model form
was comprised of point masses for the node balls with
rigid elements from these points to their geometrical
radii and three beams: one each for the B-Nut assem-
bly, end cap, and strut. Each beam element accounted
for mass via nonstructural mass specifications which de-
coupled it from the physical parameters for each beam:
cross sectional areas and moments of inertia. .

The reconciliation procedure was separated into two
phases with the axial and bending characteristics con-
sidered independently.

Axial Characteristics

For this parameter set correlation was performed us-
ing the DSA approach with data from each of Config-
urations 1 through 7 (with the exception of Configu-
ration 4) stacked in a single response vector. The re-




Figure 2: Seven Tested Subsystem Configurations

Bending Properties Axial Properties
Configuration || Freq (Hz) | Damping (%) | Freq (Hz) | Damping (%)

1 12.26 1.0 826.3 0.1
2 15.91 0.5 942.2 0.1
3 13.95 0.4 1013.2 0.1
5 12.09 0.5 825.5 0.2
6 133.56 0.6 1202.3 0.3
7 165.5 0.4 1518.5 0.1

Table 1: Nominal Modal Results for the Component Tests

Config/ Axial Results Bending Results
Item | Initial | Final | Test Freq (Hz) Initial |  Final | Test Freq (Hz)
1 815.2 | 825.7 826.3 13.20 12.25 12.26
2 928.7 | 941.7 942.2 17.04 15.83 15.91
3 1003 1015 1013 14.99 - 13.92 13.95
6 1162 1181 1202 148.9 133.4 133.5
7 1470 1490 1519 198.6 167.2 165.5
Agtrur | 0.3003 | 0.3123 — — — —
Apnut 0.0700 | 0.0672 — = — —
Dinut — — = 4.0(10%) | 4.01(10~%) —
Iendcap — — e 00477 000856 —_

Table 2: Component-Level Reconciliation Results




Freq No/ Initial Final . | Test
Item FEM FEM (Hz)

1 6.07 6.23 6.21

2 8.76 9.02 9.04

3 112.1 114.9 115.2

[ fiongonur | 4.00007%) | 3.77(107%) | — |

Table 3: Config 4 (long B-Nut) Reconciliation Results

sults are summarized in Table 2. A consistent update
was achieved with good test-analysis model agreement
across the configuration set. -

Bending Characteristics

The DSA approach was also taken for estimating the
bending parameters. In addition, the Bayesian ap-
proach described above was implemented for which for-
mal consideration was given to both modal frequency
and shape data. A particularly striking result was that
both methods produced parameter estimates which
were quite consistent. These results are also shown in
Table 2, where one can observe the good correlation for
each member of the configuration set.

Configuration 4

Configuration 4 from the original test series was not
considered in the reconciliation process due to the ef-
fects of the connections between the large masses and
the node balls. However, this test was repeated with
longer versions of the B-Nut assembly for the purpose
of gaining insight into the effects of B-Nut length on
the response characteristics. An attempt was made
to reconcile the test and analysis models for one par-
ticular B-Nut length (3.1in). Both methods yielded
good agreement for the axial properties, but the bend-
ing characteristics proved problematic. Estimation was
performed using the first three bending modes without
achieving consistent results. A close examination of the
third bending mode shape revealed that a qualitative
response property, namely rotational motion between
the large end mass and the node ball, had not been
captured by the initial model form. Resolving this is-
sue and re-estimating ylelded consistent results which
are shown in Table 3.

Some Qbservations

It is worth noting that without an appropriate selection
of “correlation” data, that effectively serve as weighting
data for the Bayes estimation procedure, the estimated
parameter sets varied between the classes of substruc-
ture configurations (those in configurations 1-3 and 6-
7). It is this behavior that prompted a closer look at

the procedure itself (cf. Appendix A.).

One assumption that is made in Bayesian estima-
tion is that the log likelihood function is sharply peaked
about a unique global minimum {13]. In practice this is
rarely the case. Beck and Katafygiotis [18] generalize
this notion by defining those models for which either
a global minimum exists, or a finite number of global
minima exist as sysiem ideniifiable. Models other than
this type are deemed to be system unidentifiable.

For our case, the mere existence of multiple extrema
makes the selection of the weighting data much more
important. These data indicate to the estimator which
of these minima get emphasized. Our results imply
that by employing a multiple configuration methodol-
ogy, where the “rank” [19] of the combined problem is
at least as large as the number of independent param-
eters, this essential problem has been mitigated.

System Level Identification

Modal Testing

In contrast to the component testing, which was de-
signed to focus on localized behavior in simple struc-
tural elements, the system level modal test was in-
tended to exercise the entire MPI structure with all of
the structural elements interacting. The primary objec-
tives of the system level test were to obtain laboratory
measurements of the dynamic properties of the struc-
ture and to provide the data necessary for building an
accurate analytical model.

The structure was supported by soft springs in the
laboratory to simulate a free-free environment which
would best mimic the operational environment of the
MPI. Modal data were extracted in the range 0-60Hz.

Supporting the structure so that free boundary con-
ditions were well approximated was a very important
aspect of the pre-test planning. For this test the MPI
was suspended from three points with assemblies con-
sisting of steel coil springs and light weight steel cables
which produced rigid body modes in a range below 1Hz.

Utilizing a pre-test analysis model to generate mode
shapes, FRF’s, and mode indicator functions, two
shaker locations were chosen at the ends of the two
booms. The directions of the input forces was diagonal
to the end-faces of the booms and oriented to produce
torsional response. Two portable fifty-pound shakers
were used for excitation. Each of the eighty node
balls of the truss structure was instrumented with a
tri-axial accelerometer. Additional accelerometers were
also placed at a variety of strategic locations, such as
mid-strut locations for longer members and suspension
system attachment points, to achieve the detailed mode
shape information necessitated by the uncertain data
requirements of the test-analysis model reconciliation
task. Figure 3 depicts the MPI in this initial tested
configuration. The results of the modal test and subse-




Figure 3: Photo of Tested MPI

quent data reduction sets appear in subsequent tables
where comparisons are made with analysis predictions.
For more complete details regarding the modal tests the
interested reader should consult [17, 9].

This initial test was followed up by a series of modal
tests, individually smaller in scope than the first survey,
to provide sufficient data for investigating the predictive
nature of the resulting FEM model. This test series is
discussed in detail in {17].

In this section we first discuss the test-analysis recon-
ciliation, along with a variety of issues concerning the

process, for the bare MPI. In addition, we compare the

results of analysis predictions to those arrived at via
testing for one case of a modified MPL.

Analysis

As a result of successful component level identification,
the full system analytical model agreed well with the
initial test-derived rnodel—especially for the first eight
system modes. Thus, initial focus was on resolving
various discrepancies that existed at higher {frequen-
cles through re-exarnination of the test-derived model.
Studies then concentrated on a final, refined estimate of
parameters in the full system. Our study underscores
the need to consider both models, test and analysis,
as equals in the reconciliation process. An important,
though often understated, fact is that changes in test

models inferred from the reconciliation process do not
necessarily imply that a full retest is required. They
may indicate a need to perform a revised data reduc-
tion on the existing test data, for which there is some
subjectivity on the part of the experimentalist.

For the structure under consideration, the process
was as follows: a first pretest analysis model was devel-
oped that contained only axial rod elements connected
with pin joints. This model was then modified to con-
form with results of the component identification. The
structure was tested and an initial test model was ex-
tracted from the resulting measurement data and com-
pared with the latest analytical model, which was being
modified in a parallel effort. This initial reconciliation
process motivated refinements in the test model.  Dis-
crepancies that remain require further refinements to
the analytical model.

Test-Analysis Mode Correspondence

The model reconciliation process for structural dynam-
ics applications generally utilizes test model data in the
form of either modal (natural frequencies and/or mode
shapes) or FRF data. For cases such as ours, where
modal frequency data are used, the first task is to deter-
mine which test-analysis mode pairs should be selected
for comparison. Only then can their closeness be as-
sessed. Several steps must be taken to (1) identify cor-
respondence among modes, (2) isolate and understand
differences (errors) between two paired mode shapes,
(3) relate mode shapes and mode shape errors to sur-
rounding modes and (4} explain unmatched modes.
The traditional metric for mode agreement is the
modal assurance criterion (MAC) also referred to as
the mode shape correlation coefficient [20]. This met-
ric is convenient for three reasons: first, 1t does not
depend on normalization of the modes (a particularly
vexing problem introduced by the lack of a test derived
modal mass), second, it considers only those degrees of
freedom that exist in both the test and analysis mod-
els, and finally, it quantifies mode palr agreement with
a single scalar value. There is some ambiguity in the
definition of the MAC. This paper uses the following

L,
MAC = MAC,; = —2—~—
Cns = 15 1601

where ¢, and ¢, are single analytical and experimental
mode shape vectors, respectively, T denotes the trans-
position operator and || is the Euclidean norm. The
MAC does have its deficiencies. For instance, it is not
possible to establish a clear numerical range over which
MAC’s guarantee correspondence, or lack thereof. It
would appear that such criteria are dependent on a
number of issues, such as the class of structure under
constderation, or the degrees of freedom to be incorpo-
rated in the computation.

(1)




Other Correspondence Metrics

Qther advanced metrics are being explored which
provide additional insight into mode correspondence,
quantify similarity to surrounding modes and charac-
terize errors in mode shape pairs.

When attempting to use entries in mode shape vec-
tors an unexpected issue appears: how does one scale
the shape vectors so that the subsequent comparison is
unbiased. This is always defined for the analysis modes
which are normalized with respect to their mass matrix.
However, test results often do not include a reliable test
derived modal mass with which to perform this normal-
ization. One approach is to minimize the mean square
error between corresponding pairs of mode shapes [21].

The following approach, referred to as Minimum Er-

‘ror Mode Superposition (MEMS), is an extension of
the above idea to multiple dimensions. Consider com-
paring a group of modes from one set {either the test
or analysis) to a single reference mode from the other.
MEMS is concerned with choosing the set of scale fac-
tors which minimizes the mean square error between
the superposition of the selected group of comparison
modes and the reference mode. Specifically, define the
mean square error, ¢2, as follows

2 (¢a - ZZN=1 ai¢e;)T(¢a -

e’ = :
T ¢,

where the «; are the least squares estimates for repre-
senting the reference mode in terms of the comparison
mode set. The relative values of the a; can be useful in
identifying mode correspondence and in assessing any
mixing that may occur in adjacent modes. One prob-
lem with this approach involves the arbitrary scaling of
the comparison set. If these are FEM modes, the mass
orthonormalization will scale the set consistently. How-
ever, if the comparison set is comprised of test modes,
the scaling can vary widely and a procedure for consis-
tently scaling the comparison set must be devised. One
possibility is to use a test derived modal mass, when
available. Other alternatives include the use of a re-
duced order analysis mass matrix, or normalizing each
mode shape to unity magnitude. Note that the a; can
be substituted into Eq. 2 to calculate the mean square
error, and that a MAC value can be calculated between
the reference mode and the sum of comparison modes

A second correspondence tool is the concept of an er-
ror mode. Here, we seek to establish the nature of mode
mixing by examining the shape of the error vector, é,
that remains after best fitting it to a given set of cor-
respondence modes as described above. The definition
for € 1s,

,‘N=1 a£¢e‘-)
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The point of this exercise is to look for systematic ten-
dencies in the error shape as an indication of whether

or not the reference mode is being well represented by
the.correspondence. ’

Examples of these metrics are displayed in Figure 4.

Both of the above topics are currently under inves-
tigation and in this study were used for qualitative in-
formation only.

Some recent work which also shows promise involves
a process for selectively choosing which degrees of free-
dom to include in the various correspondence measures.
This process accounts for the individual contributions
of each of the degrees of freedom to the correspondence
measure under consideration [22, 23].

Results

With the tools cited above the process of finding experi-
mental modes from what will be referred to as Tesi Set 1
which corresponded to analysis modes was undertaken.
The analysis modes were from the FEM model devel-
oped as a result of the subsystem level test series. The
first eight modes, six of which are shown in Figure 5,
were system modes with a high degree of correlation.
Table 4 quantifies many of the results. The first and sec-
ond columns sequentially list the FEM and test modes
by increasing frequency and are aligned with their best
counterparts—accepted mode pairs are indicated with
a () in the far right-hand column. A dashed line with
an embedded mode number in either of these columns
indicates that two comparison modes had their high-
est MAC values for that mode number with the higher
of the two taking precedence. The dashes in the re-
maining columns are also an indication that this has
occurred. Examination of the table shows that three
analysis modes, 10, 13, and 14 had no apparent coun-
terparts in the test-derived modal model; nor did test
modes 9, 11, and 13. Plots of displacement shapes for
FEM modes 13 and 14 indicated that they were an or-
thogonal pair corresponding to test mode 11, a local
strut mode. MAC calculations had failed to give this
result due to the omission of mid strut nodes in the test
displacement set. In fact, the MAC value of 0.9441 for
FEM mode 14 and test mode 14 is explicit evidence of
the need for extreme caution when establishing modal
correspondence based on this criterion alone. As a re-
sult of this investigation, our goal became to find a
test-derived model with a mode which corresponded to
FEM mode 10.

Test Set 2 was then extracted from the measurement
data. The results associated with this set are shown
in Table 5 where the first eight mode pairs have been
omitted for brevity (they are identical to those of Ta-
ble 4). In the test mode column. three new modes are
shown in bold. In this new set, FEM mode 10 now has
a counterpart in test mode 11. -

This resoived the issue of correlating test modes to
those present in the FEM model, there are still a num-

ber of modes that are present in the test set that have
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FEM Test Set 1 Maximum | Maximum | Frequency
Frequency/# | Frequency/# | FEM MAC | Test MAC | Error(%)
7.86/1 7.75/1 0.9984 0.9934 T.42(+)
11.68/2 11.65/2 0.9966 0.9966 0.26(+)
12.77/3 12.67/3 0.9971_ | 0.9971 0.79(+)
29.29/4 29.36/4 0.9978 0.9978 -0.24(x)
34.18/5 34.06/5 0.9985 0.9985 0.35(%)
37.37/6 37.34/6 0.9950 0.9950 0.08(+)
42.43/7 42.25/7 0.9960 0.9960 0.43(x)
46.08/8 46.04/8 0.9955 0.9955 0.09(+)
-9- 48.06/9 — 0.7474 =
49.37/9 49.50/10 0.9890 0.9890 | -0.26(x)
51.11/10 51.69/11 0.7696 0.7696 112
53.80/11 53.00/12 0.9677 0.9677 151(%)
1- 56.87/13 = 0.7714 —
56.72/12 58.01/14 0.9628 0.9628 | -2.22(%)
58.58/13 -15- 0.6824 — =
59.14/14 14 0.9441 — —
60.26/15 60.04/15 0.9836 0.9836 0.37(+)
Table 4: MPI FEM/Test Set 1 Comparison
FEM Test Set 2 Maximum | Maximum | Frequency
Frequency/# | Frequency/# | FEM MAC | Test MAC | Error(%)
9 48.06/9 = 0.7605 =
49.37/9 49.50/10 0.9890 0.9890 -0.26(*)
51.11/10 50.63/11 0.9364 0.9364 0.95(x)
-10- 51.69/12 — 0.7696 =
53.80/11 53.00/13 0.9677 0.9677 1.51(=)
11- 53.96/14 — 0.9116 -
-11- 56.82/15 — 0.7658 —
1 57.26/16 = 0.7150 —
56.72/12 58.01/17 0.9628 0.9628 | -2.23(%)
58.58/13 18- 0.6824 — =
59.14/14 -17- 0.9441 —_ —
60.26/15 60.04/18 0.9836 0.9836 0.37(%)

Table 5: MPI FEM/Test Set 2 Comparison




yet to be resolved. These modes have been the object
of some concern and an indirect result of the additional
test procedures that have been performed indicate that
they are associated with axial surge modes of the helical
springs in the suspension system. This subject remains
under Investigation.

Final FEM Model

The final parametric version of the FEM was arrived
at by reconciliation with a third, and final, test-derived
model (Test Set 3). This was done by considering dis-
placement degrees of freedom at the mid strut of each of
two longest members, both of which had been observed
to experience local strut modes in the frequency range
of interest. Additionally, an analysis model reparame-
terization was performed to account for three long Bnut
in assemblies these struts. These anomalous struc-
tural elements were used to tune the analysis local
strut modes to those frequencies observed in each of
the modal tests. These changes were incorporated in a
frequency only parameter estimation session once again
employing the code $SID. Final results are presented in
Table 6.

As can be observed in the Table, the final FEM model
reproduces the test modal frequencies, exclusive of the
suspension system modes, quite well. FEM modes 11
and 12 correspond to the local strut modes. MAC val-
ues were not computed for these modes due to reference
coordinate frame discrepancies.

The computational aspects of this problem should
also be addressed. The final analysis model exists in
the form of an MSC/NASTRAN bulk data deck. The a-
set model size, output from NASSID, was 7896 degrees
of freedom. Typical SSID runs required 4 Megawords
of Cray Y/MP memory and took on the order of 70
seconds of cpu per estimation cycle. Approximately 25
cpu seconds of each estimation cycle was expended in
the eigensolver, where 35 modes were computed.

Sensor
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To examine the progression from the initial pretest to -

the final FEM models graphically, acceleration FRF’s
from one of the test driving points to a displacement de-
gree of freedom at the top of the tower (depicted graph-
ically in Figure 6) are shown vs the measured FRF’s for
both models. Figure 6 contains this FRF information
for the pre-test FEM, and Figure 7 for the final FEM.
A modal frequency comparison is shown in Figure 8.

Second Configuration Results

Lastly, a second configuration was considered. This
simple modification consisted of the MPI truss with 8kg
of mass added at each of the four ball joints at the end
of the metrology boom for a total of 24kg. A typical
FRF, consistent with that of Figure 7, is presented in
Figure 9. Agreement in those modes involving the sys-
tem itself is shown to be quite good.
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FEM Test Set 2 | Maximum | Maximum { Frequency
Frequency/# | Frequency/# | FEM MAC | Test MAC | Error(%)
7.81/1 - 7.75/1 0.9984 0.9984 0.77(%)
11.64/2 11.65/2 0.9966 0.9966 0.09(x)
12.71/3 12.67/3 0.9973 0.9973 0.31(x)
29.12/4 29.36/4 0.9977 0.9977 -0.82(x)
33.98/5 34.06/5 0.9985 0.9985 -0.24(x)
37.11/6 - 37.34/6 0.9950 0.9950 -0.62(%)
42.20/7 42.25/7 0.9960 0.9960 -0.12(%)
45.78/8 46.04/8 0.9960 0.9960 -0.57(*)
-9- 48.09/9 — 0.7545 —
48.97/9 49.50/10 0.9902 0.9902 -1.14(%)
50.32/10 50.63/11 0.9328 0.9328 -.62(%)
51.56/11 51.69/12 == = -.25(%)
52.14/12 51.97/13 = — 0.33(x)
53.74/13 53.00/14 0.9592 0.9592 1.38(*)
-13- 53.96/15 — 0.9515 -
13- 56.82/16 — 0.7441 —
-14- 57.26/17 — 0.7813 —
57.57/14 58.01/18 0.9841 0.9841 -.76(%)
59.85/15 60.04/19 0.9886 0.9886 0.32(%)

Table 6: MPI FEM/Test Set 3 Comparison
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Figure 9: Second Configuration FRF Comparison

Concluding Remarks

The JPL MPI Testbed is an example of a repeatable,
linear, high precision structure. As such, it affords an
opportunity to refine analytical modeling and struc-
tural system identification procedures.

To facilitate an accurate structural characterization,
the testing and the test-analysis reconciliation processes

were separated into two stages; one each for the com-
ponent and system levels. The first stage involved a
component level test-analysis series which focused on
two primary objectives: (1) the identification of an ap-
propriate model form for the Node Ball/B-Nut/End
Cap/Strut subsystem and (2) the estimation of a suit-
able set of “nominal” physical parameter values for this
model. Modal test results were presented for the vari-
ous configurations that were considered.

The test-analysis model reconciliation approach was
based on estimating physical parameters in finite ele-
ment models of each configuration. Such an approach
provides an advantage over other methods by allowing
results to be extrapolated to different configurations.
For the current task, parameter estimation on the com-
ponent level was performed via two techniques: a de-
sign sensitivity based approach using modal frequency
information and a Bayesian approach which also incor-
porated mode shape data. A multiple configuration rec-
onciliation approach resulted in an update of the model
form and initial nominal physical parameter values for
the structural subsystems which were to be incorpo-
rated into the system model.

The second stage concerned the identification of the
full systemn model. Results of the system level modal
test were presented. Structural system identification
techniques were instrumental in refining the initial ex-
perimental modal model development. These develop-
ments underscore not only the essential need for com-
munication between the analyst and the experimen-
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talist, but also the equal footing on which both test
and analysis rest in the system identification process.
The full system model was produced by replicating the
model form and parameter estimation results from the
component level results. The initial system showed
good agreement with modal test results for the sys-
tem modes in the frequency range of interest. Fur-
ther refinements to this initial model were achieved via
Bayesian estimation on the full system model. Global
and local modal behavior were reconciled.

The model was further evaluated by comparing the
predictions for a simple structural modification to cor-
responding test results for the modified structure.

Finally, it is imperative that the analysis model cap-
ture the qualitative properties exhibited by the test ar-
ticle and that instrumentation planning be done ac-
cordingly to ensure these phenomena are measured in
the test. For the current study, testing was done with
the structure suspended via “soft” springs—an approx-
imation to an analytical free-free condition. However,
initial indications were that the structural dynamics of
the suspension suspension system greatly affected the
acquired test data. Future work at the system level will
examine such issues in greater detail.

Further plans also include: (1) addressing the is-
sue of when the system identification procedure should
be considered complete. For example, our focus has
been on reconciling modal models, but other charac-
terizations of the response such as those described by
FRF’s and state-space models might be more suitable,
(2) consideration of physical uncertainty in the predic-
tion of system response, (3) local mode characteriza-
tion and possible mitigation procedures, (4) additional
structural modification verification, and (5) establish-
ing metrics for selecting optimal excitation, measure-
ment and suspension system locations.

Appendix A. On Bayesian Estimation

Qur experiences with Bayesian estimation have
prompted a closer look at the development of the pro-
cedure.

Bayesian estimation is a maximum likelihood, a pri-
ort, estimation technique. Consider the following rela-
tionship,

y=H(z)+v (A1)
where r is the “state” vector, in our case the set of
parameters to be estimated; y is the “measurement”

vector; and v represents the assumption that this re-
lation is corrupted with additive noise. We seek an
probabilistically-based estimator for z that relies on an
initial estimate, zo. To do this, we will maximize the
conditional probability density flmctlon p(z | y). Ap-
plying Bayes’ Rule yields

p(y | 2)p(z)

&) (A-2)

pizly) =

But the denominator in Eq. A.2 is independent of z.
Therefore, it can be restated as '

p(z | y) = cop(y | 2)p(z) (A3)

Now consider the terms on the right hand side of
Eq. A.3 which can be written as

.—_p(uI:c)=Pu(y—H(x)>

Here we have exploited Eq. A.l and the fact that the
Jacobian of the transformation from y to v is the iden-
tity matrix.

To make the procedure concrete, assumptions must
be made on the probabilistic character of v and z.
Bayes estimation assumes that both of these quantities
are Gaussian distributed. Specifically,

v ~ N(0,Q)
r ~ N(zo,P)

where ) and P are the correlation matrices for the re-
spective random vectors, and zg is the initial, a prieri,
estimate for the parameter vector. Thus, by Eq. A.5
and the additional assumption of statistical indepen-
dence between the two random vectors,

p(y | z) (A4)

(A5)

e 14) = Cop {4 |(v- 1) "0 (v - H(=)

+ (x_zo)Tp—x(z_xc)]}
(A.6)

Finding the maximum of this last quantity is equivalent
to finding the minimum of

oz) = (v~ H@) @' (v~ H(=)

+(z - zo)TP-l (:c - xg)

Thus, the Bayesian estimate, £, is that z which mini-
mizes ¢(z), often referred to as the log likelthood func-
{ron, in Eq. A.T:

The scheme that we employ is iterative Bayes esti-
mation. This approach is necessitated by the lack of a
complete analytical description of the mapping between
the measurement and state vectors (test eigendata and
analysis physical parameters, respectively were em-
ployed in our study) and not by any linearity restric-
tion imposed by the algorithm itself. Thus, sensitivity
information is required only to approximate this map-
ping and does not imply that the procedure is gradient
based in the classical sense of hill-climbing optimization
approaches.

A recapitulation of the assumptions underlying the
development of a Bayesian estimator: (1) a state-
measurement relation that is corrupted with zero mean,
Gaussian noise, (2) a state, z, that is Gaussian dis-
tributed about a mean that corresponds to the initial
guess, o, and (3) the log likelihood function (Eq. A.7)

that is unimodal and concentrated near this mode [13].

(A7)
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A COMPARATIVE STUDY OF METRICS FOR MODAL PRE-TEST
SENSOR AND ACTUATOR SELECTION USING THE
JPL/MPI TESTBED TRUSS

C.B. Larson*

Mechanics and Engineering Science
University of Florida

ABSTRACT

A comparative study of several pre-modal-test
planning techniques is presented using the Jet Propul-
sion Laboratories’ Micro-Precision Interferometer
testhed. Mode indicator functions calculated using a re-
duced finite element model of the structure are used in
conjunction with a Genetic Algorithm to find location
and orientation of two excitation sources in order to opti-
mally excite a chosen range of finite element target
modes during a modal test.

Effective independence, kinetic energy, and eigen-
vector product techniques are used with the structural fi-
nite element model to place a combination of sensors on
the structure for the purpose of modal identification. The
sensors are placed in two ways: independent sensor
placement and triaxially constrained placement. A nu-
merical simulation of the response of the structure is used
to evaluate the effectiveness of each of the placement
techniques to identify the target modal parameters of the
structure. The effect of finite element model error on the
various placement techniques is evaluated.

1. INTRODUCTION

Structural modal analysis has become an essential
tool for the validaticn of finite element models (FEMs)
and for the prediction of structural performance. The in-
tended use of modal test data governs the pre-test plan-
ning associated with the modal test. The placement of ac-
tuators for excitation purposes and the placement of sen-
sors for response observations, may well depend on
whether the data will be used for modal parameter es-
timation, mode orthogonality for FEM correlation, iden-
tification of uncertain parameters in FEMs, or structural
health monitoring.

In performing a modal test, constraints such as time,
money, and spatial access govern the number, location,
and orientation of the actuators and sensors that can be
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placed on the structure. With these constraints in mind,
one wishes to find the optimal number, location, and
orientation of sensors and actuators in order to obtain the
most information from a modal test.

Researchers have developed several techniques
which utilize the information contained within the base-
line FEM to optimally place sensors and actuators. A
thorough literature review on the topic of sensor place-
ment is given in a paper by Kammer [1]. Because these
placement techniques are dependent on the FEM of the
structure, it is of some concern how FE modeling error af-
fects-the placement strategies.

The sensor and excitation placement techniques,
which are evaluated in this paper are discussed in Section
2. In Section 3, the characteristics of the Micro-Precision
Interferometer (MPI) structure and its corresponding
FEM are given. In Sections 4 and 5 the actuator and sen-
sor placements of the various techniques on the MPI
structure are discussed. In Section 6, the effect that FEM
error has on the various placement techniques is ex-
plored. The computational cost of the placement tech-
niques is discussed in Section 7.

2. ALGORITHM DESCRIPTIONS

2.1 Effective Independence (EI)

Effective independence is a technique developed to
place sensors for the purpose of obtaining structural in-
formation for FEM verification of large space structures
[11. It follows from the work done by Shah and Udwadia
[2] and Udwadia and Garba [3]. The sensor locations are
chosen such that the trace and determinant of the Fisher
information matrix (corresponding to the target modal
partitions) are maximized and the condition number
minimized. By maximizing the determinant of the Fisher
information matrix, the covariance matrix of the estimate
error is minimized, thus giving the best estimate of the
structural response. A reduced sensor set is obtained in
an iterative fashion from an initial candidate set by re-
moving sensors from those degrees of freedom (DOFs)
(i.e. removing rows from the Fisher information matrix)
which contribute least to the linear independence of the
target modes.



2.2 Kinetic Energy (KE)

The use of kinetic energy for optimal sensor place-
ment as well as target mode identification has been dis-
cussed in several papers [1,4]. The modal kinetic energy
is calculated using the FEM mass matrix and target
modes. Itis assumed that by placing the sensors at points
of maximum kinetic energy, the sensors will have the
maximum observability of the structural parameters of
interest. Degrees of freedom with the maximum kinetic
energy for a mode or for modes of interest are chosen as
sensor or excitation locations. ’

The kinetic energy objective function precludes
placing any sensors or actuators at nodal points since
there is no motion and zero kinetic energy at these points.
This could be a limiting factor in pre-test planning. To
combat this problem, sensors can also be placed using
maximum average kinetic energy (AKE) technique. A
sensor is placed at a DOF with a maximum average Kinet-
ic energy over a range of modes of interest. In using an
average kinetic energy, a DOF is not necessarily ex-
cluded if it is a node point of a particular mode.

In addition, it should be noted that the mass weight-
ing inherent to the kinetic energy and average kinetic en-
ergy approaches causes the sensor or excitation place-
ment to become dependent on the FE discretization of the
structure. There is an inherent bias against the placement
of sensors in areas of the structure in which a fine mesh
size (and thus typically small mass) is used. Since these
techniques are dependent on the mass distribution of the
FEM, they may also be affected by FEM reduction.

2.3 Eigenvector Product (EVP)

This technique uses modal products from the re-
duced FEM eigenvectors (or mode shapes) to identify
possible locations for sensors or excitation. By choosing
a frequency range of interest and the corresponding FEM
eigenvectors in that range, a product for the ith DOF is
calculated by multiplying the eigenvector components
over the mode range chosen. A maximum absolute value
of this product corresponds to a candidate location of
sensing or excitation [5]. This technique also precludes
the placement of sensors at nodal points which result in
zero eigenvector products. If this presents a problem for
a given test case, the eigenvector product can be replaced
by an absolute value eigenvector sum, over the FE target
modes of interest.

2.4 Mode Indicator Function (MIF)

The mode indicator function was first developed to
detect the presence of real normal modes in sine dwell
modal testing {6,7]. This function also serves as a useful
metric for pre-test analysis. While it is somewhat useful

for assessing the efficacy of sensor layout, its true utility
lies in-assessing the effectiveness of a particular input in
exciting the system modes. The MIF is nearly 1.0 except
near a normal mode, at which point it drops off consider-
ably since the frequency response becomes mostly imag-
inary at that point. In pre-test planning, an excitation is

~ desired which exhibits this drop in the MIF at each mode

of interest, indicating that the mode is well excited.

In this work a Genetic Algorithm (GA) is used as
the optimization technique in conjunction with the MIF
to optimally select location and orientation of excitation
devices on the MPI structure. Genetic Algorithms, as
introduced by Holland [8), are a form of directed random
search. The form of direction is based on Darwin’s *“sur-
vival of the fittest” theories. In GAs, a finite number of
candidate solutions or designs are randomly or heuristi-
cally generated to create an initial population of designs.
This initial population is then allowed to evolve over gen-
erations to produce new and potentially better designs.
The basic conjecture behind GAs is that evolution is the
best compromise between determinism and chance.
However, it should be noted that they are not as efficient
as nonlinear optimization techniques over the class of
problems which are ideally suited for nonlinear opti-
mization; namely continuous design variables with a
continuous, differentiable, unimodal design space. Ge-
netic Algorithms also have the capability to solve contin-
uous, discrete and continuous/discrete optimization
problems. For the MPI example used in this paper, the
node point locations of excitations being sought are rep-
resented by discrete design variables, and the orienta-
tions of these excitations are represented by continuous
design variables. A thorough overview of the GA used in
this work is presented in [9].

3. MPISTRUCTURE

The JPL/MP], shown pictorially in Fig. 3.1, is a
testbed that has been built in order to study structural con-
trol systems in the development of space interferometers.
Modal tests were performed on the MPI structure by two
independent groups (Sandia National Laboratories and
the Jet Propulsion Laboratories [10,11,12]).

The FEM used to evaluate the placement tech-
niques in the current work was obtained from Sandia Na-
tional Laboratories [10]. The model used is a 240 DOF
Guyan-reduced FEM which has been updated using the
data obtained from the modal test of the structure. The
240 DOFs correspond to three DOFs (x,y,z) ateach of the
80 node balls. The frequencies from the Guyan-reduced
FEM corresponding to the first 12 non-rigid-body modes
which will be targeted in the current study are given in
Table 3.1 and are compared to actual frequencies ob-
tained during the modal test.
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Figure 3.1: JPL/MPI testbed structure

Mode Frequency(Hz) Frequency(Hz)
FEM modal test
1 7.82 7.75
2 11.66 11.65
3 12.75 12.67
4 29.52 29.36
5 34.45 34.06
6 37.76 37.34
7 4281 42.25
8 47.30 46.04
9 51.14 50.69
10 52.36 53.00
11 5541 56.82
12 61.40 60.04

Table 3.1: Reduced MPI FEM frequencies compared
with MPI modal test frequencies

4. ACTUATOR PLACEMENT

During the original modal test of the MPI structure |

two excitation sources were used as pictured in the top
portion of Fig. 4.1. The lower portion of this figure is the
excitation configuration that was obtained by optimizing
the MIFs using a GA. Both the original and the GA/MIF
excitation locations have an exciter on the two extending
booms although they are oriented differently. The GA/
MIF set-up moves the excitation of the right extending
boom to an interior point in comparison to the original
configuration. Figure 4.2 gives typical frequency re-
sponses for the excitations shown in Fig. 4.1. The re-
sponses are measured at the sensor location shown in Fig.
4.1 in the y-directions.

The excitation devices placed by the GA were se-
lected to minimize an objective function which was de-
pendent on the MIF of each of the two excitation loca-
tions. The MIF will be nearly 1.0 except near normal
modes, at which point it drops off considerably. This
drop-off indicates that the mode is well excited. There-
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Figure 4.1: Excitation placement on MPI structure
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Figure 4.2: Typical frequency response for MPI
structure

fore, it is desirable to find two excitation sources (loca-
tion and orientation) which exhibit a sharp drop at all of
the normal frequencies.

The GA objective function was derived such that
each excitation need not exhibit a sharp drop-off for all
modes as long as the the union of the two MIFs exhibited
a large drop-off for each frequency. For this example,
there were 12 drop-off values for each of the two excita-
tions being evaluated (total of 24), and the maximum
drop-off for each frequency was selected for objective

- function evaluation. Each MIF drop-off value was then

scaled according to its location above a target minimum
value. For this particular example the target minimum
MIF value was set to 0.1. Any drop-off value at or below
the target minimum (0.0 to 0.1) contributed nothing to the
objective function. Any drop-off value above this target



minimum (>0.1 to 1.0) was given an objective function
value exponentially proportional to the distance above
the target minimum. The final objective function was
calculated by summing up the scaled contribution of each
drop-off value over the 12 frequencies of interest. The
GA was then used to minimize the objective function.

The GA was supplied with a randomly generated
initial population of 20 members. Each member in the
population was made up of two discrete and six continu-
ous design variables. The 2 discrete design variables
were the possible node point locations (ranging from 1 to
80), and the 6 continuous design variable were the direc-
tion cosines (ranging from +1 to —1) of the two exciters
being sought. The population evolved over 40 genera-
tions, and the most fit member of the final population was
chosen as the excitation Jocations. Table 4.1 list each of
the excitations’ corresponding MIF drop-off values and
objective function values. The MIFs for the original ex-
citations used during the modal test and for the GA/MIF
located excitations are shown in Fig. 4.3.

Original GA/MIF
MODE 41 79 19 77
1 0.5978 | 0.5978 | 0.5980 | 0.5977
2 0.6714 | 0.7216 | 0.6713 | 0.6714
3 0.3572 | 0.3569 | 0.3572 | 0.5095
4 0.4414 | 04795 | 0.4368 | 0.4344
5 0.3280 | 0.3275 | 0.3252 | 0.3331
6 0.4863 | 0.2043 | 0.7184 | 0.2031
7 0.2184 | 0.2198 | 0.7366 | 0.2289
g 0.1266 | 0.3553 | 0.1325 | 0.3524
9 0.1826 | 0.7861 | 0.1231 | 0.7494
10 0.7256 | 0.8943 } 0.8079 | 0.1814
11 0.4184 | 0.1331 | 0.3169 | 0.1499
12 0.1012 | 0.8113 | 0.0761 | 0.4436
Objective 1023.09 500.57
Function

Table 4.1: Original and GA/MIF excitation locations
MIF values

The GA excitations” MIFs exhibit a sharper drop-
off than the original excitations” MIFs for 8 of the 12 tar-
get modes as can be seen in Fig. 4.3 and Table 4.1. The
sharpest drop-off value for each of the modes is high-
lighted in bold, and the mode numbers whose sharpest
drop-off values are those for the GA/MIF derived excita-
tions are also highlighted in the table. An improvement
in the drop-off of the GA/MIF excitation over the original
excitation can especially be seen for the tenth mode. The
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Figure 4.3: Mode Indicator Functions for MPI
structure

last row of Table 4.1 gives the objective function value
for the original and GA/MIF derived excitation forces.
As previously discussed, the objective function is based
on the sharpest MIF drop-off values of the excitation pair
being evaluated, hence there is one objective function
value for each evaluated excitation set. The large differ-
ence in objective function value can be contributed most-
ly to the exponential penalization associated with the
drop-off value at mode ten.

Numerical simulations of the MPI structural re-
sponse to simultaneous impulses applied at the two excit-
er set locations were calculated within the MATLAB en-
vironment. Five percent noise was added to the simu-
lated time responses of the structure. These time re-
sponses were used along with the Eigensystem Realiza-
tion Algorithm (ERA) to identify the twelve target mode
shapes and frequencies {13]. The evaluation of the suc-
cess of ERA to identify the frequencies and mode shapes
was based on a frequency percent difference comparison
between identified and FE frequencies and on a cross-ort-
hogonality check between FE and identified mode shapes
using an exactly reduced mass matrix. The reduction is
exactin the sense that the frequencies and mode shapes of
the reduced system match exactly their counterparts in
the unreduced model [14].

It is interesting to note that when ERA was used to
identify system mode shapes and frequencies, it missed
the fifth and tenth frequencies and mode shapes when the
original 41/79 DOF excitation locations were used to nu-
merically simulate structural excitation. To illustrate
this, the cross-orthogonality between FEM and ERA
identified mode shapes was calculated, and is pictured in
Fig. 4.4. For this example, the 240 DOF simulated re-
sponse was partitioned to the sensor configuration ob-
tained using the EI technique as discussed in the follow-



ing section. These poor cross-orthogonality results are
corroborated by the frequency response function shown
inFig. 4.2 in which pocr excitation can be seen for modes
5 and 10. The GA derived excitation resulted in a suc-
cessful ERA identification of all 12 mode shapes and fre-
quencies of the original FEM.
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Effective Independence
unconstrained sensor set

Figure 4.4: Cross-orthogonality between FE
modes and identified modes

5. SENSOR PLACEMENT

Four sensor selection techniques, effective inde-
pendence, kinetic energy, average kinetic energy, and ei-
genvector product, were used to place sensors on the MPL
structure. These techniques were previously evaluated
for sensor placement using the NASA eight-bay testbed
[15]. Inthat study, all four techniques performed equally
well. This could be due to two reasons: (i) the structure
lacked significant dynamic complexity required to dis-
tinguish between the methods or (ii) the methods were
actually so similar that they led to similar results regard-
less of structural dynamics. Thus, one purpose of this
study is to again evaluate the four techniques on a more
complex dynamic system. The second purpose is to in-
vestigate the suitability of the techniques when the sen-
sors are constrained to be placed in a triaxial configura-
tion.

Eighteen sensors were placed in two different stud-
ies using the four techniques in order to best identify the
12 target FEM mode shapes and frequencies. First, the
techniques were used to choose 18 of the 240 DOFs as
sensor locations. In the second study, the techniques
were constrained to choose 18 triaxially constrained sen-
sors (i.e. 6 triax-sensor sets). The excitations selected us-
ing the GA discussed in the previous section were used to
excite the MPI structure numerically in order to test the
various sensor configurations.

5.1 Unconstrained Sensor Placement

The first placement study evaluated the four tech-
niques’ placement of 18 sensors on the MPI structure at
any of the 240 DOFs (x.y,z of the 80 node balls). The first
12 flexible modes of vibration were chosen as the target

modes for each technique. In the cases of KE, AKE, and
EVP.techniques, DOFs were chosen for which these val-
ues were a maximum over the modes of interest. For the
EI technique, those DOFs which contributed least to the
linear independence of the target modes were removed in
an iterative fashion, starting with 240 DOFs and finishing
with 18 DOFs . The locations of the sensors obtained us-
ing each of the techniques are pictured in Fig. 5.1.1
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Figure 5.1.1: Unconstrained Sensor Sets

All of the techniques evaluated placed a majority of
the 18 sensors at the ends of the three booms. In addition
all of the techniques placed sensors in the two DOFs for
each boom which exhibited the greatest range of motion
(1.e. xy for the primary boom, xz for the extending right
boom and yz for the extending left boom). The EVP tech-
nique clustered all 18 sensors at the boom tips and the
AKE techniques clustered 17 of the 18 sensors at the
boom tips, with one sensor being placed near the mid-
span of an extending boom. The KE technique placed 15
sensors at the boom tips with 3 sensors near the mid-span
of the two extending booms. The EI technique placed 13
sensor at the boom tips and at least one sensor near the
mid-span of the main and extending booms.

Of the twelve target modes shapes, modes 2 through
11 exhibit a bending mode similar to that of second-
mode-cantilevered-beam bending in at least one of the
main or extending booms. The two extending booms ex-
hibit second-mode bending most clearly, but the main
boom also exhibits it for some of the twelve modes. The




sensor éonﬁgurations chosen by the EI and KE tech-
niques are particularly suited to capture this second-

bending-mode shape due to their placement of some sen- -

sors at mid-spans of the three booms.

The FEM of the MPI structure was used with MAT-
LAB to simulate a time response of the structure to an im-
pact applied at the GA/MIF chosen excitation locations
for all 240 DOFs. Five percent uncorrelated noise was
added to the time response. The noisy response was then
partitioned to each of the four sensor sets and was sent to
ERA for mode shape and frequency identification.

All the techniques resulted in percent frequency
difference between FEM and identified frequencies of
much less than 1% (well within industry accepted stan-
dards [16]). Cross-orthogonalities between FEM and
identified mode shapes were calculated for each of the
techniques and are pictured in Figs. 5.1.2-5.1.5. In order
to calculate the cross-orthogonalities, the 240 DOF FE
mass matrix was reduced to 12 DOFs using exact reduc-
tion. For this size model, exact reduction was computa-
tionally acceptable, therefore, it was used to get the best
cross-orthogonality comparison.
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All of the off-diagonal elements of the cross-ortho-
gonality matrix for the EI technique are within the indus-
try accepted standards of <0.02 for primary modes [16].
This can be seen graphically in Fig. 5.1.2. Forthe KE and
AKE techniques, almost all of the off-diagonal elements
are <0.02. Some of the entries are greater than 0.02 but
less than 0.04. These entries lie within the industry stan-
dard for secondary modes (<0.1). The cross-orthogonal-
ity for the EVP technique, as seen in Fig. 5.1.5, was poor
for all target modes. The cross-orthogonality of the EVP
technique was evaluated with no noise, 1%, 2%, and 5%
noise added to the time response. Of the four time re-
sponses evaluated, only the response with no noise gave
acceptable cross-orthogonality values. Based on these
calculation, the EVP technique was unsuccessful in find-
ing an acceptable sensor set.

5.2 Triaxially Constrained Sensor Placement

The four sensor placement techniques were modi-
fied to place 6 triaxially constrained sensor sets (18 total
sensors) at any of the 80 node balls of the MPI structure.
For the cases of KE, AKE, and EVP techniques, triax-
sensor locations were chosen by taking the sum of the
KE, AKE, and EVP values for each DOF at a particular
node point of the structure. Those node points with maxi-
mum KE, AKE, and EVP sums were chosen as triax loca-




tions. The triaxial constraint was used differently with
the EI placement technique. As the algorithm iterated
through the 240 DOFs, the three DOFs (corresponding to
a node point) which contributed least to the linear inde-
pendence of the target modes were eliminated over each
iteration. The EI value for each node was calculated as a
sum of the EI of each DOF of that node. If, however, one
of the DOFs for a particular node had an EI value of 1.0
(meaning that that DOF was essential to the linear inde-
pendence of the target modes), that node point was re-
tained, regardless of the ranking of its node point EI sum
rating compared to the other node points. The resulting 6
triax-sensor sets placed using the four placement tech-
niques are pictured in Fig. 5.2.1.
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Figure 5.2.1: Triaxially Constrained Sensor Sets

Ascan be seen in Fig. 5.2.1, the EI, KE, and AKE
techniques grouped two sensor sets at or near the end of
eachboom. However, the EVP technique placed 3 triax-
sets at the ends of only two of the booms. It should be
noted that if the placement task were extended to placing
7 triax-sets, the seventh set would be placed at the end of
the main boom using the EVP technique.

The time response of the MPI structure used in Sec-
tion 5.1 was partitioned to those DOFs corresponding to
the six triax sensor locations chosen by the four place-
ment techniques. The partitioned numerical data with
noise added was sent to ERA in order to evaluate the ef-

fectiveness of each of the triax-sensor sets in identifying
the system mode shapes and frequencies.

All the techniques resulted in percent frequency
difference between FEM and identified frequencies of
much less than 1% (well within industry accepted stan-
dards). The cross-orthogonality calculations between the
FEM target modes and the ERA identified modes were
performed using an exactly reduced mass matrix as in the
previous section, and are shown in Figures 5.2.2-5.2.5.
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All of the off-diagonal cross-orthogonality values
for the KE techniques, shown in Fig. 5.2.3, were within
the industry standard of <0.02 for off-diagonal elements
for primary modes. The EI and AKE techniques resulted
in cross-orthogonalities which were within this standard
for most of the modes, but which were slightly above the
off-diagonal standard for a few modes as can be seen in
Figs.5.2.2 and 5.2.4. These values were however within
the industry standard of <0.1 for secondary modes. The
EVP technique resulted in poor off-diagonal cross-ortho-
gonality values for all modes as can be seen in Fig. 5.2.5.

5.3 Unconstrained vs. Triaxially-Constrained Sen-
sor Sets

Based on the cross-orthogonalities and frequency
differences between FE and identified mode shapes and
frequencies the EI, KE, and AKE techniques located sen-
sor sets for the unconstrained and constrained examples
which were reasonably successful in identifying the tar-
get mode set. For the unconstrained sensor set, the EI
sensor set resulted in identified modes with the best
cross-orthogonality with the FE target modes. However,
for the triaxially-constrained example, the KE sensor set
resulted in identified modes with the best cross-ortho-
gonality with FE target modes. In both constrained and
unconstrained cases the EVP technique resulted in identi-
fied modes with poor cross-orthogonalities with FE
mode shapes.

6. EFFECT OF MODEL ERROR

Inordertoinvestigate the effect that model error has
on the various placement techniques, error was added to
the original Guyan-reduced FEM of the MPI structure.
Specifically, 1/3 of the struts’ cross-sectional areas were
decreased by 20%, 1/3 of the struts’ cross-sectional areas
were increased by 20%, and the remaining 1/3 of the
struts were unchanged.

The resulting differences in pre-corrupted and post-
corrupted model frequencies and mode shapes are listed
in Table 6.1. The second column represents the percent

differences in the frequencies of the two models. The
third column represents the root mean squared (RMS)
values of the absolute differences in the mode shapes of
the two models. The differences between the pre- and
post-corrupted model mode shapes are shown pictorially
in Fig. 6.1. The true modes are plotted along the x-axis
and the corrupted modes are plotted along the y-axis.

MODE Frequency % Mode Shape
difference RMS values
1 3.15 0.90 e-3
2 3.23 5.20e-3
3 2.01 5.20e-3
4 3.27 470 e-3
5 1.27 5.60 e-3
6 1.27 10.9 e-3
7 1.76 13.9e-3
8 0.45 11.8 e-3
9 2.23 9.00 e-3
10 3.47 104e-3
11 0.12 14.7 e-3
12 1.96 14.1 e-3
Table 6.1: Difference between pre and post cor-
rupted model frequencies and mode
shapes
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Figure 6.1: True mode shapes vs. corrupted mode
shapes

6.1 Excitation Placement

Once error was introduced into the MPI FEM, the
excitation placement technique using the MIFs and the
GA was run. The twelve error-target modes were used to
calculate the MIFs for the objective function evaluation
inthe GA. The GA setup was the same as that run for the
model with no errors added. The GA/MIF derived ex-
citations for the mode! with error and without error added
(as obtained in Section 4) are pictured in Figure 6.1.1.
The node points chosen as the excitation locations were
very similar for the two cases; only node 77 switched to




node 76 when model error was added. The directions for
all of the exciters were changed when model error was
added.

The resulting frequency response for the corrupted
GA/MIF excitation as compared to the uncorrupted GA/
MIF excitation is pictured in Fig. 6.1.2. The uncorrupted
FEM was used to simulate the response of the MPI struc-
ture to impacts applied at the two GA/MIF exciter set
locations shown in Fig. 6.1.1; the responses were mea-
sured at the sensor shown in Fig. 6.1.1 in the y-direction.
As can be seen from Fig. 6.1.2, the excitation locations
and orientations obtained using the model with error ap-
peared to be successful in exciting all of the target modes.
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Figure 6.1.2: Frequency response using corrupted
and uncorrupted GA/MIF excitations

In order to evaluate the excitation obtained using
the corrupted FEM, the time response of the MPI struc-
ture to impacts at the excitations obtained with the cor-
rupted FEM was numerically simulated using the origi-
nal uncorrupted model. This time response was then
partitioned to the uncorrupted unconstrained sensor sets
(discussed in Section 5.1) and was sent to ERA for identi-
fication. As in the case of the uncorrupted model excita-
tions, the EI, KE, and AKE techniques were successful in
identifying the target frequencies and mode shapes based
on percent difference and cross-orthogonality calcula-
tions. Based on these results, the error added to the FEM
had little to no effect on the excitation placement config-
urations’ success in exciting the “true” target mode
shapes of the structure.

6.2 Sensor Placement

Both the unconstrained and triaxially constrained
sensor placement problems were evaluated after error
was added to the FEM using the four placement tech-
niques previously discussed. The changes in sensor set
configurations for the unconstrained and constrained sets
are shown pictorially in Fig. 6.2.1 and Fig. 6.2.2. The
original sensors placed using the uncorrupted FEM are
represented by the boxes. Any sensors that were re-
moved from the original sensor set after model error was
introduced are represented by circles and any sensors that
were added to the original set after model error was
introduced are represented by triangles.
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The total numbers of sensors that changed for the
unconstrained sets and the total numbers of triax-sets that
changed for the constrained sets after model error was
introduced are listed in Table 6.2.1. The AKE technique
was affected least by the model error, the EI and KE tech-
niques were affected only slightly by the model error, and
the EVP technique was affected the most by model error
for both the constrained and unconstrained sensor con-
figurations.

For the unconstrained sensor sets, the general dis-
tribution of the sensors was mostly maintained after mod-
el error was added. All four techniques resulted in sensor
sets which were changed by at least one sensor when
model error was added. In each of these cases at least one
sensor was added to the main boom of the truss as shown
in Fig. 6.2.1.

For the constrained sensor sets, three of the four
placement techniques resulted in a changed sensor set af-
ter model error was added. The EI technique moved one
triax-set from the main boom tip to mid-boom, the KE
technique moved one triax-set from the left extending
boom tip to mid-extending-boom, and the EVP technique
moved a triax-set from the left extending boom to the
main boom.

The original uncorrupted FEM response to the GA/
MIF derived excitation was used to evaluate the new sen-
sor sets obtained with the corrupted FEM. The time re-
sponse discussed in Section 5 was partitioned to the new

sensor configurations and ERA was used to identify
mode shapes and frequencies. Both the unconstrained
and constrained sensor sets obtained using the corrupted
FEM were successful in identifying the target frequen-
cies within 1%, for all four techniques (EI, KE, AKE, and
EVP) evaluated. The resulting cross-orthogonalities be-
tween identified (using error sensor sets) and original
FEM mode shapes were calculated and are pictured in
Fig. 6.2.3 and Fig. 6.2.4.

Sensor Set EI KE AKE EVP
constrained | 20f18 | 20f18 | 10f18 | 60f 18
unconstrained | 1 of 6 lof6 | Oof6 | 20f6

Table 6.2.1: Number of sensors or triax sets that
change when model error is added

Figure 6.2.3: Cross-orthogonality between identi-
fied and FEM modes (unconstrained)

10



<]

RO
—

A

)

0

'0}0;

)

XU
i
—

<1

A

SS O 1.00
=S I E<0.04
§<0.02
: > @ o,
111
—
—
=<
-
Ny O 1.00
S B<0.20
e H<0.02
| 0.00

Figure 6.2.4: Cross-orthogonality between identi-
fied and FEM modes (constrained)

For the unconstrained sensor sets, the EI, KE, and
AKE techniques resulted in generally acceptable cross-
orthogonality values for the twelve target modes shown
inFig. 6.2.3. Only a few off-diagonal entries of the cross-
orthogonalities resulting from these sensor configuration
were above the acceptable limit of <0.02 for primary
modes, but were still within the acceptable limit of <0.10
forsecondary modes. The error added to the model in this
example had littie effect on the placement techniques’
success in identifying sensor configurations which re-
sulted in successful modal information identification.

For the triaxially constrained sensor configuration,
the model error did not greatly affect the uncorrupted
cross-orthogonality results for the E1, KE, and AKE tech-
niques, as shown in Fig. 6.2.4. Even though these cross-
orthogonalities are not as good as those obtained with no
model error, they still lie within acceptable limits (pre-
viously discussed). Therefore, the error added to the

model in this example had little effect on the constrained
placement problem for the EI, KE, and AKE techniques. -
For the EVP technique, the model error resulted in a new
triaxially constrained configuration which out-per-
formed the uncorrupted configuration by chance as can
be seen by the cross-orthogonalities pictured in the bot-
tom portion of Fig. 6.2.4. This is probably due to the fact
that a wiax-set was moved to the previously uninstrum-
ented main boom. Even though an improvement can be
seen here, several of the cross-orthogonalities are above
the acceptable limits for second mode identification
(>0.10).

7. COMPUTATIONAL COST

The size of the FEM used in both the excitation and
sensor placement techniques is the basic factor in the
computational cost of each technique; the larger the
FEM, the greater the computational cost of selecting the
excitations and sensors. This computational effort is gen-
erally worthwhile, compared to the cost of planning, im-
plementing, and performing a modal test. For the exam-
ple used in this study, the least costly sensor placement
technique (EVP) was not successful in placing sensors to
identify modal information.

For the excitation placement, the most expensive
partof the calculation is the MIF calculation for each pos-
sible design. Asthe GA searches for candidate excitation
locations, the MIF for each possible location must be cal-
culated in order to evaluate the objective function. For
the sensor placement techniques, the computational cost
for the EVP technique is on the order of 103 MATLAB
flops, for the KE and AKE techniques is on the order of
10° MATLAB flops and for the EI technique is on the or-
der of 107 MATLAB flops. For the example used in this
work, the mass matrix was (240x240) DOFs and the tar-
get mode matrix was (240x12). The 8-bay truss example
used in [15] had a mass matrix of (80x80) DOFs and a tar-
get mode matrix of (80x5). The computational costs of
the EVP, KE and AKE, and El techniques were on the or-
der of 102, 104, and 10° MATLAB flops. Therefore, an
increase in computational cost of approximately order 2
can be seen when the number of DOFs and theé number of
target modes are approximately tripled.

One way to reduce the computational cost of the
techniques evaluated, especially effective independence
and GA/MIF techniques, is fo reduce the initial set of can-
didate DOFs to.a target set. For the size example used in
this work, this reduction is not essential, but a reduction
may be needed for larger models.

8. SUMMARY
A comparative study of several pre-modal-test
planning techniques was presented using the JPL/MPI
testbed. Mode indicator functions calculated using are-
duced FEM of the MPI structure were used in conjunc-.
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tion with a GA to find location and orientation of two ex-
citation sources in order to optimally excite a chosen
range of FE target modes during a modal test. The origi-
nal and GA/MIF excitation locations were compared us-
ing the MPI’s simulated structural response to impulses
applied at the exciter locations. The GA/MIF excitation
location resulted in a time response to an impulse from
which the 12 target modes were successfully identified.
The original excitation locations resulted in a time re-
sponse to an impulse from which there was a problem ex-
tracting modes 5 and 10. It should be noted that the origi-
nal excitation was chosen by an experienced team of ex-
perimentalists/analysts, using a careful examination of
the modes shapes to define a set of candidate excitations,
along with MIFs to select and verify the final set. Despite
this, there is still some room for improvement. This indi-
cates the utility of a suite of pre-test planning tools to as-
sist the designer, improving the efficiency and complete-
ness of the process.

Effective independence, kinetic energy, and eigen-
vector product techniques, were used to place a combina-
tion of sensors on the structure for the purpose of modal
1dentification in two ways: independent sensor place-
ment and triaxially constrained placement. For the un-
constrained and triaxially constrained sensor configura-
tions the EI, KE, and AKE techniques were successful in
indentifying the target modes and frequencies from the
noisy time response. The EI technique resulted in the
best identification for the unconstrained set and the KE
technique resulted in the best identification for the
constrained set. The EVP technique was not successful
in identifying the target modes for either the uncon-
strained or triaxially constrained sets.

Error was added to the FEM of the MPI structure in
order to evaluate its effect on the placement techniques.
Based on the amount of error added in this example, there
was little effect seen on either the excitation or sensor
placement techniques.
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Abstract

The determination of the model characteristics,
number and values of natral frequencies, damping
ratios, and mode shapes of a vibrating structure from
records of its excitation and its response is investi-
gated. First, 2 multistage eXogeneous Autoregressive
Moving Average (ARMAX) procedure, recently
employed in a single response measurement format is
reviewed and extended to yield not only estimates of
the natural frequencies and damping ratios but also of
the mode shapes of a structure. The reliability of this
technique, even in the presence of strong measurement
noise, led to the introduction of a simple and efficient
model order determination technique that relies on
identification results obtained with different sets of
data. Four examples of application are presented that
demonstrate the reliability of the proposed model and
model order estimation technique for both simulated
and experimental data.

Introduction

The determination of the natural frequencies, damping |

ratios, and mode shapes of a vibrating structure from
experimental measurements of its response represents
an important classical problem of structural dynamics.
Accordingly, a large number of solutions to this
identification problem have been suggested that differ
from each other not only by the specific numerical
algorithm used but also by the data assumed available,
i.e. forced or free vibration measurements, response of
a single degree-of-freedom or of the entire structure,
etc. Some recent results in this area!? indicate that
discrete systems concepts, eXogeneous Autoregressive
Moving Average (ARMAX) modeling in particular,
can lead to reliable estimates of the dynamic charac-
teristics of a structure even in the presence of strong
measurement noise. In fact, in Ref. 2 a novel
identification algorithm was presented that provided
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accurate estimates of the natural frequencies and
damping ratios of a multi-degree-of-freedom (MDOF)
system from the time histories of the excitation and
the response of only one of the degrees-of-freedom
even for signal-to-noise ratio of 5. Accordingly, the
first goal of the present paper is to extend the tech-
nique described in Ref. 2 to the estimation of the
natural frequencies and damping ratios but also of the
mode shapes of a MDOF system from records of both
the excitation and the response of some of its
degrees-of-freedom.

The numerical algorithm (o be presented
assumes, as most other identification schemes do, that
the order of the system, or equivalently, the number of
its observable naamal frequencies is known a priori. In
many practical applications, however, this hypothesis

is not satisfied; the structure is a continuous system

whose frequency spectrum is unknown. It is thus
impossible to precisely specify the number of natural
frequencies that lie in the frequency domain analyzed.
Information-theoretic criterion, such as the Akaike
Information Criterion’ (AIC) and the Minimum
Description Length* (MDL) have sometimes been sug-
gested to resolve this uncertainty. Their reliability in
the context of the present identification technique has
however been found unsatisfactory? so that an alter-
nate approach is required. The second objective of the
present paper is thus to introduce a simple model
order determination technique that can reliably be
used in connection with the proposed identification
scheme. For completeness, the connections between
vibrating  multi-degree-of-freedom  systems and
ARMAX models will first be briefly reviewed.

ARMAX Models and Vibrating Structures

Consider a multi-degree-of-freedom '(MDOF) system
described by the equations of motion

MXO)+CXO+KX@O=F¢) D)

where X (¢) denotes the time-dependent vector whose
N components uniquely and unambiguously specify
the position of all the points of the structure at time ¢.
The symbols M, C and K designate the N XN mass,




damping, and stiffness matrices, respectively. Further,
the vector F (¢) represents the loading on the structure
which can be approximated by a series of impulses,
that is

F®)= ¥ E,

AD—oo

S[t -(n At)‘]. ()]
Then, under mild conditions, it can be shown (see
Ref. 2 and 5 for a proof) that a set of p components
of the response vector X (t) admits an Autoregressive
Moving Average (ARMA) representation of the form

3

~— - ‘ e
==Y A Xop + 2 By Friny
=1

M-

x,
k

I

where
X, =X(n &) n=1,23,. G

for some matrices A;, k=1,2,..,s, and B,
1=1,2,..,5, of respective dimensions p Xp and p XN
(see Ref. 2). Further, in Eq. (3), the index s equals
2N /p (hereafter assumed to be an integer). Introduc-
ing the notation Ay=1,, it is readily seen that Eq. (3)
reduces to the relation

s s~
A X, =2 B Fuy. )
k=0 1=0
In terms of z transform, the above ARMA representa-
tion can conveniently be written in the form

A @) =B@EG) ©
where
i@)=3 & o+ )
k=0
@)=Y 5§ = ®
=0
@)= 3 %, o ©
and
Fz)= 3 F, 2. (10)

=0

To use the above ARMA representation, Eq. (5) and
(6), for the purpose of structural identification, it is
necessary to dispose of a connection between the
matrices A; and B, and the modal characteristics of
the vibrating structure. In this respect, it has been
shown (see Ref. 1 and 2 for example) that the
s Xp =N roots, z;, of the equation

detA(z) =0 (11)

are related to the poles, 5;, of the transfer function of
the continuous system defined by Eq. (1) according to

=", (12)
Introducing the natural frequency, «;, and the damp-
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ing ratio, {;, of the I** mode of vibration by the rela-
tions

21 :
{Sm }=—cl O)Iijml dl"‘g I=1,2,..,N
(13)

it is readily shown that
_ 11 1 2 212

W = Ar llnz;l— Al [[lnlz,l] +0.1] (14)

and
1
== —inlzl
Cl o n 12y (15)

where

Re (Z[)

The determination of the mode shapes, ¢;, of the
structure can also be achieved from the ARMA model
Eq. (5). Specifically, it can be shown? that ¢, is the
eigenvector of the matrix A(z; ) corresponding to the
zero eigenvalue.

o, =tan! [—hﬂg(i)] o e [-mxl. (16)

Effect of Measurement Noise and
Maximum Likelihood Estimation

In practical situations, it is impossible to obtain a time
series of either the excitation F(r) or the response
X (r) that is devoid of measurement noise. Then, the
observed samples F,©> and X, can be written in the
form

i

X=X, +E® an

and
ES)=F, +E® (18)

where the noise terms E, and E,? are often modeled
as Gaussian = multivariate discrete white noise
processes satisfying the conditions

T
E [E,,m [é’,‘,”] ] =0 form#n . 19

Note in the above equation that the superscript 7
denotes the operation of matrix transposition. Under
the above assumptions, it is found that the observed
response vector X,°) admits the ARMAX representa-
tion

s =1 L
SAEXZD=YBFA+Y CE. ()
k=0 T = k=0

for some p xp matrices C; and where the p com-

ponents of the random vector E, are independent
white noises of identical variance 62, i.e.

E [g, 1_5,,’.] =021, Spa. @D




Note that the autoregressive and moving average ord-
ers are both equal to s while the exogeneous one is
s—1. If there exists a temporal correlation between the
samples of the noise vectors E and/or E®, the
ARMAX model, Eq. (20), still describes the response
process with a MA order larger than s. Note that the
determination of a moving average larger than its
autoregressive counterpart could also indicate the pres-
ence of unmodeled dynamics, such as a nonlinearity
in the sysiem.

: The esumation of the elements of the matrices
A, B, and €, from time histories of both the
response, X, and the excitation, F{), can be
achieved through the maximization of the likelihood
function. Relying on classical results (see Ref. 2 for a
more detalled discussion), it can be shown that this
criterion is equivaient to the minimization of the error

@y

: H
= z—l—b——&["{é'l(m) [A (u))g(o)(m)_g (m)f(o)(m)j]}

{C"(w) [A (@X(w)-B (m)f‘”’(m)} }dw (22)

under the constraint A ,= I,. In the above equation, the
functions X“’(w) and F (")(m) denote the observed
values of the z transforms X (z) and F(z), Eq. (9) and
(10), evaluated at z=c/%¥ and the superscript ¥
represents the combined operation of complex conju-
gation and matrix transposition. Further, ®, designates
the Nyquist frequency

W, = (23)

X
A
and

Cz)= E Cp 275, (24)
k=0

Model Estimation

Expanding Eq. (22), it can be shown that gy, is a
quadratic function of the elements of the marrices A,
and B, but involves the MA parameters C; in a highly
nonlinear way. This observation suggests the use of an
iterative procedure in which the matrices A, and B,
are indeed selected 1 minimize €,y for a given func-
tion C () through, as will be shown later, the solution
of a linear system of equations. Then, an updating
procedure is employed to obtain a new set of matrices
Ck which, in tumn, are used to produce new matrices
Ay and B;. Upon convergence of this iterative tech-
nique, a minimum of &,y is achieved. The specific

_steps, which are described below, can also be visual-

1zed in the flow chart presented in Fig. 1.

Swp #1: ARX Modehng
Selve Bg. (30)-(34)

Porform Eq. (45)-(46)

P¥3b: Updating of the AR and

e pal

Solve Eq. (48)(50)

Sotve Eq. (S3){54)

Fig. 1 Flowchart of the iterative
ARMAX modeling technique

Step #1: ARX Modeling

Inroducing the notations
A‘(Z) = Co C-I(Z)A-(z) =IP +A‘1 P TN

=3 Ay z* = 2 Ay z™ mlarge (25)

k=0 k=0
Bz)=CoCW2)B(z)=By+ B,z +
= i B,z = i By 2 m large (26)
k=0 k=0
and
Co=Cy @n

" it is seen that the ARMAX model, Eq. (5) and (6),
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admits a long ARX approximation of the form




SAXN=3B FEY+CE, (29
k=0 1=0

where ffo=1p. For this modcl,'the minimum of €

 defined by Eq. (22) or, equivalently, as

oy = —1— ? [A(m) X°w) - B(w) F“"(m)]”
ML 2w, —, - B

orellors [A (@) X“(w)-B (m)f"’)(m)] do (29)

is achieved by selecting the matrices A, k=1,2,..,m,
and B;, 1=0,1,2,..,m, to satisfy the linear system of
equations

|

where r represents the number of observed samples of
the excitation and responses,
T T
[ [s]

- [[sa] [ee

o] el -
z‘=[£1/22 coi A ByBy -

Y

A

n=m+l

3 1, LT] 2 =- B

n=m+l1

and
B, ] . (32

Once the parameters A, and B, have been determined
from Eq. (30)-(32), the matrix C, should be specified
to complete the ARX model, Eq. (28). This could be
achieved by selecting either

Co=1, (33)
or Co to be the matrix such that the noise components
E, satisfy Eq. (21). That is,

E[(CoE) (CoE )| =0? o € =

|

x [Z A X -Y B 1_7;53?]
k=0 =0

For simplicity, the matrix C, satisfying the above
equation could be selected to be lower triangular. It is
then easily computed from Eq. (34) by using the
Cholesky factorization algorithm.

r

Py

n=m+l

1

n -
Y|
r-m L A

k=0

21~ § 56
=0
T

Step #2: Initial AR and exogeneous parameters

Initial AR and exogeneous parameters, AS® and
C:® can be obtained by requiring that
(00| 400 =¢: dey 69
or equivalently, by minimizing the error
e = 1E0@) &5 Al - A%

mb
__1 AW ¢ A (ay — A |
| tr{[C @ &5t A - A

[é“’(m) Et Aw) - A“’(m)] do (36)

where tr U denotes the trace of an arbitrary matrix U,
with respect to the elements of the matrices A" and

" &M, k=1,2,..,s. Note that the condition given by

)

1=1
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Eq. (27) is still enforced.

The minimization of €, Eq. (36), is accom-
plished when the parameters ., k=1,2,..,s, satisfy
the linear system of equations
min{mk m+l) . o ..aT
Ao AL | [0 ¢5 | =-

n=max (k1)

fork=12,..,s.

Step #3: Updating of AR and exogeneous parameters

This third step can in fact be viewed as com-
posed of two different operations. The first one,
referred o as prefiltering, aims at rewriting the error
gyr in a form that is more amenable to the second
operation which represents the determination of the
matrices AEY and B*Y minimizing &y for a given
MA polynomial C (z).

Step #3a: Prefiltering

It might appear at first that the minimization of
ey, Eq. (22), would require the use of a numerical
quadrature algorithm for the evaluation of the
integrals involving the inverse C '(w) of the MA
polynomial C(z). Note however that the samples Oy
corresponding to the z transform Q(z)=C'(z)R(z)
can easily and recursively computed as

E@) Q@) =R @) (38)
or
3 Gy Ous =R, (39)
k=0
or, finally,
0, = &5 [R. - kz'i & Q,.kJ. 40)

In trying to apply the above concepts to the expres-
sions C7(2)A (2)X“(z) and C7'(2) B(z) F©X(z), see
Eq. (22), wih C@)=C%z) known and
A@)=A%z), B(z)=B¥Y(z) unknown, it is
directly recognized that the recurrence computation
specified by Eq. (40) cannot be achieved since the
matrices A and B,“*Y have not yet been deter-
mined. This problem can be circumvented by express-




ing the AR and exogeneous polynomials A(‘“’(z) and
B**() in terms of their components 4 %3V (z) and
(‘“) (2) as follows

@)= 3 AP @uauf @)
«B=1

. N o_
=5 T B @ud @
=l &=1

where u, and y; denote the vectors of respective
dimensions p x1 and N x1 whose components are all
zero except the k* one which equals unity. Then, the

products | C%)| A“P(@)x@)  and
[é(i)(ﬁ))] B'(HI)(Q)) E(O)(m) can be written in the
forms

[29@] " 42

-1
aé (t+l)(m) [[é(i)(m)] Ug .l.‘.g Z(o)(m)]
- ¥ A% UB ) “3)
o,B=1

[C“"’(m)]_l BV(w) FeXw)
-3 SEE @ [[é"”(w)]—l Uy vy _F.“"(w)]
=1 =1

N - .
3 WSROV I 44)
¥l &1
where the vectors U$3 (@) and V& (©) represent the
bracketed terms in Eq. (43) and (44). These quantities
can be computed as in Eq. (40) in the form

T . ‘ - I .
o UB) =~ 3 EO UGn—0)+ ua [u] 2]

k=1
45)
and
Eo VP =~ 3 GO VO (k) + 1y [ £,
k=1
46)

Step #3b: Updating of AR and exogeneous parameters

_ With the notations introduce above, the error
€57 can be rewritten as

“2———— I {

[ YA Us (m)—ZZB (v (m)]dm.

AG@UG©rETEE° @V

*=15=1

¥ =URe-) U @-D) .

@én

Then, it can be shown that its minimization with
respect to the elements ASH, k=1,2,..,s, and
op=12,.,p, and B ”, 1=0,1,..,5-1,
v=1,2,..,p and 8=1,2,..,N, leads finally to the
linear system of equations

[i‘. y,yf}}- S v [Z Qn(i)(n)](‘rS)

r=s+l r=s+l =1
where
URr-1) .. U, G)n-1)
U -2 .. Un—s) V() V(@) ..
VR ) .. Vo @)n) VR (r-1) . VR (m-s+D)]
49)

and

ZT=[Z (i+1)A" 1(:';11) .A (H»I)A (¢+l) .A (H-l)A (l+1) .A (l+1)

B (H-I)B (l+1) .B (H-I)B (l+1) .B (x+l)B (l+l) -B;(-‘-TL)N ] (50)

Step #4: Updating of the MA parameters

The second and final step of the updating pro-

Fresents the selection of a matrix polynomial

C(z) CY*U(z) that satisfies "ar best” Eq. (25).

Specifically, select the MA parameters C&*,
k=0,1,.,s, to minimize the emror

- -~ ~ - s -1
¢ = 16¥0@) G5! A@) [A"*"(m)] i
@

| tr{ [C‘("“’(co) Cs' A) [K(M)(w)]-l -1 ]H

20, -2,

[é“*"(m) ¢t A [1“*"@)]-1 -1,] dw.(51)

Since the above error involves, as €, Eq. (22), the
inverse of a matrix polynomial, a prefiltering opera-
tion similar to the one described in step 3a, Eq. (40),
is helpful. Specifically, introduce first the matrices
W(i+l)(m) as

» W) = A (0) [A’ <"+”(m)]’1. (52)

Then, proceeding as in Eq. (40), ig can be shown that
the cormesponding matrices W*D satisfying the
recurrence relation

s . . - . -~
S WEPAFV A, (53)
k=1

G

Finally, the minimization of g¢ yields the linear sys-
tem of equations

s | min(q+l q+k) = A T
[ z W(l+l) W(&+1)] [Ck(l+1) CJI] = Ip 810‘

k=0 | m=max(kl)

(54)
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for 1=0,1,..,s. In the above equation, ¢ denotes the
largest sample index for which W * can be con-
sidered non negligible (in theory, g =<).

The corresponding new estimates of the matrix
C(w), ie. C¥Yw), can then be used to generate the
updated values A,**? and B,**? of the remaining
ARMAX parameters and the process continues until
convergence is obtained.

Model Order Estimation

The procedure described above assumes an a priori
knowledge of the model order of the system, ie. V.
In practical cases, however, the exact vaiue of this
parameter i unknown since the frequency spectrum of
the structure analyzed is as yet unavailable. Various
concepts, such as information theoretic measures>*
(AIC, MDL, ..), eigenvalues of certain matrices®, etc.,
have been suggested to produce an estimate of the
true system order. The approach propesed in the
present investigation is to determine the value of this
parameter by counting the number of system frequen-
cies identified by application of the above ARMAX
modeling technique to two or more distinct sets of
measurements. Assume for exampie that the response
records of p degrees-of-freedom are available for
identification purpose. Then, the application of the
above ARMAX identification procedure to this data,
with an order s which is large enough to exceed the
expected true system order, yields a first set of p 5
natural frequencies and damping ratios. Repeating this
analysis with only p/d, d=2,3,.,0orp response
records and a corresponding model order d s provides
a second ensemble of p/d Xxd s =p s modal charac-
teristics. It is then suggested that the natural frequen-
cies and their corresponding damping ratios and mode
shapes that are common to both identification results
are characteristic of the system while the remaining
ones are associated with the measurement noise.
Clearly, for an accurate determination of the sysiem
model characteristics, the p/d degrees-of-freedom
whose response is used in the second analysis should
not all correspond to nodes of any of the mode shapes
identified in the first analysis. Once the true system
order has been accurately determined, the ARMAX
identification scheme can be applied one last time
with the correct system order to produce, if desired,
an input-output model of the measured data in the
form of an ARMA representation, Eq. (3).
Nurnerical Results

An intensive iesting of the model and model order
estimation technigue described above has been accom-
plished with four distinct sets of data three of which
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were obtained by numerical simulation while the last
measurements were obtained experimentally and
corresponded to the composite shell tested by Red-
Horse ¢t al.” In all cases, the response records of two
points were used both scparately (p =1) and together
(p =2) to obiain estimates of the modal characteristics
of the structures. Finally, the condition given by Eq.
(33) was enforced and the parameter g, Eq. (54), was
selected to be 800.

AAA I3 k
) Ly k,

m=0.0114 kg; cw ] 443 Noim; bud30 000 Nim

Fig. 2 M.D.O.F. System for simulated data
Simulated Data

Three distinct systems consisting of N lumped masses
connected to each other and to the ground by springs
of suffnesses k- and k;, j=1,2,3,..,N, were first
considered (see Fig. 2). Damping was introduced by
placing dash pots of common coefficients ¢ between
the masses and the ground. For simplicity, the masses
associated with the N degrees-of-freedom were
assumed to be identical and equal to m. Further, in all
cases considered the excitation acted only on the first
mass and consisted of a mean zero Gaussian white
noise sequence F, of variance arbitrarily set to 100,
ie.

E[F, F,] = 100 8,

The determination of the response was computed
numerically for 2048 time steps using the integration
program DIVPRK?® that relies on Runge-Kutta-Verner
fifth-order and sixth-order methods. Measurement
noise modeled as a zero mean Gaussian white noise
process was added to the response of the different
masses but the time history of the excitation was
assumed to be noise free. The noise to signal ratio
(N/S) was defined as the ratio of the standard devia-
tion of the measurement noise to the comesponding
value for the response considered. In all cases and for
all degrees-of-freedom, this coefficient was set 1o 0.05.

A two-degree-of-freedom system was first inves-
tigated in which ki=k,=k =k¢ and
At =1476649 10~ sec. The order of the prior ARX
model was set to m =45 when the response of both
masses were -analyzed (p =2) and to m =90 when
only one record was considered (p=1). Shown in




Tables 1 and 2 are the natural frequencies and damp-
ing ratios obtained by the multistage ARMAX

- identification scheme with s=6 when p=2 (both

responses considered) and s =12 when p =1 (only one
of the two responses used). Note first the large varia-
bility of the noise natural frequencies obtained which
permits a very simple discrimination of the frequen-
cies and provides the correct value of the true system
order (¥=2). Next, note that the ARMAX
identification technique yields reliable estimates of the
two system natural frequencies (sece Table 1) and
damping ratios (see Table 2) but also of the mode
shapes (see Table 3)

p=2s5=6 | p=1;5=12 | p=1;5=12 | Exact
dof. 1&2 dof. 1 dof. 2
272.08 326.40 40141 NOISE
977.45 977.47 97745 977.47
1393.72 NOISE
169297 1692.95 1693.07 1693.02
2096.07 2377.30 NOISE
2173.57 2484.87 NOISE
2669.42 2709.72 2028.62 NOISE
3700.52 3079.47 NOISE

Table 1. Comparison of natural frequencies (Hz) computed

by relying on either 1 or 2 response data, 2 d.o.f. case

p=2;s=6 | p=l;s=12 | p=l;5s=12 Exact
dof 1&2 | dof. 1 dof. 2
1.000 0.368 0.159 NOISE
1031107 | 1.02810™ | 1.03110% | 1.03110™*
1.02710°3
592810 | 591210 | 592410~ | 595010~
5432107 0.174 NOISE
3.793107 | 3.01410°° NOISE
0.193 0.125 8496107 | NOISE
0.403 1.65210“ | NOISE

Table 2. Comparison of damping ratios computed
by relying on either 1 or 2 response data, 2 d.o.f. case

ARMAX(6,5,6) | Exact
(¢1)1 1.001 + 0.002 i 1.000
@), | 0998 -0.005i1 | -1.000

Table 3. Mode shapes identified by the ARMAX technique

and their exact counterparts, 2 d.of. case
(modal displacement of the mass 2 is set to unity)

‘The' excellent results presemed in Tables 1-3
motivated the analysis of a six-degree-of-freedom sys-

1634

tem in which ky=k¢=k +kc, ky=ks=ks=ks with
ke =200000N/m . The response of the masses 3 and 4
was computed with a time step Ar =1.51224 10 sec.
The prior ARX model order was selected to be m =65
when p =2 and m =130 when p =1. Shown in Tables
4 and 5 are the natural frequencies and damping ratios
obtained by the multistage ARMAX identification
scheme with s=9 when p =2 (both responses con-
sidered) and s =18 when p=1 (only one of the two
responses used). Again the large variability of the
noise frequencies and damping ratios allows a simple
and reliable discrimination of modal characteristics. In
that respect, note that the frequencies 3011.31 Hz and
3016 Hz are quite close but a comparison of their
damping ratios, 1.175 1073 and 1.760 1072, clearly indi-
cates that this mode is associated with measurement
noise. Note again the high accuracy of the estimates
of the system natural frequencies (see Table 4), damp-
ing ratios (see Table 5), and mode shapes (see Table
6).

p=25=9 | p=1;5=18 | p=1;5=18 Exact
d.of. 3&4 dof. 3 dof. 4

74.29 56.43 50.62 NOISE
423.88 NOISE
1021.48 1021.50 102148 1021.50
1135.70 1135.58 1135.72 1135.82
1283.14 1283.18 1283.12 1283.14
1428.99 1428.97 1428.98 1428.98
1548.60 1548.68 1548.53 1548.67
1626.29 1626.38 1626.27 1626.34
265243 2859.51 NOISE
3011.31 301643 NOISE
3082.46 3111.02 NOISE
3312.30 NOISE

Table 4. Natural frequencies (Hz) computed by relying
on either 1 or 2 response data, aperiodic 6 d.o.f. case




p=25=6 | p=1;5=12 | p=1;5=12 Exact
d.of. 3&4 dof. 3 dof. 4
951.61 1145 NOISE
977.46 977.46 97747 97747
1183.10 1183.13 1183.11 1183.15
1512.82 1512.89 1512.82 1512.82
1653.26 1653.08 1653.33 1653.18
1683.56 1850.69 NOISE
3110.80 2918.90 NOISE
3319.77 3312.09 NOISE

p=2s=9 | p=1;5=18 | p=l;s=18 Exact
d.of. 3&4 dof. 3 dof. 4 |
1.000 1.000 0.189 NOISE
1.000 NOISE
9.89910~ | 997010 | 9.88210~ | 9.86110~
8.897107 | 893010 | 8.93210~ | 8.868107
7.869107° | 7921107 | 7.84210™ | 7.850107°
7062107 | 7.089107 | 7.069107° | 7.04910™
6.55210~ | 646010 | 6.532107° | 6.504107°
624810~ | 629810 | 6.21110™ | 6.19410~
272610 | 7.43810° | NOISE
1.175107 1.760107 | NOISE
5494107 | 247610 NOISE
5991107 NOISE

Table 5. Damping ratios computed by relying
on either 1 or 2 response data, aperiodic 6 d.o.f. case

ARMAX(9,8,9) | Exact
@0 | 0.992-00011 | 1.000
(¢, | -1.000-0.0011 | -1.000
©®: | 0.999-00011 | 1.000
(62, | -1.004 - 0.0011 | -1.000
(@), | 1.001-00101 | 1.000
(Geh | -0.993-0.0101 | -1.000

Table 6. Mode shapes identified by the ARMAX technique
and their exact counterparts, aperiodic 6 d.o.f. case
(modal displacement of the mass 4 is set to unity)

To provide a final check of the adequacy of the
ARMAX identification technique and of the associated
model order determination method, a periodic six-
degree-of-freedom system was considered in which
the masses 1 and 6 were also connected by a spring of
stiffness k- =200000N/m. Further, the mass to
ground stiffnesses were all selected to be equal to k.
With these system parameters, the second and third
natural frequencies are both repeated so that the true
noise free input-output model is an ARMA(8,7.8)
when p=2. The response of the third and fourth
masses was again assumed to be recorded with a time
step Ar=1.5122410"* sec. Further, the prior ARX
model order was selected to be m =65 when p =2 and
m =130 when p =1. The results shown in Tables 7-9
and corresponding to the selection s =6 when p =2
and s=12 when p =1 demonstrate again the reliabil-
ity of the proposed model and model order estimation
techniques.

Table 7. Natural frequencies (Hz) computed by relying
on either 1 or 2 response data, periodic 6 d.o.f. case

p=2:s=6 | p=l;s=12 | p=l:s=12 Exact
d.of. 3&4 dof. 3 dof. 4
1.502 107 1.000 NOISE
1.024107% | 1.03010™ | 1.02310% | 1.0310%
8459107 | 845710~ | 8451107 | 85110
6.643107 | 6.68110™ | 6.65410™ | 6.6610™
6.051107 | 6.00710™° | 604210~ | 6.0910™
0.126 1.000 NOISE
3.73710™ | 870210 | NOISE
898310 | 5.88310 | NOISE

Table 8. Damping ratios computed by relying
on either 1 or 2 response data, periodic 6 d.o.f. case

ARMAX(6,5,6) | Exact
(¢); | 0.998 +0.002i | 1.000
(¢, | 0.500-0.0001i | 0.500
(d=); | -0.498 + 0.002i | -0.500
(¢s); | 0.988-00111i | -1.000

Table 9. Mode shapes identified by the ARMAX technique
and their exact counterparts, periodic 6 d.o.f. case
(modal displacement of the mass 4 is set to unity)

Experimental data

To confirm the excellent result obtained in connection
with the simulated data, it was decided to test the pro-
posed identification method on experimental data.
The response of the composite shell investigated by
Red-Horse et al.!> was chosen in particular because of
the availability of estimates of the natural frequencies
and damping ratios determined by both the ERA/DC®
and the polyreference technique®. The length of the
ARX model was selected to be m =65 when p =2 and
m =130 when p =1. The ARMAX model was selected
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to be s =28 when p=2 and s=56 when p=1. The
discremination of the system vs. noise natural frequen-
cies was consistent with the simulated data. Shown in
Table 10 are the estimates of the system natural fre-
quencies and damping ratios obtained. Note in particu-
lar that the ARMAX procedure was able to detect the
presence of repeated frequencies both with two and
one responses observed. Overall, it is seen that the
ARMAX resuits match well with their ERA/DC and
polyreference counterparts. In this regard, it should be
noted that the ERA/DC and polyreference results have
been derived from 7 different records while the
ARMAX natural frequencies and damping ratios have
been extracted from only one of these 7 time histories.
Further, the indicated ERA/DC and polyreference
valees for mode 7-10 have not been computed from
the same 7 records but rather from another set of 7
time histories for which the sampling time was 4
times lower’.

ARMAX | ARMAX | ERA/DC | polyreference
lrec;p=2 | 1rec;p=1 | 7 records 7 records

8.346 8.341 8.340 8.335
8.339

11.967 11.966 11.958 11.952
12.010

23.748 23.748 23.744 23.741
29.808 29.819 29.820 29.770
29.670

45.635 45.663 45.649 45673
45.926 45462

52.463 52.504 52459 52.502
52.943 52.828

74.206 74.261 74.255 74.285"
74.275 '
81.008 81.067 80.888" 80.928"

81.420 81.654

109.176 109.132 | 109.235" 109.266
109.460

115.318 115098 | 115.279" 115307
115.631 114.776

6.43 6.45 6.89 7.50
28.37

11.72 13.52 1344 13.56
21.30

5.68 5.75 5.35 5.64
10.67 10.68 11.63 11.06
25.12

4.56 5.61 485 495
5.73 12.48

7.81 7.82 774 757
9.30 22.04

3.70 4.26 4.01° 434"
3.88

7.77 9.54 9.20° 936"
7.84 8.87

4.00 3.12 3.92° 3.96°
5.17

5.65 5.84 6.19° 6.78
6.75 4261

° Results estimated from different records

Table 10. Comparison of natural frequencies
and damping ratios - Experimental data

Conclusions

In this paper, the determination of the modal charac-
teristics, number and values of the natural frequencies,
damping rations, and mode shapes, of a vibrating
structure has been addressed. Specifically, the connec-
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tions between the noisy response of p degrees-of-
freedom of a structure and the output of an exogene-
ous autoregressive moving average (ARMAX) discrete

system has been utilized to perform the required

identification.

The estimation of the ARMAX model that
"best” represents the measured data has been accom-
plished in four steps, as shown in Fig. 1. First, an
ARX model is obtained from the measured responses
and excitation records by solving the linear system of
equations, Eq. (30)-(34). This prior ARX model can
then be used to initialize the exogeneous matrix poly-
nomial C(z) through Eq. (37). Then, an iterative
scheme is employed to determine the ARMAX model
that provides, at the same time, the "best” fit of both
the existing data and the prior ARX model. Upon con-
vergence of this process, the estimates of the natural
frequencies, damping ratios, and mode shapes can be
obtined from the autoregressive part of the ARMAX
model, see Eq. (11)-(16).

The determination of the true model order, ie.
of the number of system natural frequencies that can
be observed in the given records, has been addressed
by relying on identification results that correspond to
distinct sets of data. In fact, the numerical results
presented here have shown that the estimates of the
true modal characteristics vary very litle from
identification results obtained with one data set to
those obtained with different response records. On the
contrary, the frequencies associated with the measure-
ment noise have been shown to change substantially,
if not drastically, from one set of results to another.
This property allows for a very simple and efficient
discremination scheme of the true modal characteris-
tics that in turn yields an accuate estimate of the true
order of the system.

Finally, an intensive testing of the proposed
multistage ARMAX identification scheme with both
simulation and experimental data has demonstrated its
high reliability in providing accurate estimates of not
only the natural frequencies but also of the damping
ratios and mode shapes of a structure from records of
its response.
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