
&W/^- 770 tl 7 - -

The Fourth Triennial
Software Quality Forum

p& ©UALlTv

Software: Our Quest for Excellence
Honoring 50 years of software history, progress, and process

Co-Sponsored by:
DOE/ALyWQD NWC Quality Managers
Software Quality Assurance Subcommittee

Kirtland Air Force Base
Albuquerque, NM

April 1-3,1997

SQAS/97-1R

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the Umted States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document

fTi^ MD m
-.4-

Keynote Tutorial

Tutorials
April 1,1997

Keynote Address

(7) General Sessions
April 2,1997

General Sessions
April 3,1997

Closing Session

Cl: Software Quality for Scientific Applications

m A2: Software Engineering Processes

B2: Internet WEB Applications

A3: Software Process Improvement I

B3: High Integrity / Formal Methods I

A4: Software Process Improvement H

B4: High Integrity / Formal Methods H

A5: Software Quality: Experiences & Year 2000

B5: Software Standards for Quality Engineering

Wrapup and Awards

Pre-Forum Registrations

Final Forum Attendance List

Notes

Notes

&

If)

^̂ fl̂ ^̂ l

General Information

Biographies & Abstracts

Dave Parnas: Design Through Documentation

Wl: Natural Language Modeling ^M

XI: Defining Software Processes WM

Yl: How the NWC Handles Software as Product H

W2: Writing Testable Software Requirements ^M

X2: Using COTS Software in Development Projects ^M

Y2: Software Inspection Process Overview ^M

Capers Jones: Software Quality for 1997 H j

Al: Software Management | | |

Bl: Software Testing E

mmnmr READY IND£X= INDEXING SYSTEM

General Information

Summary Schedule
Forum Committee & Program Committee
History of the Software Quality Forum
Software Quality Assurance Subcommittee
Forum Awards, Proceedings, and Participating Organizations
Tours of National Atomic Museum and RMSEL
No Host Dinner - El Pinto Restaurant
Bus Schedule for Social, Tours, and No-Host Dinner
Maps: Local Area and Forum Site

SOFTWARE QUALITY FORUM
April 1-3,1997

CONFERENCE SUMMARY

03.0009.00 am REGISTRATION/CONTINENTAL BREAKFAST TTC LOBBY

09.0011:00 am
Keynote Tutorial
TTC Auditorium

Design Through Documentation:
The Path to Software Quality

Dr. David Pamas. McMaster University

11:0001:00 pm LUNCH ON YOUR OWN

Track Z Keynote Tutonal
SNL Bldg 823, Brcezeway

TraekW
SNL Bldg 822, Room A

TrackX
SNL Bldg 822. Room B

Track Y
TTC Conference Room

01:0003:00 pm
21: Jospccuon of Cnool Scthnre
Dr. Divid Psim^ McMian Umvasly

Wl: Nam IxgagzMalclxt
Dr. John Step. SNL Dr. Genld MeDonuU SNL Coancux

Yl: Hw the NWC Hnda Softrar u Pndua
DiYid Vinson. Farter,

03:0003:15 pm BREAKTTC LOBBY

03:15 05:15 pm
22. Excrasc sod Dtsatnwo
Dr. Dtwd Psmts. McMuters Unrvtrxxy

WfcVAiung Testable SW
Dr. Dwiyne Knrlc SNL

X2. Uscg COTS Software n Development Projects
U Col N n y CrairteY. USAF naifs Lilxnury

Y2: Software Inspccuco Process Overview
Liny Lmc and Randy Ditto. SNL

05300630 pm Social Hour and Birds of a Feather
National Atomic Museum Meet in TTC Lobby Round Tnp Transportation Provided

07300830 am REGISTRATION/CONTINENTAL BREAKFAST TTC LOBBY

0830 09.00 am Welcoming Remarks
TTC Auditorium

Mike Black] edge. Forum Chair
Earl Whiteman, DOE/AL Director
John Crawford. SNL Executive VP

09.0010.00 am Keynote Address
TTC Auditorium

Software Quality for 1997 What Works
and What Doesnt'

Capers Jones. Chairman Software

10.00 10:15 am BREAKTTC LOBBY

TrackA
TTC Auditorium

TrackB
SNLBIdg 822. Rooms A£B

Track C
TTC Conference Room C TrackD

10:1511:45 am At: Software Management
Chur. Dm sailing. ASTMAT

BltSoftwareTcstrig
ChurcLirryRodsiPantex

CI SWQualiryfcrSaaxiiicAppIicttioce;
Chur. John Caucu. LANL Bsds of s Festrxr/Nctworkng

11:450130 pm LUNCH ON YOUR OWN

TrackA
TTC Auditorium

TrackB
SNL Bldg 822. Rooms A&B

Track C
Tours

TrackD
Tours

013003:00 pm A2 Softwif t Efynwwg Pi IXCPCI
Chur. Knhlcm CmC DOBKQ

B£ Interact WEB Appucsuons
Chun Fsye Brown. LMES ORNL

Robotics Lib
Register nTTC Lobby

Meet n TTC Lobby before lJOpm

Kiticcal Atactic Museum
Register n TTC Lobby

Meet nTTC Lobby before 130 pm

* 03.0003:15 pm BREAKTTC LOBBY

; 031504:45 pm A3 Software Process bnprovemem I
Omx: Mfce Llctaer. AS/FM&T

B3 H^bcpgy/FonialMechocxI
Chur Dive Pccrcy. SNL

National Alone Mnsasn
Rcgatrr n TTC Lobby

Meet nTTC Lobby before 3 15 pm

Robotics Lib
Register n TTC Lobby

Meet si TTC Lobby before 3 15 pm
C6.00 07.00 pm

07.00 pm
El Pinto Restaurant

NoHost Social Hour

NoHost Dinner

| ̂ :^^^g'^$0^e^pM^ i &j&:;
08,00 0830 am CONTINENTAL BREAKFAST TTC LOBBY

TrackA
TTC Auditorium

TrackB
SNLBIdg 822. Rooms A&B Track C TrackD

0830 10.00 am A4. Softmrc Precox kupfovtmax u
Chun JcaiHare. AWE UK

B4: High ktetncy/Fonml Methods rj
Chun LartyDilioa SNL Bads of t Feather / Kerwcriceg Bids of t Father / Networkxg

10.00 10.15 am BREAKTTCLOBBY

10:1511:45 am A5: Software Quality: Expencnccs A Y2K
Chur Cuhy Kutn. ASTM&T

B5: SW SunJards for Quility Eneoeenng
Chun Patty Trelue. SNL Bids of i Feather / Nctworiung Bads of a Father / Networking

',*i'4
'?/%/%>" ■ ' WRj«rW'&AWAM3S>lTICAUBn ,ORTiJH'' .< '., , \ -

isofWlflIOOOAM

Forum Committee

General Chair:
Mike Blackledge, Sandia National Laboratories, mablack@sandia.gov

Tutorials and Workshops:
DavePeercy, Sandia National Laboratories, depeerc@sandia.gov

Planning Committee:
Lorraine Baca, Sandia National Laboratories
Ray Berg, Sandia National Laboratories
DwqyneKnirk, Sandia National Laboratories
Patty Trellue, Sandia National Laboratories
GaryEchert, DOE - Albuquerque Qfffice

Arrangements:
Theresa Griego, Sandia National Laboratories

Program Committee
Mike Blackledge, Sandia National Laboratories
Patty Trellue, Sandia National Laboratories " •

Faye Brown, Martin Marietta Energy Systems, Y-12 Plant
Kathleen Canal, DOE Headquarters
John Cerutti, Los Alamos National Laboratory
OrvalHart, Los Alamos National Laboratory
MikeLackner, AlliedSignal Federal Manufacturing and Technologies, Kansas City Plant
Dave Peercy, Sandia National Laboratories
Larry Pjodin, Mason & Hanger, Pantex Plant
Don Schilling, AlliedSignal Federal Manufacturing and Technologies, Kansas City Plant
Pat Tempel, Sandia National Laboratories
David Vinson, Mason & Hanger, Pantex Plant

mailto:mablack@sandia.gov
mailto:depeerc@sandia.gov

History of the Software Quality Forum

The Software Quality (SQ) Forum was established by the Software Quality Assurance
Subcommittee as an opportunity for all those involved in implementing SQA programs to meet
and share ideas and concerns. The SQ Forum is open to the public. Participation from managers,
quality engineers, and software professionals provides an ideal environment for identifying and
discussing the many issues and concerns raised by the Forum attendees and speakers. The
interaction provided by the Forum contributes to the realization of a shared goal — high quality
software product. '

Topics presented at the SQ Forum generally include: testing, software measurement, software
surety, software reliability, SQA practices, assessments, software process improvement,
certification and licensing of software professionals, CASE tools, software project management,
inspections, and management's role in ensuring SQA

The Software QuaUty Forum Wh&ld every three years; past Forums are identified below.

Date Site
Spring 1988 Sandia National Laboratories
Spring 1991 AlliedSignal Aerospace Kansas City Division
Spring 1994 Lawrence Livermore National Laboratory

Software Quality Assurance Subcommittee
The Software Quality Assurance Subcommittee (SQAS) serves as a Technical Advisory Group on
software engineering and quality initiatives and issues for the Department of Energy's Quality
Managers. The Quality Manager at each DOE site has the opportunity to select one Primary and
one Alternate representative to the SQAS.

The Subcommittee grew out of a Software Quality Assurance Information Exchange Forum
which was held in March of 1988 at Sandia National Laboratories. The Subcommittee provides a
continuing forum for the exchange of information and work issues in the area of software quality
engineering.

For additional information about the SQAS, visit our web site at:

http://www.pantex. com/sqas/sqas.htm

3

http://www.pantex

Forum Awards
The -Forum Program Committee would like to recognize those presenters who, through their
tutorial or technical presentation, have made a significant contribution to the success of the
Forum. A Best Tutorial and Best Presentation award will be presented at the Forum Wrap-up
session on Thursday, April 3. Selection of recipients for the Awards will be determined in two
parts:
• technical content, scored by the Forum Committee
• delivery and usefulness, scored by attendees

Forum Proceedings
Forum Proceedings will include abstracts and presentation materials for all technical
presentations, presenter biographies, tutorial materials, and final Forum program information.
Forum Proceedings will be distributed at the Forum with the registration packets. Additional
Forum Proceedings can be purchased at the Registration Desk in the TTC Lobby.

Participating Organizations
AlliedSignal, Federal Manufacturing and Technologies, Kansas City Plant (AS/FM&T)
Atomic Weapons Establishment, United Kingdom (AWE UK)
Department of Energy, Albuquerque Office (DOE/AL)
Department of Energy, Headquarters (DOE/HO)
Lawrence Livermore National Laboratory (LLNL)
Loclmsed Martin Energy Systems, Oak Ridge, Y-12 Plant (LMES/OR)
Los Alamos National Laboratory (LANL)
Mason & Hanger, Pantex Plant (Pantex)
McMaster University, Communications Research Laboratory, Canada (MU/CRL)
New Mexico State University (NMSU)
Sandia National Laboratories (SNL)
Software Productivity Research (SPR)
United States Air Force, Phillips Laboratory (USAF/Phillips)
Westinghouse, Savannah River Site (SRS)
Pioneer Technologies (Pioneer)

4

National Atomic Museum Tour

Operated by the Department of Energy, The National Atomic Museum contains a large collection
of declassified nuclear technology. Since its opening in 1969, the objective of the National
Atomic Museum has been to provide a readily assessable repository of educational materials, and
information on the Atomic Age.

Prominently featured in the museum's high bay is the story of the Manhattan Engineer District,
the unprecedented 2.2 billion dollar sdentific-engineering project that was centered in New
Mexico during World War II.

A portion of the Museum is devoted to exhibits on the research, development, and use of various
forms of nuclear energy. Historical and other traveling exhibits are also displayed in this area.
Located outside of the museum are a number of large exhibits. These include the Boeing B52B
jet bomber and a Navy TA-7C Corsair II fighter-bomber as well as many other nuclear weapons
systems, rockets, and missiles.

Robotic Manufacturing Science &-Engineering Laboratory Tour

Intelligent systems bring diverse technologies together: computers, software, sensors, vision
systems,-and hardware such as robots. At Sandia National Laboratories, combinations of these
technologies are merged to create robotic and intelligent systems that range from micro to mega.

To advance the evolution of robotic and intelligent system technologies, Sandia National
Laboratories and the DOE created the Robotic Manufacturing Science and Engineering
Laboratory (RMSEL). It is the first centralized facility designed specifically for bringing
intelligent machine technologies and technologists together.

The RMSEL facility was designed as a special environment to accommodate the unique needs of
robotics and intelligent systems research. A second-floor viewing gallery concourse overlooks
ground-floor laboratories used for the development of large-scale robotics systems. The State-of-
the-art physical resources coupled with outstanding intellectual resources make RMSEL unique in
robotic and intelligent systems research and development.

One of the main purposes of RMSEL is encouraging collaborative development with industry and
academic partners.

5

No Host Dinner - El Pinto Restaurant

A No-Host dinner has been planned for Wednesday Evening at the El Pinto Authentic New
Mexican Restaurant located at 10500 4th NW. There will be a variety of dinner selections offered
that should accommodate all tastes. The cost of the dinner is $15. Check at the Registration
Desk in the TTC Lobby if you would like to attend or if you are planning to use the bus
transportation provided from the Sheraton Hotel to the El Pinto Restaurant. ELPinto is located at
10500 4th NW; the phone number is 898-1771.

Bus Schedule for Social, Tours, No-Host dinner

III IIIIIII lllll ilillll
Depart

Sandia National Labs, TTC

ll llllll
Sandia National Labs, TTC

Sandia National Labs, TTC

Sandia National Labs, TTC

Sandia National Labs, TTC

Sheraton Old Town

Illllllllti
Time

5:30 p.m.

IIIII

liiilMI!!!!!
Destination

National Atomic Museum
(Social)

i3ti||aiij;|
1:30 p.m.

1:30 p.m.

3:15 p.m.

3:15 p.m.

5:45 p.m.

1BIIHSI1

Hi Bii iiiiiii
Return to Sandia National

Labs, "Pick-Up" time
6:30 p.m.

IIIIIII
Robotics Lab

National Atomic Museum

Robotics Lab

National Atomic Museum

El Pinto Restaurant

ill ill! llljiiilii! IIII
2:45 p.m.

2:45 p.m.

4:45 p.m.

4:45 p.m.

Return to Sheraton Old
Town, "Pick-Up" time

-8:30 p.m.

6

LOCAL AREA MAPS ¥
A w« ■*E

140

7

Forum Site Map

Location of Conference Rooms

TTC Auditorium, TTC Lobby, TTC Conference Room
Located in Building 825. Enter through the doors on the north side of the building.

Bldg. 822 Rooms A&B
Located immediately to the right when entering Bldg. 822 from the doors on the south
side of the building.

Bldg. 823 Breezeway
Located immediately to the left after the Reception Desk when entering Bldg. 823 from
the doors on the south side of the building.

NOTE: To get into the 823 Breezeway, individuals without a valid DOE must be
escorted by an individual with a valid DOE badge. They must show a picture ID and sign
in at the reception desk. The Breezeway will only be used for the afternoon Keynote
tutorials and a Forum committee member will be available to assist you with the entrance
details.

8

i0p&aUAUTy

Biographies & Abstracts

BIOGRAPHIES

A
£ 0}

f
«

0
m
o \ i

4^
J

is
mm

'JM$r^§&&S
jfi * « ' ^S
t'"''i I

 c
fS

v, \ ft /
lljtejj^ljjgcjjj^g
*" \ V w "̂

^

■pr
V

*<*V M u d * " *

>
^

•

x
III I
a

Keynote Biographies
Capers Jones, Chair SPR
Capers Jones is an international consultant on
software management topics and Chairman of
Software Productivity Research, Inc. (SPR) in
Burlington, MA. Following graduation from the
University of Florida, Mr. Jones began his software
career as a programmer in the office of the Surgeon
General, Washington, D.C.. Prior to becoming
Chairman at SPR, Mr. Jones also worked at the
Crane Company, IBM, and was Assistant Director of
Programming Technology at ITT in Stratford CT.
Mr. Jones has published nine books dealing with
software areas including; programming productivity,
software measurement, and software quality. His
tenth book, Software Cost Estimating is scheduled for
publication in early 1997. Mr. Jones will share his
experience and insights in his keynote address
"Software Quality for 1997 - What Works and What
Doesn't". ~
Presentation: April 2, (09:00-10:00 am), TTC
Auditorium

Dr. David Lorge Parnas, McMaster University
Professor David Large Parnas, PhD. holds the
NSERC/Bell Industrial Research Chair in the
Communications Research Laboratory, Department
of Electrical and Computer Engineering at McMaster
University in Hamilton, Ontario, Canada. His
primary area of interest is to promote to Software
Engineers the discipline and body of knowledge as
practiced by engineers in other fields.

By studying the problems of software engineering
since 1965, Dr. Parnas has developed principles and
methods that have value to real world problems. In
rc^r?nition of his accomplishments, he has received
x- <,zrous honors, including election as a Fellow of
the Royal Society of Canada and a Fellow of the Association for Computing Machinery.
Dr. Parnas will share his experience and knowledge by leading three workshop/tutorials.
Tutorials: April 1, 21 (09:00-11:00 am), TTC Auditorium

22 (01:00-03:00pm), 23 (03:15-05:15pm), Bldg 823 Breezeway

2

Tutorial Leader Biographies
(Alphabetical Order)

Nancy L- Crowley, Phillips Laboratory
Lt Col Nancy Crowley is the Acting Chief of the Space System Technologies Division (PL/VTS), Kirtland AFB,
New Mexico. The focus of Space System Technologies Division is on the innovative application of software
technologies to improve performance and reduce operations and maintenance costs for satellite control systems,
including telemetry, tracking and commanding (TT&C), mission data dissemination, data processing, and satellite
autonomy. Lt Col Crowley is also the program manager for the Multimission Advanced Ground Intelligent
Control (MAGIC) program. MAGIC is developing the architecture for the next generation satellite control system
that provides a low cost, flexible software architecture that allows plug and play of COTS products in a vendor
independent manner. Lt Col Crowley was born May 13, 1955 in the Bronx, New York. She graduated from
Theills High School in Theills NY, in 1973. She received a Bachelor of Science in Electrical Engineering from
the University of New Hampshire in 1977 where she was a ROTC distinguished graduate. She later received the
Master of Science in Digital Engineering and the Doctor of Philosophy (major of software engineering, minor of
artificial intelligence) from the Air Force Institute of Technology in 1982 and 1994 respectively. Her research was
in object-oriented methods for software requirements analysis. Lt Col Crowley entered the Air Force in 1972 and
was a flight test engineer for Tactical Air Command. There she conducted operational test and evaluation and flew
in fighter aircraft in' support of projects. After her masters degree, she was assigned to the Flight Dynamics
Laboratory, where she was the software engineer for the digital flight control system of the X-29 Advanced
Technology Demonstrator and the Ada focal point for the laboratory. There and in subsequent assignments she
was a technical consultant to the Swedish government on the development of the digital flight control system for
the'JAS-39. Her next assignment was at the Systems Acquisition School, Brooks AFB Texas where she was a
course developer and instructor of software acquisition courses. There she was also a system administrator for a
UNIX and PC-based-networked system that serviced the students and staff at the school. After completing her
PhD., she came to her current assignment in Oct 94. Outside her Air Force duties, Lt Col Crowley teaches
software engineering, software management, and computer science courses at local Universities. Her and her
husband own a computer consulting business. Both her and her husband enjoy riding horses.
Tutorial X2: April 1, (03:15 - 05:15 pm), SNL Bldg 822, Room B

Randy Dabbs, Sandia National Laboratories
Randy Dabbs is a Senior Member of Technical Staff at Sandia National Laboratories. He has earned a Master of
Science in Electrical Engineering from the University of New Mexico. He has held positions at the Sandia Particle
Beam Fusion Accelerator in the areas of data acquisition and signal processing; the Kwajalein Missile Range in the
areas of range computer systems engineering, range operations, tracking software modeling and development,
reentry mission project engineering, digital radar signal processing, radar controller real time software, and
software configuration management; and the Sandia Kauai Test Facility in the areas of range computer support
and operations, range safety software development, countdown software development, CASE tool selection and
modeling of range operational software. In his current position with the Sandia Quality Engineering Department,
he has participated in instructing the Software Quality Engineering course and the Software Inspections course. In
his role as software quality assurance engineer, he has participated in numerous software inspections for both
internal and external customers. In addition, he has helped develop and teach a customized version of the software
inspection course to meet the specific needs of Sandia organizations.
Tutorial ¥2: April 1, (03:15 - 05:15 pm), TTC Conference Room C

Dwayne L. Knirk, Ph.D., Sandia National Laboratories
Dr. Knirk is a member of the software quality engineering department at Sandia National Laboratories. He
provides in-house consulting to line organization projects for software engineering processes, methods, standards,
tools, and training. He participates in process assessments and improvement programs, and provides support for
configuration management, software inspections, and process automation. Dr. Knirk's primary focus is on the two
complementary areas of software specification and testing, in which he works to bring more formal methods into
more practical applications. He works actively on IEEE software engineering standards groups. He is a member of
the ASQC Software Division Methods Committee. Dr. Knirk previously worked for Programming Environments,
Inc., where he was the architect and principal developer of the automated software test design tool, T. That
commercial product analyzed a formal software behavior description for testability, designed test cases for
demonstrating that behavior, and generated actual test case data.
Tutorial W2: April 1, (03:15- 05:15 pm), SNLBIdg 822, Room A

3

Tutorial Leader Biographies
(Alphabetical Order)

G. Lawrence Lane, Sandia National Laboratories
Larry Lane is a Senior Member of the Technical Staff at Sandia National Laboratories. He earned a Master of Arts
Degree in mathematics from the University of Kansas. Larry joined Sandia Corporation in 1959 as an assembly
language programmer in the field data reduction department He has also worked as a operating systems
programmer and was responsible for the selection and installation of Sandia's first general purpose time sharing
computer. Larry also worked as a computer consultant for large scientific computers, as the second computer
ombudsman, and was responsible for the development of an electronic tracking system for electrical testing of
radiation-hardened microcircuits. Larry moved to his current position in the Quality Engineering Department in
1991, where he is an instructor for the Software Quality Engineering course and the Software Inspection Class. As
a software quality engineer, Larry has led numerous qualification efforts for new and upgraded software projects,
particularly in the areas of use control and weapon security. He has helped develop and teach a customized version
of the software inspection course to meet specific Sandia organizational needs.
Tutorial ¥2: April 1, (03:15 - 05:15pm), TTC Conference Room C

Gerald W. McDonald, Ph.D.
Dr. McDonald has a Bachelor of Science in Engineering Science and a Master of Science in Computer Systems
Management from the Naval Postgraduate School. Following his retirement the Navy he received a Master of
Engineering in Industrial and Systems Engineering and a Ph.D.-in Quantitative Management Science (Operations
Research) from the University of Florida. Following receipt of his PhD. he worked for BDM International as an
executive-level Program and/or Project Manager and technical leader. During his thirteen years with that firm he
led both software and non-software projects. During the three years since his retirement from BDM he has acted
as consultant to Sandia, SEMATECH, and a number of other organizations. As a consultant he has worked
primarily in the field of Software Process Improvement Besides direct technical assistance he has presented
training and workshops in software areas such as: quality engineering, software inspections, process definition and
documentation, and metrics.
Tutorial XI: April 1, (01:00 - 03:00 pm), SNL Bldg 822, Room B

John K Sharp, Ph.D., Sandia National Laboratories
John has performed information analysis in various positions at Sandia for fifteen years. He has worked closely
with Prof Shir Nijssen of the Netherlands for several years to establish the procedure to develop and analyze
information problems using structured natural language. They are currently finishing a text on this topic. This
procedure was originally based on the NIAM (Natural language Information Analysis Methodology) modeling
technique. John and Prof. Nijssen have co-chaired two international conferences on natural language modeling.
John is also the editor of the international standard on conceptual schemas.
Tutorial Wl: April 1, (01:00 - 03:00 pm), SNL Bldg 822, Room A

Software Quality Assurance Subcommittee, Work Item #16, Nuclear Weapons Complex Sites
The Software Quality Assurance Subcommittee (SQAS) operates under the DOE Nuclear Weapons Complex
(NWC) Quality Managers to identify and resolve Software Quality issues and problems common to all DOE sites
and facilities. This tutorial is the result of an NWC SQAS work item to define how to manage and control
software as product The work item was established to satisfy a need to define a consistent process for handling
product software. The Nuclear Weapons Complex-wide participants and presenters of this tutorial include:

John Cenitti, LANL
Bill Warren, LLNL
Charles Chow, LLNL
Ellis Sykes, DOE/Kansas City Area Office
Gary Echert, DOE/Albuquerque Area Office
Kathleen Canal, DOE/HQ
Ray Cullen, SRS
Faye Brown, LMES, Oak Ridge, Y-12 Plant

Tutorial Yl: April 1, (01:00 - 03:00 pm), TTC Conference Room C

Chair David Vinson, Pantex Plant
PhU Huffman, Pantex Plant
AlvinCowen, Pantex Plant
C^menneKuhn, AS/FM&T
Donald Schilling, AS/FM&T
DavePeercy, SNL
Mike Blackledge, SNL
Orval Hart, LANL

4

Presenter Biographies
(Alphabetical Order)

John Ambrosiano, Ph.D, Los Alamos National Laboratory
Dr. Ambrosiano received his Ph.D. in Plasma Physics from the College of William and Mary in 1980 and has since
pursued a career in Computational Physics. He has written simulation codes for a variety of applications including
plasmas and beams, acoustics, fluid dynamics, and electromagnetics. After a postdoctoral appointment at the
University of Alaska's Geophysical Institute to study Space Physics, he moved to the Washington, DC area to work
with a defense contractor. In 1987 he joined the Lawrence Livermore National Laboratory where he worked on
nuclear weapons applications, and later joined the Earth System Modeling project there. The growing complexity
of numerical simulations led to a strong interest in Computer Science and in Software Engineering in order to find
the leverage to manage the complexity of the new generation of simulation codes. In 1995 he joined the North
Carolina Supercomputing Center to lead the effort to build a simulation framework for environmental modeling
called the Environmental Decision Support System This became the prototype for EPA's ModeIs-3 framework. He
recently joined Los Alamos National Laboratory to participate in DOE's Accelerated Strategic Computing
Initiative. He is currently the leader of a twelve-person visualization and human-computer interaction team in X
Division at LANL. He is also the Laboratory's principle investigator for Scientific Data Management within the
ASCI program. His current interests are scientific data management, computational frameworks, and software
engineering for scientific applications.
Presentation: Wednesday, April 2, Session CI: 10:15-11:45 am, TTC Conference Room C

Rodema Ashby, Sandia National Laboratories
Rodema Ashby has been programming or leading projects at Sandia for the last 13 years.' Projects have included
configurable software security systems such as the Site Independent Alarm and Display S}'stem, and a Logging and
Accountability Subsystem. Interactive Collaborative Environments (ICE) which was licensed to SUN
Microsystems as their "Show Me" product included a great deal of commercial customer testing and collaboration.
A-PRIMED which was a 22 month, 2.5 million dollar cooperative effort involving 10 SNL NM Centers (and
minimally KC and SNL CA), demonstrated a 24 day, new product to market cycle. New hardware from new
customer requirements was created in a matter of days, after the project realization team had set up a
communications network and created and integrated tools for product realization. Rodema is currently writing
code to customize solid modeling tools for easier user model modifications.
Presentation: Wednesday, April 2, Session Al: 10:15-11:45 am, TTC Auditorium

Mikhail Auguston, New Mexico State University
Received a Ph.D. degree from the Institute of Cybernetics in Kiev (USSR) in 1983, Diploma of the Senior Research
Fellow from the Highest Evaluation Commission of the Council of Ministers of USSR in 1990, and degree of
Doctor in Computer Science from University of Latvia in 1992. Research interests are in programming language
design and implementation, and program testing and debugging tool design.
Joined Computing Center of Latvia University as Research Scientist in 1971. Since 1983 worked as a Leading
Researcher at the Institute of Mathematics and Computer Science of Latvia University. Took part in the design and
implementation of the language for file processing, the interpreter for PL/1 program testing, the testbed
environment for assembler level language for PDP-11 computers, the implementation of specification language
SDL for communication system software rapid prototyping and testing, the tool system GRAPES/4GL for
information system design. In the years 1987-88 has designed and implemented progranuning language RIGAL
for compiler writing on PDP, VAX and IBM PC computers. This work was presented at a number of international
conferences and is used at several sites for language processor design. In 1990 he has started to work on program
formal annotation language FORMAN for sequential and parallel program dynamic analysis, testing and
debugging. This work was presented at various international conferences and in several universities in Europe and
United States as an invited talk. He is the author of more than 30 scientific articles and co-author of the most
popular textbook on PL/1 in Soviet Union (totally more than 100,000 copies printed). Currently he is an Associate
Professor at the Computer Science Department of New Mexico State University. He teaches undergraduate and
graduate classes on C++, Data Structures, Software Engineering, Compiler Construction, Ada programming
language. Member of ACM and IEEE Computer Society.
Presentation: Thursday, April 3, Session B5:10:15-11:45 am, Bldg 822, Rooms A&B

5

Presenter Biographies
(Alphabetical Order)

Michael Bell, Lockheed Mar t in Energy Systems
Michael Bell is a software engineer with Lockheed Martin Energy Systems at the Y-12 Plant. He is the lead
analyst on the Electronic Medical Records System project, as well as member of the software metrics team. He has
worked in the Oak Ridge area for seventeen years, at both Y-12 and Oak Ridge National Laboratory. His
experience includes research- and production-oriented software, in areas such as plasma physics, econometrics,
access control, manufacturing, and inspection. In this capacity, he has performed user interface and database
design, application migration (cross-platform and mainframe-to-workstation), real-time device control, modeling,
statistical and graphical analysis, and all aspects of structured and object-oriented software development Mike
holds a bachelor's degree in mathematics and is currently working" toward a master's degree in-.software
engineering.
Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium

Gail M . Benefield, Lockheed Mar t in Energy Systems
Ms. Benefield has worked for Lockheed Martin Energy Systems, Inc. (LMES) since 1987. Her assignments
include working as an applications developer/analyst at the Y-12 site, an Applications Security Specialist for the
Computing and Telecommunications Security Organization, and currently, as a Computing Specialist within the
Information Technology Services division at the K-25 site in Oak Ridge. At Y-12, Ms. Benefield was on the team
which revised the 80-Series, a document owned by the Y-12 Quality Division, which was the Y-12 implementation
of the required software development methodology. She was also a member of the Y-12 Software Configuration
Control Board, which reviews all software changes to applications which fall within a certain class of software. In
her current assignment, Ms. Benefield is representing her department as an active participant on the team which
authored and is supporting the Software WorkPackage Methods (SWM) methodology.
Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Lar ry J . Dalton, Sandia National Laboratories
Larry J. Dalton holds a BS in Applied Mathematics and an MS in Electrical Engineering both from the University
of New Mexico. Lany has spent the past 19 years at Sandia National Laboratories in Albuquerque, New Mexico
engaged in high consequence systems development Much of that time was dedicated to various aspects of nuclear
weapons and associated control systems. He is the manager of the Command and Control Software Department at
Sandia National Laboratories which in addition to software engineering research, develops software and systems
safety solutions for high consequence operations.
Presentation: Wednesday, April 2, Session B3: 03:15-04:45pm, Bldg 822, Rooms A&B

Lar ry Desonier, Sandia National Laboratories
Education: In 1972, Lany graduated from Southwestern Louisiana with a Bachelors of Science in Electrical
Engineering. In 1976 graduated from Oklahoma City University with a Masters in Business Administration. In
1979 completed Masters in Electrical Engineering and Computer Science from University of New Mexico.
Complete a Masters of Science in Computer Information Systems from the University of Phoenix in 1996.
Presently working on a Certificate in Computational Simulation Science from the University of New Mexico under
a special Sandia National Laboratories retraining program with completion in May 1998. Work Experience:
Officer in the U.S. Air Force from 1972 through 1975 and worked as a Communications-Electronics Engineer.
Worked at the U.S. Air Force Weapons Laboratory from 1976 to 1984 as the Director of Communications. Came
to Sandia National Laboratories in 1985 and has worked as a Systems Developer, Software Engineer, and Project
Leader for over 12 years. . I l l
Presentation: Thursday, April 3, Session AS: 10:15-11:45 am, TTC Auditorium

John Hare , Ph.D., A W E , Ministry of Defence, United Kingdom ----
Dr John T Hare is the Software Quality Manager of AWE Aldermaston, an MOD (UK) facility managed by
Hunting-BRAE Ltd. He is a Chartered Engineer and a Member of both the British Computer Society and the
Institute of Quality Assurance. John graduated from the Universities of Nottingham (BSc) and York (DPhil). He
started his career in 1973 as a scientist at what was then the Royal Aircraft Establishment (of International
Airshow feme). He was responsible for analysis of sonobuoy trials data, using computers in the days when 16KByte
was a generous amount of core memory! In 1980 John joined AEA Technology, which as UKAEA had been

6

Presenter Biographies
(Alphabetical Order)

responsible for the UK Atomic Energy Programme. John was responsible for the design of a number of computer-
based data acquisition systems. As the PC took the skill out of this activity, John's team specialised in Management
Information Systems, and the provision of Software Engineering support to scientific projects. This was the start of
a growing interest in Quality Assurance, as customers and regulatory authorities demanded accreditation to
ISO9001. In 1993 John joined AWE, with a brief to improve software quality assurance and raise standards across
the company. This is moving into a new phase, with emphasis on Software Engineering. John and his wife
Heather have two daughters; Katherine (22).who is a biochemist doing research at Birmingham University, and
Louisa (19) who is a student of Modern Languages at Nottingham University. Outside interests include local
government and local history. Until recently John was Chairman of Governors at a school with 1000 students.
Presentation: Thursday, April 3, Session B5:10:15-11:45 am, Bldg 822, Rooms A&B

David L. Harris , Sandia National Laboratories
Dave has a M.S. in Computer Science and A.B in Mathematics from all from the University of Missouri. He was
a graduate fellow at the Health Services Research Center in Columbia Missouri and his graduate education focused
on multi-processor hardware architectures and multi-processing operating systems. Dave is currently a Senior
Member of the Technical Staff at Sandia National Laboratories and is assigned to the Information Systems
Engineering Center. Dave has been doing research in using World Wide Web technology in support of
collaborative environments for distributed Decision Support Systems. Dave was the software process engineer for
the ICADS (Integration Correlation and Display System) program. ICADS is a ground based satellite data
analysis system and the project leader for TCAMS (Tech Control Automation, Maintenance, and Support), a five
year, $6 - 8M project consisting of over one million lines of software source code. TCAMS has been accepted by
the Department of Defense customer and is in operation today. (A fielded and functional system). As the TCAMS
Team Leader, Dave was responsible for the device control software subsystem of the TCAMS software project
Earlier in Dave's career he was a software engineer responsible for various systems analysis and design of a large
command and control software system. Dave has software engineering experience in real-time, embedded,
guidance and control computers for ballistic missiles and systems administration of large, multi-user, time-sharing
systems.
Presentation: Wednesday, April 2, Session Al: 10:15-11:45 am, TTC Auditorium

Orval Har t , Los Alamos National Laboratory
Orval Hart has worked at the Los Alamos National Laboratory for 20 years, mainly involved in real-time control
systems for nuclear facilities. He has a Bachelor's Degree in Mathematics from California State Polytechnic
College (Cal Poly) at Pomona and a Master's Degree in Computer Engineering from the University of New
Mexico. Prior to coming to Los Alamos, he worked in real-time data acquisition systems, later moving to the Jet
Propulsion Laboratory in Pasadena where he worked on real-time telemetry and communication systems. In 1975,
he moved to Los Alamos where he was responsible for the original building control system software for the
Plutonium Research and Development facility (known as TA-55). Since then, he has worked on a control system
for an unmanned nuclear power supply (later canceled), the original procurement of the Laboratory intrusion and
detection system, an environmental monitoring computer network system for the Nevada Test Site and surrounding
states, the facility control system for the Special Nuclear Materials Laboratory (a sister facility to TA-55 that was
later canceled also), and for the last ten years has been responsible for the control software for the Weapons
Engineering Tritium Facility. This system is not only a facility environment control system, but also assists in
performing the everyday work in the Facility. Almost all work in the Facility is done from the control console as
opposed to hands-on in glove boxes. As many of the procedural interlocks as could be foreseen were implemented
in software to avoid human error, taking special care to test and prove them prior to going 'on-line'. Computer
controlled automatic sub-systems are monitoring the Facility constantly to mitigate any operational abnormalities.
This system was implemented during the early days of Admiral Watkin's tenure and as such, was a test case for
increased compliance and formality-of-operations.
Presentation: Wednesday, April 2, Session CI: 10:15-11:45 am, TTC Auditorium

7

Presenter Biographies
(Alphabetical Order)

Kevin Hill, Mason and Hanger Corporation, Pantex Plant
Kevin Hill is a tester design engineer at the Mason and Hanger Corporation. He holds a BS in electrical
engineering from Kansas State University and is currently enrolled in the Interdisciplinary Master of Engineering
curriculum at Texas Tech University. Co-author Dr. Mario G. Beruvides is an assistant professor in Industrial
Engineering at Texas Tech University. Dr. Beruvides has 10 years of industrial work experience in design,
production, and manufacturing. His interests include white-collar/knowledge work performance improvement,
productivity engineering, work measurement, technology management, and engineering education. Dr. Beruvides
is a member of ASEM, a senior member of HE, and a member of ASQC and the Academy of Management He
holds a BS in mechanical engineering and an MSIE degree from the University of Miami, and a Ph. D. from
Virginia Polytechnic Institute and State University in industrial and systems engineering.
Presentation: Wednesday, April 2, Session B2: 01:30-03:00pm, Bldg 822, Rooms A&B

Curtis G. Holmes, Jr . , Lockheed Mart in Energy Systems
Curt came to Lockheed Martin Energy Systems (LMES) at Oak Ridge, Tennessee from Texas Instruments and is
currently the Department Manager of the Environmental, Waste Management, and Analytical Laboratories
Systems in the Data Research and Development Organization. The purpose of the department is to be a focal point
for providing computing support for the Environmental, Waste, and Analytical Laboratory business areas at
LMES. Prior to his current assignment, Curt was the Department Manager for the Computer Application's
Department in the Engineering Division. The main focus of this department is the design, development,
implementation, and deployment of digital systems to support real time process control and data acquisition
systems. Curt Holmes holds a B.S. and M.S. Degree in Electrical Engineering from the University of Tennessee
with a Minor in Computer Science. He is a licensed Professional Engineer in the State of Tennessee.
Presentation: Thursday, April 3, Session AS: 10:15-11:45 am, TTC Auditorium

Karen Jefferson, Sandia National Laboratories in California
Karen L. Jefferson has worked at the Sandia National Laboratories for 12 years and is currently in the Systems
Research Department at Sandia California. Her work experience at Sandia has included high performance
computing, realtime control, software engineering, and systems analysis. She is currently the software project lead
on the Advanced Atmospheric Research Equipment project She has a Masters degree in Computer Science from
the University of Arizona, t ,„..„
Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium . ^ ^

Bruce L. Johnston, Mason & Hanger Corporation, Pantex Plant
Bruce L. Johnston is a Project Programmer/Analyst for Mason & Hanger Corporation at the DOE Pantex Plant In
April 1996, he accepted the challenge to be the Project Manager for the year 2000 Project Before accepting this
new assignment he was the Computer Security Site Manager for the Pantex Plant and has worked in a computer
security capacity for the last ten years. Prior to joining Mason & Hanger, he worked for Battelle Memorial
Institute in Richland, Washington, and with EG&G in Idaho Falls, Idaho. In his personal life he has served as a
Scoutmaster for his community and is cinrently serving as a Bishop for the Church of Jesus Christ of Latter-Day
Saints. He keeps a healthy perspective and stays in balance by being a father of four children.
Presentation: Thursday, April 3, Session AS: 10:15-11:45 am, TTC Auditorium

Marie-Elena C. Kidd, Sandia National Laboratories ^nt •
Marie-Elena C. Kidd is a computer scientist and Senior Member of the Technical Staff at SandiacNational
Laboratories. During her ten years at Sandia, she has worked as a software engineer on embedded, real-time
software systems for such applications as robotics, nuclear weapon components, and control systems. She has also
worked on lab-wide information sharing software systems and software engineering initiatives. She has a B.S. in
Computing and Information Sciences, Trinity University, San Antonio, TX and an M.S. in Computer Science,
Purdue University, West Lafayette, IN. xrsc.
Presentation: Thursday, April 3, Session B4: 08:30-10:00 am, Bldg 822, Rooms A&B

8

Presenter Biographies
. . (Alphabetical Order)

Dr. Dwayne L. Knirk, Ph.D., Sandia National Laboratories
Dr. Knirk is a member of the software quality engineering department at Sandia National Laboratories. He
provides in-house consulting to line organization projects for software engineering processes, methods, standards,
Jools, and training. He participates in process assessments and improvement programs, and provides support for
configuration management, software inspections, and process automation. Dr. Knirk's primary focus is on the two
complementary areas of software specification and testing, in which he works to bring more formal methods into
more practical applications. He works actively on IEEE software engineering standards groups. He is a member of
the ASQC Software Division Methods Committee. Dr. Knirk previously worked for Programming Environments,
Inc., where he was the architect and principal developer of the automated software test design tool, T. That
commercial product analyzed a formal software behavior description for testability, designed test cases for
demonstrating that behavior, and generated actual test case data. ~~
Presentation: Wednesday, April 2, Session Bl: 10:15-11:45 am, Blag 822, Rooms A&B

Catherine M . Kuhn , AS/FM&T Kansas City Site
Cathy Kuhn is a Staff Technical Programmer/Analyst from AlliedSignal Federal Manufacturing and Technologies
/ Kansas City Site. For the past eight years she has been a member of the Kansas City's Software Quality
Assurance Group. During that time she has been involved in many Kansas City site and corporate software
development and software quality improvement efforts. Currently, she is an active member of the Information
Systems' Software Process Group and the Information Systems Software Quality Assurance Group. This
-presentation is based upon her work with the Information Systems' organization.
Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Michael F. Lackner, AS/FM&T Kansas City Site
Michael holds a Masters of Science degree in Mechanical Engineering from the. University of Missouri-Rolla, and
a Bachelor of Science degree in Aerospace Engineering from the same institution. Michael is a Registered
Professional Engineer in the State of Missouri. He is cunently enrolled in the Doctor of Engineering program at
the University of Kansas, specializing in the area of computer-aided and computer-integrated manufacturing.
Prior to the SQA assignment eight years ago, he spent 4 years in process and product engineering in plastics
products at AlliedSignal. He most recently completed the Blackbelt training in Six Sigma.
Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

David J . Leong, Sandia National Laboratories
David has been a Senior Member of Technical Staff at Sandia National Laboratories for seven years. He is
currently the project leader of Sandia's Internal Web Technology Team, the EVE (Enterprise-information Viewing
Environment) Team. He has been involved with Sandia's Intranet from its inception in the summer of 1994.
David has performed many related activities along the way, including; HTML authoring, browser training, systems
integration, application development, browser/server installations, etc.. Sandia's Intranet, which has been featured
in WebMaster Magazine and Netscape's Customer Profiles, currently houses approximately 40,000 administrative
and technical documents and iraccessed on the order of 250,000 times per day.
Presentation: Wednesday, April 2, Session B2: 01:30-03:00pm, Bldg 822, Rooms A&B

Stewart Meyer, Savannah River Site
Stewart Meyer is currendy the software Quality Assurance/Configuration Management Coordinator forfiie NWPS
(Nuclear Waste Processing Support) section for all systems supporting the DWPF (Defense Waste Processing
Facility) at SRS (Savannah River Site.) This position involves developing/updating QA/CM plans for process
control, process support, and manufacturing support systems. He also performs a hands on role as the
configuration manager for the SCMS (Software Configuration Management System) in developing the layered
applications, reviewing and approving the software changes, and performing library maintenance. He is the lead
for all external (DOE/Site) audits regarding software at DWPF and also participates in committees and task teams
at the division and Site level regarding software management procedures. A graduate of McMuny College
(Abilene, Texas), with a Bachelor of Science in Computer Science and a background in management, his software
engineering career includes; OS/Application development for the DOD MLRS (Multiple Launch Rocket System)

9

Presenter Biographies
(Alphabetical Order)

project, process automation design/development for DWPF, group supervisor for the process automation group at
DWPF, and his current position (since 1993.)
Presentation: Wednesday, April 2, Session A2: 01:30-03:00 pm, TTC Auditorium

Jennie L. Negin, Sandia National Laboratories
Jennie Negin is manager of Web Services and IS Training at Sandia National Laboratories in Albuquerque, New
Mexico. Sandia is a Department of Energy multiprogram national laboratory managed by Sandia Corporation, a
Lockheed Martin company. Ms. Negin has been involved in development of many Information Systems at Sandia -
- travel, library, procurement property, security, personnel, nuclear materials management and radiation exposure.
Ms. Negjn was a consultant-to the University of New Mexico (UNM) Law School and the UNM Maxwell Museum
of Anthropology before coining to Sandia. Prior to that she was an internal consultant and systems developer at
Los Alamos National Laboratories and the University of Florida Computing Center. Ms. Negin is a long time
member of the Association of Computing Machinery and the New Mexico Network for Women in Science and
Engineering. Jennie is a graduate of the University of Florida with a BSE and MA in Mathematics.
Presentation: Wednesday, April 2, Session B2: 01:30-03:00 pm, Bldg 822, Rooms A&B

Don Ra thbun , AS/FM&T Kansas City Site
Don Rathbun holds a BSEE from Kansas State University, Manhattan, Kansas, and a MSEE from the University of
Missouri, Columbia, Missouri. Business Systems Reengineering has been the focus of Don's recent assignments
including project responsibilities on the Focused Factory initiative and the ISO9001 certification process from its
outset Current assignments include involvement with the NWIG (Nuclear Weapons Information Group), JMOG
(Interagency Manufacturing Operations Group), and CAM-I (Consortium for Advanced Manufacturing
International) Organizations. Don has made presentations at the last two IMOG meetings and at the September
1995 LLNL Software Engineering Seminar. Prior assignments included project responsibilities on major radar
fuzing systems.
Presentation: Wednesday, April 2, Session A3: 03:15-04:45 pm, TTC Auditorium

Lar ry Rodin, Mason & Hanger Corporation, Pantex Plant
Larry has been 30 Years with Mason & Hanger Corporation working in Quality. He is a Project Manager at the
Pantex Plant, Amarillo, Texas, Senior Member of the American Society for Quality Control, Member Software
Quality Division. Lany has been an ASQC Certified Quality Engineer since 1970. In deference to the Year 2000
phenomena, his recertification date is December 31, 1999. Larry became Mason & Hanger's SQAS Primary
Representative in the fall of 1990. He is currently serving as SQAS Vice-Chair, and previously has served as
Secretary. Larry has also worked on many Work Item Groups and developed this presentation as research for one
of these groups.
Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

Edward W . Russell, Lawrence Livermore National Laboratory
For the last 15 years Ed Russell has been involved in formal QA implementation on several projects at LLNL. He
is currently working toward the ASME NQA-1 lead auditor qualification. Ed has also worked as an FEM code
analyst at LLNL in the early 1980's. Ed's academic achievements include an MS. degree from the University of
California Davis in Mechanical Engineering and Materials Science.
Presentation: Wednesday, April 2, Session CI: 10:15-11:45 am, TTC Auditorium

Don Schilling, AS/FM&T Kansas City Site
Don Schilling is a Manager, Engineering Projects, for AlliedSignal Federal Manufacturing and Technologies at
Kansas City. He has over 30 years of manufacturing experience in various assignments and responsibilities. He
was responsible for the formation of the Kansas City Plant's Software Quality Assurance Group, which has
reported to him since 1988. Don has championed numerous Software Engineering and SQA initiatives within
AlliedSignal, the DOE Nuclear Weapons Complex, and in national and international forums.
Presentation: Wednesday, April 2, Session A3: 03:15-04:45 pm, TTC Auditorium

10

Presenter Biographies
(Alphabetical Order)

Joseph R. Schofield Jr . , CQA, Sandia National Laboratories
Joe has been applying emerging technology for business and engineering solutions for the past 17 years. Joe guided
the evaluation and implementation of Sandia's first large-scale CASE project using Texas Instrument's JEF.
Current efforts include a client-served based object-oriented project with tens of millions of object instances. Joe
has been a keynote speaker at the Structured Development Forum in San Francisco in 1988 and spoke on CASE at
the National Conference on Information Systems Quality Assurance in Orlando, CASEWorld in LA, and the
Piedmont CASE User's Group in Charlotte. Several articles on CASE were published by the Journal of Quality
Data Processing, System Builder, and Managing System Development A four-page interview was printed in the
CASE Strategies Newsletter and another in Government ComputerNews. Joe has presented at USE, SHARE,
GUIDE, and DOE-sponsored conferences. The Next Silver Bullet was published in 1995. His most recent article
The Year 2000 - Finally a Reality Check is under publication review.
Presentation: Wednesday, April 2, Session Al: 10:15-11:45 am, TTC Auditorium

John K. Sharp, Ph.D., Sandia National Laboratories
John has been working in information systems during a 16 year career at Sandia National Laboratories. He has
held technical and management positions covering information system design, application development and data
administration functionsheJbhn has been working closely with Professor Shir Nijssen in the Netherlands who is
creator of the NIAM (Nijssen's Information Analysis Methodology), which is the basis for our approach to Natural
Language Modeling. Shir and John have co-chaired two international conferences on Natural Language Modeling
and are writing a book on Natural Language Modeling that will be published this winter.
Presentation: Thursday, April 3, Session BS: 10:15-11:45 am, Bldg 822, Rooms A&B

Debra Sparkman, Los Alamos National Laboratory
Debra Sparkman is the Software Quality Assurance Manager for LLNL Safeguards and Security Engineering and
Computations Division. She has been the SSEC quality assurance manager since January 1993 and test coordinator
for the Argus Security System since October 1994. Prior positions at LLNL have included Quality Assurance/Test
Coordinator for the Controlled Material Tracking System and staff member for the Fission Energy and Systems
Safety Computer Safety and Reliability group. Other publications include: SSEC SEI Experiences, 1994 DOE
NWC Software Quality Forum and Standards and Practices for Reliable Safety-Related Software Systems, 3rd
International Symposium on Software Reliability Engineering. Ms. Sparkman received a Bachelor of Science,
Computer Science in 1984 from the University of the Pacific. She is a member of the American Society for Quality
Control, IEEE, and IEEE Computer Society.
Presentation: Wednesday, April 2, Session Bl: 10:15-11:45 am, Bldg 822 Rooms A&B

Ann Stewart, Lockheed Mart in Energy Systems
Ms. Stewart is the Quality Manager of the Data Systems Research and Development Program (DSRD) a division of
Lockheed Martin Energy Systems (LMES) in Oak Ridge, Tennessee. She has more than 20 years experience as a
software engineer and project manager with extensive experience in areas of quality assurance, performance
measurements, and process improvement She established and managed the Software Quality Assurance Program
for the Oak Ridge National Laboratory (ORNL) in compliance with the Department of Energy (DOE) requirements
and was responsible for their Performance Indicator and Metrics Program. Ann is a graduate of the University of
Tennessee with a B.S. in Computer Science. She cunently leads and manages DSRD's Process Improvement
Initiative using the Software Engineering Institute's Capability Maturity Model (SEI/CMM).
Presentation: Thursday, April 3, Session A4: 08:30-10:00 am, TTC Auditorium

Nancy A. Storch, Lawrence Livermore National Laboratory
Nancy has over 30 years experience in design and development of scientific software, with emphasis in user
interface design, computer graphics and software engineering. Her special interest is usability engineering.
Recently Nancy has also become involved in software quality assurance and serves as SQA Engineer to two
projects. Nancy is the LLNL SE/SQA Group Leader. Prior to coming to LLNL, Nancy developed software for
submarine fire control systems. Throughout her career, Nancy has striven to be at the forefront of the application
of computer science and software engineering. She has done graduate work in human factors, user interface
design, computer science and physics. Her degree is in mathematics.
Presentation: Wednesday, April 2, Session Bl: 10:15-11:45 am, Bldg 822 Rooms A&B

11

Presenter Biographies
(Alphabetical Order)

Michael Tiemann, Headquar ters Department of Energy
Mike Tiemann has served in government service for 25 years. His career started in 1972 at Army Material
Command Headquarters, as an Army Lieutenant working in Environmental Program Management After this he
spent almost 13 years at the Federal Energy Regulatory Commission as an Environmental Protection Specialist
and a Computer Systems Analyst In 1987 he joined Headquarters DOE as the Project Management Officer
coordinating all information technology services and support for the Offices of the General Council, Inspector
General, Hearings and Appeals and the Economic Regulatory Administration and the Board of Contract Appeals.
Two years later, he was assigned the primary responsibilities for Information Management Planning at
Headquarters. He is currently the Action Officer in the CIO's Information Architecture Team responsible for
development of the Departmental Information Architecture. He is also the leader of the Information Management'
Planning and Architecture Coordinating Team or IMPACT, a diverse and professionally robust group of
technology professionals from across the Department which supports the Architecture efforts. In addition to
IMPACT, Mike has been a member of several Department-wide teams, and recently sat on an interagency panel on
business modernization. Mike holds degrees in Architecture (BED, Texas A&M, 1972) and Systems Management
(MSSM, U.S.C., 1977). He is a current member of the Energy Federal Credit Union's Information Technology
Advisory Committee. He is married and has two children.
Presentation: Wednesday, April 2, Session A3: 03:15-04:45 pm, TTC Auditorium

Victor L . Winter , Ph.D., Sandia National Laboratories
Victor L. Winter received his PhD. from the University of New Mexico in 1994. His dissertation research focused
on proving the correctness of program transformations. Currently, Dr. Winter is a member of the High Integrity
Software (HIS) Project at Sandia National Laboratories. His research interests include trusted software, formal
semantic models (graphical-based and symbol-based), theory of computation, automated reasoning and robotics.
Dr. Winter can be reached by phone in the United States at (505) 284-2696, by fax at (505) 844 - 9478, or by email
at vlwinte@sandia.gov.
Presentation: Wednesday, April 2, Session B3: 03:15-04:45 pm, Bldg 822, Rooms A&B

Alexander R. Yakhnis, Ph.D., Pioneer Technologies
Dr. Alexander R. Yakhnis is a consultant in design of dependable software/hardware systems. He received a
Diploma in-Mathematics from Moscow State University, Moscow, Russia. He worked as a computer programmer
in Moscow, Russia and Houston, Texas. Alexander received an MS. in Computer Science and a Ph.D. in
Mathematics/Computer Science from Cornell University, Ithaca, New York. He then worked as a Research
Scientist at Mathematical Sciences Institute, Cornell University. He worked at Command and Control Software
Department at Sandia National Laboratories on High Integrity Software project from July 1995 to August 1996.
His interests include correctness proofs for concurrent and sequential programs, theory of computations, winning
strategies for two person games, control theory, hybrid systems, object-oriented methods, design of
hardware/software systems. He can be reached by phone at (505) 298-5854 or by e-mail at AYakhnis@aol.com.
Cc-3sthorDr. Vladimir R. Yakhnis is a research scientist at Rockwell Science Center, One Thousand Oaks, CA.
He reserved a Diploma in Mathematics from Moscow State University, Moscow, Russia. He worked as a computer
programmer in Moscow, Russia and Houston, Texas. Dr. Yakhnis received an MS. in Computer Science and a
PhD. in Mathematics/Computer Science from Cornell University, Ithaca, New York. His research was in program
correctness for concurrent and sequential programs, winning strategies for two person games, state transition
systems and object-oriented methods. Dr. Yakhnis worked at the IBM Endicott Programming Laboratory as an
Advisory Programmer until 1994. There he developed "Generic Algorithms" methodology that allowed the
construction of mathematically proved software while "hiding" the actual proofs from the developers. The
methodology was designed to take advantage of object class templates in C++ or Eiffel. He worked as a Visiting
Scientist at Mathematical Sciences Institute, Cornell University until June 1995. There he developed the
groundwork for the semantics of object-oriented stepwise refinements. He worked at Sandia National Laboratories
at Albuquerque during 1995-1996. He can be reached by phone at (805) 373-4856 or by e-mail at
vryakhni@scimail.risc.rockwell.com.
Presentation: Wednesday, April 2, Session B3: 03:15-04:45 pm, Bldg 822, Rooms A&B

12

mailto:vlwinte@sandia.gov
mailto:AYakhnis@aol.com
mailto:vryakhni@scimail.risc.rockwell.com

ABSTRACTS

Tutorial Abstracts: Tuesday, April 1 1997
Keynote Tutorial 09;00 -11:00 am

Dr.David Lorge Parnas, MU/CRL
ZO: Design Through Documentation: The Path to Software Quality
TTC Auditorium
Although it is appealing, practitioners are not able or willing to write precise documents. Instead, they write vague
blurbs that are useless to those charged with the next steps and cannot be subject to rigorous analysis. This tutorial
describes how precise, complete, and testable documents can be produced for software and the ways that these
documents can contribute to an improved software process.

Tutorials 01:00 - 03:00 pm
Dr. David Lorge Parnas, MU/CRL
Zl: Inspection of Critical Software
Bldg. 823 Breezeway
This tutorial describes a procedure for inspecting software that consistently finds subtle enors in "mature"
software, software that is believed to be correct The procedure is based on three key ideas: the software reviewers
are active not passive; reviewers focus on small sections of code; reviewers proceed systematically so that no case
and no section of the program gets overlooked. During the procedure, the inspectors produce and review
mathematical documentation. The mathematics and its notation allows them to check for complete coverage and
to proceed systematically and in small steps.

Dr. John Sharp, Sandia National Laboratories
Wl: Natural Language Modeling
Bldg 822 Room A
This tutorial describes a process and methodology that uses structured natural language to enable the construction
of precise information requirements directly from users, experts, and managers. The main focus of this natural
language approach is to create the precise information requirements and to do it in such a way that the business
and technical exerts are fully accountable for the results.

Dr. Gerald McDonald, Sandia National Laboratories Consultant
XI: Bsjinition and Documentation of Engineering Processes
Bldg 822 Room B
This tutorial is an extract of a two-day workshop developed under the auspices of the Quality Engineering
Department at Sandia National Laboratories. The presentation starts with basic definitions and addresses why
processes should be defined and documented. It covers three primary topics: (1) process considerations and
rationale, (2) approach to defining and documenting engineering processes, and (3) an JDEF0 model of the process
for defining engineering processes. Process considerations and rationale introduce models for documenting
processes; describe the general architecture for product development and define implications of immature
processes versus those for mature processes. The approach describes the top-level subprocesses that make up the
methodology for definition and documentation of engineering processes; namely: planning, gaining management
approval for a process definition project, collecting data on the as-is process to capture current best practices within
the organization, constructing a model of the as-is process, and verifying and validating that model. The final
portion presents a four-level, hierarchical model that describes HOW to define and document an engineering
process.

Fajjs Brown, Oak Ridge; Ray Cullen, Savannah River; Gary Echert, DOE/AL; Phil Huffman, Pantex. Cathy
KH'SS, AS/FM&T; Dave Peercy, SNL; Ellis Sykes, DOE/KCP; David Vinson, Pantex
Yl: How the NWC Handles Software as a Product
TT T Conference Room C
Tk'. r&orial provides a hands-on view of how the Nuclear Weapons Complex projects should be handling software
as ^ -i. toduct in response to Engineering Procedure 401099. The primary scope of the tutorial is on software
prcnkcts that result from weapons and weapons-related projects, although the information presented is applicable

2

Tutorial Abstracts: Tuesday, April 11997
to other software projects. Processes for Identification, Qualification, Acceptance, and Delivery are described in
terms of an extended case study.
Participant Restrictions: Must be a NWC or government employee; identification will be required. If you have
questions, contact Dave Peercy, 505-844-7965, depeerc@sandia.gov.

Tutorials 03:15 - 05:15 pm
Dr. David Lorge Parnas, MU/CRL
Z2: Exercise and Discussion
Bldg 823 Breezeway
In this workshop, participants will be given a small program and will apply the documentation and inspections
methods from the previous Design Through Documentation and Inspection of Critical Software tutorials. This will
be followed by a discussion of previous experiences in a question and answer format
Participant Restrictions: Must have attended both the Design Through Documentation and Inspection of Critical
Software tutorials.

Dr. Dwayne Knirk, SNL
W2: Writing Testable Software Requirements
Bldg 822 Room A
This tutorial identifies common problems in analyzing requirements in the problem and constructing a written
specification of what the software is to do. It deals with two main problem areas: separating the documentation of
what is given from the documentation of what is to be created; and determining what facts about the subject
software are to be documented, how they should be expressed, and how they are related.

L t Col. Nancy Crowley, USAF Phillips Laboratory
X2: Using COTS Software in Development Projects
Bldg 822 Room B
Commercial software and standards must be carefully evaluated prior to selection, carefully integrated, and used
where appropriate to reap their benefits. This tutorial will discuss the experiences of the Space System
Technologies Division of the USAF Phillips Laboratory in developing a COTS-based satellite control system.

Larry lane and Randy Dabbs, Sandia National Laboratories
Y2: Software Inspection Process Overview
TTC Conference Room C
This tutorial provides an overview of the Software Inspection (In-Process Formal Review) Process and a mini-
inspection workshop. The inspection roles and process steps are introduced. Participants are then divided into
inspection groups for conduct of a mini-inspection to gain some practical experience with the inspection process.
Discussion of the mini-inspection results concludes the workshop.

3

mailto:depeerc@sandia.gov

Presentation Abstracts: Wednesday, April 2 1997
Keynote Address, 09:00 -10:00 am, TTC Auditorium

Capers Jones, McMaster University
Softv.e?e Quality for 1997- What Works and What Doesn't?
This presentation provides a view of software quality for 1997 - what works and what doesn't For many years,
software quality assurance lagged behind hardware quality assurance in terms of methods, metrics, and successful
results. New approaches such as Quality Function Deployment (QFD) the ISO 9000-9004 standards, the SEI
maturity levels, and Total Quality Management (TQM) are starting to attract wide attention, and in some cases to
bring software quality levels up to a parity with manufacturing quality levels. Since software is on the critical path
for many engineered products, and for internal business systems as well, the new approaches are starting to affect
global competition and attract widespread international interest It can be hypothesized that success in mastering
software quality will be a key strategy for dominating global software markets in the 21st century.

Session Al: Software Management, 10:15-11:45 am, TTC Auditorium
Rodemy Ashby, Sandia National Laboratories
The Right Rock: Finding and Refining Customer Expectations
Figuring out what the customer wants, making sure the team understands the customer priorities, and negotiating
what the customer can have for what they want to pay sets the scene for project success or failure. Getting a clear
understanding of the political landscape (can't tell the players without a scorecard), and what is most important to
them is essential. The people who will be using the system you produce, and those paying for it are rarely the
same, and both must be satisfied for your project to be considered successful for the long term. Ways to bring
internal differences of opinion to the fore, and flush out misunderstandings while educating the customers and
project team about the cost of different decisions involves creating a vivid, shared understanding of how the target,
completed system looks and operates. Approaches to these problems that I've found useful include l)Erika Jones
Organization Charting, 2)Customer Interviews, 3) Quality Functional Deployment and modifications with other
"matrix-type,' decision-making tools, 4)Creating an initial system acceptance test document, keyed to the
requirements as requirements are negotiated, 5) Rapidly-Prototyping an example to show the customer, and
modifying it per request if you have a configurable system and/or 5)Create the User Manual first Til illustrate the
methodology and tool use with project examples.

David Harris, Sandia National Laboratories
TCAMS Lessons Learned
The overall objective of the Technical Control, Automation, Maintenance, and Support (TCAMS) system software
is to facilitate the operation of the communication center within the Commander in Chief (CINC) Mobile Alternate
Headquarters (CMAH). The software consists of about one million lines of source code and draws heavily upon
industry standards such as Ada, SQL, Unix, and X-Windows. Several technical decisions that were made during
the design and implementation of TCAMS went awry. This presentation attempts to provide insight into the root
causes for these wrong decisions with the hope that these insights can lead to a better understanding of the software
development process. An overview of the TCAMS project including some measures of the software complexity is
included as introductory information.

Joseph R. Schofield, Jr., CQA, Sandia National Laboratories
The Next Silver Bullet - Or Just Another Shot in the Foot?
Repeated promises of productivity and quality improvements have seldom materialized with the introduction of new
technologies. Marginal incremental improvements in productivity have become accepted as the norm. Joe shares a
model that explains the unintended outcomes of technology hopping as well as how to extend the investment in a
technology. Further implications exist for maintaining and improving the ability to manage the software
development process as measured with instruments such as the Capability Maturity Model. The notion of the "in
flight magazine syndrome" only exacerbates efforts to stabilize and maximize our use of technology. This work was
recently published as the lead article in Managing System Development

4

Presentation Abstracts: Wednesday, April 2 1997
Session Bl: Software Testing, 10:15-11:45 am, Bldg 822 Rooms A&B

Debra Sparkman, Los Alamos National Laboratory
A Working Testing Process
Argus is an automated security system deployed at 4 DOE and DoD facilities across the United States. Argus is
composed of 3 major subsystems including over 20 software and firmware products. This paper describes the
processes performed for testing the Argus Security System The primary focus is on the independent testing
activities. A brief description of unit, integration, and system testing performed by the development staff will be
presented. Independent system testing is conducted by the Quality Assurance team using a separate test system.
The independent testing process is a practical approach to implementing independent testing for an existing
software-based system undergoing major enhancement development The primary focus of testing is based upon
system level regression testing, major feature enhancements and new product testing. Test planning is conducted
prior to each testing activity. This planning is based upon risks associated with the degree of modifications and
their impact on the customer operational systems. The testing process tracks anomalies detected during testing.
From these anomalies, metrics are collected. The testing process is completed by the generation of a test report
summarizing the testing activities. This work was performed under the US Department of Energy by Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.

Nancy A. Storch, Lawrence Livermore National Laboratory
Testing the Design and Operations of a New Bodging System
In response to a DOE mandated order to rebadge the Laboratory, efforts got underway to modify, replace, or adapt
three major hardware and software systems. On a prior project it had been helpful to conceptualize a complex
system by gathering all interested parties together and systematically walking thorough a paper process description.
However for the rebadging project we needed to do more than conceptualize the end system We needed to test
operational aspects and integration of the systems with users in an environment similar to the actual deployment
environment This became a full-scale mock exercise of rebadging. Each system was in a different state of
development One was somewhat operational and in testing, one had a working prototype, another was in the Iow-
fi paper prototype stage. Also, they were being developed by different teams which rarely interacted with each
other. These teams were focused on designing, implementing and unit testing within their system. Therefore,
traditional integration and system testing of the combined systems was still a long way off. We wanted to save
development time through early identification of issues, integration and operational problems, as well as usability
problems. In the mock exercise we had 22 participants, who came from the development teams, operations and
maintenance, user groups, managers and customers. Observers were selected both from within and outside the
project Observation posts were identified to include coverage of both individual system operation and overall
operations. Operational scenarios based on prior rebadging experiences were developed with hypothetical person's
to be rebadged. Realistic artifacts were acquired or created. Message and data communication between systems
was modeled using paper messages and records. Logistics were handled to turn a mothballed badge office into the
futuristic badge office of the exercise. The exercise took place over three half days. By the third day, we had
created a variation on the operational scenarios which held promise for a more streamlined operation. We also
gained insights on the interactions and communications between the systems and a list of important issues,
problems and action items was produced. This talk will focus on our approach to testing and discuss its costs and
benefits within the software development life cycle.

Dwayne Knirk, Sandia National Laboratories
Establishing a Three-Way Agreement: Specification, Code, Test
After we complete software testing, what do we know and what don't we know about the subject computing
system? What kinds of system tests will further reduce our ignorance about the suitability and correctness of the
computing system for its application? Software-intensive systems are expected to work in a particular environment
to bring about desired effects in that environment To accomplish these effects, the computing system must have a
variety of interactions with that environment Its capabilities and features are directed to establishing a variety of
relationships between those interactions, including stimulus-response, constraint, and historical reference. To
establish such relationships are the services provided by the computing system. The given environment and
required effects in the problem are collectively documented as Problem Requirements. The computing system
interactions and services are documented Behavior Specification. The relationship between these two sets of

5

Presentation Abstracts: Wednesday, April 2 1997
information is an explicit and verifiable behavior design task. The Behavior Specification characterizes a
computing system independently of its application context It provides a single reference point for all decisions of
software architecture and implementation as well as for test case and testware architecture and implementation.
Had we error-free development and testing processes, we should expect specific behavioral equivalencies between
the pairs (specification, code) and (specification, test). To the extent these processes are not perfect, we may have
defects in our code, our tests, or both.

This presentation explains the logical implications of the behavioral equivalencies, and interprets them in
operational terms. It described how testing provides a means of comparing software and testware behaviors and
evaluating their behavioral equivalence to the source specification. An integrated testing approach is devised, for
identifying deviations from the desired equivalence. The approach provides specific guidance for test design, test
execution, code design, instrumentation and data collection, and evaluation of test results. The presentation
concludes with a summary of what can be known through this logic-based testing approach and what remains to be
examined in final system testing. The ultimate goal is validating the behavior of the resulting system through
measuring its effects in the application environment

Session CI: Software Quality for Scientific Applications, 10:15-11:45 am, Bldg 822 Room C
John Ambrosiano and Robert Webster, Los Alamos National Laboratory
Software Quality and Process Improvement in Scientific Simulation Codes
Today the reliance on high quality software is so important that standards for quality assurance are an integral part
of software development in both the public and private sectors. Yet as a community, research scientists have not
entirely embraced these methodologies and indeed are often leery of them. Is the problem with scientists, or with
the standards? As the quest for excellence in software is extended to government research activities, we must
understand this-phenomenon and either modify how SQA standards are introduced to the scientific community, or
understand why they are inappropriate, and if inappropriate, how to modify them. A salient aspect of research
software development is that it usually involves a high degree of novelty and risk in the beginning. Only later, after
evolving through a series of prototypes, are concepts considered sound enough to be turned into production
software. This sometimes leaves scientists at a loss in deciding when to introduce their products into the SQA
process. Too early and progress toward developing useful new concepts is impeded. Too late and high quality may
be impossible to assure. In this paper we apply process analysis and knowledge acquisition methods to study the
evolution of simulation models for nuclear technology applications from seminal prototypes to production design
codes. Using use-case scenarios and interviews, we will build a model of the simulation software production
process. We will also try to understand how the expert judgments of the scientists involved contribute to their
ranking of a software product's quality and readiness for production. We will compare the results of this analysis to
the practices recommended to attain SEI's CMM level 2 certification. In doing so we will try to answer the
following questions: Which of these software development activities best fit a SQA model such as the SEI CMM
and which do not? Is there a modification of the CMM that allows research scientists to more easily introduce
their software at some appropriate stage into a standard SQA methodology?

Edward W. Russell, Lawrence Livermore National Laboratory
The SQA of Finite Element Method Codes used for Analyses of Pit Storage/Transport Packages
This presentation will describe the implementation of the SQA requirements of DOE/AL, Quality Criteria (QC-1),
Revision 8, July 1995, for Finite Element Method (FEM) codes used at the Lawrence Livermore National
Laboratory (LLNL) for conducting design and confirmatory analyses on pit storage/transport package designs.
This work satisfies the requirements of the Defense Technologies Engineering Division (DTED) Quality
Assurance Policy and Plan for software management of activities associated with high risk, commensurate with
the LLNL risk-based graded approach of SQA implementation. Element 14.0, "Software Quality Assurance," of
QC-1 dictates the following requirements: (1) organization, tasks, and responsibuities; (2) verification and
validation; (3) configuration management; (4) software documentation; and (5) reviews and audits. The FEM
codes controlled by this program are utilized for structural and thermal analyses. As an example, DYNA3D which
was originally developed at LLNL in the late 1970's, is a nonlinear, explicit three-dimensional FEM solid and
structural mechanics code for analyzing transient dynamic responses. Element formulations include one-
dimensional truss and beam elements, two-dimensional quadrilateral and triangular shell elements, and three-

6

Presentation Abstracts: Wednesday, April 2 1997
dimensional continuum elements. Many material models are available to represent a wide range of material
behavior. Sophisticated contact interface capabilities are available, such as frictional sliding and single surface
contact The size of DYNA3D is roughly 100,000 fines of code with 700 subroutines.

The SQA implementation for FEM codes is guided by the commercial standard, ISO 9000-3: Guideline for
Application of ISO 9001 to the Development, Supply and Maintenance of Software, with increased SQA formality
as necessary to satisfy the requirements of the nuclear standard, QC-1. The IEEE SQA standards and guides were
consulted for guidance on format of the SQA Plan and associated specifications. The IEEE recommendations were
tailored for this application to meet the requirements of the governing document, QC-1. The requirements within
the DTED QA system to maintain and control high-quality software include the following documentation for FEM
codes: SQA. Plan, Requirements Specification, Design Description, Configuration Management System (CMS),
and Verification and Validation Report The CMS uniquely identifies and controls code versions and changes, as
well as all pertinent baselines, procedures and documentation. Validation is accomplished by using a suite of
analytically and experimentally validated benchmark problems.

Orval hart, Los Alamos National Laboratory
Software Quality Assurance at the Weapons Engineering Tritium Facility
The Weapons Engineering Tritium Facility (WETF) at the Los Alamos National Laboratory began construction in.
1982 and finally received authorization to go on-line in 1991. It was the first nuclear facility to receive
authorization under Admiral Watkin's increased formality-of-operations. Due to the many changes in DOE orders
for nuclear facilities, the facility took longer than would be expected to get on-line. First it was "yes, we'll
grandfather you in under the old regulations", then it was "no, you will have to meet the new regulations". The
WETF went through several Readiness Assessments (then called Safety Appraisals) and the Operation Readiness
Review before finally receiving approval to start operation. The WETF is unique, in that it was the first nuclear
facility to place what was previously administrative procedures (interlocks, etc.) into software that was monitoring
and controlling major operational aspects of the facility. The Instrumentation and Control System is designed to
be inherently safe, i.e., if any of the computers controlling the facility fails, the systems will fail safe. That is, all
valves are closed, all pumps stopped, etc. The facility cannot be operated in this mode, but is left in a safe state.
Backup procedures allow for the safe restarting of the facility. Many of the operational systems are automatic in
their nature, i.e., the ICS takes immediate action when an 'operational' abnormality occurs. Operation of the
faculty, in general, is performed from Operator Consoles in the Control Area, as opposed to through switches or
hands-on in glove boxes. Due to this new method of operation, where software is involved in almost all operation
and surveillance of the facility, the DOE was 'extremely' apprehensive about how all this was to work. This
presentation will discuss the Quality Assurance program that was adopted to assure that the WETF could be
operated in a safe and reliable manner.

Session A2: Software Engineering Processes, 01:30-03:00 pm, TTC Auditorium
Michael Bell, Lockheed Martin Energy Systems
Function Point Count Adjustment by Means of Scaling Touched Function Points
The talk presents an adjustment method to function point analysis that will quantity the work effort involved in a
software enhancement project in terms of function points. The technique allows direct comparison of the
magnimde of work with the magnitude of functionality change, which is also measured and expressed in terms of
function points. The adjustment method is based on effort data that are ordinarily readily available, avoiding
complex and costly data collection requirements or subjective judgments. The technique accounts for software
development activities that are not directly measured by function point analysis. The adjustment may be used with
attribute analysis to predict and baseline a wide range of software development efforts.

Stewart Meyer, Westinghouse Savannah River Co.
Using An Automated Code Management System To Improve Configuration Control Practices
Using a configuration management tool (software library) is not something new, several organizations and Sites
use them There are numerous tools commercially available, some claiming to be extensible and easy to customize.
We took a very simple tool and added a front end to i t This front end is the interface to the software libraries and

7

Presentation Abstracts: Wednesday, April 2 1997
shields the users from knowing the command language of the tool. In addition, the front end enforces the
configuration control policies as set forth in the QA plans and procedures. The methods are then consistent across
organizations and software products that are managed using this system as a tool. The front end is a developed
product that may be used in other areas at the Savannah River Site, or other Sites, assuming the base system
components are available. Although this system is used by one section at SRS, it could be available for use by
others, without further investment in hardware. The key processes to improve were:
1. Identification of baselines; 2. Methods for verification of patches in a process control; environment; 3.
Performing concurrent development in a controlled environment; 4. Methods for implementing periodic
verification; 5. Configuration audits.

Outline of this presentation:
1. Description of deficiencies in previous software CM methods;.2.lDescription of methods and practices changed
to foster improvements; 3. Description of SCMS system architecture and software tools; 4. Functional description
of the SCMS from a user perspective relative to CM practices.; 5. Discussion on how key processes were improved.

Karen Jefferson, Terry Porter & Todd West, Sandia National Laboratories California
Software Engineering and Graphical Programming Languages
In a Work for Others project for the Air Force, The Advanced Atmospheric Research Equipment (AARE) software
team used National Instruments' Lab VIEW (a data flow graphical programming language) to control hardware
used to collect samples of airborne particulate and gaseous species. Along with developing control and data
collection software, the customer required MJL-STD-498 processes and documentation. This talk will discuss the
processes and tools developed to support this project from the requirements to testing phase. In addition, unique
aspects of the processes specifically tailored to graphical programming languages (such as coding standards,
coding documentation, and configuration management) will be presented.

Session B2: Internet WEB Applications, 01:30-03:00 pm, Bldg 822 Rooms A&B
Kevin HiII,.P antex Plant ;a Kit
Internet Strategies for Engineers^-r°
The tools available on the Internet have the potential to help engineers reduce costs and increase productivity. As
the amount of information available increases, so does congestion. Thus the Internet may be a victim of its own
popularity. Strategies for effective use become necessary. How can an increase rather than a decrease in
productivity be achieved? A survey of engineers' Internet usage is the first step in the search for ways to optimize
time on the Internet Two methods are used to advance this search. The first is the interpretation of survey results
and follow-up questions. The second is via literature review. Standard search methods in cxrajunctunvwjth human
networking can make the Internet a more productive tool. Concerns which have restricted Internet -usage, such as
reliability of sources, and unwanted leaking of information are addressed. Survey results and analysis-provide a
forum to initiate a discussion of this powerful tool's (the Internet's) impact on engineering efficiency and software
quality.

David Leong & Fran Current, Sandia National Laboratories
Exploiting the Intranet: A New Architecture for Enterprise Information
The Intranet is an architecture for viewing information within the enterprise. This architecture is based upon the
World Wide Web standards. With the global Internet as a proving ground, this architecture is proving to be a very
formidable information system for corporate uses. One of the strongest features of an Intranet is its inherent cross
-platform support Applications are functional on PCs, Macintosh, and UNIX platforms. The basic purpose of most
intranets today is the electronic delivery of corporate documents. These documents are typically of a static nature;
corporate policy, manuals, newsletters. With the presentation capabilities of a web browser, compelling documents
with integrated text, graphics, sound, and even video can be dehvered via the Intranet Hypertext links allow
documents to be integrated in a way that makes knowledge even more accessible v/hen compared to print media.
Database access through a web interface is also a very powerful tool to the corporation. Query access to MIS
systems typically living on the mainframe can now be made available to everyone on the Intranet-iBy adopting a
three tiered client-server strategy, the web can become a graphical interface to legacy systems. Now the
corporation's electronic phone book, human resource information, and financial reports can be delivered via a web

8

Presentation Abstracts: Wednesday, April 2 1997
browser. Creating interactive web interfaces involves additional technologies. Security, workflow, and the 'Javas'
(JavaScript from Netscape, and Java from Sun). In the area of security, authentication and authorization are very
integral to client-server applications that allow the user to update information. Transactional based workflow is
also necessary to route task requests among workgroups in the enterprise. Standard HTML forms offer a stateless
user interface. By using Java and JavaScript, one can create applications that establish connections and provide
field level event handling on the presentation tier of the application.

This new paradigm for delivering information is not without its share of challenges. Cultural and political barriers
exist that must be addressed with the same vigor as the technical challenges. An enterprise solution must have
input from users within that enterprise. It is necessary to show the users how the enterprise Intranet can make
their daily job easier. The enterprise web (Intranet) is a scalable productivity tool for the corporation that will
enhance the way employees do their job.

Jennie Negin, Sandia National Laboratories
"Rightsizing" Software Quality for a Web Services Organization
This presentation describes variations of software engineering and project management as applies to an
organization that is supplying services for Sandia National Laboratories' Intranet on a cost recovery basis.

Session A3: Software Process Improvement 1,03:15-04:45 pm, TTC Auditorium
Don Schilling, AS/FM&T
Quest for Excellence 1996: Reaching for the Stars
In the Spring of 1995, a need for software process improvement arose when DOE requested that certain software be
handled as product A solution was needed quickly to meet critical production schedules. This presentation
summaries the actions and the processes that were followed in developing and implementing a solution for FM&T
to handle product software. It discusses the Total Quality improvement process used and the outputs which were
developed. The presentation is based upon the presentation given at AlliedSignal in the Quest for Excellence
competition. The Quest for Excellence is a corporate-wide competition designed to show case process
improvement The team won the Teamwork Award for their efforts in defining a system which worked
successfully and minimally impacted critical production schedules. This presentation also ties in with the tutorial
of how the Nuclear Weapons Complex projects should be handling software as a product in response to
Engineering Procedure EP401099. It shows one sites struggle in defining a workable process to meet customer
expectations.

Don Rathbun, AS/FM&T
Command Media System at the Kansas City Plant (KCP)
The Kansas City Plant was certified to the ISO9001 Standard in April 1995, following a successful audit by Third
Party Auditor, Det Norske Veritas (DNV). The KCP has also successfully passed three six-month periodic audits
by DNV subsequent to receiving certification in 1995. A new on-line Command Media System was developed
and implemented to help ensure control of the documents associated with the KCP business processes. This
control is demanded by the International Organization for Standardization to receive ISO9001 certification. The
new on-line system is based upon the KCP Business Model. New Process Descriptions (PDs) and Work
Instructions (Wis) were created by the KCP Process Owners for each process and released in the Command Media
System. The development of the KCP Business Model and the new Command Media System will be discussed
during the presentation, including how to access the system and structure of documents within the system Also to
be discussed are the operational structure in place to manage Command Media and proposed improvements to the
system in 1997.

Michael Tiemann, Headquarters Department of Energy
Departmental Information Architecture
The Information Technology Management Reform Act of 1996 requires agency Chief Information Officers (CIO)
to develop, maintain and facilitate the implementation of sound and integrated information technology
.arcHtectures. Notwithstanding this act's formalization of this recent requirement, the Department of Energy's
Designated IRM official, the Assistant Secretary for Information Management decided well over a year ago to

9

Presentation Abstracts: Wednesday, April 2 1997
establish a Departmental or enterprise-wide Information Architecture. As described in the published document the
Department of Energy Information Architecture. Volume One. The Foundations, dated March 1995, the «
Departmental Information Architecture is a high level, principles and standards based framework within which the
majority of programmatic, organizational and field site architectures should be developed and implemented. It is
intended to be a template that can guide all information management acquisitions, activities, projects,
developments, solutions and implementations. In order to help achieve this goal additional documents have been
written to further explain and define the Architecture. Two additional volumes, Baseline Analysis and Guidance.
(Information Architecture Volumes Two and Three, respectively) have been published to describe the current or
defacto Departmental Information Architecture and to provide specific guidance on the establishment of
Information Architectures within other organizational components of DOE. The intent is that they will be treated
as nested organizational subarchitectures within the overarching Departmental Architecture. The Baseline
Analysis document identifies many of the challenges facing the Department in regard to the divergent often
incomparable, obsolete, or non interoperable technologies and systems currently deployed as well as the duplication
and redundancies, inheritant in the applications and data structures. The Guidance document provides useful
guidelines for architectural activities in all life cycle phases for DOE and its partners and stakeholders, hi addition,
there are several architectural standards related documents being published and widely distributed. Presently there
are numerous architectural efforts underway at various sites and within several of the major programs. It is the
intent of the Office of the CIO to support these activities and to grow this approach further throughout the entire
DOE community.

This presentation will summarize the above documents and related actions and activities to date regarding the
Departmental Information Architecture Program and explain the future directions as the Departmental Information
Architecture becomes the Chief Information Officer's central component in the comprehensive Departmental

— Information Management Strategy.

Session B3: High Integrity / Formal Methods 1,03:15-04:45 pm, Bldg 822 Rooms A&B
Larry J. Dalton & Marie-Elena Kidd, Sandia National Laboratories
Meeting the High Integrity Software Needs of Today and Tomorrow
Quantifiable measures of the reliability, safety and security for software-based systems remains an elusive goal
even after decades of research. Such systems continue to be a major source of safety and security catastrophes.
These catastrophes include the of loss of life, environmental or economic damage, and loss of public confidence. In
spite of these catastrophes, the usage and complexity of software-based systems in high-consequence applications is
continuing to increase. Thisjrowth, with the associated safety and security risks, presents a national challenge to
the R&D community. Sandia National Laboratories established a High Integrity Software research project in 1995 .
to begufto address the challenge. The first of two research areas, the Correctness Track, is focused on creating the

' ability to create software that is "correct by construction." Research projects include advanced concepts for the
capture of software specification/requirements, validation through intuitive and visual reasoning and mathematics
for correctness preserving transformations covering all steps from specifications to executable code. The second
research area, Systems Immunology, is directed towards in-situ techniques and technologies to enable real-time

Jfauit detection and safing control (fault response). Systems Immunology research projects include Software Event
_ Execution Reliability (SEER), Digital Isolation and Incompatibility, and Top-Down Fault Analysis of

Microprocessor Systems.

Victor Winter, Sandia National Laboratories
An Overview of the AST Software Construction Methodology
AST is a formal method that is being developed within the High-Integrity Software (HIS) project at Sandia
•National Laboratories. AST stands for Abstraction, Synthesis, and Transformation. Within AST, abstraction,
deductive synthesis, and transformation techniques are used to enable the automation of a significant portion of the
software construction and verification process. Furthermore, within AST the impact of human involvement is
limited to such an extent that it can be formally verified. In AST, the role of synthesis is to construct abstract
algorithmic solutions to problems from nonalgorithmic specifications (e.g., precondition and postcondition pairs).

_ This is accomplished by using a sophisticated search engine such as an automated reasoning system to resolve (or
_ remove) the nondeterministic choices that are present in the initial nonalgorithmic specification. Complementing

10

Presentation Abstracts: Wednesday, April 2 1997
synthesis within our methodology, the role of refinement transformation is (1) to optimize solutions that are
obtained in the synthesis step, and (2) to introduce low-level (e.g., machine oriented) algorithmic details for the
purpose of (ultimately) producing a machine executable implementation satisfying the original nonalgoiithmic
specification. Currently, AST is restricted to a somewhat well-behaved subset of reactive systems that we refer to as
single-agent reactive systems. Because the burden placed on the synthesis portion of our methodology can be
enormous we have found it useful to distribute the synthesis process over an abstraction hierarchy. In order for this
approach to succeed, the abstraction hierarchy must have the property that a solution at one level of abstraction
"benefits" or "can be used to guide the construction o r a solution at the next lower level of abstraction within the
hierarchy. In essence, what is going on is that an algorithmic skeleton is being synthesized at one level of
abstraction and is then in some sense "passed down" to the next level in the abstraction hierarchy. This process
continues until a machine executable algorithm has been obtained. An undesirable consequence of mis approach is
that the synthesized algorithms tend to be sequential in nature (i.e., completely parallel or concurrent solutions
cannot be readily synthesized in this framework). Fortunately, it is well within the capability of refinement
transformations to take a sequential specification of a problem and to then transform it into an efficient parallel
solution. This talk gives an introductory overview of AST as well as a brief example of how transformation
techniques can be used to compliment synthesis.

Alex Yakhnis & Vladimir Yakhnis, Pioneer Technologies
Towards Automated Construction of Dependable Software/Hardware Systems
Many observers have recognized that software/hardware systems built by Government and by Industry can be very
complex It may be difficult to establish dependability and functionality of such systems. Here are some of the
questions that existence of such systems raises. (1) How a software/hardware system should be documented in order
to be understood by users and customers of various backgrounds? (2) What should be established in order to
conclude that the system is acceptable? (3) Finally, since the system intent is often evolving in the course of system
design'and use, how should we modify the system to reflect this evolution while preserving the system
dependability? Here are some of the approaches which are presently used in Industry in order to resolve the above
questions: (1) Presenting a system as a hierarchy of models where the levels of the hierarchy would represent
various levels of abstraction. Then an observer could look only at the levels of hierarchy that do not have details
that are of no interest for the observer. Another approach to document a system is the object oriented approach.
Here, systems are understood through understanding of individual objects from which the system is composed and
of interactions among objects. Usually, the approaches are not combined. Also, thus far applications of object-
oriented approach were mostly limited to the software-only system components. (2) Exhaustive testing that system
behaviors satisfy the requirements. The problem here is that exhaustive testing is not possible even for moderately
complex systems. An approach to overcome this is to formalize system requirements, to accurately model the
system that is being constructed, and to produce a mathematical proof that the system model satisfies the
requirements. However, so far, this was done with respect to system components only. Moreover, correctness proofs
are usually not applied to several software constructs, e.g. communication among objects. (3) Maintaining system
requirements, models, design, and simulation information in a single data base capable of containing many system
versions. However, such a data base alone would not insure that the next version would be as dependable as the
previous one. In this talk we will describe a direction of work on how to get better answers to the above questions
on the basis of mathematical modeling, formal methods, and multi-agent strategic approach These methods are
aimed to. achieve industrial strength automation of system specification, design, correctness proofs, and
maintenance without exhaustive testing. Mathematical modeling and formal methods are beginning to be
recognized in Industry as promising approaches to deal with high complexity of systems. The formal methods
groups have been formed at Intel, Motorola, and HP.

11

Presentation Abstracts: Thursday, April 3 1997
Session A4: Software Process Improvement PI, 08:30-10:00 am, TTC Auditorium

Cathy Kuhn, AS/FM&T -
AlliedSignal Capability Maturity Model Assessment & Improvement Processes
This presentation provides'a summary of the processes used by AlliedSignal to assess progress against the Software
Engineering Institutes Capability Maturity Model and the use of this assessment data to plan and implement
organizational process improvements. AlliedSignal corporate has committed to achieve CMM Level 3 at sixteen of
its key business units within the next three years. This strategy is a key component in an effort to develop a
competitive advantage in the aerospace business. What's unique about this initiative is that it is being applied to
Information Systems. Staff at the AlliedSignal Aerospace Center for Process Improvement and the AlliedSignal
Corporate Information Systems group have developed the methods and materialsto assist business units in this
strategy. Six certified SEI examiners have been trained to conduct progress assessments and supporting material
have been developed. Included in this material is a process guide for using assessment results to plan and drive
organizational improvement Each business unit is scheduled for a formal assessment every 6 - 8 months.
Quarterly self-assessment metrics are provided by each business unit and are used to track progress. The
presentation focuses on the continuous^hnprovement cycle implemented at the Kansas City site as a result of
repeated assessments and planning." ^

Ann Stewart, Lockheed Martin Energy Systems
Lessons Learned on Utilizing the SEI/CMMin the Federal Government Work for Others Environment
Data Systems Research and Development (DSRD), a division of Lockheed Martin Energy Systems, Inc., has
developed a- specific approach in.applying the Software Engineering Iiistitute's Capability Maturity Model
(SEI/CMM) that has been successful in our customer focused environment of research and development within the
federal government This approach is based on establishing an orderly and understood infrastructure consisting of
three major building blocks, controls, processes, and information. This infrastructure is sustained through a strong
quality program emphasizing technical, peer, and management reviews and quality audits and surveillances. This
paper describes the tactical application of this approach and DSRD's experiences and lessons learned in three years
of implementation.

Gail Benefield, Lockheed Martin Energy Systems
"SWiM" Your Way to Software Quality
A company quality improvement effort has many aspects. At Lockheed Martin Energy Systems at Oak Ridge, a
software development methodology called Software WorkPackage Methods (SWM) has been created and can be
considered part of the company's quality improvement efforts. SWM is a methodology for managing, developing,
and supporting information system projects and applications. It is composed of methodology guidelines, role
definitions and assignments, and work packages. The work packages are in the form of work breakdown structures
suitable for project estimating, planning, and management SWM provides development and support processes
which are customizable, yet repeatable. It keeps pace with new software development methods and techniques and
provides automation support for the project estimating, planning, and management

Session B4: High Integrity / Formal Methods U, 08:30-10:00 am, Bldg 822 Rooms A&B
Mikhail Auguston, New Mexico State University
Debugging Automation Tools Based on Event Grammars and Computations over Traces.
Dynamic program analysis is one of the least understood activities in software development A major problem is
still the inability to express the mismatch between the expected and-lhe observed behavior of the program on the
level of abstraction maintained by the user. We propose to design software testing and debugging automation tools
based on assertion language concepts as well as on precise program execution models. We are developing a
PARFORMAN language for the description of computations over execution histories of target programs that
provides a basis for tool development for assertion checking, debugging queries, execution profiles, and
performance measurements. We use assertion language mechanisms, including event patterns and aggregate
operations over event traces, to describe typical bugs and debugging rules, and to evaluate debugging queries. An
event grammar provides a sound basis for assertion language implementation via target program automatic
instrumentation. These tools and methods may be useful for software testing, debugging, documentation, and

12

Presentation Abstracts: Thursday, April 3 1997
maintenance of software systems. Our approach is nondestructive, since assertion texts are separated from the
target program source code and can be maintained independently. Assertions can capture the essential dynamic
properties of a particular target program and can formalize the general knowledge of typical bugs and debugging
strategies. Event grammars may be designed for sequential as well as for parallel programs. Examples of
assertions and debugging rules for run-time detection of bugs and bug localization are presented. We have
developed a prototype implementation of the assertion checker and debugging rule evaluator.

Marie-Elena Kidd, Sandia National Laboratories
A Method for Critical Software Event Execution Reliability in High Integrity Software
When high consequence systems rely on software for critical control functions, they require high integrity software.
A major concern of high integrity software is ensuring the faithful execution of critical software driven event

P execution sequences. To meet system performance criteria, high integrity software must execute correctly and
reliably. In addition, in the presence of transient hardware or software faults in both normal and abnormal
environments, safety and security objectives must be maintained. A reliable, repeatable method and application
techniques are needed to address these issues. Our technical approach involves an in-situ (embedded in the
software) dynamic (run-time) fault detection and mitigation method for ensuring critical event execution
sequences in high integrity software. Our method is based on deriving a mathematical description of the critical
software controlled event execution sequence from a software model or the software requirements, embedding
check points and update points based on that mathematical description into the target code, and adding a software
module that implements the functionality of the underlying mathematical model. This extra software is added to
the target code to verify that the conect software event execution sequence is maintained.

John Sharp, Sandia National Laboratories
Business Rule Enforcement Via Natural Language Modeling
The topic of my presentation will be business rule enforcement using Natural Language Modeling. A well defined
procedure will be explained that allows subject matter experts to specify requirements and then be held accountable
for them I will convey a fundamental truth: That requirements can always come in the form of precisely
analyzed, elementary natural language sentences.' Requirements include both facts that result in tables for
populating data and business rules that do not change the table structure, but they do restrict the population of
otherwise good facts in existing tables. A brief review of analysis results will now be discussed to allow you to
understand a portion of the capabilities of this procedure. The following sentences all require external data to
populate the instances of knowledge that is desired to be maintained.

Professor has degree in subject.
Course requires minimum degree level in subject
Professor teaches course.

Referential integrity applies, in that populations of the third sentence must be from known populations of professor
and course in the first two. These sentences cannot enforce the business rule that a professor must be allowed to
teach a course before he can be assigned to teach the course. I define this requirement as a "business rule" because
no other fields are needed to store the data than appears in the previous three, but the rule can be enforced by
starting with the derived sentence:

Professor is allowed to teach course.
This sentence is a derived fact (an SQL query can be established with appropriate triggers) and a set theory rule
can be applied to restrict the population of the third sentence. This rule is:

The professor teaching a course must be a subset of the professors who are allowed to teach that course.
All "business rules" can be written as either direct set theory constraints against facts that are externally populated
or as derived fact(s) and set theory constraints against other facts or derived facts. The benefit of Natural
Language Modeling is that all of the experts and users can understand and be held accountable for the specification
of the design because it always exists as a set of understandable sentences. Transformations of this knowledge set
can be made into any graphical technique (including relational and object-oriented methods) but I do not know of
any graphical presentation that can handle all of the knowledge captured.

13

Presentation Abstracts: Thursday, April 3 1997
Session A5: Software Process Improvement H, 10:15-11:45 am, TTC Auditorium

Larry Desonier, Sandia National Laboratories
Guns for Hire - Experiences of Quality Software Development Under the Gun
In today's software development environment, a major concern is the quality of the software. Sometimes getting
the quality boxes checked seems to take precedence over implementation and delivery. There exists a way to both
perform rapid development and have a quality product There is a saying that 80% of the work gets done in 20%
of the time, and the rest may never get finished. The question here is simply can quality software be developed
when (1) 80% of the dollars are spent, (2) only 20% of the work is complete, (3) there is 6 weeks to delivery, and
(4) no code has yet been written (and the team estimate is many months to code completion). This is just the
situation for a "Guns for Hire" team. In some organizations this would be known as a type of "Skunk Works" or
software "Swat Team." Our experience has shown that with the right size team, the right skills mix of
individuals, and some disciplined development practices, quality software can be developed and projects can be
saved. This discussion will reflect on projects accomplished in just this manner projects developing user interface
or command console software, a PC-based graphics display for alarm annunciation, material and personnel
tracking systems, a taxi-way monitoring system, and others. This would not be possible without an experienced
team, standard development practices, actually reusing code (yes, it is possible), and strictly disciplined
development practices. The successes of this process paradigm is why the "Guns for Hire" team is continuously in
demand.

Bruce Johnston, Pantex Plant
The Year 2000 Challenge: A Project Management Perspective
Today we are faced with the biggest threat to computing ever discovered. As the year 1999 makes its final tick into the year
2000, many time-sensitive business applications like accounting, payroll, project management and many, many more will either
completely fail or make disastrous mistakes. Why will this happen? In the 1970's and early 1980's when data processing shops
were buying mainframe computers by the truckloads, the high cost of memory persuaded programmers to drop the century
digits from a date field to save two bytes of memory. Although shortsighted, this practice was universally accepted because
these early computer applications were not expected to be in operation today. Using only two digits for the year 1996, for
example, is represented simply "96." This means when the year 2000 arrives, tens of thousands of old software programs still
in use will think the year is 1900. If the doomsday predictions hold true only half of the worlds computer applications will be
completely fixed or replaced before December 31, 1999. This will be a real challenge: finding, changing, and testing date
parameter software changes and the challenge will be an even greater Software Quality Assurance problem for legacy
programs. This paper will address the year 2000 challenge from a project management perspective and give insight into
managing the project of the century.

Curt Holmes, Lockheed Martin Energy Systems
Year 2000 Awareness
The Date 2000 challenge has been referred to as both a technical problem and a business risk. It has also been
called the single largest information technology project which corporations and government agencies will
undertake in the next several years. Current estimates for the cost of remediating Date 2000 software problems in
the U.S. range between $600 billion to $1000 billion, and are increasing. The problem will affect all hardware
platforms and all software systems in various ways and with unpredictable results. On average, organizations are
finding that over 80% of their existing applications portfolio is impacted by two-digit year date processing (i.e.
19xx). Some systems will shut down, while others will corrupt data and generate spurious output In all cases, the
business operational risks, resulting from the failure of internal operating systems, far out weigh the potential cost
of remediation. The purpose of this presentation is to create an awareness of Year 2000 issues, promote
collaboration among DOE sites, and propose electronic sharing of resources to save money in infrastructure and
software resources costs.

14

Presentation Abstracts: Thursday, April 3 1997
Session B5: High Integrity / Formal Methods H, 10:15-11:45 am, Bldg 822 Rooms A&B

John Hare, AWE UK
ISO and Software Quality Assurance
Emerging International Standards now promise a global approach to Software Quality Assurance; ISO/IEC 12207
provides a framework for Software life cycle processes that has already attracted the attention of both US and UK
customers. The ISO 'SPICE' standards give international weight to the concept of self-assessment, and a model that
could take the SEI CMM world-wide. Previously our customers have independently developed their own
standards, which include QC-1, AQAP 150 andDefStan 05-95. Whilst ISO9000-3 can be adopted for assessment,
this is non-mandatory and has not been well received in the US although widely used in Europe. TicklT, the
scheme for third party assessment, could refocus on ISO/IEC 12207. This presentation reviews customer
requirements and the new International Software Standards, with particular emphasis on ISO/IEC 12207 and
SPICE. It is concluded that ISO Standards will become a dominate driver for Software Engineering, and could now
succeed in promoting a world-wide approach

Larry Rodin, Pantex Plant
Licensing and Certification of Software Professionals
This report presents information on software engineering certification programs, licensing of software engineers,
reasons to become certified, certification as a condition of employment, the body of knowledge and examination
structures for the certification programs, and an overview of the Institute of Electronic and Electrical Engineers
recommendations for software engineering as a profession.
The Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Managers completed a
Work Item to research software-related certification and licensing efforts and provided status reports to the
Quality Managers. A white paper was a significant result of that work item and this presentation has been
updated to reflect changes in the licensing and certification processes.
Certification is a voluntary process administered by a professional society. Licensing is a mandatory process
administered by government. Two professional organization have been identified as having or developing
certification programs, and one state has developed legislation for a licensing program:
• The Institute for Certification of Computer Professionals (ICCP) has two levels of certification — Associate

Computing Professional, and the Certified Computing Professional;
• The American Society for Quality Control has implemented its program for Certified Software Quality

Engineer;
• New Jersey is the only state identified as actually enacting software development legislation, their licensing

program covers "software designers".
Included in the presentation are considerations and implications for licensing and certification. What problems are
we solving by having licensing and certification. Equal Employment Opportunity (EEO) laws will be discussed to
address issues such as: can certification testing being considered discriminatory; or can certification as a condition
of employment be considered discriminatory.

Michael Lackner, AS/FM&T
Operational Excellence (Six Sigma) Philosophy: Application to Software Quality Assurance
The Kansas City Plant, as part of AlliedSignal Aerospace, has committed fifteen individuals to each receive four
months of training in Six Sigma and at least a year in the position established as a Blackbelt Six Sigma is a
philosophy of doing business encompassing the methodologies of defect prevention (versus defect detection) through
the use of statistical tools, i.e., process mapping, design of experiments, and process controls. Business includes
providing any product or service. Continuous improvement to the way business is performed is achieved through the
identification of optimal target values in products and processes, and the reduction of variation around those targets.
An overview of the tools and training will be discussed, along with the application to the processes included in
Software Quality Assurance.

15

Session Z: Keynote Tutorial

Dr. Dave Parnas
NSERC/Bell Industrial Research Chair in Software Engineering

McMaster University
Ontario Canada

Session

ZO

<ci\.

Z2

Title

"Design Through Documentation: The Path to Software Quality"

"Inspection of Critical Software"

"Exercise & Discussion"

Dr. David Lorge Parnas

Keynote Tutorial
Professor David Lorge Parnas, PhD holds the NSERC/Bell Industrial Research Chair in the
Communications Research Laboratory, Department of Electrical and Computer Engineering at
McMaster University in Hamilton, Ontario, Canada. His primary area of interest is to promote
the discipline and body of knowledge to Software Engineers as practiced by engineers in other
fields. By studying the problems of software engineering since 1965, Dr. Parnas has developed
principles and methods that have value to real world problems. In recognition of his
accomplishments, he has received numerous honors, including election as a Fellow of the Royal
Society of Canada and a Fellow of the Association for Computing Machinery.

Dr. Parnas will share his experience and knowledge by leading the three workshop/tutorials
described on the next page.

David Lorge Parnas
NSERC/Bell Industrial Research Chair in Software
Engineering
Communications Research Laboratory
Department of Electrical and Computer Engineering

McMaster University Hamilton, Ontario
Canada L8S4K1
Phone 905-648-5772
FAX 905-648-5943
Email parnas@qusuntcrlMcMaster.CA

mailto:parnas@qusuntcrlMcMaster.CA

ZO: April 11997, 09:00 - 11:00 am, TTC Auditorium
"Design Through Documentation: The Path to Software Quality"

In traditional engineering design, a series of documents precedes the actual construction of the
product. These documents permit review and analysis, then after revision, serve as input to the
next phase. When the (inevitable) errors are discovered and changes are required, the design
documents already on file are updated and reviewed again. Each new refinement is reviewed
against the previous documents.

In software design this "waterfall" method is almost never applied. Although it is appealing,
practitioners are not able or willing to write precise documents. Instead, they write vague blurbs
that are useless to those charged with the next steps and cannot be subject to rigorous analysis.

We will describe how precise, complete, and testable documents can be produced for software
and the ways that these documents can contribute to an improved software process.

Zl : April 11997, 01:00 - 03:00 pm, Bldg 823, Breezeway
"Inspection of Critical Software"

Software is devilishly hard to inspect. Serious errors can hide in a software product for years.
People are hesitant to employ software in safety-critical applications. Many companies are finding
correcting and improving software to be an increasingly burdensome cost.

This talk describes a procedure for inspecting software that consistently finds subtle errors in
"mature" software, software that is believed to be correct. The procedure is based on three key
ideas:

• The software reviewers are active not passive
• Reviewers focus on small sections of code.
• Reviewers proceed systematically so that no case and no section of the program gets

overlooked.

During the procedure, the inspectors produce and review mathematical documentation. The
mathematics allows them to check for complete coverage; the notation allows them to proceed
systematically and in small steps.

Z2: April 11997, 03:00 - 035:00 pm, Bldg 823, Breezeway
"Exercise & Discussion"

Participants will be given a small program and will apply the documentation and inspection
methods to them. This will be followed by a discussion of previous experiences in question and
answer format.

■ McMaster University ■ • McMaster University •

Design through Documentation:
The Path to Software Quality

David Lorge Parnas
NSERC/Bell Industrial Research Chair In Software Engineering

Communication! Research Laboratory
Department of Electrical and Computer Engineering

McMaster University Hamilton, Ontario Cauda LSS 4K1

Abstract
In traditional engineering design, a series of documents
precedes the actual construction of the product. These
documents permit review and analysis, then after revision,
serve as input to the next phase. When the (inevitable) errors
are discovered and changes are required, the design documents
already on file are updated and reviewed again. Each new
refinement is reviewed against the previous documents.
In software design this "waterfall" method is almost never
applied. Although it is appealing, practitioners are not able or
willing to write precise documents. Instead, they write vague,
blurbs that are useless to those charged with the next steps and
cannot be subject to rigorous analysis.
We will describe how precise, complete, and testable
.documents can be produced for software and the ways that
these documents can contribute to an improved software
process.

Communicat ion* R t M a r c h Laboratory
Sot twsr* Engln**r ing R»s*arch Croup

'eonntctng t»oty w * i praefbs"

The Goal: Better Software at Lower Cost

Software is a collection of software components.
• Nobody can build products as one big "blob"
• Everyone wants to reuse software components
• "Components are junk!" (industry leader)

What's the problem?
• Components are hard to reuse (hidden assumptions)

' • Components nave complex interfaces
• Components are not well documented
• The design process does not emphasize these issues.

Communl cations R*March Laboratory
Sortwar* Eng!n**ring R*s*arch Group

'ecrrwesno j rwor/ M i n e r * cac*

iVrifrvl re iliiW A(r t t t»SCn33 ^'frr
1
— 'if-, AfrtXmtBTSS

McMaster University ■ McMaster University ■

Why fs Software So Often a Problem?

Developers consistently linderestirnate the difficulty
of building software for longterm use.

They write software rather than design it.

« systematically, identify and record requirements,
• hold reviews of me requirements document,
• explicitly design, document and review software

structure,
• carefully inspect all designs and programs.

These steps are standard practice for all engineering
products other than software.
The steps are not taken for software because,

• "Software is easy!"
• The code is selfdocumenting!"
• "Software is just a set of instructions."
• "Anyone who knows the language can program."

Famous last words!

Communicat ion* R u a i r o h Laboratory
Sottwar* EngtrMtrtng R*s«*rch Oroup

•conntctngtHctywifipcictcr

Why Don't People Apply Engineering
Discipline to Software?

(1) Some don't have an engineering education.
(2) Some don't think it's necessary.
(3) Some don't know how to do i t

Why don't we demand that software people have
appropriate qualifications?
Experience shows that it is necessary.

In this talk I want to focus on how to do i t

Communications Rts ta r ch Laboratory
Sottwar* EnglnMring R*s«arcn Oroup

'coflntesn? V*oy wi inpr jcsc**

■«»rif—*«*• ■K'f— A4»flXtf9*0T2S «Witnrfnr iftiVw «*t9X!9»C73!

■ McMaster University • ■ McMaster University ■

The Relevance of Documentation

"We have better things to do than document"
"We sell code, not design documents."
But

• We cannot collect, review, or check requirements for
completeness unless we document them.

• We can't make, review, or live up to structural
decisions unless they are documented.

• "We can't inspect designs, without design
documentation.

• We can best inspect programs with the help of
program documentation.

Design through documentation is the key to better
software.

Communications Rmarch Laboratory
Sortwar* EnglM*ring R***arch Oroup

'amtctng ft*ory wtfi prscsc**

c;r~*'v' .K*~ Aprfl 3. B960735

Two Aspects of Better Software:

(1) Better design
(2) Better documentation

Two Aspects of Better Documentation

(1) Better design (easier to document)
(2) Using mathematics, which is

• more compact,
• less ambiguous,
• more useful (mechanically interpretable)

than natural language.

Two Aspects of Better Design

(1) Following Software Design Principles
(2) Raising consciousness: documenting design.

In other words, design and documentation are
irrevocably linked. They help (or hurt) each other.

Communications Rmarch Laboratory
Sottwsr* Engln**rlng R*s**rch Group

'eocnKtng thtory wioi practice"

rirrienrlnr 1K1W /iftaxoismas

')

McMaster University a « McMaster University

Writing Down Requirements

The most cosdy errors are those made early in the
process they are the hardest to change.

Misunderstandings about requirements lead to early
mistakes.

Pre:.; .miners need to be told what is needed.

They must also be told what is subject to change.

Requirements must be subject to review.

Safety reviews of software must be based on a
previously agreed statement of requirements.

Maintenance actions must be based on requirements.

None of these things is possible unless we have a
written statement to work with.

7 fiat written statement must be precise and
complete.

Communications R*s*aroh Laboratory
Software Enoln**dno R*M*roh Oroup

'ecnntetng theory mfftprtcftc*"

What's Wrong with Requirements Methods?

We think of requirements as a set of elements, each
element being one requirement.
Consider three such requirements.

• The output must be an integer.
• The output must be positive.
• The output must not be zero.

Consider an alternative formulation:
• The output must be a natural number

These are equivalent one requirement or three?
We cannot count requirements or list them?
If we try, we have no hope of checking for
completeness, consistency, correctness.
There is a better way, based on the basic model used
in control theory.

Communications R*s*arch Laboratory
Sortwar* Englnfring R*»*aroh Group

*corr>9Ctng theory Miffipractfe**

dcncadocjlloac AertixtmCTSS A**j*A~- .)|V». /vwvxmemxs

McMaster University McMaster University

How to document system requirements?

The first step is to:
Identify monitored variables (mj, m2, •••, m„).
Identify controlled variables (cj, Cj, •••, cp).
The primary monitored variables are things outside
the system whose values should influence the output
of the system. Examples:

• customer meter reading
• steam temperature
•time of day

The primary controlled variables are things outside
the system whose values should be detennined by
the system. Examples:

• what the operator sees
• what appears on a bill
•control positions

This is only the beginning, but for many projects you
cannot even find a complete list of these variables
and there is no agreement on what they are.

Comrnunfeatlen* R*s**roh Laboratory
Sortwar* Engin**ftnn R*s**rch Group

'comKtng ttaory »Ktl praetor*

Monitored and Controlled Variables Will Be
Added During The Design Process.

It is inevitable that the need for additional variables
will be discovered as we get into detailed work.
Further, new monitored and control variables are
asaied during the design process.
The primary monitored and controlled variables are
outside the system.

Sometimes we want to monitor the system itself, i.e.
measure things that did not exist before the system
was built.

Sometimes we may even want to control (adjust)
parts of the system.

As the design is developed, we may add these
monitored and controlled variables to the
requirements document,
It is essential that the document be updated.
Otherwise reviewers and maintainers are lost.

Communications R*s*arch Laboratory
Sottwsr* Engln**r lng R*s*arch Group

cccnacsng twoiy withprsctc"

.<»'r"<w l v * " A f r i & r o a o u s <Hign*lrr i t i iV i Apri>3.aM0T33

McMaster University McMaster University

Bringing Time into the Picture

All of these variables can vary with time.

For each scalar variable, x, denote the timefunction
describing its value by "x4".

The value of x at time t is denoted "x* (t)".

The vector of timefunctions (v^, v^,..., v*,,) will be
denoted by V " .

Contrary to the statements of some computer
scientists, there is no problem dealing with "real"
time.

Communications Rrssarch Laboratory
Softwar* Enoln**rlng R**«areh Group

'cainKtng Mory wittpna'ct"

Bringing Math Into our Tool Kit

The implementors need to know the following
relations:
Relation NAT:
• domain contains values ofm*. range contains values of £,
• (m1.^1) is in NAT if and only if nature permits thai behaviour.

This tell us what we need to know about the
environment

Relation REO:
• domain contains values of m1. range contains values off*,
• un t. £l) is in REQ if and only if system should permit that

behaviour.

This tells us how the new system is intended to
further issirkL what NAT(ure) allows to happen.
If we can describe these relations, we have our
system requirements written down.
We can get the "scary" math out of the documents
by using the right notation.

Communications R*s*arch Laboratory
Sottwsr* Eng!n**r!ng R***aroh Group

'comtcbng fttory wiffivacsc*"

■*"
;
rft'

<
~* 'Vi*** AprS 3. 75960733 ™—

T
jn •*'*~f April 31J9M 0733

■ McMaster University . McMaster University

Why Use This Approach?

(1) For all the "motherhood" reasons that we try to find
the requirements first.

(2) Because we can check for completeness.
(3) Because we can check for consistency.
(4) Because we have a precise description.
(5) Because we have a reviewable document
(6) Because we can often simulate the system.
(7) Because the design can be based on the document
(8) Because the programming goes much faster.
(9) Because the programmers work consistently and do

not duplicate each other's work.
(10)Because we will discover ways to simplify the system.
(1 !)Because we can build monitors for testing or

supervising the system.
Why not?

(12)Because it requires some training.
(13)Because it is a risky front-end investment that slows

down the initial part of development

Communications R«s*aroh Laboratory
Sortwar* Engln**rlng R*s*arch Group

'comKtng theory vnSi praetor*

How can we document system design?

i l denotes the vector valued time function
('Si i42> ••• V) with o n e element for each of the
input registers

&* denotes the vector valued time function
(0*1, 0*2, •••, 0*q) with one element for each of the
output registers

Document the following relations
Relation IN:
• domain contains values of m l, range contains values of i l

• (m1. i'̂ is in IN if and only if input device permits that hehavinur

It must be the case that
domain(IN) a domain(NAT)
Relation OTTT
• domain contains the possible values of a1

• range contains the possible values of £
• (o\ cl) is in OUT if and only if output device permits that behaviour

Communications R*s*arch Laboratory
Sottwsr* Eno,ln**rlng R*s*arch Group

'comtcbng theory with practice*

rirrifMnr tfiffrt AprilXl»6073S jWTynifw .Kff». A(t33.1M0733

McMaster University McMaster University ■

When Can We Skip System Design?

Sometimes the I/O devices are simple and we can
have simple relationships between the controlled and
output variables as well as between the monitored
and controlled variables.

In that case, we can use the systems requirements
document as a software requirements document

Many applications have this property.

In some, we can cheat and mix the two.

Communications R»s*aroh Laboratory
Sottwsr* Enoirotrlng RssMrch Group

'connectng theory *>3i praetor

Dividing the Software to Conquer Complexity

Small modules are easier to understand, if
the interfaces to other modules are simple.

To keep interfaces simple, "hide" the details inside
the module.

Use the requirements documents to help structure
the software:

• Some modules hide the requirements (REQ)
• some modules hide software decisions (which are not
in the requirements document).

• Some modules hide the hardware (IN, OUT)
These modules are support software.

These modules "create" virtual:
•data structures,
•devices,
•"actors",

"objects" that do part of the job.
It is at this stage that we have the best chances for re
use but we must document the interfaces.

CommunlcarJona R»s**rch Laboratory
Sottwsr* Engln**rlng R*s**rch Group

"conrwcsno theory with practice*
,urjf*"'' ****— Afrt3.1S»5073S <Wtsn<1n i l i i in A|rt3.75M0)33

a McMaster University ■ a McMaster University •

Documenting Module/Object Interfaces (1)

It is wise to design software by designing a set of
objects.
• Each object is implemented by a module (a set of

programs) using a data structure that is "hidden from"
(never used directly by) programs outside the module.

• Changing the state of the object or getting information
about the object's state, is only done by invocations of
programs from the module.

• An object is a finite state machine.
• The input alphabet of an object is the set of operations

one can perform upon an object
• The output alphabet of the object is the set of values

that can be returned by such operations. •
The state of an object can be hidden.
Describing or specifying objects is very different
from describing or specifying programs.
Hiding the state means that we must discuss event
sequences, but it makes future changes easier.

Communications R*s*aroh Laboratory
Softwar* Engtn**rlng Rtsaarch Group

'connecting fteoty with practice*

Documenting Module/Object Interfaces (2)

Blackbox interface" descriptions must be written in
terms of (input output) sequences (traces).
• A trace" of a finite state machine is a finite

sequence of pairs, each containing a member of
the input alphabet and a member of the output
alphabet

• A trace, T, is considered possible for machine M,
if M could react to the sequence of inputs in T by
emitting the sequence of outputs in T.

Descriptions and specifications of objects can both
be written as predicates on classes of traces.
These predicates are the characteristic predicate of
an extension function/relation.
We organise our descriptions in terms of:
• A canonical abstract state representation, and
• single event extensions of those traces.
Result: a systematic, reviewable reference document

Communlcasons R***aroh Laboratory
Software Ertglntwino. R*s*arch Group

'comectng ffteoiy mtit practice*

ofrfrnrinc iliiW AVBX13960733 ***** 'f^lt*** *'l*fl*T April 3. TJM 0733

■ McMaster University ■ McMaster University

12 Element Queue
(I)SYKXOC
ACCESS PROGRAMS

ProxnoaNane : VgJue
ADO =

REMOVE :
FRONT : <a«ce3>

Aijll
oou*°>

(2)CAN0KICALK<FrouUU*s

(Tcp r W f . ,) A (0 S a S l 2)

<]) EQUIVALENCES

repADD(a) „

repJREMOVEs

repJRONT

val(Front) = aj

cooditioot

-".
"*'-

ttpmtlcBl
r-p, t. imji%

• K J M C *

OOOdittflU

•*?--

TCP*.

cquivtleot
tejK^capv/%

•*r

coodixioQi

fcottt(tcl>)12
lcopa(icp)<12

crasvlksc

K 8 . « f u D «
rq>(i)

Communications Rasaareh Laboratory
Sottwsr* EnoJn**rlna R*s*srch Group

'eomectng theory nist practice*

Design Reviews for Module Interfaces

Lots can be wrong with an "innocent" looking
interface,;

• The implicit assumptions can be wrong.
•The implicit assumption can be inconsistent
• Interfaces can force inefficiencies on the system
• Interface assumptions can be likely to change
• Interface descriptions can be ambiguous

Interface decisions are early decisions.

Interface decisions affect more than one module.

Interface documents deserve serious thought!

They tend to be casually reviewed.

Communications Rasssrch Laboratory
Sottwsr* Engln**rlng Rsstarch Group

"conrMCSno VMcry malpractice*

llrrirfl'I'*' irlilfrs ApS3,>»60733 deuaodflCJlioes AprSXS»0733

McMaster University McMaster University

Effective Reviews are Active Reviews

A dilemma:
• Errors in interface documents should be found before

the documents are used.
• Errors in interface documents are often found only

when the documents are used.
Another dilemma:

• Everyone's work requires review
• It's easiest to say "OK"
• Reviewer's work is not reviewed.

One more dilemma:
• No individual knows enough to review all aspects of

a design.
• When working in a group, people tend to relax in the

knowledge that others are also working the problem.
Solutions:

• Make the reviewers use the documents.
• Make the reviewers answer questions.
• Have specialised review questionnaires. Ask the

reviewer about things that they know.
• Make the reviewers provide specifics not one bit

Communications R*s*arcti Laboratory
Sottwar* Engln**ring R*s*srch Group

'connecting theory with practice*

Documenting Internal Design

We need to document:
(1) The complete data structure.
(2) The interpretation of that data structure

(known as an abstraction function).
(3) The effect of each program.

Communications R*s*srch Laboratory
Sottwsr* Engln**rtng R*s*areh Group

"conrwcfin*; theory with practice*

*Je*B*tD<V*4* l l i rV* Ap4IXt993 0 7 3 3 A*** i j p *\^fi, ali A*~* AprflXUMOJS*

McMaster University McMaster University

Design Document for Queuel2: Implementation 1 Easca]

{IjnATA STRUCTURE

CONSTANTS

THES

Cinirjiw Hmc
~H~m

scad*.
B

j Tr?.*—
? •***»

Drftao.
ansy[O.Q&lzi>lJ of srttgor

1>pc ScSofaarAiMC
«] * >

f*. f j* * * w.t

*> ' "

**™64»
DATA

».*
FULL

I s o l W t a
SoalOrt

D ICWi

■ S B I C H

Abbsviuico:
« 4 (« < (R « F + 1) V (F « Q S 1 Z E 1) A (R « 0)
"«<f r * rRT*DvrPQSIZB. l)ArRP)
i 4 * i ' f (R ' ? 4 l) v (F Q ^ l) A { R ' 0)
<qo ff q^xQ.QSZZ&>lxOLQSIZE>l*)tbobleso

(3) ABSTRACTION FUNCTION
iht2*t»-*4XfX3X:t2>

afTTMTAPXHJli) «
(«r>vrtrm«(rea)
C.rtl»vFlXUA(P<S)

•((•ArOLL

<DATAtPD<DATAjFlD._..OMI><ltI)
OMTAt̂ «(T*r*Uirprj'PAS*h[QSlZSnL (DATA***)

Otaxrr

Communications R*s*anrh Laboratory
Sottwar* En*gln**rlng R*s*aroh Group

'connecting tnsory wHt practice*

Describing Programs

A program is a part of a module.
We wish to describe its effect on the module's
private data structure.

We distinguish 3 types of descriptions:
• constructive descriptions, which show how a

product is constructed from other products,

• behavioural descriptions, which describe the
visible behaviour of a product without discussing
how it was constructed, and

• specifications, which describe the requirements
that a product must meet.

In my view this is a very important distinction that is
ignored by the "formal methods" community.

Communications R*s*a**ch Laboratory
Sottwar* Engineering R*s*arch Group

'conrTscanj theory with practice*

;
fr*

H
** fT,*.w AF1XB960733 <

V**'iT'f?r rK'tf ApgXtMCt33

■ McMaster University a a McMaster University •

Relational Program Descriptions and
Specifications

Users need to know the relation between the starting
values of variables and the final values of variables.
Users need to know the starting states for which the
program is guaranteed to terminate.
We base our work on Harlan Mills' ("Cleanroom")
program function, but

• Represent the function in a more readable tabular
format

• Deal properly with nondeterminism.
• Carefully distinguish between relations as specifica

tions and relations as descriptions.

It is possible to produce short, readable specifica
tions of programs and review them before writing
the actual code.
This forces designers to think about issues that they
tend to overlook (such as error response).

Convnunfcstlons R*s**roh Laboratory
Sottwar* Enojmwlng R*s*arch Oroup

'connecting theory with practice*

(3) PROGRAM FUNCTIONS

•<>« j A*»H
[CQmNTT |
SCASO \ <Ktt*rr>

tcuxova |
PCJXOKT j

V . i *

<p> —>*^f>
*a*fj>x *arMgo> —**^i>

<rp> »«P>
<qo —*>*a**>K«*aus*r>

•tCAXOtfi * KCrAAVJOBX'jniCtDATAQDIAltCUA

1 ••><•>
j TOLL

DATA*tX*l • j OATA***)
R j 1
rULL" ■ j TOLL

ca iO)A

•
QSZ51

U i

"* ~*TCLL " | T O L L ""

•
osszt

*7>«Q*aZ&2

•DATATXl
•x

•TOLL

•
Ttt
fcW

•
•xi
r

pCXZUOVB * XCOMTAJQA

•
r .
FULL'S

,{7 y*"1,
CT-O
Qsasi

*>«

TULUA

*r>o>
T l
U «

C«<ffA*.*PULL)

T
TOLL

•tUXOKT (KCKJFOU.OATA.nA

" " » * "
—'.if* v'FOU.

•DATAff)
(Wp.A.TCLU

JAXSftSyft::̂ ^

Communlcatfona R»s*arch Laboratory
Sottwsr* Engln*Hlrt*** R***arch Group

'comecting theory with practice*

rlrijn
1
— rlfTf* April J. J»S 0735 A^.'jw.W .*■,•<»>.

McMaster University McMaster University ■

The "Laws" of Programs

Do Software Engineers have laws for programs that
correspond to Kirchoff's laws for circuits?
Yes!

The basic laws of programs are essentially the
axioms of the algebra of (LD)relations.
If you. accept the fact that LDrelations provide
adequate descriptions of program behaviour,
sequential execution is composition.

The laws are the classic results about relations.
These laws allow you to find behavioural descrip
tions of constructed programs if given:
• the constructive description of those programs and,
• the behavioural descriptions of the primitive programs.

With these laws, all reasonable specifications and
descriptions are compositional. Composition is
not Conjunction.

Communications Rnsaren Laboratory
Sottwar* Engbwtring R*s«*rch Group

•connecting tteory wit) practice*

Imperfection of Documents?

When engineers work with physical products they
must use imperfect implementations of abstract
specifications.

With software, imperfection is not always necessary
but it may be convenient and acceptable.

The imperfections must be "bounded" and explicidy
limited in their applicability.

For example, we may ignore the limits on
representations of numbers because we only work
with a limited range of numbers.

It is important to include this in the specification.

No new mathematics is needed for this. Implication
does the job.
The use of mathematics in engineering does not
imply a belief in perfection of programs or maths.

Communications Rmarch Laboratory
Sottwar* Engtn**rtng R*s«*rch Group

'connecting theory witii practice*

Wignrlnr iliV* ApSXISM 0733 Octi{DdfiCjSrlc* Afrax*t»6*n33

http://KC-KJFOU.OATA.nA

■ McMaster University >' McMaster University

What New Notation do we Need?

Although the mathematics is old, and the abstract
notation for defining things is old, the applications
are new.

We have to describe relations and functions that have
nonheterogeneous ranges and domains and can
have ar'drscontinuity at arbitrary points.

We have found a variety of ■tabular notations to be
useful.

Ryszard Janicki, has found new ways to unite these
tabular notations.

Jeff Zucker and our students are implementing tools
for transformations.

We are trying to:

• Make the documentation easier to produce
• Make the documentation more useful

Communlcatlona R*s*arch Laboratory
Sottwar* Engtmerlng R***arch Group

'connecting theory with practice*

A Simple Conventional Expression

(((3 i, B[z] =x) A (B[j'] = x) A..<present' =
true)) v ((V i, ((1 £ i < N) => B[i] *
x))A(present' = false))) A (*X = X' A *B =B')

A tabular expression:

Specification for a search program
(3/.B[i]x) (Vi,((l£i£N).

BH*x))

J
present's

BD"] = x
true

true
false

NC(x,B)

The above is one of many kinds of tables!
Simple tables like this understate the advantage.
These have "practitioner appeal".

Contmunlectlons Rtwtrch Laborttory
Sottwar* EnglDMdng RtMarch Group

"conrwc&np ffmory wifft praetor

•rW'JwiJH** r T T *

* Afrit X WG 07*35 l-**imr*Arr- *1^fj^a A (r t X » » 0 7 0 3

■ilMcMaster University ■ a McMaster University m

Inspecting Programs

Its the code that "hits the road."
Getting the requirements right the structure right
the interfaces right etc. are all important but we
have to check the code.
The same review principles apply. T"

• Make me reviewers use the documents.
• Make the reviewers answer questions.
• Have specialised review questionnaires. Ask the

reviewer about things that they know.
• Make the reviewers provide specificsnot one bit

We want to compare the completed programs with
previously reviewed specifications.
We ask the reviewers to produce descriptions.
We then show that the descriptions match the
specifications.
It's hard work but it produces results.

• We get good documentation for future use
• We find errors in the best industrial code programs

that were considered correct

C o m m u n e < r a R*s*aroh Laboratory
Sot tw i ro U^Tjterlng R*s*aroh Group

'connecting theory with practice*

Is it Teachable/Learnable/Practical?

Its the way to start first year engineering students
have learned to read and implement from specsJ

Tabular notation no theoretical advantage, but a
great practical advantage.

Short courses introduced these ideas to the nuclear
industry in Canada. They now teach their own.

People can apply the inspection technique after a 3
4 day course.

Critical Mass in a company is essential. Writers
without readers are useless.

There is lots of room for improvement We will
identify these faster if you work with us.

Communications R*s**reh Laboratory
Sottwsr* Eng[n**ring R*s«srch Group

'comeang theory with practice*

A^jmAf* fKA*. AFSX»*»r733 Art^frfArr* «Tir*t*y Ap/BXttt*: 0733

■ McMaster University ■ McMaster University

Sets for Describing Programs

Everything about digital computers can be
explained in terms of finite sets; the set concept
is viewed by many as the most basic concept in
mathematics.'

A set is a collection of elements from a
previously defined set (sometimes called the
universe).

The elements in the universe must be known
before other sets are defined. Every application
of set theory must begin with a careful
description of the Universe from which it's
elements are drawn.

Sets drawn from different universes cannot be
compared.

Set elements are assumed to have previously
defined attributes.

The famous anomalies can be avoided.

Call it oluJl set theory.

i w i i . . |ii |i if ' l i ^ f f

Communications Research Laboratory
Sottwar* Engineering R*s*arch Group

'connecting theory wttit practice*

1/19

Notation for sets:

{x,y,z} ■ enumeration a set containing x,y, z
I such that
{x I <condition>}The set of elements such that x
satisfies the condition.
A c B A is a subset of B (could be identical)
A c B A is a subset of B and smaller than B
A u B set of elements in either A or B
A n B set of elements in both A and B
A —B set of elements of A that are not in B
 (B) set of elements in Universe not in B
(the complement of B)
X e A X is an element of A
{} an empty set
Only combine sets from the same Universe.
Even empty sets must have an associated
Universe.

Communications Research Laboratory
Sottwar* Engineering R*s*arch Group

'connecting ffteory with practice*

2/19

McMaster University McMaster University

Relations
What is a relation (e.g. >. <. =)?

A set of ordered pairs.

What is the domain of a relation?
The set of elements that appear as the first
element of a pair in the relation.

What is the range of a relation?
The set of elements that appear as the second
element of a pair in the relation.

One need not enumerate all the pairs to describe
a relation!

If R is a relation and (x,y) e R, we can write
xRy.

¥1*1 f i M II * *^l '""*f

Communications Research Laboratory
Sottwar* Engineering R*s«arch Group

connecsng theory wtn practice

3/19

Examples of relations

Both elements taken from the set of real
numbers.

(1) A={(x,y)lx>y]

(2) B = {(x,y)lx = y}

(3) C = A u B

(4) D = {(x,y)|x xx = 4}

(5) E = {(x,y)|xry = 4}

Fa*™*? 141997

Commtnlcatlons Rtstarch Laborfttory
Sottwar* EnglnMting Rtitarch Group

'eotnuctng trfcty wiffipnctfc**

4/19

McMaster University McMaster University

What is a function?

A function is a relation, F, such that if (x,y) is in
F, and (u,v) is in F, and x = u, then y = v

If F is a function, and (x,y) e F, we can write
y = F(x).

F(x) would not generally denote a single value if
F were a relation that was not a function.

Since all functions are relations we can also
write x F y.

In many applications it is important to make sure
that a relation is a function. It assures us that a
description is unambiguous.

A partial function is a function whose domain is
smaller than the stated universe.

Communlcatlona R*s*arth Laboratory
Sottwar* Engln**ring Research Group

'connecting tteory will practice"

5/19

Examples of functions

Both elements taken from the universe of real
numbers.

A= {(x,y)ly = x + l } - written A(x) = x +1

B = {(x,y) I x = y} - written B(x) = x

C = {(x,y) | y x y = xandy_^0}
- written C(x) = + Jx

Communications Research Lsborslory
Sottwsr* Engineering Resesrch Group

•comectng theory with practice*

6ns I**r—jllS.»»7

McMaster University McMaster University

What is a Predicate?

A function whose range is a subset of
{true.false}

Predicates are often described by predicate
expressions.

Examples:

x > 0 characterises

{... (-ifalse), (0/gfo?), (l^ae) , (2jm£)...}

X-2'~ describes
{... (2/ftfo0,(l,feag), (0,try£), (-lfate)...}

(X=X2) A (X > 0) describes
{... (2fglse\(Ltrue\ (.Ofalse), (-l/ofee)...}

Communlcstlons Research Laboratory
Softwars Engineering Research Group

'connecting theory with practice*

7/19

Characteristic Predicates

Every set has a characteristic predicate.

The domain of that predicate is the universe
from which the set is drawn.

fx. true) is in the predicate if x is in the set being
characterised.

Predicate expressions can describe, sets,
functions, relations in this way provided that the
universe is clearly specified.

fia&Lcharacterises the universe, U

false characterises the empty set, {}

Predicate expressions are described more
completely later.

Mn«-/kS.U97 •mf+e-e-TrrmA fl>Ae-f

Communication* RtM-vch Laboratory
Software Engln*«ring RaMarch Group

'comacbng ffmcry with practice

8/19 Hnaqr 1&»97

McMaster University McMaster University

Characteristic Predicates Describing Relations

{(x,y) I x < y) described by x< y

{('x,x') I x'='x +1} described by x' = *x + 1

The use of predicate expressions in this way
requires clearly stated conventions about the
universe and the naming of the elements of an
ordered pair.

'x can be read "x before" or "x left".

x' can be read "x after" or "x right".

A predicate expression is not a predicate.

A predicate expression is not a set

A predicate expression is not a function or
relation. Predicate expressions can describe:

predicates
sets
functions
relations

aupeapfffT llicV*l

Communications Research Laboratory
Sottwar* Engineering R*s**rch Group

'connectng theory with practice*

9/19

Summary
•A relation is a set of pairs (2-tuples).
•The set of values that appear as the first element
of a pair is called the domain of that relation.
•The set of values that appear as the second
element of a pair is called the range of that
relation.
»A function is a relation such that for any given
element x, in its domain, there is only one pah-
fey) in the function.

•If (a,b) is in the function F, "F(a)" means b, often
called "the value ofF at a", may include tuples.

•It may make sense to write "F((a,b))",
"F((a,b,c)r, and "F(F((a,b,c)))".
•Functions whose domain is smaller than the
universe are celled partial functions
•Most of the functions that arise in software
development will be partial functions.

•A predicate is a function whose range contains
no members other than true andfalse.
•For any set X, the characteristic predicate of X
is a predicate whose domain is the universe from
which X is drawn, and whose value, for b, is true
if and only if b is a member of X.

Communications Research Laboratory
Software Engineering Research Group

'connecting titeory withpractce*

10/19 K e n - ; 16.1997

McMaster University a McMaster University

Definition of Predicate Expressions

Built-in functions and predicates are named:

To simplify the presentation we shall assume
that all functions and relations have simple
names.

fj,,.., ffc are the names of functions (sets)

Rj, ..., Rrr, are the names of the characteristic
predicates of relations.

wmo i|w A liny*

r'&Ttrrrunlcatlon* Research Laboratory
Software Engineering Research Oroup

'connecting tteorywiti practice*

11/19

Definition of Predicate Expressions
Terms are constructed from:

A finite set of mathematical variables, x-j,..., xu

A finite set of constants, C

The constants are strings. Each constant
represents one member of the universe, U.

"V" stands for a comma separated list of terms
(see below).

A function application is a string of the form
fj(V).

A term is either a constant, a variable, or a
function application.

jrtmjtfifrpewA «l]*5f*

Cornmunleaflona Rasa-arch Laboratory
Sottwar* EnQlnatring Raaaarch Group

'ccnrMcfin? ff»ory mftprje&'ca*

12/19

■ McMaster University a • McMaster University •

Definition of Predicate Expressions

A primitive expression is a string of the form
Rj(V).

Nothing else is a primitive expression. ,

All of our expressions will be built of primitive
expressions.

Note that primitive expressions, since they
denote predicates, will always evaluate to either
true orfalse.

Communications R*s*srch Laboratory
Sottwar* Engineering Research Group

'connecting theory Hsflj practice*

13/19

Predicate Expressions

All primitive expressions are predicate
expressions.

If P and Q are predicate expressions and xk is a
variable, then

(Vxk,P),
(3xk,P),
(P)A(Q),

(PMQ),
(P)=*(Q),
(P)

are also predicate expressions.

The previous definitions tell us what we can
write, i.e. which expressions are predicate
expressions; they do not tell us what these
expressions mean.

Communications Research Laboratory
Software Engineering Reaearch Group

'connecting theory with practice*

14/19

McMaster University a McMaster University ■

The Meaning of Predicate Expressions
Evaluating terms:
An assignment, a, is a list specifying values for
all the variables. We evaluate expressions for a
specific assignment

(1) if I is a constant representing t' (a member of.U), the value
of the term t for assignment a, (written "vaKt.a)"), is t \

(2) t is a variable, x i t the val(t^) is the value specified for that
variable in a.

(3) if t is a function application, ffcfV), we must evaluate each of
the terms in V until we have obtained the values that they
represent.

(4) V denotes the result of this evaluation

We distinguish the following three cases:
(3a)if V* is in the domain of fk, val(ta) is f̂ Cv"),
(3b)if V is not in the domain of f̂ , val(ta) is not

defined.
(3c)if any of the elements of V is not defined,

■ the value of the function application is not defined.

Commaacatlona Research Laboratory
Software Engineering Research Group

'connecting neory win practice*

1509

The Meaning of Predicate Expressions

Evaluating primitive expressions:

For a primitive expression, R,(V), we first
evaluate all the terms in V to get V , and
distinguish the following three cases:

(a) If V is in R„ the value is true.
(b) If V is not in R„ the value is false..
(c) If any element V is not defined, the value

is/afcg.

jptpcctp KA. iKdca

Communlestlona Rasaarch Laboratory
Softwara Englnaarfng Rasaarch Group

'eomactng fftnory rn'mprart'ca"

1CV19

a McMaster University a a McMaster University a

Evaluating Predicate Expressions

If P and O are predicate expressions.
(a) (VXJJ.P) is true if P is true for all values of xk
in our Universe. Otherwise, it isjelse.
(b) (3xj£,P) is true if P is true if there is a value
of Xfc in our Universe for which P is true.
Otherwise, it is false.
(c) (P)A(Q) is true if both P and Q are true.
Otherwise, it isjffifee.
(d) (P)v(Q) is true if either P or Q are true.
Otherwise, it is false..
(e) -i(P) is true if P is false. Otherwise, it is
false.
(f) (P)=>(Q) is true if either P is false or Q is
true. Otherwise, it isj^sg.

The symbols are read, "for all", "there exists",
"and", "or", "not", and "implies".

icipflgpita'jli'W

Communications R*s*arch Laboratory
Softwar* Engineering Resesrch Group

'connecting theory witit practice*

17/19

Identities for Predicate Expressions

If P and O are predicate expressions.

(a) -.(VxfcP) = (3xk,-,(P))

(b)-n(3xk,P)=(Vxk,-^(P))

(C)-,«P)A(Q)) = (-n(P))v(-,(Q)) .

(d)-,((P)v(Q)) = (-,(P))A(-,(Q))

(e)(->(P))v(Q)=(P)=*(Q)

Parentheses can sometimes be omitted if you
remember that "-i" is stronger than "A" is
stronger than "v"which is stronger than "=>".

For example, we can write
"a A-. b" instead of "(aM-. (b)),

and "-. bAa" instead of "(-. (b)A(a))"

"i*''fr"j,"Uf

Communications Rasaarch Laboratory
Sottwar* EngJnatring Rasaarch Group

'ccm+ctng thtory mffipractfca*

13/19 N n ^ M e W T

McMaster Unlvorstty

Examples of Predicate Expressions

((x>0) A (y = Vx)) v ((x<0) A (y = V^)) (1)

((x>0) =>(y = VX))A((X<0)=> (y = -£x)) (2)

((y = ̂) v (y = ^)) (3)

(5i,{(1<i<n)A('A[i] = 'x)))(4)

(3t ((1</<n)=*('A[i] = 'x)))(5)

((1<n) A (Vz, ((1<i<n) => ('A[/]<'A[/+1]))) (6)

Exercise

Try to write English statements corresponding to
the above.

Iflliaja, Minn" fli*^-**

Communications Rasa-arch Laboratory
Sottwar* Englnaartno Ras-sarch Group

'eonntcong 9%+ory w&i praetor

19/19

m McMaster University McMaster University

Software Inspections We Can Trust
David Lorge Parnas

NSERC/Bell Industrial Research Chair In Software Engineering
Communications Research Laboratory

Department of Electrical and Computer Engineering
McMaster Univeraitjr Hsmfllon, Ontario Canada LSS 4KI

Software is devilishly hard to inspect. Serious errors can hide
for years. Consequently, many are hesitant to employ software in
safetycritical applications and all companies are finding
correcting and improving software to be an increasingly
burdensome cost,

This talk describes a procedure for inspecting software that
consistently finds subtle errors in software, software that is
believed to be correct The procedure is based on four key ideas:

• All software reviewers are actively using the code.
• Reviewers exploit the hierarchical structure of the code rather

than proceeding sequentially through the code.
• Reviewers focus on small sections of code, producing precise

summaries that are used when inspecting other such sections.
• Reviewers proceed systematically so that no case, and no section

of the program, gets overlooked.
During the procedure, the inspectors produce and review

mathematical documentation. The mathematics allows them to
check for complete coverage; the notation allows the work to
proceed in small systematic steps.

Communications R*s*sroh Laboratory
Software Engln**ring R*s«arch Group

'connecting theory withpractice*

Responsibilities of (Software) Engineers

• To thoroughly understand the properties of their
products.

• To follow established rules of good practice
when designing and building products.

• To apply accepted theory where it has been
shown to lead to better, safer products.

Engineering is Not Management
The art of management is the ability to get things
built without knowing exactly what they are.
The engineer is expected to thoroughly understand
the properties of the product.
Software projects are hard to manage especially if
they are badly designed, but...
Unless we have good Engineers, the best managers
will not be able to successfully manage these
products.

Communications Research Laboratory
Sottwar* Engineering Resoaroh Group

'connecting theory withpracSce*

T I . I I ■ itt .^f'*>* r*m,ll.tm2ia.

McMaster University McMaster University

Why is Software so often a Problem?

Developers consistently underestimate the difficulty
of building software for longterm use.

They write software rather than design it.

They do not:
• systematically, identify and record requirements,
• hold reviews of the requirements document,
• explicidy design, document and review software

sfracture,
• carefully inspect all designs and programs.

These steps are standard practice for all engineering
products other than software.
The steps are not taken for software because,

• "Software is easy!"
• "The code is selfdocumenting!"
« "Software is just a set of insauctions."
• "Anyone who knows the language can program."

Famous last words!

Communications R*s*arch Laboratory
Sottwar* Engineering R*s**roh Group

•connecting theory mthpractice'

Why Don't People Apply Engineering
Discipline to Software?

(1) Some don't have an engineering education.
(2) Some don't think it's necessary.
(3) Some don't know how to do it

Why don't we demand that software people have
appropriate qualifications?
Experience shows that it is necessary.
Why aren't software designers required to be
Engineers?
Why do we continue to think of them as scientists
and to educate them accordingly?

CornrramlcBtlons Rasaarch Laboratory
Sortwar* Engineering Researoh Group

•connecting theory withpracSce*

j |M| . . |P «*LW I t . 199721:34 ■ '■ii.w*n .y*
1
** Mnsy IS, 19972134

http://Ti.ii

■ McMaster University a a McMaster University ■

Why Don't Engineers Apply Mathematics.
and "Theory" to Software Products?

The last 30 years have seen great advances in our
understanding of software science.
Programs written by most engineers have not taken
advantage of this theory.
Programs written by most other programmers do not
reflect this theory.

• Many don't know the theory.
• Those who know it don't know how to apply it
• Much of it is difficult to apply, perhaps even not

applicable.
• Deals with impractical languages
• Deals with unbounded memory size
• Uses unnecessarily difficult notations
• Designed for the wrong purpose

■ .here is a need to connect theory to practice.
t .Let's start with software inspections.

Communications Research Laboratory
Sottwar* Engineering Research Group

•connecting theory withpractice*

When is Software Critical?

Critical is not necessarily "safety critical"
Other types of critical programs:

• Mass distributed programs in warranty situations
• Critical kernels in many systems
• Financial Systems
• Security (Privacy, Data Protection) programs

The common property of all of these examples is
that the cost of a failure is high.

If you value your reputation, your work may be
critical.

Cornmunlcationa Research Laboratory
Sottwar* Engineering Research Group

'connecting theory with practice'

Fftaa-OTlfc 19972134 F-ta**7>419?7U'M

McMaster University

The Critical-Software Tripod

<J) Precise, well organised, mathematical
documentation with systematic review

(2) Extensive Testing
• Systematic Testing-tTuick discovery of gross errors
• Random Testing -discovery of shared oversights and

reliability assessment
(3) Qualified People and Approved Processes

The Three Legs are complementary
The three legs are all needed.
The stool falls over if any leg is forgotten.
The third leg is the shortest
li's the shortest leg that we should worry about.
Today we discuss only leg (1).

Communications Research Laboratory
Software Engineering Research Group

'connecting theory with practice'

McMaster University

Why Conventional Reviews are Ineffective

(1) The reviewers are swamped with information.
(2) Most reviewers are not familiar with the

product design goals.
(3) There are no clear individual responsibilities.
(4) Reviewers can avoid potential embarrassment

by saying nothing.
(5) The review is conducted as a large meeting

where detailed discussions are difficult.
(6) Presence of managers silences criticism.
(7) Presence of uninformed reviewers may turn the

review into a tutorial.
(8) Specialists are asked general questions.
(9) Generalists are expected to know specifics.
(10) The review procedure reviews code without

respect to structure, (n lines per hour)
(11) Unstated assumptions are not questioned.

Communications Research Laboratory
Sortwar* EnglriMring R*s*aroh Group

'connecting theory withpractice'

MB 11 * ' * ^ " S i * - * Mnqr WS972134 hbnaylt, tSOlHO.

McMaster University a McMaster University

Effective Reviews are Active Reviews
A dilemma:

• Errors in programs and design documents should be
found before the documents/systems are used.

• Errors in programs and documents are usually found
when the documents are used.

Another dilemma:
• Everyone's work requires review!
• It's easier to say "OK" than to find subde errors!
• Reviewer's approval is not reviewed.

One more dilemma:
• No individual can review all aspects of a design.
• When working in a group, people tend to relax in the

knowledge that others are also working the problem.
Solutions:

• Make the reviewers use the documents.
• Make the reviewers document their analysis.
• Have specialised reviews. Ask the reviewer about

things that they know.
• Make the reviewers provide specifics - not just a bit

Communications Research Laboratory
Softwsrs Engineering Research Group

•connecting theory with practice'

Previous Work on Inspections

Best known approach Fagan - 1976.
Many followers - new book by Gilb.
Explicidy focus on the management aspects.

• Who should be there?
• What are the roles of the participants?
• How long is a meeting?
• How fast do you work?
• Forms for reporting errors?

Read the code in sequence and paraphrase.
Paraphrases are informal.
Most observers find these more effective than
conventional reviews or walkthroughs, but...
... can we do better?

Communication* Research Laboratory
Software Engineering Research Group

'connecong theory withpractice*

capcrtR riiiire iis^n iTtrTiri-f T*nmjU.**7t*lM

McMaster University a McMaster University a

Parnas/NRL/AECB/AECL/Ontario Hydro

Focus on the engineering side.

Depend on hierarchical decomposition rather than
sequential reading.

Use mathematical notations to provide precise
descriptions rather than informal paraphrases.

Produce useful documentation as a side effect

Proceed much more quickly if the documentation
was already produced by the developers.

Insures that cases and variables are not overlooked.

Applies simple mathematics to check for
completeness aspects.

Communications Research Laboratory
Software Engineering Research Group

•connecting theory withpractice*

Reviewing Design Documents

Base the review process on the nature of the
document
Begin by identifying desired properties.
Prepare questionnaires for the reviewers. Ask them
questions that:

• make them use the document
• make them demonstrate that the desired properties

are present
• ask for sources of information to support the answers

to other questions.
For example:

• Ask reviewers to identify the domain of the program
• Ask reviewers to identify "error" cases.
• Ask reviewers to explain why the behaviour required

for each case is the desired behaviour.

For more information read [1].

Communications Rasaarch Laboratory
Sottwar* Engbeering Research Group

•connecting theory withpractice*

| IHjM. |P .T. l t .1. Hn-ay IS. 7997 2L34 F*m-*7 It. 19972131

■ McMaster University « ■ McMaster University ■

Inspecting Programs

It is the code that "hits the road".
Getting the requirements right, the structure right,
the interfaces right, the documentation right, etc. are
all important but we have to check the code.
The same review principles apply, viz:

• Make the reviewers use the material they review.
• Make the reviewers answer questions.
• Ask the reviewer about things that they know.
• Make the reviewers provide specifics.

We compare completed programs with previously
reviewed specifications.
We ask the reviewers to produce precise
descriptions.
We then show that the descriptions match the
specifications.
It is hard work but it produces results.

• We get good documentation for future use.
• We find errors in the best industrial code programs

that were considered correct

Communications Research Laboratory
Sottwar* Engineering Research Group

•connecting theory withpractice'

Our Code Inspection Process

(1) Prepare a precise specification of what the cod
should do a program function table.

(2) Decompose the program into small parts
appropriate for the "display approach" [2].

(3) Produce specifications as required for the display
approach.

(4) Compare the "top level" display description with
the requirement specification.

Observations;
• You can't inspect without precise requirements.

• Step 2 would already have been done if you use
the display method for documentation.

• Step 3 is truly an active design review

• All reviewer work is itself reviewable.

• If you did not already have i t the byproduct is
thorough documentation.

• It's a bunch of small steps and very systematic.
Communications Rasaarch Laboratory
Software Engineering R*s*srch Group

•connecting theory withpractice*

rnirrriB tlides t j tnay IS. 1997 2134 ixspcctBalidcs

McMaster University ■ McMaster University a

Descriptions vs. Specifications

An actual description is a statement of some actual
attributes of a product or set of products. o
A specification is a statement of all properties
required of a product or a set of products. o

In the sequel, "description", without modifier, means
"actual description".
The following are implications of these definitions:
• A description may include attributes that are not

required.
• A ĵecification may include attributes that a (faulty)

p. ./'act does not possess.
• I V statement that a product satisfies a given

specification may constitute a description.
The third fact results in much confusion. A useful
di:: action has been lost

Ccrnrnunlcatlona Rasaarch Laboratory
Software Engineering Research Group

•connecting theory withpractice*

Descriptions vs. Specifications

Any list of attributes may be interpreted as either a
description or a specification.
Example:

"A volume of more than 1 cubic meter"

This could be either an observation about a specific
box or, a statement of the requirements for a box that
is about to be purchased.
A specification may offer a choice of attributes; a
description describes the actual attributes, but need
not describe the product completely.
Sometimes one may use one's knowledge of the
world to guess whether a statement is a description
or a specification.
Example:

"Milk, badly spoiled"

Guessing is not reliable. We need to label
specifications and descriptions.

S^
CommuntcatJons RwNJcb Laboratory
Sottwar* EnghMring R#***»reh Croup

"cottnacartg theory wttipracHc*"

iaiprnBiIidoc F*r»«7ltS,!S972J:M uvpoct&fKdc* Unary H.&7721M

■ McMaster University a

Do We Need New Semantics Theories For
Programming?

Not for the practical software engineering problems
that I see.
I can find 30 year old theory that works for the
problems that I will describe today.
Semantic theory has failed to describe real
languages, but (in my opinion) the fault lies with the
languages.
We do need improvements in:

• the notation used to describe actual programs
• the ability to describe behaviour in terms of the

values of observable variables nothing else.
• convenient ways to deal with all aspects of

termination including nondeterministic non
termination.

What follows is mathematically equivalent to some
very old ideas, but has some small practical
advantages.

Commtmlcatlons Research Laboratory
Software Engineering Research Group

'connecting theory with practice*

17 MprclMiors Fcn»n>l*. 1997 313<

■ McMaster University a

Using LDRelations as Before/After
Behavioural Descriptions (1)

Let P be a program, let S be a set of states, and let Lp
= (Rp, Cp) be an LDrelation on Ssuch that
(x,y) e RP if and only if <x,...,y> is a possible
terminating execution of P, and
x ,e Cp if and only if P is guaranteed to terminate if it
is started in state s.1

Lp is called the LD-relation of P

By convention, if Cp is not given, it is,
(by default), Dom(RP).

With this convention, our approach is upwards
compatible with the "cleanroom" approach for
dealing with deterministic programs.

1 Please note that Cp is noi the same as the
precondition used in VDM [4]. Sp is the set of states
in which the termination of P is certain.

Communication* Research Laboratory
Sottwar* Engineering Research Group

•connecting theory with practice'

m McMaster University ■

A Mathematical Interlude LDrelations.

A binary relation R on a given set U is a set of
ordered pairs with both elements from U,
i .e .RcUxU.
The set U is called the Universe ofR.
■The set of pairs R can be described by its
characteristic predicate, R(p,q),
i.e.R={(p,q):UxUIR(p,q)}.
The domain of R is denoted Dom(R) and is {p 13q
[R(p,q)]}.
The range of R is denoted Range(R) and is

{q!3p[R(p,q)]}.
Below, "relation" means "binary relation".
A limited-domain relation (LDrelation) on a set, U,
is a pair, L = (RL, CJJ where:
RL, the relational component of L, is a relation on U,
i.e.RLEUxU,and
CL, the competence set of L, is a subset of the
domain of RL, i.e. CL £ Dom(RjJ.

Communications Rsssarch Laboratory
Software Engineering Rsssarch Group

'connecting theory withpractice*

18 napeclBxBfcs F*bm**/14.t99J2134

a McMaster University a

Using LDRelations as Before/After
Behavioural Descriptions (2)

The following follow from the definitions:
• If P starts in x and x e Cp, P always terminates; if

(x, y) e Rp, P may terminate in y.
•If P starts in x, and x e (Dom(RP) Cp), the

termination of P is nondeterministic; in this case,
if (x, y) e Rp, when P is started in x, it may
terminate in y or may not terminate.

• If P starts in x, and x e Dom(RP), then P will never
terminate.

By these conventions we are able to provide
complete before/after descriptions of any. program
but retain a simpler representation to use for those
cases that arise most often.

Communications Resesrch Laboratory
Software Engineering Resssrch Group

•connecting theory withpractice'

19 jnrptctR lITfW t*rmjlt,*S*n21M 20 infrrnBlIides Ot*mj 1MS97 2131

a McMaster University • McMaster University

Specifying Programs (1)

Specifications may allow behaviour not actually
exhibited by a satisfactory program.
We can also use LDrelations as before/after
specifications:
Let Lp = (Rp Cp) be the description of program P.
Let S, called a specification, be a set of
LDrelations on the same universe and
Ls = (Rs C$) be an element of S.
We say that

(1) P satisfies an LD-relation Ls, if and only if
C s £ Cp and RP c Rs, and

(2) P satisfies a specification, S, if and only if
Lp satisfies at least one element of S.

Often, S has only one element. If S = {L§} is a
specification, then we can also call Ls a specification.

Communications Research Laboratory
Sottwar* Engineering Research Group

•connecting theory with practice'

Specifying Programs (2)

The following follow from the definitions:
• A program will satisfy it's own description as well as infinitely

many other IDrelations.
• An acceptable program must not terminate when started in states

outside Dom(Rs).
• An acceptable program must terminate when started in states in Cg

(CsCDom(Rp)).
• An acceptable program may only terminate in states that are in

Range(RS).
• A deterministic program can satisfy a specification that would also

be satisfied by a nondeterministic program.
Note the following differences between the
description and the specification of a program.
• There is only one LDrelation describing a program, but that

program will satisfy many distinct specifications described by
different LDrelations.

• An acceptable piogiam need not exhibit all of the behaviours
allowed by R s (Rp C R$).

• An acceptable program may be certain to terminate in states outside
c s . (c sccP) .

The intended use of each LDrelation (specification
or description) must be stated explicitly!

Communications Research Laboratory
Sottwar* Engineering Research Group

•connecting theory withpractice*

THnrcTRiSdes lexamjU. 19972134 usyrrtB flidcs Faoar? 1H19972131

McMaster University

Tabular Descriptions and Specifications

Specification for a search program
@|.B[i]=x) (V£,((l£i£N) =

f l
present^

Bu"']=x
true

true
false

NC(x,B)

Description of a search program
(3f.B[i]=*) (V«,((lSisN):

BM*x))

j " l

present's

(B0 '] = X)A
(Vf,(G'<i<;N)

=>B[i]*x))
true

true

false
NC(x,B)

The above is one of many kinds of tables!
Simple tables like this understate the advantage.
These have proven "practitioner appeal"

Ccmmurucsrjona Rasaarch laboratory
Sottwar* Engineering Research Group

'connecting theory withpractice'

a McMaster University ■

A Simple Example

(integer array H[l JN];

(integer <r, integer n; n <= 1;
g (n £ N »

(
(Integer u; integer /; boolean p; / c= 1; c «= 0;
fi (u«=/+n l ;
(u<SN>(

(integer i; i «= 0; p <= true;
U (i<L(u/+l>2J»

(A[/H] = A[ui] > 6 e= i + 1;«) ■
IA[r+i]ctA[ui]^(pc=false; •))

I L(u/+l>f2JSi»'»)
fi)

(*prskiplp> cc=c+l);/<=/+l;"»)
l u > N > »))
if)

H[n] <=c;n<=n+l;a»)
l n > N > »)

ft)
)

Communications Rasaarch Laboratory
Software Englnssfing Rasaarch Group

"connaebng theory wfrbprac&a"

f~

P'fpTt ff Irrnft F*TWJ1«. 19972134 H iTT^*^ . I I iC . FtlawT It. 1997 2134

■ McMaster University McMaster University

Decomposition

(Integer array H[l:N];
r (integer c; integer n;nc=l;

U. (n S N i
(•

'(integer u; integer t; boolean p; 1 c= 1; c e= U;
U. (u<=/+nl ;
(uSN»(

/(integer i; i <= 0; p c= true;
U (i<L(u/+l>+d»

(A[/+i] = A[ui] » 0 <= i + 1;"0
, I A[/+i] * A[ui] > (p «= false; a))

iL(u/+i)+2Jsi*a)

K»
(•p>skIplp> c <=c*-iy, I c=M;-r)

lu>N'>a))
^

M l
H[n] «=c;n<=n+l;»»")

ln>N *>a)

Communications Rasaarch Laboratory
Softwara Englnaarina, Rasaarch Group

'connecting theorymthpracict"

Display: An Example

Problem: ctpal =
true

card'l({/|paW,n + / l) })
H2

H,

G

A NC(n,A)
a. card(x), where x is a set, is the number of elements in x.

Solution: ctpal =
(integer u, /; boolean p; / <= 1; c <= 0;
U. (u<=/+n1;
(u < N —» (palul; (.p —» skip 1 p —> c <= c+1);

/<=/+l;*)
| u > N * #))
&)
palul =LNC(/,U,A) A (p' = pal(A,/,u)

pal(A,b,c) =,((1 < b < c < N) A
(V i, 0 < i < L(c b +D+2J => A[b+i]=A[ci])))

Communications Rasaarch Laboratory
Sortwar* Engln**ring Reseerch Group

*connec*ng theory withpractice*

twii. i flU .1i>*^. TeumjU. 19972134 fespectRslices 1ibraa; U. 1997 2134

McMaster University McMaster University

Displays: An Explanation

The top part of each display is the specification for
the program in the middle.
The program in the middle is kept small by
removing sections, creating a display for them, and
including their specification in the bottom part
The bottom part contains a specification of these
invoked programs.
To check a display determine the description of the
program in the middle, and see if it satisfies the
specification at the top. In doing this, use the
specifications of the invoked programs, not their
text
To check a set of displays, make sure that every
specification at the bottom of one display is at the
top of another. The exceptions:

• standard programs
• primitive programs

Completeness can be checked mechanically.

Communication* Research Laboratory
Softwsr* Engineering Research Group

'connecting theory mth practice*

Structure and Inspection

Wellstructured programs are easier to decompose.
They can be decomposed by purely syntactic means.
Wellstructured programs are much easier to inspect.
Inspection encourages good structuring.
Inspection suggests structural improvements.
Inspected programs are easier to maintain.
Modified programs need not be completely re
inspected.
The cost of future maintenance is greatly reduced.

The definition of "wellstructured" should not be
based on the absence or presence of certain control
structures. It has to do with the ease of
decomposition. [2]

Comrnunicaoona Research Laboratory
Software Engineering Research Group

'connecting theory withpractice*

fwrw^t l fV'*** MnarlS. 19972134 IJbnaj U. 8S7 2134

McMaster University a McMaster University

Our Initial Experience:
Darlington Nuclear Power Generating Station1

Three control systems in Canadian reactors:
• one normal control system
• two independent shutdown systems

Safety analysis assumes control system will fail.
Only shutdown systems are considered safety-
critical.
Previous shutdown systems were analogue and relay
systems.
At Darlington they are software controlled.
Each Software System has a simple task.
Their designs are "diverse".
The systems are more complex than their
predecessors with the result that AECB2 could not
be confident of their ttustworthiness.
How can we increase that level of confidence?
1 Discussed in more detail in [4] and [3].
2 Atomic Energy Control Board of Canada

Communications Research Laboratory
Software Engineering Research Group

'connecting theory withpractice*

Why We Could Not Use English

The following type of sentence was found in the'
requirements document.

"Shut off the pumps if the water level
is above 100 meters for 4 seconds"

What does this simple sentence mean?

Communlcstions Research Laboratory
Sottwar* Engineering Research Group

'connecting theory withpractice*

" " f l * " ' " '*"** Htna7l&19972134 irsfiiHBiIi'W Frbmy 15.19972134

McMaster University McMaster University

Three Reasonable Interpretations:

"Shut off the pumps if the mean water
zzrdevel over the past 4 seconds was

above 100 meters".

[Ola* wut)dt)+4>iob] j = s

"Shut- off the pumps if the median
water level over the past 4 seconds
was above 100 meters".

(MAX [M t] (WL(t)) + MIN[Mt](WL(t))) + 2> 100

"Shut off the pumps if the "rms"
water level over the past 4 seconds
was above 100 meters".

V U ' T * 4 WL2(t)dt) +4) >100

Contmunlcattotis Rasaarch Laboratory
Softwara Engktsarln-a, Rasaarch Group

"connecting theory mthpnctce"

A Fourth (Unreasonable) Interpretation:

"Shut off pumps if the minimum
water level over the past 4 seconds
was above 100 meters".

MiNF^[WL(t)]>ioo

This is the most literal interpretation!

It is a disaster waiting to happen!

If you use natural languages, there are thousands of
such phrases waiting to "bug" you.

Communlcstions Rasaarch Laboratory
Software Engineering Research Group

'connecting theory withpractice*

suMSVl.&des Mna-/1& 19972131 32 aap*ctB ilidcs Fctmw? !(, 19972131

McMaster University ■ McMaster University •

The Inspection Process at Darlington

Four teams:
(1) Application Experts
(2) Programming Experts
(3) Verifiers
(4) Auditors

Roles of the teams:
(1) Produces requirements tables.
(2) Produce Program Function Tables (Displays).
(3) Show (1) = (2) and that (2) are correct.
(4) Audit the "proofs".

Communications Rasaarch Laboratory
Softwara Enalnaarlng Raaaarch Group

'connecting theory mth practice"

Subsequent Experience

In classes on this method, we have applied this to
numerous small industrial programs that were
believed to be correct

In most cases, we found unexpected errors.

hi some cases, the participants could not state the
requirements.

In other cases, the program could not be
decomposed (machine code w/o documentation).

I believe that one program was correct.

In all cases, we could improve the program.

We have found errors in textbook programs, library
programs, and wellused and tested programs.

No process is perfect, but this one engenders
confidence. It produces code that people trust.

Communications Raa •arch Laboratory
Softwara Englnaaring Raaaarch Group

'connectng theory with practice*

trTTCtfljIiifrf FitnTlti 19972134 Moaror KSS12131

a McMaster University a McMaster University •

Essential Point: Divide and Conquer

The initial decomposition is essential. Attempts to
simply scrutinise the program fail.

Trying to read the program the way a computer
would is much less effective. Logically connected
parts may be far apart.
The use of tables is essential. It breaks things down
into simple cases so that
• We can be sure that all cases are covered
• Each case is straightforward
We consider all variables, but one at a time.
We consider all cases, one at a time.
We can take "breaks", go home and sleep, even take
holidays, without losing our place.

Using displays and tabular summaries is far more
work than Fagan's English paraphrasing, but it
imposes a discipline that helps.

Communications Research Laboratory
Software Engineering Research Group

'connecting theory withpractice'

The Other Essential Point:
Precise. Abstract Descriptions

Having lots of little parts is not enough.

We have to be sure that the parts fit together.
We have to be able to do that without pageflipping.
Each part's behaviour must be precisely summarised
without giving intermediate states.
We must be sure that the description at the bottom of
one display will be identical with that at the top of
another display.

These global checks can, and have been,
mechanised.
Precise descriptions are painstaking work, but if
quality is important, they are essential.

Communications Reaeexch Laboratory
Software Engkieering Raaaarch Group

•connecting theory withpractice'

fp ■»■«■ Jf ■Kftjef F<tXM7lttS972134 lacpeciRibora

McMaster University

It's not always easy!

The most critical step, besides decomposition, is
finding a good representation for the state space.

A 1:1 relation between names and elements of the
data structure cannot be assumed.

When preparing the displays, the creative step is
data state representation.

Communications Research Laboratory
Software Engineering Research Group

'connecting theory withpractice*

■ rirprnBriidrs Ft taqr U. 19972131

McMaster University ■

Some Suggested Reading

(1) Parnas, D. L., Weiss, D. M., "Active Desig
Reviews: Principles and Practices", Proceedings^
of the 8th International Conference on Software
Engineering, London, August 1985.
Also in Journal of Systems and Software,

, December 1987.

(2) Parnas, D. L., Madey, J., Iglewski, M.,
"Precise Documentation of Well-Structured
Programs",
IEEE Transactions on Software Engineering,
Vol. 20, No. 12, December 1994, pp. 948 - 976.

(3) Parnas, D. L. "Inspection of Safety Critical
Software using Function Tables", Proceedings of
IFIP World Congress 1994, Volume m, August
1994, pp. 270-277.

(4) Parnas, D. L., Asmis, G.J.K., Madey, J.,
"Assessment of Safety-Critical Software in
Nuclear Power Plants", Nuclear Safety, vol. 32,
no. 2, April-June 1991, pp. 189-198.

Communications Raaaarch Laboratory
Softwara Enginasring Rasaarch Group

'connecting theory withpractice'

iiayfCtBuHdct fifcruay 1-119972141

McMaster University

The Problem of the Dutch national flag-

There is a data type color = {blue,red,white}
There is an abstract data type "buckets".

Variables of this type may be used as a vector of
N "pebbles" of "color" type, where N > 0 is an
integer.

The only operations on v are: PUT(i,c),
LOOK®, SWAP(ij)

Design a procedure to rearrange (if necessary)
the pebbles in the order of the Dutch national
flag using no Arrays, and calling LOOK® once
for each value of i.

1 Introduced and (perhaps) solved by E. W. Dijkstra in 1976

Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

24 nevercut-slides 7/3/96:1226

McMaster University

1 < k < r: the kth bucket is in zone ER (number
ofbucketsr-l>0)

th
r < k < W: the k bucket is in zone X (number of buckets w-r+1 >0)

th W < k < b: the k bucket is in zone EW (number
of buckets b-w > 0)

th
b < k < N: the k bucket is in zone EB (number

of buckets N-b>0)
This can be illustrated by the following figure:

ER X EW EB
1 r w b N

Initially, r=l, and w=b=N, so that the zones ER,
EW, and EB are empty. The program then
proceeds by incrementing r, and decrementing W
and b while making the necessary swaps, until
the area marked "X" is empty because r = w+1.

Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

25 nevercuLslides 7/3/96:1226

McMaster University

• program DutchNationalFlag (input, output);
const

N = 10;

type
color = (red, white, blue, blank);
buckets = array [1..N] of color;

var
v : buckets;
i : integer;

function LOOK(i : integer) : color;
begin

LOOK := v[i]
end;

procedure PUT(i : integer; c : color);
begin

v[i] := c
end;

procedure SWAP(i, j : integer);
var

t : color;

begin
if ((i > N) or (i < 1) or (j > N) or (j < 1)) then

writeln ('wrong index passed to SWAP')
else

begin
t := v[i];
v[i] := v[j];
v[j] := t

end
end; {SWAP}

Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

26 nevercutslides 7/3/96:1226

McMaster University

procedure Decrease(var r, w, b : integer);
var

coir, colw : color;

begin
coir := LOOK(r);
while ((coir = red) and (r < w)) do

begin
r := r + 1;
coir := LOOK(r)

end;
if (r < w) then

begin
{DecW}
colw := LOOK(w) ;
while ((colw = white) and ((r+1) < w)) do

begin
w := w - 1;
colw := LOOK(w)

end;

case colw of
red: begin

SWAP (r, w) ; r : = r + 1
end;

white: w := w - 1;
blue: begin

SWAP (w, b);-w := w - 1; b :=b - 1;
SWAP(r, w)

end
end

end;
case coir of

red: r := r + 1;
white: w := w - 1;
blue: begin

SWAP (w, b) ; w := w - 1;
b := b - 1;

end
end

end; {Decrease}

Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

27 nevercutslides 7/3/96:1226

McMaster University

procedure Rearrange(var r, w, b : integer);
begin

while (w >= r) do
Decrease(r, w, b)

end; {Rearrange}

procedure DutchFlag;
var

r, w, b •: integer;
begin

r := 1;
w := N;
b := N;
R e a r r a n g e (r , w, b)

e n d ; {DutchFlag}
{MAIN PROGRAM 30DY}

b e g i n
{ i n i t i a l i z e t h e o b j e c t v}
D u t c h F l a g ;

e n d . { D u t c h N a t i o n a l F l a g }

Communications Research Laboratory.
Software Engineering Research Group

"connecting theory with practice"

28 nevercutslides 7/3/96:1226

■ McMaster University ■

LEXICON)

A. Auxiliary functions
card: set —> integer
cordis) I s I (i.e. number of elements in the sets)

flag: buckets —> boolean
flag{v) U 3r,b \pariialjag{v,r,r-l,b)]

partialJiagi buckets x integer x integer x integer —> boolean
partial_flag(yjr,w,b) £ (1 < r) A (r1 < w) A (W < b) A (b < N) A

V/ (1 < i < N) [((£ < r) => (vs = red)) A

((w < £ < 6) =■> (v; = white)) A
((&<£)=>(v* = b!ue))]

Noter Vj is defined in part C of this Lexicon.

same_colory. buckets x buckets —> boolean
same_colors(yl,v2) =

(card({i | (1 < i < N) A (vij = red)}) = card{{i\ (1 < i < N) A (v2; = red)})) A
(car^^ I (1 < i < N) A (vi; = white)}) = card({i | (1 < / < N) A (v25 = white)})) A '
(card({i | (1 < £ <N) A (vij = blue)}) = card({i | (1 < f <N) A (V2; = blue)}))

8 . Pascal external definitions and declarations
const N = {literal nonnegative integer}
type color = (red, white, blue);
type buckets = {vector(N, color) cf. part C of this Lexicon}
var v : buckets;
procedure LOOK(i: integer);

{cf. part C of this Lexicon}
procedure SWAP(i, j : integer);

{cf. part C of this Lexicon}
C. vector(n,eIem) Module Interface Specification

(0) CHARACTERISTICS

• type specified: vector(n.elem)
• features: singleobject, generic
• foreign types: elem, <integer>, <positive_integer>

• foreign types: n: <positive_integer>, elem „

U
Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

29 nevercutslides 7/3/96:1226

■ McMaster University ■

(1) SYNTAX

ACCESS-PROGRAMS

Program Name
LOOK
PUT
SWAP

Arg#l Arg#2
<integer>:V
<integer>:Y elem:V
<integer>:V <integer>:Y

Value Type
elem

(2) CANONICAL TRACES

canonical(T) o T=[PUT(i,e-)]*_

_ = [PUT(i,J].'J

i = 1

EQUIVALENT NOTATION FOR TRACES

Trace

vlC-OKO)**

Equivalent notation

Vi

(3) EQUIVALENCES.

T.LOOKCi)s>T

T.PUTCi,e)^>

Condition
-.(1 < i < n)

l < i < n

Equivalence
%wrong_jndex%

Tl.PUTCi,e).T2 where T=Tli>UT(i,x).T2

T.SWAPC1, j) s>

Condition
- . ((l<i<n)A(l<j<n))

(l< i<n)A(l< j<n)A

(i<j)

(i=j)

(i>j)

Equivalence
%wrong_index%

TlPUT(U).T2J>UT(j,y).T3
where

T=TlPUTCi,y).T2PUT0,x).T3
T

TlPUT(jpc).T2J>UT(i,y).T3
where

T=Tl J>UT0,y).T2PUTCi,x).T3

(4) RETURN VALUES

Program Name
LOOK

Argument No
Value

Value
e where #0 = TlPUT(#l,e).T2

Communications Research Laboratory
Software Engineering Research Group

"connecting theory with practice"

30 nevercutslides

Precise Documentation of Well-Structured Programs

David Lorge Parnas, Jan Madey1, Michal Iglewski2

Telecommunications Research Institute of Ontario (TRIO)
CRL, McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

This paper describes a new form of program documentation that is precise, systematic and readable.
This documentation comprises a set of displays supplemented by a lexicon and an index. Each display
presents a program fragment in such a way that its correctness can be examined without looking at any
other display. Each display has three parts: (1) the specification of the program presented in the display,
(2) the program itself, and (3) the specifications of programs invoked by this program. The displays are
intended to be used by Software Engineers as a reference document during inspection and mainte
nance. This paper also introduces a specification technique that is a refinement of Mills' functional ap
proach to program documentation and verification; programs are specified and described in tabular
form.

1 Introduction
The process of program development has been thoroughly studied for nearly 30 years and useful insights have

been gained. However, the focus of this work has been on designing thefirst version of a program. If a software prod
uct is successful, the program will have many more readers than writers and will be studied and revised many times.
Moreover, while the writers have had the time to become closely familiar with the program, most readers will not
have that luxury. We consider the needs of readers, e.g. reviewers and maintainers, to be at least as important as the
needs of program designers. Although proper decomposition of the software into modules will reduce the complexity
and length of programs, there will still be programs whose length makes them difficult to understand. This paper pre
sents a method that can be used by developers to present their programs in a way that makes review and maintenance
easier. The heart of the method is a way of precisely summarizing the effects of a program component, so that review
ers and maintainers do not have to study that code when looking at components that interact with it The program and
documentation are organized in such a way that the information needed to study a component is presented together
with that component This method is intended" for programs that are well-structured in the sense defined later in this
paper. ~"

The present report is a revised version of [24]; it will appear in IEEE Transactions on Software Engineering.

1.1 On the role of documentation
Anyone who has ever seriously read a lengthy program produced by others (for example to inspect it or to make

changes to it) realizes the importance of documentation. Some argue that well-written programs are self document
ing. Practical experience suggests that this is true only for small programs; human beings cannot easily understand
long programs. When asked to study such programs, we tend to focus on little details while making use of inaccurate

1 Permanent address: Institute of Informatics, Warsaw University, Banacha 2,02-097 Warsaw, Poland
2 Permanent address: Departement d'mformatique, University du Quebec a Hull, Hull, Quebec, Canada J8X 3X7

October, 1994 1/41 CRL Report No. 295

descriptions of the overall structure. The combination of a large amount of detail with inaccurate or vague descrip
tions of the structure makes it quite common for serious errors to escape the reviewers' attention.

A design concept or algorithmic method that was obvious to the programmer at the time the program was written
will not be obvious to other programmers, or even to the same programmer, one year later. Even if the program was
developed using a systematic refinement process, there are few traces of that process in the final code. Although the
program's author may have thought of the program in terms of a set of building blocks, each with a clearly defined
function, it is not easy to identify those blocks and induce their functions by looking at the final code.

1.2 Studying long programs
When studying a long program, we must decompose it into small parts and then, provisionally, associate a func

tion with each one. We must then convince ourselves of two things: (1) if each part implements its assigned function,
the whole program will be correct, (2) that each part implements its assigned function. Frequently, we find that our
provisional assumptions were not exactly what the programmer intended. Then, after revising our initial division and
function descriptions, we try again. In principle, this iterative process converges and we Ieam whether or not the pro
gram is correct In practice, we usually give up before we have a complete understanding of the program. The process
terminates when we run out of time or patience.

1.3 Conventional documentation
Experienced development organizations have long recognized the need for documentation and there are exten

sive documentation standards. Unfortunately, when one tries to use this documentation, it is not found to be very use
ful. Often, the document includes a narrative description of the program - a translation of the program into a "natural"
language. For people with an understanding of programming, it is usually easier to read the program itself than prose
that attempts to say the same thing. Our natural languages were not intended to be used for precise descriptions where
small details are critical Most documentation encountered in industry is vague, inaccurate, and incomplete.

When documenting programs, there seems to be a tendency to focus on the details that we think will be hard to
. -.ember while ignoring the basic structural decisions, which seem obvious. Later, readers find that the structure is
uobvious and the details are overwhelming. Moreover, most documentation is informally organized. Even when the

ossired information is present, it is not obvious where it will be found. When the information is found, it is often in
consistent or inaccurate. Industrial experience suggests that a huge portion of the "maintenance effort" goes into find
ing information and then finding an expert who can confirm or correct the information that was found.

The inadequacies of most software documentation can, in part, be blamed on the differences between standard
engineering practice and the way that software systems are designed. In engineering, the production of design docu
ments plays a key role - it is rare to find an engineer proceeding by building first and documenting later. In engineer
ing, mathematics is extensively used to provide accurate and detailed descriptions of the products to be built; the need
for precise descriptions of each component of larger products is almost universally accepted. In contrast, software
systems are commonly produced before proper documentation is written; documentation is not viewed as a part of the
design activity but as an additional task required by bureaucratic regulations or ignorant customers. The use of math
ematics in describing programs is rare. As a result, the documentation is of limited value for programmers, reviewers
and maintainers.

1.4 Design through documentation
The methods presented in this paper must be understood in the context of the complete documentation scheme

described in [19].
It is widely accepted that the documentation of a computer system must include a software requirements docu-

October.1994 2/41 CRL Report No. 295

ment (consisting of a system requirements document and a system design document). These documents provide a
black-box description of the system as a whole, a description of the hardware structure, and a black-box description
of .the software. Detailed discussions of these documents can be found in [5,6,28,29].

Because large software systems are seldom the product of a single person, the task of constructing them must be
split into several smaller work assignments. Each assignment is to design and implement a group of one or more pro
grams, which we call a module. In well-structured systems, the programs in a module share access to a private data
structure and implement one or more abstract objects. We call programs that are part of the module, and can be used
from outside the module, the access-programs of the module. Programs that belong to other modules never read di
rectly from, or write directly to, the internal data structure of a module; they always use a module's access-programs
to get information about, or change the state of, any objects created by that module [16]. We recommend a software
module guide, which describes the structure of the software system by indicating the design decisions hidden in each
one [23]. For each module identified in the module guide, there should be a module interface specification, which
provides a black-box description of the behavior of the objects created by that module. Our approach to specification
of module interfaces (the trace assertion method) is illustrated in Appendix B and described in [21,8].

For every implementation of a module interface specification (there may be several), there should be a document
describing the module internal design; that document must describe the internal data structures and the effect of the
module's access-programs on the state of that structure. The contents of these documents are defined in [19], which
contains a more general discussion of the role and structure of documentation in software engineering. Examples of a
detailed software requirements document can be found in [5,28].

This paper focuses on the documentation of programs within a module. The documentation described here com
plements the documents mentioned above.

1.5 The responsibilities of program designers and reviewers
We believe that the reviewer or maintainer of a program should never have to guess its structure. The iterative

process described in Section 1.2 must be eliminated. Programs should be presented to the reviewer and maintainer as
a collection of small parts, each with a precise description of its function. The structure should be explicitly and pre
cisely described in the documentation. It should be possible to review the small parts separately and know that, if
each of the components is correct, the whole program is correct. In other words, the decomposition phase of the re
view process should not be repeated by the reviewer; it should be communicated by the designer. The reviewers must
check that the structure is a good one, but their primary responsibility should be checking each of the small fragments
against the description of its function.

It is clear that we are asking more work from the designers than they usually do. We are asking them to write
down, systematically, information that reviewers and maintainers would otherwise have to discover for themselves.
Because there will be more readers than writers, and because the writer already knows the information, we believe
that the combined cost of developing and maintaining the product will be lower if the writer presents the program as
proposed in this paper and the documentation is kept live by revising it each time that the program is revised. More
over, our experience suggests that the quality of the program will be improved as a result of requiring the programmer
to produce the documentation.

1.6 The use of mathematics in documentation
Our method is based on a mathematical model of programs and uses mathematical notation to provide precise

descriptions of programs. Although mathematics is not commonly used in programming practice, we believe that the
ability to use mathematics in this way will be the hallmark of Software Engineers in the future.

Most demonstrations of the use of mathematical methods in software engineering emphasize program develop-

October.1994 3/41 CRL Report No. 295

ment or verification. This paper focuses on documentation. While we believe in systematic development, we believe
that the documentation delivered with a program should not depend on the program development process. This paper
discusses the documentation that should be associated with a program, not the procedure for developing the program.

Many papers on formal methods for program development emphasize the idea of proving a program to be cor
rect. Our paper is less ambitious. Although we believe that the mathematical documentation we describe could be
used as input to a program verification process (our notation is close to classical predicate logic), our emphasis is on
documentation that is valuable whether or not formal proof is attempted. We have used this type of documentation as
input to an inspection process [22], but this paper does not discuss formal verification.

1.7 Introduction to the "Display Method"
This paper introduces a method of documenting well-structured programs called the Display Method. It requires

designers and implementers to present their programs as sets of displays. The method is based on the well-known fact
that a well-structured program can always be written as a short text in which the names of other programs3 may ap
pear and the programs named can also be short. The down-side of such an organization is that there will be many pro
grams and to understand any one of them, one must understand several others. We overcome this by presenting the
material in displays. A display is a document in which a program is presented in such a way that its correctness can be
examined without looking at other displays.

Though the Display Method can be used with any specification technique (and any imperative programming lan
guage), we decided to illustrate it using a refinement of Mills' approach4 [13,14]. We have chosen to base our work
on Mills* method, rather than approaches that are more popular, because we find it more suitable for large programs.
Unlike Floyd [3], Hoare [7], Dijkstra [2], and their followers, Mills, although equally rigorous, does not include axi
omatic descriptions of programming language statements among his basic definitions. Instead, he assumes that the
. •.ograms, from which other programs are constructed, can be described by mathematical functions. Since this as-
.-•."nption is valid for all deterministic programs, one can apply Mills* approach even when the component programs
A quite long and complex. This allows the same method to be used for well-structured programs of any size.

Many other methods do not deal with the problem of how to assemble small programs into large ones. For exam-
,'-,i, if one were to mimic the techniques used by Wirth for the eight queens problem [27], one would keep repeating
the parts of the text that were developed early in the refinement process. For a long program, this would not be practi
cal. Program texts would grow so long that no one could keep them under full intellectual control. Other presentations
of moderate-sized programs are confusing because it is not clear how the small sections fit together (cf. e.g. chapters
14 and 24 in [2]). Our method avoids both problems.

In documentation, the notation is very important; documents are to be read by experts from a variety of fields and
:/»ould be easily understood. We must apply the principle of "divide and conquer" when designing notation; readers
Jiould not have to parse long expressions. Our approach is based on the use of tables to describe mathematical func
tions, relations, and sets [18]; such tabular notation has already been used in practice (e.g. in safety-critical software
for a nuclear plant [22]) and has proven practical.

Some readers will observe that, in our examples, the volume of the documentation is much greater than the vol
ume of program code. This is a consequence of the need to use small, but nontrivial, examples in a paper of this sort
The length and complexity of a precise description of a program's effect does not necessarily increase with the length
of the program. In fact it often happens that the description of the effects of a part of a program is more complex than
the description of the whole program. Consequently, the ratio of program size to program documentation size is under

3 Note that these named programs need not be subroutines. In the text submitted to the compiler some of the program names may
have been replaced by the text of the program itself.
4 Although Mills is the best known proponent of this approach, similar ideas were independently discovered by many others.

October, 1994 4/41 CRL Report No. 295

the control of the document's author. When documenting long, but easily understood, programs, it is not necessary to
describe the behavior of small components; consequently, the ratio of code size to documentation size increases. In
practice, the components identified will be longer than those in this paper's examples.

1.8 Organization of this paper
In the next section, we review some old issues about the structure of programs. Section 3 contains some basic

definitions used in our approach to program description. Section 4 presents the main ideas of the Display Method and
introduces important notational conventions. The method is illustrated by two complete examples (presented in ap
pendices). A discussion of these examples and some sample displays are presented in Section 5. The lessons learned
from previous experience with the proposed approach, and some future plans, are described in the final section.

2 Well-structured programs
This section motivates restricting the structure of programs, and then states the constraints proposed. While some

researchers consider the themes in this section obvious, many practitioners continue to ignore them.

2.1 Hierarchical control s tructure in programs

The well known "structured programming" constructs, such as "while" and "if then else" have two very useful
properties:

(1) programs constructed using them can be decomposed into a hierarchy of parts (with lower level parts
completely contained in an upper level part) using simple parsers; those parsers need not even distinguish one
identifier from another,

(2) the semantics of the total program can be determined from the semantics of its parts, using simple oper
ations (cf. e.g. [17,20]).
Further, the semantics of the program can be determined in a flexible sequence, finding the semantics of inner

parts first and finding the semantics of a sequence of programs constructed using ";" either left to right, right to left, or
a mixture - as one prefers. In fact, the work need not be sequential. In contrast, the use of "go to" and labels makes it.
difficult to find a decomposition in which the components have simple semantics.

The above properties are important because they make it easier to study a long program one small part at a time,
and to do so without a previous understanding of the overall structure of that program. In contrast when a program is
constructed using labels and unrestricted jumps, considerable understanding of the program is needed in order to de
compose it into parts that can be studied independently.

Programs having the desired properties are often referred to as having a hierarchical control structure or as well-
structured programs. The Display Method is intended to be used for such programs.

2.2 Use of data abstractions
Even the best structured program will be difficult to explain and understand if it is presented in terms of complex.

data structures. Essential information about the nature of the data and algorithm can be obscured by representational
details.

Complex data structures should be encapsulated (or hidden) by the introduction of new data types that have been
designed specifically for the type of data being stored. Such specially designed data types, known as abstract data
types (because they allow the reader to abstract from the actual representation of the data), were introduced into the
literature by Dijkstra [1]. The principle of information hiding, long used by very good programmers, was first dis
cussed explicitly in [15].

October, 1994 5/41 CRL Report No. 295

Precise documentation of a program that uses abstract data types is not possible unless the properties of the ab
stract operations are also precisely documented. In this paper we presume that the abstract types are implemented by
modules whose properties have been specified by a module specification method such as that discussed in [21] or by
one of the algebraic methods. However, the examples in this paper have been selected so that they can be understood
without an understanding of module specifications.

2.3 Discipline vs. notation
It will be seen that the usability of the discipline proposed in this paper is independent of:

(1) the notation used to present the information in a display,
(2) the language used for coding the program, and
(3) the method used to verify the displays.

The present paper focuses on the contents of the displays, using one programming language and one of many
possible notations for presenting specifications. We have chosen the Pascal language [9] for the initial examples, not
because it is ideal but because it is familiar. We have chosen to use tabular representations of LD-relations for reasons
explained in Section 3, but we believe that the display method could be adapted for use with other notations such as
VDM [10]. While we do not present formal verifications, we claim that the information necessary for verification of
any display is contained in that display and the lexicon.

3 Mathematical description of program effects
In this section we show how to use standard mathematical concepts to describe the effect of program execution.

We introduce the LD-relation [17,20] and its application to program description and specification. Those wanting to
use this method must read this section carefully. The literature contains many notations that are similar but differ from
this one in subtle ways. In particular, the meaning of our notation is (necessarily) different from that of both Hehner
[4] and VDM [10]5; confusion can arise if one assumes otherwise.

3.1 Finite state machine approach
A digital computer can usefully be viewed as a finite state machine. For our purposes such a machine is one that

is always in one of a finite set of states and whose operation consists of a sequence of state-changes, i.e. transitions
from state to state.

Definition 1;
We will use the term "program" to denote a description of state-change sequences in a finite state machine. Pro

grams may describe both finite (terminating) and infinite (non-terminating) state-change sequences.
Q

Let P be a program and let U be the set of states of a digital computer. The following terminology and notation
will be used in the sequel:

Definition 2:
• A complete state-change sequence described by P is called an execution of P.
• The set of executions of P that begin with the state x, (x e U), is denoted by eP(x), and x is called the starling state

of the sequences in that set The set of all executions of P is denoted by Exec(P,U).

The work described in [4] stresses the description of programs by a single predicate, which limits the ability to provide complete
descriptions of non-deterministic programs. VDM only describes the behavior of aprogram when started in states that satisfy a pre
condition that guarantees termination. We chose a method that allows complete description of any program.

October, 1994 6/41 CRL Report No. 295

• If there exists a finite execution in eP(x) with final element z, then:
- we write <x,...,z> e eP(x),
- we say that this execution terminates (in z) and call z the final state (of this execution).

• If <x,...,z> e eP(x), we also say that the program P may start in x and terminate in z.
• If eP(x) contains an infinite sequence, we say that this is a non-terminating execution, and denote it by <x, ...>.
• If there exists a state x, (x e U), such that eP(x) contains two or more distinct executions, then P is a non-determin

istic program.
• If for a given state x, (x e U), every member of eP(x) terminates, then x is called a safe state for P. The set of safe

states for Pis denoted by SP .
Q

3.2 Limited-domain relations (LD-relations)
If we are not interested in the intermediate states of executions, then every deterministic program can be de

scribed by a program function, a function whose domain is- the set'of safe states and whose range is the set of final
states [13]. Non-deterministic programs cannot be fully described by program functions. First, a program started in a
safe state may terminate in one of several distinct final states; thus a relation must be used and not a function. Second,
a program started in a state that is not a safe one may sometimes terminate and sometimes not; a relation on the set of
states does not provide sufficient information to distinguish between safe and unsafe states.

In [17] one possible solution6 to the latter problem was suggested: instead of a relation we use a pair, (relation,
set). This set will be used to provide the necessary additional information. The definitions that follow describe this so
lution. We begin by defining some formal structures, and describe how these can be used to describe and specify pro
grams.

Definition 3;
• A binary relation R on a given set U is a set of ordered pairs with both elements from U, i.e. R C U x U. The set U

is called the Universe.
• The set of pairs R could also be defined by its characteristic predicate, R(p,q), i.e. R = {(p,q):U xU I R(p,q)).
• The domain and the range of R can be expressed as follows:

Dom(R) = [p 13q lR(p,q)]}, Range(R) = {q 13p [R(p,q)]J.
Q

In the sequel the term "relation" means "binary relation".

Definition 4:
Let U be a set A limited-domain relation (LD-relation) on U is an ordered pair L = (RL, C-), where:
- RL, the relational component of L, is a relation on U, i.e. R L CUxU,
- CL, the competence set of L, is a subset of the domain of RL, i.e. CL £ DomCR^. Q

3.3 Applications of LD-relations
An LD-relation can be used both to specify and to describe programs. A program specification is a statement of

the requirements that an acceptable program must satisfy. A program description is a representation of the visible be
havior of a specific program. A specification may allow behavior that is not actually exhibited by the program. Since
the same mathematical structure is used for both descriptions and specifications, each must be labelled to indicate the
intended interpretation of the information. The following sections explain our usage of these terms more precisely.

6 Other, mathematically equivalent, approaches introduce a special symbol to represent non-termination, cf. e.g. [12]. The approach
chosen here allows representation in terms of variable values without the addition of any special symbols or states.

October, 1994 '7/41 CRL Report No. 295

3.3.1 Program descriptions
As was mentioned in Section 3.2 a deterministic program can be described by a program function. We can gener

alize this notion, as follows:

Definition 5:
• Let P be a program, let U be a set of states, and let LP = (Rj-, CP) be an LD-relation on U such, that:

- (x,y)eRP«<x,...,y>eExec(P,U),

Lp is called His LD-relation ofP and the description of P.
• If CP = Dom(RP), then (by convention) the competence set need not be given explicitly. In other words, if GP is not

given, then it is, by default, Dom(RP).

One should note the following consequences of this definition:
- if x e CP , P always terminates when started in x and if (x, y) e RP, P may terminate in y, .
- if x e (Dom(RP) - CP),the termination of P when started in x is non-deterministic; in that case if (x, y) 6 RP ,

P may terminate in y, but it might not terminate at all,
- if x e Dom(RP) and P starts in x, then P will never terminate.
- If P is a deterministic program, then the relational component, RP, is a function, CP = Dom(RP), and hence LP

is the program function defined in [13]. Hence, our approach is "upward compatible" with that of Mills.

3.3.2 Specification of programs
We can also use LD-relations to specify a program. In the general case one may be given a set of LD-relations

and be asked to write a program that satisfies at least one of them.

Definition (?: :c -
Let Lp = (RP, CP) be the LD-relation of a program P (where U is the set of states). Let S, called a specification,

be a set of LD-relations on U, and let Ls = (Rs} G§ be an element of S. We say that: '
- P satisfies the LD-relation Ls, iff C s C CP and RP C R s ,
- P satisfies the specification S, iff P satisfies at least one element of S.

Often, S has only one element If S is a specification and S = {L$}, then we can also call L s a specification. This
is the usual case and the only one illustrated in this paper.

If Lp is used as a specification, P will satisfy it However, P will satisfy many other specifications and other pro
grams may satisfy Lp.

4 The Display Method of p rogram documentation

In the Display Method, program documentation consists of a set of displays, supplemented by a lexicon and an
index. This section explains these concepts.

4.1 Displays

A well-structured program can usually be written as a short text in which names of other programs may appear.

Please note that CP is not the same as the precondition used in VDM [10] and other methods. LD-relations provide a complete
description of the behavior of a program, not just a description of its behavior when the starting state is in C P . RP is a description
of the behavior within its domain, not just within C P .

October, 1994 8/41 CRL Report No. 295

These named programs can also be short and can include the names of other programs. By a display we mean a con
cise document, (preferably 1-2 pages), in which a short program is presented in such a way, that its correctness can be
determined without examining other displays. More precisely:

Definition 7:
A display is a document that consists of the following three parts:
- PI: a specification for the program presented in this display,
- P2: the program itself. The names of other programs may appear in this text; we say that the these programs are

invoked in this display,
- P3: specifications of all programs (other than that specified in PI8) invoked in P2 that are not known9.

Q
Note, that the terms "program" and "invocation" are to be understood in a generic sense. A name appearing in the

program P2 may represent a procedure call (in which case it will usually be followed by actual parameters) but may
also be treated as a macro call, to be replaced by a sequence of instructions. In either case, the construction of the re
sulting program by merging the P2 parts of all displays should be a simple operation that can be done automatically.
As discussed below (cf. Section 4.4), if an invoked program is not an available10 program, its specification must ap
pear as P1 in another display.

4.2 The lexicon
To avoid repetition of information in several displays, and the maintenance problems that result from redundant

information, we place that information in a separate document called the lexicon.

Definition 8:
A lexicon is a dictionary containing definitions of terms used in the program being documented. It will contain

the definitions of any mathematical functions, programs constants, types, etc. that are used in more than one display.
Q

We refer readers to the lexicon wherever the information that it contains would have appeared.

4.3 The index-
To help those studying a program .we also recommend an index. ~

Definition 9;
An index is a list of all the variables, programs, etc. indicating where those items appear in the displays. If some

names are used with more than one meaning, we also describe the category of each name.
a

4.4 Completeness and correctness
Each display can be reviewed without any reference to other displays; its correctness can be verified without

looking at the implementation of either the programs that are invoked in that display or the programs that invoke the
program it describes.

Note that if a program invokes itself recursively, one should not include the specification of that program in its own P3.
* A known program is one that does not require a specification. The semantics of known programs are assumed to be understood.
Every project should have a list of programs that are considered to be known.
10 An available program is one that exists in a project or system library. We need not have a display for an available program. Avail
able programs are not necessarily known programs. Known programs are usually, but not always, available.

October, 1994 9/41 CRL Report No. 295

Definition 10:
• A display is correct if the program in P2 will satisfy the specification in PI, provided that the programs invoked in

P2 satisfy the specifications given in P3.
• A set of displays is complete if, for each specification of a program (except an available program) that is found in

P3 of a display, there exists another display in which this specification is in PI ' l .
• A set of displays is correct if (1) the set of displays is complete, and (2) all displays are correct

a
A display can be supplemented by an additional part, P4, that contains a demonstration of its correctness. This

could be either a description of the informal reasoning.routinely done by a programmer, or a more formal argument
The existence of this additional section would make the reviewer's task simpler - one would not have to invent a
"prooF, only to check one. In the present paper we do not supply P4.

4.5 Notation
In the examples of displays in this paper we will use LD-relations for program specifications and the Pascal lan

guage for programs. The LD-relations will be represented in a tabular form [18]. The basis of such representation is
the fact that every relation can be understood as a set of ordered pairs defined by its characteristic predicate (cf. Defi
nition 3, Section 3.2). A predicate is also used to represent the competence set of an LD-relation.

4.5.1 Introductory conventions
This section introduces some useful notational conventions. It is usual to describe predicates using boolean ex

pressions. The tabular notation used in the present paper will be explained by means of examples.

Convention ?;
Let P be a program specified by an LD-relation L = (R, C), and let (vlt.... v-J be the variables in P that constitute

its data structure, v. Then:
- " ' vj" (to be read "vj before") denotes the value of the program variable Vi before an execution of P,
- " v£ '" (to be read "v£ after") denotes the value of the program variable v5 after a terminating execution of P,
- " *v " (to be read "v before") denotes the value of the data structure v before an execution of P,
- " v ' " (to be read "v after") denotes the value of the data structure v after a terminating execution of P.

Q

Each pair in R will be of the form ('v;, vs*). Note that 'v; and V;*, as mathematical variables, could have been re
placed in the definition of R by other symbols, but we would then have to establish an explicit correspondence be
tween those symbols and the components of program data structure. Our notational convention makes the
correspondence implicit in the variable names.

Convention 2:
If it is clear from the context that the programming variables are a, b, c,.... then one may write "RQ" instead of

"R(('a,'b,*c,...),(a',b\c\ „.))".
Q

Convention 3:
In examples we will often need to express the fact that some variables do not change their values during the exe

cution of a program. We found it useful to introduce a predicate symbol NC ("Not Changed").
NC(vj v j <» (vx* = 'vO A ... A (vk' = «Vk)

Q

Note that completeness of the set of displays can easily be checked mechanically.

October, 1994 10/41 CRL Report No. 295

Convention 4:
When we write a boolean expression to characterize a set of program variable values, we always assume that pro

gramming variables can only have values appropriate to their types and do not state those restrictions explicitly.
"'- D

Convention 5:
The variables that form the domain and range for a given LD-relation can be listed in the heading preceding the

LD-relation and need not be repeated in the characteristic predicates.
Q

4.5.2 Tabular representations
To explain the tabular notation used in this paper, we introduce the following simple problem:

PROBLEM
Write a program which finds the maximum of two integer values stored in programming variables.

Discussion:
The data structure of this program will consist of three variables of integer12 type named a, b, and max. The

first two will be used to store the input values, while the third one will store the result We will require that the final
values of a and b be the same as the initial ones. Note, that the initial value of max (i.e. 'max) is irrelevant

The above considerations lead to the following specification of this program by an LD-relation, Ls = (Rs, Cs):
- Rs(.) = {(a* = 'a) A (b" = 'b) A ((('a < 'b) A (max* = 'b)) v (('a > 'b) A (max" = 'a)))]},
- Cs = Dom(Rs).

Q
Tabular form:

The characteristic predicate of the relation Rs can be given in tabular form.
• A direct representation of this predicate as a table, is as follows:

11

a*

' a ^ ' b

•a
b* = | 'b

max' = | 'b

' a> 'b

'a
'b

*a

• For ease of checking tables, we usually require that conditions that head columns be mutually exclusive13. In this
case we should replace "<" by "<", or ">" by ">". The first replacement leads to the following table:

12 | 'a < 'b

a' = | *a

b'

max* =
'b
'b

' a> 'b '

'a
'b

'a

12 We will use different fonts to distinguish between programming language elements (e.g. "integer", "true"), and mathematical
terms (e.g. "integer", "true").
13 This requirement is not strictly necessary, just useful. Eliminating heading overlap for tables that represent functions, cannot
change their meaning and, consequently, does not result in overspecification. We show how to describe relations below.

October, 1994 11/41 CRL Report No. 295

The first two rows of 12 can easily be expressed conventionally. We can combine both notations as follows:
(a' = 'a) A (b' = *b) A

13 •as'b
max = 'b

' a> 'b

Using "NC" we can rewrite the above expression as follows:

13 •a<"b

max = 'b

' a> 'b

'a ANC(a,b)

The conditions in 13 itself can be written in another way (which may make the table easier to read when expres
sions are long) - the string above a dotted line is treated as if it were repeated in each column below that line:

14

max' =

! ('a<'b) =
true

! ' b

' false

'a ANC(a,b)

The conditions heading columns in 14 can be written in yet another form, as follows:

15

max* =

*a
<'b

'b

>'b

'a ANC(a,b)

The equality operator in the "value after" phrase can be replaced by any other relational operator or by the vertical
bar, "I". The latter is to be read "such that". When'T is used, the entries in that row must be boolean expressions;
the value of the variable must satisfy the predicate described in the relevant column. For instance, the row defining
max' in the table 13 could have been written as follows: Note that the use of "I" allows the description of relations

16 ' a < ' b

max* max' = 'b

, a> 'b

max' = 'a ANC(a,b)

or non-deterministic programs without having overlapping column headings..
The table identifiers: 11,12,... are optional and have no formal meaning.

4.6 Parameters and side-effects
Programs presented in displays will often use procedures. Procedures are not programs in the sense described

above; they are program schemata, which cannot be described by functions or LD-relations. Procedures with formal
parameters can be represented by program function schema, mappings from actual parameters to program functions,
as described and illustrated in [8], A procedure invocation, including the actual parameters, is a program in the sense
of this paper. Here, we provide the program function corresponding to each actual invocation.

October, 1994 12/41 CRL Report No. 295

(1) The specification of the procedure invocation will be written in terms of actual parameters. In the declaration of
this procedure, however, formal parameters will be used. Both the specifications of invoked programs appearing
in the declaration, and statements in the declaration body must be written in terms of the formal parameters of the
procedure (and its other local or non-local objects). The binding of parameters is done according to semantics of
the given programming language (Pascal, for the examples in Section 5).

(2) For simplicity's sake, we will avoid any form of aliasing14 in our examples, e.g.:
• If more than one parameter is called by variable, then the actual parameters will be different variables.
• If there are side-effects, then a variable external to the procedure body will not be passed as a parameter

called by variable.

5 Examples
In this section we will illustrate the Display Method on two simple but complete examples written in Standard

Pascal [9]. We decided to use simple and well-known problems to emphasize the main ideas of the proposed ap
proach. The complete sets of displays with the lexicons and the indices are presented in appendices.

5.1 "Binary search"
We begin with a problem familiar to all programmers, so that we can focus on the display method.

5.1.1 Informal description of the problem
Given an integer x, and a list of n S1 integers, au.... a,, in non-decreasing order:

- check whether x is among ait..., a^ and return this information,
- if x is among alt..., a*, find an index/such thatx=a*.

If the list is empty or not sorted, we require program termination but do not care what the program does because
we assume that the program will not be invoked under such conditions15.

5.1.2 Discussion
(1) A solution to this problem (by the well-known "binary search" method) will be presented as a Pascal procedure

declaration and its invocation. It is the invocation that must satisfy the specification. This procedure declaration
should be preceded by definitions and declarations of needed constants, types and variables, to set up the data
structure whose values will form the state space.

(2) The following assumptions are made about the correspondence between the description of the problem and Pas
cal programming language objects:

• Integer numbers are represented by values of the standard type integer16.
• The length of the list is represented by the constant n.
• The list itself is represented by the value of the variable A of a type vector, defined as arrayp ..n] of integer.
• The integerx is represented by the value of the variable x of type integer.
• The results are represented by the values of two variables: j of type integer, and present of type Boolean.

14 Aliasing does not invalidate the basic theory or model used in our work. However, it complicates the representation of data states.
In our examples, there is a 1:1 correspondence between identifiers and elements of the data structure at any point in the program.
This allows us to represent state by a list of values in which each element corresponds to one identifier. If aliasing is allowed, or"
with dynamic data structures, one needs a more elaborate scheme for identifying data states.
15 This is undoubtedly a foolish assumption in practice, but it is useful for illustrating the meaning of the notation. In this example,
if a program is called when the assumptions are not satisfied, even the values of the variables x and A are allowed to change.
16 Recall that by convention we use different fonts to distinguish Pascal objects from mathematical ones.

October, 1994 13/41 CRL Report No. 295

(3) We will specify, that:
• The values of A and x should not change if the program is invoked under normal conditions.
• If the desired index exists, then j will return its value and present will be true. If the index does not exist,

present will be false and j can have any integer value.
(4) The following observations and conventions are related to the data state:

• Initially, the data state is determined by the values of the constant n and the variables A, x, j , and present.
• The relational component R of the LD-relation should specify acceptable changes of these values (however

constants, by definition, do not change and their values need not be mentioned).
• For variables we will use the conventions introduced in the previous section.

5.1.3 Example of a display
We will present one display (the complete set is to be found in Appendix A). To help in understanding specifica

tions, we begin by discussing PI of this display in detail. We have numbered each line of part PI and explain those
lines in the notes below.

Specification

(i)

(2)

(3)

(4)

(5)

(6)

Find(x, A, j , present)

Ro(.) = ((1 < n) A Vi [(1 < i < n) =» ('AH < 'A[M])))

r I
present* =

j 3f[(1<i<n)A('A[i] = 'x)] =

i true

['AD'] = *x

I t r u e

false

true

false ANC(X.A)

Notes on PI ;
(1) The procedure invocation "Rnd(x,A,j,present)" lists actual parameters which form the data structure. If exter

nal17 variables were used, they need to be listed in this line.
(2) Since the elements of the data structure are listed in line 1, we do not need to repeat them (Convention 2, Section

4). Without that convention we would have to write "Ro(('x, *A, 'j, 'present), (x\ A', j ' , present'))" instead of
"RoQ". Next note, that the expression "((1 < n) A VZ [(1 < i < n) =-> ('A[i] £ *A[z+1])])" is true if the input se
quence is non-decreasingly ordered.

(3,4)This and the next line could have been written as one entry but we would have to repeat the long expression twice.
(5) The phrase "j" I true" expresses the fact that the program will satisfy the specification no matter what the value of

j is when the program terminates.
(6) Notice that the logical values written here are Pascal constants. The other "true" and "false" were mathematical

constants. The phrase "NC(x, A)" expresses the requirement that the variables with input values remain un
changed.

In P3 of the display, the rows for low and high are not stricdy necessary because the new values of those variables are
not constrained. Since these tables represent the characteristic predicate of the relation, variables that are not men
tioned are not constrained. We sometimes include such rows to make this more explicit

17 We will use the term external to denote objects that are not local to a given program.

October, 1994 14/41 CRL Report No. 295

DISPLAY 1

Display 1 Specification

Find(x, A, j , present) I

R0(,) = ((1<n)AVz[(1<z<n)=>('A[z]<'A[z+1])]) =>

3z[(1<z<n)A('A[z] = 'x)] =

true

j ' | *Ain = 'x

present' = I true

false

true

false A N C (X , A)

I l l M I U I I l I I I I I I I I I I I I I I I I I l I l I I I I U I l l I I I I I I l I I I I I I I I I I I U I t l i i i i

Display 1 Program
Procedure declaration:

procedure Find(e : integer; V : vector; var index : integer; var found: Boolean);
var low, high : integer;
begin

Initialization; Body
end {Find}

I l U I I I I I I I I I I I t l l l l t l l l l l l l l l l l l l l l l t l l l l l l l l t l l l l l l l l l l

Display 1 Specifications of Invoked Programs

Initialization external variables: e, V, found, low, high

Ri(.) = (low* = 1) A (high* = n) A (found' = false) A NC(e, V)

(on Display 4)

Body external variables: e, V, index, found, low, high

R2(.) =
(('low < 'high) A (found = false) A Vz [('low < i < 'high) => {V[i\ < 'V[/+1])])

index'

3z [('low < / < 'high) A (V[Z] = 'e)]

true
,*», •VOndex'] = 'e

found' = •

low' |

high-

true

true

true

false

true
false

true

true ANC(e,V)

(on Display 2)

October, 1994 15/41 CRL Report No. 295

END OF DISPLAY 1

5.2 "Dutch national flag" example
This example is based on [2], chapter 14.

5.2.1 Informal description of the problem
(1) There is an abstract data type "buckets". A value of this type may be used as a vector of N elements of type "col

or", where N ^ 0 is a fixed integer, and color - [blue, red, white}. Each element is called a "pebble" by Dijk-
stra. We introduce a variable of type buckets, v, c of type color, and i j of type integer. The operations on v are:

• PUT(i,c), which sets the value of i^ element of v to c, if N>0, (i.e. puts the c-colored pebble into the ith buck
et) and does nothing if N=0 or i is out of range.

• LOOK(i), which returns the color of the pebble in the i* bucket and does nothing if i is out of range.
• SWAP(Ij), which swaps pebbles between the 1th and f- bucket, if i-q*, and does nothing if i and j are equal or

the arguments are out of range.
(2) The type buckets and the operations PUT, LOOK and SWAP are defined more formally in Appendix B (in the

lexicon) by a parameterized module interface specification using the trace assertion method [21, 8]. The initial
value of v is assumed to be set externally.

(3) We want to design a Pascal procedure that given any initial arrangements of pebbles in v, "will rearrange (if nec
essary) the pebbles in the order of the Dutch national flag, i.e. in order from low to high bucket number first the
red, then the white, and finally the blue pebbles." [2], This procedure should:

• cope with all possible special cases, including missing colors and N=0,
• not introduce arrays of any sort, only a fixed number of variables of type integer and color, and
• not use the operation LOOK© more than once for each value of i.

5.2.2 Discussion
Our solution (and the description in this section) is based on the original proposal by Dijkstra. We will assume

the existence of the external Pascal variable v of type buckets, as presented in the problem description above, and
that the Pascal procedures PUT, LOOK, and SWAP are both available and known.

Although the pebbles are of only three different colors, the fact that we can only inspect pebbles one at a time, to
gether with the requirement that we can only inspect each pebble once, implies that throughout the arrangement pro
cess, we have to distinguish between pebbles of four different categories, viz. established red (ER), established white
(EW), established blue (EB), and as yet uninspected (X). We will divide the row of buckets into four (possibly empty)
zones of consecutively numbered buckets, each zone being reserved for pebbles of a specific category. For keeping
track of the place of the zone boundaries we will use three integer variables, r, w, b, with the meanings:

1 < k < r: the k"1 bucket is in zone ER (number of buckets r-1 > 0)
r<k<w: the k"1 bucket is in zone X (number of buckets w-r+l>0)
w < k < b: the k* bucket is in zone EW (number of buckets b-w > 0)
b < k < N: the k* bucket is in zone EB (number of buckets N-b > 0)

This is illustrated by the following figure:

ER X EW EB
w b N

October, 1994 16/41 CRL Report No. 295

Initially, r=l, and w = b = N, so that the zones ER, EW, and EB are empty. The program then proceeds by incre
menting r, and decrementing w and b while making the necessary swaps, until the area marked "X" is empty because
r = w+l.

5.2.3 Example of a display
The complete set of displays including the lexicon and index is to be found in Appendix B. In the display below

there are three auxiliary functions (predicates) used: flag, partialjlag, and same_colors. Their formal definition is
given in the lexicon. Intuitively, J?r2£(v) is true if the colors in v form the required final configuration (zone X is emp
ty); partialjlag(yj,v/,b) is true if colors are grouped as on the above figure. The predicate same_colors(x,y) is true if
x and y have the same number of red, white, and blue pebbles.

DISPLAY 1
Display 1 Specification

DutchFlag external variable: v

Ro(>) =flog[v') A same_colors{'v,v')

I l t l l l l l l l l l U l I I I I I I I I I I l I I I I I I I I I I I I I

Display 1 Program
Procedure declaration:

'" procedure DutchFlag;
var r, w, b : integer;
begin

r :=1 ;w:=N;b:=N;
Rearrange^, w, b)

end {DutchFlag}

I l t l t l U I I I I I I I I I I I l I I I l l I I

-Display 1 Specifications of Invoked Programs

Rearrange^ w, b) external variable: v

Ri(,) = ((T=1)ACw = N)A('b = N))
=>

(parUal_flag{v',f,w',b') A (W'= r"-1) A same_colors['v,v'))

END OF DISPLAY 1

October, 1994 17/41 CRL Report No. 295

6 Experience
The ideas reported in this paper are motivated more by practical experience than' by theory. The theory has been

introduced only to the extent that it was needed to provide a precise meaning for the notation. We have all had the
frustrating experience of trying to read the mind of a programmer when trying to correct a program. The proposals in
this paper represent our thoughts about what the programmer should have given us.

The method described in this paper is an improved version of the technique used in the inspection of safety-criti
cal software for the Darlington (Ontario) Nuclear Power Generation Station [22]. It is important to understand that
the Darlington experience was not an experiment; we did not gather data or make scientific observations. There was a
job to be done and it had to be done as quickly as safety considerations would permit

At the Darlington station, two safety-critical systems were, for the first time, implemented in software. The
Atomic Energy Control Board of Canada (AECB) was not willing to allow the plant to operate until they were con
vinced of the correctness of the programs. Delays were very expensive for the owners of the plant Ontario Hydro.
The software had been ready for several years (because the rest of the plant was even further behind schedule), had
been tested thoroughly, and was considered by its owners to be safe to use. However, the usual informal approaches to
inspection did not provide the confidence level demanded by the AECB. The code, while not huge18, was sufficiently
complex that the engineers who inspected it using informal methods could not be confident that they had considered
all of the possibilities and found all of the errors.

One of the preliminary inspections demonstrated that the requirements documentation was not complete or pre
cise. An error caused by misinterpretation of a sentence was discovered. As a result the manufacturer was asked to
produce a mathematical requirements document using [5] as a model. This document, which also used tabular repre
sentations of mathematical functions, was reviewed by nuclear safety experts.

It was also agreed that precise program documentation would be produced and used as the basis for an inspection
procedure. Because the correctness of this code was considered vital to the safety of the plant, AECB, Ontario Hydro,
and Atomic Energy of Canada Ltd. (AECL), were able to train approximately 60 engineers to produce and review
tabular documentation. The inspectors had to identify program components and document them. The resulting tables
were then used as the input to an open inspection process. Each table was presented to a review group and the authors
had to demonstrate that it was a correct description of the code. Generally, this involved going through the table on a
column-by column, row-by-row basis. The tabular organization was extremely valuable because it made it easy to
take breaks (the process went on for months) without losing context or continuity.

In addition to demonstrating that the tabular documentation of the programs accurately described the code, it was
necessary to demonstrate that the tables describing the code described behavior that satisfied the requirements repre
sented by tables in the requirements document Generally, this involved a step-by-step transformation of one table un
til it matched the corresponding table in the other requirements document The transformations were not mechanical;
their correctness depended on properties of the functions used in the expressions and required human insight Again,
the tabular organization proved essential to allowing human beings with finite attention spans to compare two very
detailed documents

In the Darlington work the documentation was not formally organized into displays. This led to a lot of page fiip-

18 While line-counts are notoriously subjective, an outside expert ([11]) estimates the programs as containing about 2500 lines of
FORTRAN and Pascal, plus about the same amount of code in assembler.

October, 1994 18/41 CRL Report No. 295

ping during the inspection process. Technological limitations also prevented us from using some of the notation in
this paper. The work was done without the precise definitions in this paper and demonstrated the need for those defi
nitions. In the Darlington work, for example, we did not use quantifiers and this led to problems when dealing with
arrays in the program.

The methods described in this paper result from our reflection on the Darlington experience. The notations used
here are the ones that we now believe we should have used in Darlington. The notation presented here has been used
in more academic experiments including work done at Warsaw University and at McMaster University. Our conclu
sions are supported by experience gained when the Display Method was applied to examples larger than those pre
sented in this paper (e.g. a simple data base) and implemented in different programming languages (Sun Pascal,
Turbo Pascal, FORTRAN, C), cf. [26]. One interesting aspect of this McMaster University work was that it was done
by an undergraduate with no prior exposure to formal methods or mathematical logic. He was able to document and
repair a FORTRAN program that had been frustrating its owners in their attempts to repair it for many months. Our
success did not surprise us, but it surprised the owners of the FORTRAN program who had reluctandy concluded that
the program could not be salvaged.

The extensive experience gained in the Darlington work, and in subsequent uses of the method, has revealed
where users of these ideas spend their time. We have found that much of the Engineer's time was spent on tasks that
could be done by relatively simple tools. This work has led to tool projects at McMaster University, the Universite du
Quebec a Hull, and Warsaw University, which will be described in the next Section.

7 Concluding remarks
We base this method on a very simple idea. Programs can only be understood in small chunks, so they should al

ways be presented in small pieces. Each presentation must be complete in itself so that it can be studied without look
ing at the others. However, one can not follow this simple precept without finding a way to express the connections
between the small sections. It does no good to have a collection of small programs, each one of them correct if they
do not fit together to make a large correct program. This observation led us to use a relational/functional model, both
to specify the requirements that a program must meet and to describe the behavior of a given program. While we
found that conventional mathematical concepts were theoretically sufficient to describe these relations, conventional
notation resulted in complex expressions that were hard to parse and understand. This led us to introduce a tabular no
tation that allowed us to describe the programs in a more readable manner. Without this notational progress, the orig
inal simple idea would not be as practical.

We began our work on the assumption that we were studying a method of program presentation. It soon became
clear that the method was also a way of developing programs. Programs that had been developed before we began to
document them, were found to have defects that became obvious when we started to present them in displays. Docu
menting programs using the display method can result in significant improvements in the quality of the program.

One advantage of this method is that one can speed up a review by employing more reviewers. The displays do
not have to be reviewed in any special order and can be reviewed in parallel because they are independent Even more
important if an error is found in Part 2 of a display, that part can be changed without necessitating modifications to
any other displays .unless Part 3 is changed. If we do find it necessary to change Part 3 of a display, other displays will
have to be changed but we will know exactly which displays must be revised and checked.

The package of ideas that we have presented has proven valuable, but we believe that tool support is needed to
make it practical for "everyday** programs. With current tools, it takes an excessive amount of effort to make sure that
our expressions are syntactically correct and to achieve neat formatting. Moreover, it requires a high degree of disci
pline to perform simple checks on the displays, and to make sure that the specifications that are "copied" from the
bottom of one display to the top of another are, and remain, identical Checking lexicon entries requires annoying
page-flipping or frustrating delays on the screen. Assembling the program segments to produce executable code by

October, 1994 19/41 CRL Report No. 295

hand is also a time-consuming process in which it is easy to introduce careless errors.
We believe that the situation can be ameliorated by building a set of tools that are designed to support this meth

od of program development and documentation. We envision a system in which the central window presents a dis
play, and other windows provide the relevant lexicon entries. In such a system, the "copying" of the specifications
would be automatic and it would be impossible to change one without changing the other. The system would be capa
ble of performing a completeness check and would remind us of specifications that could be found in Part 3 of one
display but were not yet developed as Part 1 of another. Checking correctness remains a task for humans. We now
have a prototype of such a tooL Other tools would provide syntactic and semantic checks and help us to format the
displays. Work on direct support of the Display Method is being carried out at both McMaster University and Warsaw
University. At the University du Quebec h Hull editors to support other types of formal documentation have been
completed.

A system of this sort would be extremely valuable for people who develop software and even more valuable for
those who maintain software products; It would be valuable even without any verification capability, but a simple the
orem prover would allow us to make basic checks on the tables. In the future, documentation in this style could be
used as input to more sophisticated provers. The information necessary for verification is present in these documents.

Because the documentation is mathematical in nature, it can be used to support testing! The tabular representa
tions can be converted to "oracles", i.e. programs that evaluate the results of tests. If a program is tested against pro
grams generated from it's documentation, developers are more likely to keep the program and documentation
consistent Work of this sort is described in [25].

Tools to make it easier to produce tabular representations of functions and relations in any kind of documentation
are being studied and developed at McMaster University.

If readers take the time to compare our presentation of the problem of the Dutch National Flag with Dijkstra's
original proposal [2] they will see the benefit of our approach. Dijkstra's presentation, though very illuminating, is
dangerously unclear. Although he shows great discipline in developing the small program fragments that are present
ed in the text, he relies on informal discussions.tadescribe how these are to be assembled into a complete working
program. Four essential lines of program text in our solution cannot be found in the program fragments in the original
version. Three of these lines are implied by an easily overlooked English sentence in Dijkstra's discussion of the pro
gram development The fourth covers a simple case that seems to have been overlooked because the complete pro
gram structure was never presented. We know of several occasions where readers have been asked to examine the
original description of the algorithm and then assemble working Pascal programs. Some readers simply assembled
Dijkstra's program fragments - producing programs that were not correct Others noted the conditions in the English
text and produced correct programs. We consider Dijkstra's description to be unclean some have argued that it is
wrong19. While no method guarantees error-free programs, we believe that the use of the Display Method with care
ful reviews of each display, makes such errors much less likely.

The problem of the Dutch National Flag reveals one of the limitations of our specification method. LD-relations,
like predicate transformers and pre^post conditions, are unable to express the fact that the program is only permitted
to inspect the contents of a bucket once. Relational methods limit the final state of the program, but the number of
"LOOK" operations that have been carried out is not reflected in the final state with the data structure given. The def
inition of the buckets abstraction could easily be modified to distinguish between inspected and uninspected buckets,
but this would be modifying the data structure avly to make the specification easier.

The binary search example illustrates the subtle ways in which programming language restrictions can affect the
documentation. In Display 2 we had to introduce "med" but because we were using Pascal, this variable's declaration
should have been included in Display 1. If we had been using Pascal's predecessor, Algol 60, the declaration could

Dijkstra advised against bothering to assemble the final program, apparently because there was no need to look at i t

October, 1994 20/41 CRL Report No. 295

have been made where it was needed and kept local to the block in which it was used.

Acknowledgements
Dr. Gordon Stuart, then a PhD. student at theUniversiry of Victoria, contributed to the early development of

these ideas. Wm. Wadge helped to clarify the concepts of LD-relations. Graydon Saunders worked on a diagrammatic
form of displays for a mythical programming language that we call DAD. The many employees and consultants of
AECB, AECL, and Ontario Hydro who applied some of these ideas to the review of the software for the Darlington
Nuclear Plant [22] helped us by showing what was needed to turn some academic conceptions into a more mature
technology. Mr. P. Filip Sawicki's work on his MSc Thesis [26] was an important step in exploration of the Display
Method. We are grateful to David Weiss and to the many people who were kind enough to offer us comments on ear
lier versions of this paper. An excruciatingly detailed review by referee #4 helped us to clarify our explanations in
many ways. The editor's final suggestions were unusually helpful.

This research was primarily funded by the Telecommunications Research Institute of Ontario (TRIO). Other sup
port was provided by the Canadian Institute of Telecommunications Research (CITR), by the State Committee for
Scientific Research in Poland (KBN), by Digital Equipment's European External Research Programme (EERP) and
by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References
1. Dijkstra, E.W., "The Structure of the 'THE' Multiprogramming System", Communications of the ACM, Vol. 11,

No. 5, May 1968, pp. 341-346.
2. Dijkstra, E.W., Discipline of Programming, Prentice-Hall, 1976.
3. Floyd, R.W., "Assigning Meanings to Programs", Proceedings of the Symposium of Applied Mathematics, Vol.

19,1968. Also in: Schwartz, J.T. (editor), Mathematical Aspects of Computer Science, American Mathematical
Society, 1967, pp. 19-32.

4. Hehner, E.C JL, "Predicative Programming, Part 1", Communications of the ACM, Vol. 27, No. 2, February 1984,
pp. 134-143.

5. Heninger, KX., Kallander, J., Parnas, D l . , Shore, IE., "Software Requirements for the A-7E Aircraft", NRL
Memorandum Report 3876, United States Naval Research Lab., Washington D.C., November 1978,523 pp.

6. Heninger, KJL., "Specifying Software Requirements for Complex Systems: New Techniques and their Applica
tion", IEEE Transactions Software Engineering, Vol SE-6, No. 1, January 1980, pp. 2-13

7. Hoare, C.A.R., "An Axiomatic Basis for Computer Programming", Communications of the ACM, Vol. 12, No.
10, October 1969, pp. 576-580.]

8. Iglewski, M., Madey, J., Parnas, DX., Kelly P. C, "Documentation Paradigms", CRL Report 270, McMaster
University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada; July
1993,45 pp.

9. Jensen, K., Wirth, N., "Pascal User Manual and Report", Lecture Notes in Computer Science, Vol. 18, New York,
Springer-Verlag, 1974 (second corrected edition 1976).

10." Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall, 1986.
11. Leveson, N., Personal Communication, 10 September 1994.
12. Majster-Cederbaum, M.E., "A Simple Relation Between Relational and Predicate Transformer Semantics for

Nondeterministic Programs", Information Processing Leuers, Vol. 11, No. 4,5, December 1980, pp. 190-192.
13. Mills, H.D.,*The New Math of Computer Programming", Communications of the ACM, Vol. 18, No. 1, January

1975, pp. 43-48.
14. Mills, HX>., "Function Semantics for Sequential Programs", Proceedings of the IFIP Congress 1980, North Hol-

October, 1994 21/41 CRL Report No. 295

land 1980, pp. 241-250.
15. Parnas, D.L., "Information Distributions Aspects of Design ̂ Methodology", Proceedings of the 1FIP Congress

'71, Booklet TA-3,1971, pp. 26-30. s-
16. Parnas, DX., "On the Criteria to be Used in Decomposing Systems into Modules", Communications of the ACM,

Vol. 15, No. 12, December 1972, pp. 1053-1058.
17. Parnas, DX., "A Generalized Control Structure and Its Formal Definition", Communications of the ACM, Vol.

26, No. 8, August 1983, pp. 527-581.
18. Parnas, DX., "Tabular Representation of Relations", CRL Report 260, McMaster University, CRL, Telecommu

nications Research Institute of Ontario (TRIO), Hamilton, Ontario, Canada; October 1992,17 pp. •
19. Parnas, DX., Madey, J., "Functional Documentation for Computer Systems Engineering. (Version 2)", CRL Re

port 237, McMaster University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, On
tario, Canada; September 1991,14 pp.

20. Pamas, DX., Wadge, W.W., "Less Restrictive Constructs for Structured Programs", Technical Report 86-186,
Queen's, C&IS, Kingston, Ontario, Canada, October 1986,16 pp.

21. Pamas, DX., Wang, Y., "The Trace Assertion Method of Module Interface Specification", Technical Report 89-
261, Queen's, C&IS, Telecommunications Research Institute of Ontario (TRIO), Kingston, Ontario, Canada, Oc
tober 1989,39 pp. (Available from McMaster University).

22. Parnas, DX., Asmis, G J.K., Madey, J., "Assessment of Safety-Critical Software in Nuclear Power Plants", Nu
clear Safety. Vol. 32, No. 2,1991, pp. 189-198.

23. Pamas, D. Ls Clements, P. C, Weiss, D. M., "The Modular Structure of Complex Systems", IEEE Transactions
on Software Engineering, March 1985, Vol. SE-11 No. 3, pp. 259-266.

24. Parnas, DX., Madey, J., Iglewski, M., 'Formal Documentation of Well-Structured Programs", CRL Report 259,
McMaster University, CRL, Telecommunications Research Institute of Ontario (TRIO), Hamilton, Ontario, Can
ada; September 1992,37 pp.

25. Peters, D., Parnas, D. L. "Generating a Test Oracle from Program Documentation", published in Proceedings of
the International Symposium on Software Testing and Analysis, August 17-19,1994.

26. SawicM, PJF., "Analiza metody SPS(R) weryfikacji programow" (in Polish), ["An Analysis of the SPS(R) Meth
od of Program Verification"], MSc Thesis, Warsaw University, Institute of Informatics, 1992,124 pp.

27. Wirth, N., "Program Development by Stepwise Refinement", Communications of the ACM, Vol. 14, No. 4, April
1971, pp. 221-227.

28. van Schouwen, A. J., "The A-7 Requirements Model: Re-examination for Real-Time Systems and an Applica
tion to Monitoring Systems", Technical Report 90-276, Queen's, C&IS, Telecommunications Research Institute
of Ontario (TRIO), Kingston, Ontario, Canada, May 1990,93 pp. (Available from McMaster University).

2! \,an Schouwen, A. J., Pamas, D. L., Madey, J., "Documentation of Requirements for Computer Systems", pre-
rsnted at RE '93 IEEE International Symposium on Requirements Engineering, San Diego, CA, 4 - 6 January,
1993.

October, 1994 ' 22/41 CRL Report No. 295

Appendix A

"Binary search" example presented on displays
The description of the problem and the discussion of the solution were given in Section 5.1. What follows is the

formal documentation for the complete solution.

October, 1994 23/41 CRL Report No. 295

D I S P L A Y 1

Display 1 Specification

FInd(x, A, j , present) j

Ro(.) = ((1 < n) A Vz [(1 < i < n) => ('A[z] < 'A[z+1])])

BBSSSSB8BSB5S8S&

r i
present' =

3z[(1<z<n)A('A[z1 = *x)] =

true
,A[j'] = 'x

true

false

true
false ANC(X,A)

l3 I I I l I I I i I t I I I I I I I l I I I I I I ! I lUII l I I I I I I I I I I l I I I I I I I l I I ! l l t l I I I I I ! I I l ! I | l ! in i l ! l l I I I I I I I I I I I I I in i ! l I I

Display 1 Program
Procedure declaration:

procedure Find(e: integer; V: vector; var index : integer; var found : Boolean);
var low, high : integer;
begin

Initialization; Body
end {Find}

i i i i i i i i i i t i i i i i i i i i i i i i i t i t i i i i i i i i i i i i i i t i t i i i i i i i i i i i i i i i i i i i f i t i i i i i i i i i i i i i i i i i i t i i i i i u i i

Display 1 Specifications of Invoked Programs

Initialization external variables: e, V, found, low, high

Ri(.) = (IW = 1) A (high* = n) A (found' = false) A NC(e, V)

(on Display 4)

Body external variables: e, V, index, found, low, high

Ra(.) =
(('low < 'high) A (found = false) A VZ [('low < i < 'high) => (*V[z] < 'V[f+1])]) =>

index" | |

found' =

low' |

high* |]

3x [('low < z < 'high) A (*V[Z] =.*e)] =

true

'Vpndex'] = 'e

true

true

true

false

true

false

true

true ANC(e,V)

(on Display 2)

E N D O F DISPLAY 1

October, 1994 24/41 CRL Report No. 295

DISPLAY 2
Display 2 Specification

Body external variables: e, V, index, found, low, high

R2(.) =
((found = false) A ('low < 'high) A VZ [('low < i < 'high) => ('Vfl £ 'V[z+1])])

13f [('low < i < 'high) A (*VH = 'e)] =

1 rrzze / a t e

index' |

found'

low' |

high' |

•Vfindex'] = 'e

true

true

true

true

false

true

true ANC(e,V)

(from Display 1)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiuiiiiiiiiiniii
Display 2 Program

New variable (to be declared in the embedding block): var med : integer;

Program statements:
{Body}
while not found and (low < high) do begin

med := (low + high) div 2;
Test

end
I l t l l l l l l l l l l l l l l l U I I l i l l l l l U I I I I I I I I I l l l I I I I I I I U I I I t l

Display 2 Specifications of Invoked Programs

external variables: e, V, index, found, low, high, med

R3(.) = ('low < 'med < 'high) *

-mOOMOMOOMMOMOMMOOMW

index'

found' =

low'

high'

<'e

true
found

'med +1

'high

•Vfmed]

= 'e
aoooowooocccooooQeeoooeeeoow-K eeooeoooeoeoeeeooeoeeooeeoeeeooeMeo

index' = 'med

true

'low

'high

>'e

true
found

'low

'med-1 ANC(e,V, med)

(on Display 3)

END OF DISPLAY 2

October, 1994 25/41 CRL Report No. 295

DISPLAY 3
Display 3 Specification

| Test extemal variables: e, V, index, found, low, high, med

R3(.) = ('low < 'med < 'high) =>
(from Display 2)

index* 1

found' =

low' =

high'

<'e

true

found

'med +1

'high

'V['med]

= 'e

index' = 'med

true

'low

'high

>'e

true

found

'low

•med - 1 ANC(e,V, med)

i t i i i t i u i i i i i i i i i i i i i i i i i n i i i i i i i

Display 3 Program
{Test}
if V[med] < e then

low := med +1
else

if V[med] > e then
high := med - 1

else begin
index := med;
found := true

end
i i i i i i i i i f i i i i i t i i i t i i t i i i i i i t i i i i i i i i i i i i i t i i i i i i i i i t i i i i i i i i i t i t i i i i i i i i t i t i u i

Display 3 Specifications of Invoked Programs
Empty

END OF DISPLAY 3

October, 1994 26/41 CRL Report No. 295

DISPLAY 4
Display 4 Specification

Initialization i external variables: e, V, found, low, high

RX) = (low' = 1) A (high* = n) A (found' = false) A NC(e, V)

(from Display 1)

I I I I I I I I I I I I I I I I l I I I I I I I I I I U I l I I I I I M t l l l l l l l l l l t l l l l l l l l l l l l l l l l l l l U I I I I I I I I I I I I I U t l l t l t l l l l l l l l

Display 4 Program
{Initialization}
low := 1;
high := n;
found := false;

I U I I I I l l I l I I I I I I l I I I I l l I I I I I I I I I I l l l i i i i i i i u i i i i i i i i i i i i

Display 4 Specifications of Invoked Programs
Empty

END OF DISPLAY 4

October, 1994 27/41 CRL Report No. 295

LEXICON

A. Pascal external definitions and declarations
const n = n; {literal integer is to be written here}
type vector = array[1..n] of integer;
var x, j : integer; A: vector; present: Boolean;

INDEX

Name

A

Body

e

Find

found

high

index

Initialization

Used in

D0,Dl l tLA

Dl2.3.D2u

Dl2 i3 ,D2w ,D3,D41

D l u

Dl2,3,D2,D3,D4

Dl2.3,D2,D3,D4

D123,D2U,D3,D4

D12.3.D4

j 1 D0,Dlj,LA

low

med

n

Dl2,3,D2,D3,D4

02^3,03

D0,Dl l i3,D4,LA

present D0,Dlj,LA

Test

V

vector

x

D2„,D3

Dl„ ,D2 u ,D3 ,D4j

; D0,D12,LA

D0,D1„LA

Legend:

• DO denotes the introduction,
■ Dz', £=1,2,... denotes Display z",
• DZJ, p=l,2, „., j 6 {1,2,3} denotes Display z", part P/,
• Dzjjj.z'sl^,..., jjce {1,23} denotes Display z", parts Py and ?k,
• L, , x=A£,... denotes the lexicon, part x.

October, 1994 28/41

Appendix B
"Dutch national flag" example presented on displays

The description of the problem (based on [2], chapter 14), and the discussion of the solution were given in Sec
tion 5.2. What follows is the formal documentation for the complete solution. The notation used to specify "buckets"
is explained in [8] and [21].

October, 1994 29/41 CRL Report No. 295

DISPLAY 1
Display 1 Specification

DutchFlag ! extemal variable: v

Ro(.) =flag(y') A.same_colors('vy')

I l t l t l l l l l l l l l l l l t l U I l l l l l l

Display 1 Program
Procedure declaration:

procedure DutchFlag;
var r, w, b : integer;
begin

r:=1;w:=N;b:=N;
Rearrange (r, w, b)

end {DutchFlag}

i t i i i i i i i i i i i i i n i i i i i i i i i i i i i i i i i i t i n

Display 1 Specifications of Invoked Programs

Rearrange(r, w, b) external variable: v

Ri(.) = (('r=1)ACw = N)A('b = N))

(partialJlag{v'S,YJ',b') A (w' = f-1) A same_colors{'vy))

(on Display 2)

END OF DISPLAY 1

October, 1994 30/41 CRL Report No. 295

DISPLAY 2
Display 2 Specification

Rearrange^, w, b) extemal variable: v
•R,(.) = (('r=1)ACw = N)A('b = N))

=>
(partialJlagly'.f,vi',b') A (W' = r*-1) A same_colorsCv,V'))

(from Display 1)

iiuiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniui
Display 2 Program

Procedure declaration:
procedure Rearrange(var r, w, b : integer);
begin

while w > r do
Decrease^, w, b)

end {Rearrange}

I I I l I I I I I I I l I I I l l I I I I I I I I t l l l l l l t l l l l l l l l l l t l l l l l l l t l l l l l l l l l l l l l l l l l l t l M I I I M I l I t l l l l M I I I

Display 2 Specifications of Invoked Programs

Decrease ,̂ w, b) external variable: v

R2O = (partialJag(\'rMb) A (»r < *w))
=>

(partial'Jag(v'S,VJ',b') A ((w'-r*) < Cw-'r)) A
same_colors(?v,v'))

(on Display 3)

END O F DISPLAY 2

October, 1994 31/41 CRL Report No. 295

DISPLAY 3
Display 3 Specification

Decrease^, w, b) external variable: v

R2(.) = (partialJagCvXWb) A («r < «w))
= >

(partialJag(v'S,w',b') A ((w'f) < Cw'r)) A
same_colorsCv,y'))

(from Display 2)

I 1 1 I I I I 1 I I I I I M I I I I I 1 I I 1 I I I I I I 1 I I I I I I I I I I I I I I I I I 1 1 1 I I

Display 3 Program
Procedure declaration:

procedure Decrease(var r, w, b : integer); ■
var coir, colw: color;
begin

IncR;
if r < w then begin

DecW;
UseCoIw

end {if};
UseCoIr

end {Decrease}

l ! . ^ ! I f I I I I I I I U I I U I I I I I I I I U I I I l I ! I I I I I I I t t I l l I l I I I I I I t I l l U I I I I 3

Display 3 Specifications of Invoked Programs1

DecW extemal variables: v, r, w, b, coir, colw

R3(.) = partial Jag(\ 'r, *w, 'b) A ('r < *w)

partial_flag(v\ f, w", b") A

true

w' | I (r'<w')A
I (((r*+l) < w') => (v*w. * white))

colw' = 1 A NC(v,r,b.colr)

(on Display 4)

Display to be continued

1 KTnto • Note; vs is defined in part C of the lexicon.

October, 1994 32/41 CRL Report No. 295

external variables: v, r, w, b, coir, colw

R^,) = partialJag(\ 'r, ty 'b) A ('r < *w):
partial_flag(v\ r\ w', b') A

? I

true
(r'<w')A
((r'<w')=>(vV*red))

coif = A NC(v,w,b.co!w)

(on Display 5)

UseColr external variables: v, r, w, b, coir, colw

Rs(.) = partialJagCv, 'r, "w, 'b) A («colr= V.w) A
('r< cw) A (('r < 'w) => ('coir* red))

=>
partial_flag(v\ r', w\ b') A same_colors(%V) A

r* 1

'co!r =

red

! r' = ' r+l

w* | 1 NC(w)

b* | j NC(b)

white

NC(r)

w' = ' w - l

NC(b)

blue

NC(r)

w' = 'w - 1

b' = ' b - l ANC(coIr.coIw)

(on Display 6)

UseCoIw external variables: v, r, w, b, coir, colw

Re(.) = partialJlagCv, 'r, "w, *b) A ('coir = *v.r) A ('colw = V.w) A
('r < *w) A ((('r+1) < \v) => ('colw * white))

=>
partialJlag(v', f, w', b') A same_colorsCvy) A (V'W. = coir*) A

f I
w' |

V I |

'colw =

red

r* = ' r+l

NC(w)

NC(b)

white

NC(r)

w' = *w - 1

NC(b)

blue

NC(r)

w* = 4w - 1

b' = ' b - l A NC(coIr.coIw)

(on Display 7)

END O F DISPLAY 3

October, 1994 33/41 CRL Report No. 295

DISPLAY 4
Display 4 Specification

DecW extemal variables: v, r, w, b, coir, colw

R3O = partial Jag(\, 'r, 'w, 'b) A ('r < *w) =>

partial_flag(v'', r\ w', b*) A

1 true

W j

colw' =

(r'<w')A
(((r'+l) < w') => (v*w. * white))

vV A NC(v,r,b,colr)

(from Display 3)

l I l I I I I I I I I I I I I I I l I I I I I I I I I I I I I I l I I I I I I I I I t l U I I I I I I I I I I I I I I I l I I I I I I I I I I I I I i l I l i i i i i i i i i i i i i i i i H i i i i i

Display 4 Program
{DecW}
colw := LOOK(w);
while (colw = white) and ((r+1) < w) do begin

w := w-1; colw := LOOK(w)
end

I l l l t l l t l t U I U I I l l l I I I t l

Display 4 Specifications of Invoked Programs
. Empty

END OF DISPLAY 4

October, 1994 34/41 CRL Report No. 295

DISPLAY 5
Display 5 Specification

IncR external variables: v, r, w, b, coir, colw

R-s(.) = partialJag(% 'r, V, 'b) A fr < 'w) =*

partialJlag{v', f, W', b') A

true

r* 1

coir* =

(r'<w')A
!((r'<w')=j>(vV*red))

v,

■

A NC(v,w,b.co!w)

(from Display 3)

i i i i i i i i i i i i i i i i t i f i i i i i i i i i i i t i i i i i t i t i i i i i i i i i i i i i i i i n i i i i i

Display 5 Specification
{IncR}
coir := LOOK(r); {v is an implicit variable used by LOOK}
while (coir = red) and (r < w) do begin

r:= r+1; coir :=LOOK(r)
end

i i i i i i i i i i i i i i i i i i i t i t i i i i i t i i i i i i i i i ' i i i i i i i i i i i i i i i i i i u i i i i i i i i i i

Display 5 Specifications of Invoked Programs
Empty

END OF DISPLAY 5

October, 1994 35/41 CRLRer>ortNo.29,;

DISPLAY 6

Display 6 Specification

UseCoIr external variables: v, r, w, b, coir, colw

Rs(.) = partialJag('v, 'r, 'w, 'b) A ('colr= V.w) A
('r< *w) A (('r< 'w) => Ccolr ■* red))

(from Display 3)

partialJlag[v\ f, w', b') A same_colorsCvy) A

r* 1
w* |

b' 1

.

red

r' = T + l

NC(w)

| NC(b)

•co!r =

white

NC(r)

w' = ' w - l

NC(b)

blue

NC(r)

W ' s ' W - . l

b' = ' b - l A NC(coIr.coIw)

i i i i t i t t i t i t i i i t i t i i i i i i i i i i i i i i i i i u i i i i t

D i s p l a y 6 Program
{UseCoIr}
case coir of

red: r:=r+1;
white: w := w-1;
blue: begin SWAP(w,b); w := w-1; b := b-1 end

end
i j i i i i t i u t i

Display 6 Specifications of Invoked Programs
Empty

END OF DISPLAY 6

October, 1994 36741 CRL Report No. 295

DISPLAY 7

Display 7 Specification

UseCoIw extemal variables: v, r, w, b, coir, colw (from Display 3)

R6(,) =partial_flag(y, 'r, 'w, 'b) A ('coir = 'v.r) A ('colw = 'v.w) A
('r< *w) A ((('r+1) < 'w) =* ('colw * white))

■=*>

partialJlag(v\ r\ w", b') A same_colors(\y') A (V'W. = coir")3 A

r" I

'colw =

red

r' = ' r + l

w' NC(w)

b' NC(b)

white

NC(r)

w' = ' w - l

NC(b)

blue

NC(r)

w' = ' w - l

b' = ' b - l ANC(coIr.coIw)

a. The post-condition v'w. = coir' is redundant and has been added for ease of comprehension.

i t i t i i i i i i i i i i i i i i i i i t i n i t i i i i n i n 11 i n I I i u

Display 7 Program
{UseCoIw}
case colw of

red: begin SWAP(r, w); r := r+1 end;
white:. w:=w-1 ;
blue: begin SWAP(w, b); w := w-1; b := b-1 ; SWAP(r.w) end

end
I l I I I I I I I I I I I I I I I I l I l I I I U I I I I I I I I I l l I I I I I I I I I I I I I I I I i i i M i i i i i i I I I I I I I

Display 7 Specifications of Invoked Programs

E m p t y

END O F DISPLAY 7

October, 1994 37/41 CRLReDOrtNo.295

LEXICON

A. Auxiliary functions

card: set —> integer

card(s) = Isl (i.e. number of elements in the set s)

flag: buckets —> boolean

flag(v) & 3r,b [partialJag{vs,r-1,b)]

partial_flag: buckets x integer x integer x integer —> boolean
partialjlag(vj-,wjb) = (1 < r) A (r-1 < w) A (W < b) A (b < N) A

Vz (1 < z < N) [((z </•)=> (v; = red)) A
((w < z* < 6) => (v£ = white)) A

((&<z-)=>(vi = blue))]

Note: Vj is defined in part C of this lexicon.

same_colory. buckets x buckets —> boolean
same_colors(vl,v2) =

(card([i | (1 < i < N) A (vi; = red)}) = card({i\ (1 < z < N) A (V2; = red)})) A
(card([i | (1 < z ^ N) A (vii = white)}) = card({i | (1 < i < N) A (V2; = white)})) A
(card({i \ (1 < i < N) A (vlx = blue)}) = £arri({f | (1 < i < N) A (V2; = blue)}))

B . Pascal external definitions and declarations

const N = {literal non-negative integer]
type color = (red, white, blue);
type buckets = {vector(N, color) - cf. part C of this lexicon]
var v : buckets;
procedure LOOK(i: integer);

{cf. part C of this lexicon}
procedure SWAP(i, j : integer);

{cf. part C of this lexicon}

C. vector(n,eIem) Module Interface Specification

(0) CHARACTERISTICS

• type specified: vector(n,elem)

• features: single-object, generic

• foreign types: elem, <integer>, <positive_integer>

• generic parameters: n: <positive_integer>, elem

October, 1994 38/41

(1) SYNTAX

ACCESS-PROGRAMS

Program Name
LOOK""

Arg#l
MCMMMOMMOMMO

i<integer>:V

PUT f<integer>:V

SWAP i :<integer>:V

Arg#2 Value Type
-MO-XCMOOMMMMOMM-; MOMOMOMMMOOMOMOOOM-

elem:V
<integer>:V

elem

(2) CANONICAL TRACES

canonicalCT) o T=pUT(i,e.)].J

_=[PUT(i ,J]
i = l

i = l

EQUIVALENT NOTATION FOR TRACES

Trace j | Equivalent notation
vXOOK(i>

(3) EQUIVALENCES

TJLOOK(i)=>T
Ti>UT(i,e).-s>

Condition

-,(l<i<n)
l < i < n

Equivalence
%wrong_index%

TlPUT(i,e).T2 where T=T1 i>UT(i,x).T2

T.SWAP(i,j)s>

Condition
- , ((l<i<n)A(l<j<n))

(l< i<n)A(l< j<n)A

(i<j)

Ci=j)

Ci>j)

Equivalence
%wrong_index%

TlJ>UT(i,x).T2J>UT0',y).T3
where

! T = Tl J>UT(i,y).T2PUT0».T3

i TlPUTa,x).T2J>UT(i,y).T3
where

i T = TlPUT0',y).T2.PUT(i,x).T3

(4) RETURN VALUES

Program Name
LOOK(i)

Argument No Value
Value e where vector(n,elem) = Tl .PUT(i,e).T2

October, 1994 39/41 CRL Report No. 295

INDEX

Name

b

b

b

blue

buckets

COTri

color

Category 1 Used in

variable in DutchFlag

formal parameter in Rearrange

Dl2

D13,D2U

formal parameter in Decrease i D23, D3, D4a, D5i, D6, D7

| D0,D33,D6,D7,LA3

| DO,LAi

f LA
1 D0,D32,LB

■coir f 1 DS^.IMi.DS.De.D?!

colw 1

Decrease |

DecW

DutchFlag

flag

IncR

LOOK

N

partialjlag

PUT

r

r

r

red

Rearrange

same_colors

SWAP

UseCoIr

UseCoIw

D32,3,D4,D51,D61,D7

D22,3,D3U

D32.3, D4

3>lw

| Dli.LA

ID3*V3,D5
f - *■*-

:

D0,D42,D52,LBiC

D O . D I J ^ J . L ^ B

Dl3, D2U , D3 U , D4,, D5j, D6j, D7j, LA

| DO.Lc

variable in DutchFlag 1 Dl2

formal parameter in Rearrange 1 Dl3, D2li2

; formal parameter in Decrease '"crD23,D3,D4,D5,D6,D7

| D0,D33,D5,D6,D7,LAJ

| D1*23,D212

| Dl 1,3, D2W, D3i3, D6i, D7j, LA

1 00,062,072^,0

D323.D6

D323.D7

October, 1994 40/41 CRLRennrtNn W>

Name

V

Category

vector I

w

w

w

white

! variable in DutchFlag

| formal parameter in Rearrange

| formal parameter in Decrease

; Used in

| DO, D l u , D 2 U , D3, 3 , D4„ D5„ D6,, D7, LB

i DO, Lgc

| D l 2

| Dl 3 ,D2i^

D23, D3, D 4 U , D51 2 , D 6 U , D 7 U

| D0,D33,D4,.D6 ID7,LAj,

Legend:

• DO denotes the introduction,
• Dz", z=l,2,... denotes Display z,
• Dij, z*=l,2,..., y e {1,2,3} denotes Display z, part Py,
• D/ji, f=l,2,..., y'Jfc e {1,2,3} denotes Display z", parts Py" and Pk,
• Lx , x=A3 , ••• denotes the lexicon, part x.

October, 1994 41/41 CRL Report No. 295

Session Wl: Natural Language Modeling

Dr. John Sharp
Sandia National Laboratories

Natural Language Modeling
John K. Sharp, PhD

Sandia National Laboratories

This seminar describes a process and methodology that uses structured natural language to enable
the construction of precise information requirements directly from users, experts, and mangers.
The main focus of this natural language approach is to create the precise information requirements
and to do it in such a way that the business and technical experts are fully accountable for the
results. These requirements can then be implemented using appropriate tools and technology.
This requirement set is also a universal learning tool because it has all of the knowledge that is
needed to understand a particular process (e.g., expense vouchers, project management, budget
reviews, tax laws, machine function)

Personal accountability for results is established with the expert that is specifying the design and
the implementor is accountable for meeting the design requirements. This is done through a
systematic procedure based on a common understanding of the requirements and the ability to
communicate effectively. In other words, if the craftsman produced the part according to the
requirements then he did the correct job. The accountability for form, fitj and function resides
with the engineer who created the design. The craftsman is only accountable for meeting the
requirements. The center of this accountability process is a communication channel that is
completely understood by all of the participants. Natural language modeling processes allow
information technology to achieve this same high quality level.

The advantage of this procedure is that it takes an informal, possibly incomplete, possibly
redundant, possibly inconsistent and possibly indeterminate description of a user problem and
turns it into a precise set of facts and constraints that contain all of the knowledge and business
rules that are necessary for completely solving a user problem. The sentences are created and
analyzed by the subject matter expert with the analyst being a facilitator or scribe of the
knowledge that is created. The expert is fully accountable for the specification and the knowledge
can be transformed into desired graphical and textual presentations that become part of the design
specification for the implementor.

This seminar will be an overview of the procedure for creating natural language models.
Examples will be provided for every step in the procedure. The procedure starts with the subject
matter expert verbalizing sentences about the subject area. Placeholders or variables are then
assigned within the created sentences. The sentences are then qualified by assigning names to the
placeholder and the object. Constraints are then identified and tested. Finally, the results can then
be specified in a number of ways, including relational tables. The focus of the seminar shows how
low quality initial inputs are turned into high quality requirements that can hold the subject matter
expert accountable for the requirements and the implementor accountable for meeting them

Simple examples will be used throughout the seminar to show how unary, binary and n-ary
sentences are analyzed. All possible procedure steps will be presented using examples. Several
examples will be used as interactive problems to help attendees understand the procedure.

BIOGRAPHY

John K. Sharp, PhD

John has performed information analysis in various positions at Sandia for fifteen years. He has
worked closely with Prof. Shir Nijssen of the Netherlands for several years to establish the
procedure to develop and analyze information problems using structured natural language. They
are currently finishing a text on this topic. This procedure was originally based on the NIAM
(Natural language Information Analysis Methodology) modeling technique. John and Prof.
Nijssen have co-chaired two international conferences on natural language modeling. John is also
the editor of the international standard on conceptual schemas.

Sandia National Laboratories
Reengineering Center
P.O. Box 5800, MS-0803
Albuquerque, NM 87185-0803
Voice: 505-844-5428
Fax: 505-844-7501
E-mail: jksharp@sandia.gov

mailto:jksharp@sandia.gov

Natural Language Modeling

John K. Sharp, PhD
Sandia National Laboratories

UMimilfi^BilW IIIIIIIJ m ■■■Hj

Introduction

Natural Language Modeling Background
Natural Language Modeling Procedure
Validating Information Models
Conclusion

JkjKJtf 1^.3

Natural Language Modeling Background

jktxui r-vi-i

Information Modeling Processes
Must Limit Analyst Liability

Every information analyst must have the
ability to make the users/owners fully D
accountable for their information system
design

No more of the following

Good Input Process Bad output

jtoXLU H*>4

Natural Language Modeling
Overview

• Based on mathematical analysis of elementary sentences
• Separates analysis from the documentation of analysis

- Specified analysis procedure that is understandable
- Can be documented in various graphical models

• Creates a complete design that is validated by subject
matter experts

• Accountability can be assigned at every step in the design
life-cycle

• Opportunity for significant productivity improvements

Natural Language Modeling
Axioms

• Axiom 1: All the information communicated to and from
an information system can be considered to be a set of
natural language sentences.

• Axiom 2: In discussions with the user the only language to
be-used is the familiar jargon of the user.

• Axiom 3: Decisions may only be taken when they are
based on a representative number of concrete examples.

• Axiom 4: For every information activity there must be a
precise prescription available.

Accountability is available for
information technology

Subject matter experts become accountable for the
requirements.
Analysts are accountable for a logically complete set of
requirements.
Implementators are accountable for implementing the
requirements.
Management is accountable for the delivery of the
application based on validated requirements.

£iKU(**f«7

Natural Language Modeling Procedure

JuKUf)>fps

Natural Language Modeling
Procedure

• Sentence analysis questions
• Sentence analysis examples
• Sentence analysis procedure
• Process analysis questions
• Process analysis procedure

NLM Procedure
Sentence Analysis Questions

• Question 1 (Repeated for each variable in a sentence)
Given that fact instance "Text a, text." is true, is it allowed for
another valid Anr [for example "z?\ to exist such that the fact
instance "Text a. text.*' is true?

• Question 2
Does a, at any moment in time identify exactly one A.

• Question 3
Is there a context within which A is uniquely identified by an Anr.

• Question 4
Is there an instance of an identifying fact type that when combined with
a, establishes a complete elementaiy sentence.

Where A is an entity or object, Anr is the label, and a, is a population instance.

fuxut r**,io

NLM Procedure
Sentence Analysis Examples

Social security number 123-45-6789 identifies a person.
"123-45-6789" is a Social Security Number.

Social security number <SSN> identifies a person.
123-45-6789

Allowed?
another Y [987-65-4321]

Question 1: Given that fact instance "Social security number 123-45-6789
identifies a person." is true, is it possible for another valid Social Security
Number [for example "987-65-4321"] to exist such that the fact instance
"Social security number 987-65-4321 identifies a person." is true? Y

Question 2: Does 123-45-6789 at any moment in time identify exactly one'
person? Y

tLMtOM 1

NLM Procedure
Sentence Analysis Examples (cont.)

Room number 101 identifies a room. .
"101" is a Room Number.

Room number <RoomNumber> identifies a room.
101

Allowed?
another Y [102]

Question 1: Given that fact instance "Room number 101 identifies a room." is true,
■ is it possible for another valid Room Number [for example "102"] to exist such that
the fact instance "Room number 102 identifies a room." is true? Y

Question 2: Does 101 at any moment in time identify exactly one room? N

Question 3: Is there a context within which "room" is uniquely identified by
a "Room Number?" Y

What is it? building

NLM Procedure
Sentence Analysis Examples (cont.)

Person name John Smith identifies a person.
"John Smith" is an Person Name.

Person name <Person Name> identifies a person.
John Smith

Allowed?
another Y [Sue Jones]

Question 1: Given that fact instance Terson name John Smith identifies a person." is true,
is it possible for another valid Person Name [for example "Sue Jones"] to exist such that the
fact instance "Person name Sue Jones identifies a person." is true? Y
Question 2: Does John Smith at any moment in time identify exactly one person? N
Question 3: Is there a context within which "person" is uniquely identified by a "Person
Name?" * N
Question 4: Is there an instance of an identifying fact type that when combined with person
name establishes a complete elementary sentence? Y

What is it? Social security number 123-45-6789 identifies a person.

NLM Procedure
Sentence Analysis Examples (cont.)

Company name Sandia National Laboratories identifies a company.
"Sandia National Laboratories" is a Company Name.

Company name <CompanyName> identifies a company.
Sandia National Laboratories

Allowed?
another N [Intel]

Question 1: Given that fact instance "Company name Sandia National
Laboratories identifies a company." is true, is it possible for another valid
Company Name [for example 'Intel"] to exist such that the fact instance
"Company name Intel identifies a company." is true? N

•ciKM r * . ' 4

NLM Procedure
Sentence Analysis Examples (cont.)

The preceding examples were all unary sentences (only one placeholder in the
sentence can vary). The only additional requirement for binary or higher order
sentences is to extend the first question to allow each placeholder to independently
vary. This is done by creating a matrix of the valid instance and replacing the
instance values on the diagonal with "another." Question 1 is then asked for each
of the sentences. Questions 2 - 4 are asked exactly like they were in unary sentences.

JUKLU PT«-J!3

NLM Procedure
Sentence Analysis Examples (cont.)

Room number 101 in building 803 identifies a room.
"101" is a Room Number.
"803" is a Building Id.

Room number <RoomNumber> in building <BuildingId> identifies a room.
101 803

Allowed?
another 803 Y [102]

101 another Y [801]
Question 1.1: Given that fact instance "Room number 101 in building 803 identifies a room."
is true, is it possible for another valid Room Number [for example "102"] to exist such that
the fact instance "Room number 102 in building 803 identifies a room." is true? Y
Question 1.2: Given that fact instance "Room number 101 in building 803 identifies a room."
is true, is it possible for another valid Building Id [for example "801"] to exist such that
the fact instance "Room number 101 in building 801 identifies a room." is true? Y

Question 2: Does 101 in 803 at any moment in time identify exactly one room? Y

Natural Language Modeling
Sentence Analysis Procedure

jfcsKLU Ttft 17

Natural Language
Sentence Analysis

Modeling
Procedure

• 1 Highlighting and Verbalization
• 2 Placeholder Assignment
• 3 Identification
• 4 Qualification
• 5 Pattemization
• 6 Diagramization

JfcsKLM h f c l S

Example 1
Business Card

Udder, inc. f w # £

-S C. R. Cows

RR1 #5 Rose Hill, KS 67133
(316) 766-2349

jtiKUf r^c i f

Example 1
d Business Card

Problem statement

Replace a stack of business cards with an electronic version
provides easier access to the information.

that

j t iKLi i r*«>-u

Example 1
Business Card

Highlighting and Verbalization

RR1 #5 Rose Hill, KS 67133
(316)766-2349

C. R. Cows works for Udder, Inc.

jkslOM r>«i21

Example 1
Business Card

• Placeholder Assignment

What parts are variable, or can be instantiated, in these sentences?

C. R. Cows works for Udder, Inc.
Jim Jones works for Vallev Feeds.

C. R. Cows works for Udder, Inc.
Jim Jones " " Valley Feeds.

jUKLU T>t*Zl

11

Example 1
Business Card

• Identification
C. R. Cows works for Udder, Inc.
Jim Jones " " Valley Feeds.

Of which class are C. R. Cows and Jim Jones elements? Person
Of which class are Udder, Inc. and Valley Feeds elements? Company

How is an individual element of the population of the class person identified?
Person Name
How is an individual element of the population of the class company identified?
Company Name

What is the name of the placeholder for the position where C. R. Cows and
Jim Jones appear in this sentence? <PersonName>
What is the name of the placeholderfor the position where Udder, Inc. and
Valley Feeds appear in this sentence? <CompanyName>

faxm ne**»

Example 1
Business Card

• Qualification

C. R. Cows works for Udder, Inc.

Potential Fact Type:
<PersonName> works for <CompanyName>.

C. R. Cows Udder, Inc.
Allowed?

another Udder, Inc. Y
C. R. Cows another N

fatOM Tm2J

Example 1
Business Card

• Patteraization

Fact type:
FT-1 <PersonName> works for <ComparryName>.

Diagramization
Person

-< *-
Person

(Person Name)

works for
.Company

(Company Name)

C R. Cows
Jim Jones

Udder, Inc.
Vallev Feeds.

j k iKM •*et*s

Example 2
Movie Marquee

Monday Movie Presentation
Session Theater 1 Theater 2 Theater 3

1000 Jaws Snow White Invisible Man
1200 Jaws Mad Max Invisible Man
1500 Mad Max Fantasia Invisible Man
1900 Jaws Fantasia Invisible Man

*»>

13

Example 2
Movie Marquee

• Highlighting and Verbalization

Monday Movie Presentation
Session Theater 1 Theater 2 Theater 3

1000 ; ^ ^ w $ l ^ Snow White Invisible Man
1200 Jaw? Mad Max Invisible Man

^SSQQ-̂ ̂ -ttaff&ui Fantasia Invisible Man
1900 Jaws Fantasia Invisible Man

Jaws is showing in theater 1 at 1000.

Example 2
Movie Marquee

• Placeholder Assignment

What parts are variable, or can be instantiated, in these sentences?

Jaws is showing in theater 1 at 1000.
Mad Max is showing in theater 2 at 1200.

Jaws is showing in theater 1 at 1000.
Mad Max" " " " 2 " 1200.

jfciKLK r*«(2I

Example 2
Movie Marquee

• Identification
Jaws is showing in theater 1 at 1000.
MadMax" " " " 2 " 1200.

Of which class are <> elements? Jaws and Mad Max Movie
1 and 2 Theater
1000 and 1200 Time

How is an individual element of the population of the class < > identified?
Movie Movie Name
Theater Theater Number
Time Time

What is the name of the placeholderfor the position where < > appear in this sentence?

Jaws and Mad Max MovieName
1 and 2 TheaterNumber
1000 and 1200 Time

Example 2
Movie Marquee

• Qualification
Jaws is showing in theater 1 at 1000.

Potential Fact Type:
<MovieName> is showing in theater <TheaterNumber> at <Time>.

Jaws 1 1000

another
Jaws
Jaws

1
another

1

1000
1000

another

Allowed?
Y
Y
Y

Question: Given that fact instance "Jaws is showing in theater 1 at 1000." is true,
is it allowed for another valid Movie [for example "Mad Max"] to exist such that
the fact instance "Mad Max is showing in theater 1 at 1000." is true? Answer=Yes

JUXUt J-^.30

Example 2
Movie Marquee
• Qualification (cont.)

Since the answer to all three question ls was Yes, The sentence needs to be

tested to determine if it is an identification fart type-

Question: Does Jaws, 1, and 1000 at any moment in time identify exactly

one movie showing in theater at time. Answer=No
Is there a context within which "movie showing in theater at time" is
uniquely identified by a "movie name, theater number, and time?"

Answer=Yes
What is it? Day

This has established that the original sentence is not a instance of a valid
fact type in this subject area. A new sentence needs to be created which
contains "Day."

jkaKLU TyftM

Example 2
Movie Marquee

Highlighting and Verbalization

Session

Mbrtdayl
fTfceaterTJ

•̂fflOOV -v°&askM
1200 Jaws
1500 Mad Max
1900 Jaws

Movie Presentation
Theater 2 Theater 3

Snow White Invisible Man
Mad Max Invisible Man
Fantasia Invisible Man
Fantasia Invisible Man

Jaws is showing Monday in theater 1 at 1000.

jUKLM r ^ > 3 2

Example 2
Movie Marquee

• Placeholder Assignment

What parts are variable, or can be instantiated, in these sentences?

Jaws is showing Monday in theater 1 at 1000.
Mad Max is showing Tuesday in theater 2 at 1200.

Jaws is showing Monday in theater 1 at 1000.
Mad Max" " Tuesday " " 2 " 1200.

Example 2
Movie Marquee

• Identification

The new variable must now be identified.

Jaws is showing Monday in theater 1 at 1000.
MadMax" " Tuesday " " 2 " 1200.

Of which class are Monday and Tuesday elements? Day

How is an individual element of the population of the class Day identified? Day

What is the name of the placeholderfor the position where Monday and Tuesday
appear in this sentence? Day

piKLH tiftit

Example 2
Movie Marquee

• Qualification
Jaws is showing Monday in theater 1 at 1000.

Potential Fact Type:
.<MovieName> is showing <Day> in theater <TheaterNumber> at <Time>.

Jaws

another
Jaws
Jaws
Jaws

Monday

Monday
another

Monday
Monday

1

1
1

another
1

1000

1000
1000
1000

another

■ Allowed?
N
Y
N
Y

Question 1.1: Given that fact instance "Jaws is showing Monday in theater 1 at 1000."
is true, is it allowed for another valid Movie [for example "Mad Max"] to exist such
that the fact instance "Mad Max is showing Monday in theater 1 at 1000." is true?

Answer=No

Example 2
Movie Marquee

• Qualification (cont.)
The sentence analysis produced two "N" answers so the corresponding objects
must be analyzed together in a sentence to determine if they are independent

<MovieName> is showing in theater <TheaterNumber>.
Jaws 1

Allowed?
another 1 Y
Jaws another Y

Question 1.1: Given that fact instance "Jaws is showing in theater 1." is true, is it
allowed for another valid Movie [for example "Mad Max"] to exist such that the
fact instance "Mad Max is showing in theater 1." is true? Answer=Yes
Result: Movie and theater are independent of each other, so two sentences must be
created from the two previous "Y" answers and either movie or theater.

Example 2
Movie Marquee
• Qualification (cont.)

Jaws is showing Monday at 1000.

Potential Fact Type:
<MovieName> is showing <Day> at <Time>.

Jaws Monday 1000

another
Jaws
Jaws

Monday 1000 Y
another 1000 Y

Monday another Y

Question 1.1: Given that fact instance "Jaws is showing Monday at 1000." is true, is
it allowed for another valid Movie [for example "Mad Max"] to exist such that the
fact instance "Mad Max is showing Monday at 1000." is true? Answei=Yes
Question 2: Does Jaws, Monday, and 1000 at any moment in time identify exactly
one movie showing on day at time. Answer=Yes

jbKU*: r*fc3?

Example 2
Movie Marquee

• Qualification (cont.)
Jaws is showing Monday at 1000.

Potential Fact Type:
Theater <TheaterNumber> is in use on <Day> at <Time>.

1 Monday 1000
Allowed?

another Monday 1000 Y
1 another 1000 Y
1 Monday another Y

Question 1.1: Given that fact instance "Theater 1 is in use on Monday at 1000." is true,
is it allowed for another valid Theater [for example "2"] to exist such that the fact
instance "Theater 2 is in use on Monday at 1000." is tiue? Answer=Yes
Question 2: Does Jaws, Monday, and 1000 at any moment in time identify exactly
one theater in use on day at time. Answer=Yes

JttKLX TwiX

Example 2
Movie Marquee

• Patternization
Fact Type:
FTl <MovieName> is showing <Day> in theater <TheaterNumber> at <Time>.

• Diagramization
Movie_Day_Time

Movie
Name

Day Theater
Number

Jaws Monday 1
Snow White Monday 2
Mad Max Tuesday 1

Time

1000 .
1000
1200

jklUK t-e-39

Example 3
Relational Table for Time Card

Person
1234
1234

1234
1234
5464
1234
1342

1342
2144
6754
1342

1342
5431

Week
Ending

wm
1/7/97
1/7/97
l/KOT
1/7/97
1/21/S7
1/7/97

1/7/97
1/7/97
1/7/97
1/1*97

1/1*97
1/7/97

Case
2341
4562
2341
2341

2341
2341
4531

2341
2451
4321
5461

5643
2431

Charge
Type

R
R
O
R
R
R
F

R
R
R
R

R
R

Default
Case

X

X

Fri
6
2
3
S
8
8

8
4
8

8
4

Sat

8

Sun Mori
5
3

8
8
8

8
4
8

8
4

Tue

8
8

8
8
8

8
8
8
8

4

Wed
8
8

8
8
8

8
4
8
8

4

Thu
4
4

8
4
8

8

8
8

4

Approver
5464
5464
5464
6754
5464
5464
5464

5464
5464
6534
5464

5464
6543

fuNM Tie*

Natural Language Modeling Procedure
Process Analysis Sentences

jkiKLM f*e"l

NLM Procedure
Process Analysis Questions

Question 1: Given that instance a, exists in A for fact type FT-1, then must a,
exist in A for fact type FT-2?

Question 2: Given that instance a, exists in A for fact type FT-1, then may a,
exist in A for fact type FT-3?

* i x m r*«i4i

Natural Language Modeling Procedure
Process Analysis Procedure

i u u / r^-a

NLM Procedure
ProcessAnalysis Procedure

1 Mandatory
2 Exclusion

*nXM T^U

*)•)

Example 4
Credit Card

FT-1 Credit card account <AccountNo>has card holder <CardHoIderNo>
named <PersonName>.
FT-2 Credit card account <AccountNo> has primary card holder
<CardHolderNo>.
FT-3 Credit card account <AccountNo> is activated by card holder
<CardHolderNo>.
FT-4 Credit card account <AccountNo> activated on <Date/Time>.
FT-5 <AccountNo> identifies credit card account
FT-6 Card holder <CardHolderNo> exists.

jfctKUC h p - U

Example 4
Credit Card

Question 1.1: Given that instance 4567 3214 7688 6754 exists in credit card account for
fact type FT-1 (i.e. Credit card account 4567 3214 7688 6754 has card holder
<CardHolderNo> named <PersonName>.) then must 4567 3214 7688 6754
exist in credit card account for fact type FT-2 (i.e. Credit card account
4567 3214 7688 6754 has primary card holder <CardHolderNo>)? Yes

This question is repeated for each instance of credit card account in all fact
types that include credit card account

Question 12: Given that instance 4567 3214 7688 6754 exists in credit card account for
fact type FT-1 (i.e. Credit card account 4567 3214 7688 6754 has card holder
<CardHolderNo> named <PersonName>.) then must 4567 3214 7688 6754
exist in credit card account for fact type FT-5 (i.e. FT-5 4567 3214 7688 6754
identifies credit card account)? Yes

juxm n r «

(.

Example 4
Credit Card

Question 1.1: Given that instance 4567 3214 7688 6754 exists in credit card account for
fact type FF-1 (i.e. Credit card account 4567 3214 7688 6754 has card holder
<CardHolderNo> named <PersonName>.) then must 4567 3214 7688 6754
exist in credit card account for fact type FT-4 (i.e. Credit card account
4567 3214 7688 6754 activated on <Dale/Time>.)? No

Question 2 must now be asked for this pair of fact types. *

Question 1.1: Given that instance 4567 3214 7688 6754 exists in credit card account for
fact type FT-1 (i.e. Credit card account 4567 3214 7688 6754 has card holder
<CardHolderNo> named <PersonName>.) then may 4567 3214 7688 6754
exist in credit card account for fact type FT-4 (i.e. Credit can! account
4567 3214 7688 6754 activated on <Date/TIme>.)? Yes

jUMM F**«7

Example 4
Credit Card

M lEiabMiAi -xour t

F2 lAfbvat* Aeeeut

1

AeetxM

i
X

1 j
£

1
•
m
m

m

1

i
£

|
X
»

j
m

•
in

m

4
V

?

I
£

1
|
X

1
m
m

•
m

i

£

£

i
X
1

•
m

J |
11

£
1
i
X

• »

•

n 1 EtWAOi Can) Ho/oar
I n O u d M n P I
ImefudadrnPI
I reuoxd *nP2

1

CwttHcltler

£

•
m
m

i
l
i

\
£

1
|
8

|

•
m

1

4

V

|
I
£

i
X
1

•

i

>
£

I
X
£
1 i
X

1

•

jkaKJ X l-t».4I

Example 4
Credit Card

f CreditCardAccount_CajdHBtier ^ \

r 3

CardHolder
-* *«-

V

Card Holder
No.

\

J

Account
No.

y
(/

CrcdilCardAccoji<*If -* L_^
Account

No.
activator
C.H.No.

activation
Date/Time

>

Validating Information Models

>L»KJ< r * » »

Validating Information Models

Natural Language Analysis can be used to validate any
information model (ER, O-O, etc.).

£3*tXU T*e*3l

IDEF1X Student Class Model
KSTRUCTOftTU

■USTOUCTOq-O

MsntucroR-MtMC
PCTRUCTOOJaW
CCCQEE-CO

BtROLLM&Oa
/%0CS£C-*O (txi N
: COURSS-COOE P=K) :
: SEMESTER-X> f*K) m_
:sgCTPw-wotfKi j r
• CMJE<&«OU£D ;
%-£waot.ll.gH7.^TXTUS _ /

♦ P

' c o w s e - c o o e ^ K i ~\
SO-«£STCP-Wp.FKl

ENROtlMB*TTYPE . O .

/SOC-SEC-NO {FKJ
: COURSE-CODE (no
: SEMESTER-NO |fK) : SECTCW-NO-̂ Kt
; v u s £

'SOOSEC-NO |f K) A
COURS£-COOe If K)
SEM£ST£P-MO FKJ
SECTOM-NOlfK)

«T-a»ED**lS

5 WSTRUCTORTTPE

' WSTOUCTOO-Orflt) " \ / WSTRUCTOa-OfFK) ^\

«fMUAt.-$*«->.MY | HOURLYJWTE

OAss-szcn~tia*

H COUT^SE-COCCCX)
SE»»€STEB-NO P K)

NSTTtuCToa.0 CFK]

ATTENSWCESO

* IDEFlx Federal Information
Processing Standard, FIPS PUB
184, Dec. 1993

'SOC-SEC-NOCKi N
C O I R S - C C O E F X)
SCI«STT£»*OFKI
SECT O»+*J0 [•*)
CUSOOE

^TTCtOW^-STAlJ?

CtASS-TEXTW

: c o w s - c r u e i -
• SEuesTEO-NO FK)
; SECTC-^OIFK)

JkstOX tie*'*

)

26

Conclusion

j t iKLU r*a*3}

Conclusion

• Natural Language Modeling can analyze any subject area.
• The analyzed facts can be validated by any subject matter

expert.
• The implementation can be tested against the validated

requirements.
• Precise requirements increase reliability.
• Productivity improves when applications are built

according to a precise requirements.
• The Natural Language Modeling procedure can validate

models created using other techniques.

juxut r^tu

Session XI: Defining Software Processes

Dr. Gerald McDonald
Consultant, Sandia National Laboratories

DEFINITION AND DOCUMENTATION
OF

ENGINEERING PROCESSES

GERALD W. MCDONALD, Ph.D.

This tutorial is an extract of a two-day workshop developed under the auspices of the Quality
Engineering Department at Sandia National Laboratories. The presentation starts with basic
definitions and addresses why processes should be defined and documented. It covers three
primary topics: (1) process considerations and rationale, (2) approach to defining and
documenting engineering processes, and (3) an 3DEF0 model of the process for defining
engineering processes.

Process considerations and rationale introduce models for documenting processes; describe the
general architecture for product development; and define implications of immature processes
versus those for mature processes.

The approach describes the top-level_s(ubprocesses that make up the methodology for definition
and documentation of engineering processes; namely: planning, gaining management approval for
a process definition project, collecting data on the as-is process to capture current best practices
within the organization, constructing a model of the as-is process, and verifying and validating
that model.

The final portion presents a four-level, hierarchical model that describes HOW to define and
document an engineering process.

BIOGRAPHY J
GERALD W. MCDONALD, Ph.D.

Dr. McDonald has a Bachelor of Science in Engineering Science and a Master of Science
in Computer Systems Management from the Naval Postgraduate School. Following his
retirement the Navy he received a Master of Engineering in Industrial and Systems
Engineering and a Ph.D. in Quantitative Management Science (Operations Research) from
the University of Florida.

Following receipt of his Ph.D. he worked for BDM International as an executive-level
Program and/or Project Manager and technical leader. During his thirteen years with that
firm he led both software and non-software projects.

During the three years since his retirement from BDM he has acted as consultant to
Sandia, SEMATECH, and a number of other organizations. As a consultant he has.
worked primarily in the field of Software Process Improvement. Besides direct technical
assistance he has presented training and workshops in software areas such as: quality
engineering, software inspections, process definition and documentation, and metrics.

9220 Masini Lane, NW
Albuquerque, NM 87114-6001
Voice: 505-898-3277 '" ;
E-mail: GeraldWMcDonald@juno.com ~'

mailto:GeraldWMcDonald@juno.com

Definition and Documentation
of Engineering Processes

(Tutorial)

Gerald W. McDonald, Ph.D.
9220 Masini Lane, NW

Albuquerque, NM 87114
(505) 898-3277

State of Software Practice

So many software projects fail in some major way that
we have had to redefine "success" to keep everyone from
being despondent.
Projects are sometimes considered successful when the
overruns are held to 30%. or when the user onlv junks a
quarter of the result
• Software personnel are often willing to call such efforts
successes.
* Members of our user community are less forgiving.
They know failure when they see it!

"Controlling Software Projects," by Tom DeMarco

SEI CAPABILITY MATURITY MODEL (CMM)
Optimizing (5)

Key Process Areas (KPAs)
by Maturity Level Managed (4)

Process Change Management I
Technology ChangeManagementl
Defect Prevention I

Initial (1)
{None}

Defined (3)

Software Quality Management
Quantitative Process Management

Repeatable (2)

Peer Reviews
Intergroup Coordination
Software Product Engineering
Integrated Software Management
Training Program
Organization Process Definition
Organization Process Focus

Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Quality Assurance
Software Configuration Management
Subcontract Management

State of Process Maturity
Sites Assessed by the Software Engineering Institute

Sites
(%)

10th-
90-- 81
80--
70
60
50-f
40
30--
20--
10--

0 i
74 p^l 1991 - 59 Sites, 296 Projects Assessed

FEG 1993 -150 Sites Assessed

19
12 IE 7 7

Initial Repeatable Defined Managed Optimizing

Software Process Maturity Level

Introduction
aiiifliiflifl MI iMW»Mc»x}wtwiWWM;::K:w:: v.: •MV.'M»>:K K : »:■::•;•:•:■:•: :■:■:■::•:: ri>KW^»«wc«woMooc aaaaDewifliiouMMt'lMMMiOMiiMMMi

Definition and Documentation
of Engineering Processes

Tutorial

Introduction

Presenter's Background
^^s^^Sf^^ MWf . i . .v.vfi'.̂ "̂ ft'SJSS'sSv:

wi%ww»iî r*%»<i»«.W*WwwvMWW

Gerald W. McDonald
Education
» BS Engineering Science, Naval Postgraduate School, 1969
» MS Computer Systems Management, NPS, 1970
» ME Industrial and Systems Engineering, Univ. of Florida, 1979
» Ph.D. Quantitative Management Science (OR/SA), UF, 1980

Work Experience
» US Navy 25 Years, Air Traffic Controller, Naval Aviator,

Antisubmarine Warfare Specialist, Squadron Commanding Officer
» BDM Federal 13 Years, ExecutiveLevel Systems and Software

Engineer, Project Manager
» Consultant 3 Years, Software and Engineering Process

Improvement

Introduction

Process Definitions
aaaaft«aMW<«wccwowcww<woc«̂ ^ :«w:: : :■:•:*:: :•:•:*:: n K « « .*•:•::: :« xwrttct^wMMWNW

Process (Activity) A set of partially ordered steps by which people
apply technology and work activities to transform information,
materials, and energy into a produces) to reach a specified goal.
Subprocesses (SubActivities) The steps that make up a process
or a higher level subprocess. (Depending on the context, a
subprocess is often referred to as a process.)
Engineering Process The process involved in the management
and engineering of one or more engineering work products.

Introduction

Elements Associated
With a Process

.*.*.*AN\\\V>rV*t>eViir*+eV**>it*^^

Inputs Elements that are transformed into outputs by execution
of a process
Outputs (Work Products) Elements that are produced as the
result of executing a process/subprocess; e.g., plans
documents, code, schedules, etc. They are typically
represented in process models as inputs to and outputs from
processes/ subprocesses.
Controls Elements that control and constrain engineering
processes; e.g., policies, standards, schedules, budgets, etc.
Mechanisms Agents that perform the actions necessary to
carry out a subprocess.

Introduction

J

Methods for Documenting
Processes

• N2 Diagrams - A graphical method for modeling the inputs,
outputs, steps, and sequence of carrying out subprocesses

• ETVX (Entry-Task-Verification-eXit) - A principally textual
method that can be used to model processes.

• IDEF (Integrated Definition Method) - A graphic and textual
method that can be used to model processes.

• SADT (Structured Analysis and Design Technique) - A process
modeling method very similar to IDEF.

Introduction

Process Definition -
Why Bother?

• All Work is a Process
»Inputs are Transformed into Outputs

• Definition Needed to Baseline Process
» Framework for Development Activities
» Foundation for Measuring Process

• Definition Required for Repeatability
» Points to Process Improvements Needed

Introduction

Process Improvement Cycle
ttMMKMCBWHMewMMOOMmme.^^ :■:■:: »:•:•:•:•: ::■::■:: :•: :■:•:: ::•: :■: :■:■: :■:«•:•:■:« :«■::**««<
•eWIMeteJemtemmaMm-mameWamtmemamm-memewmtae^^

o Understand Current State of Process
© Develop Vision of Desired Process
© Prioritize Required Improvement Actions
© Plan Required Actions
© Commit Resources and Execute Plan
© Start Over At Step 1

Introduction

How You Know When a
Process Is Defined

You Know a Process Is Defined When:
» It is DOCUMENTED
» Personnel are TRAINED in its use
» It is PRACTICED on a daytoday basis

The Process Itself Will Be:
» SUITABLE to the business needs of the organization
» MAINTAINABLE with respect to improvement
» ADAPTABLE to incorporation of new technologies .
» CONTROLLED with respect to changes
» MEASURED with respect to productivity and quality

Introduction

Subject Matter of Tutorial

• Process Management
• Defining Engineering Processes
• IDEF Model of Engineering Processes

Introduction

Process Background

Process Considerations
r and
Rationale

Process Background 1

Top-Level View of Process For
System Development

State of Technology

System
Constraints

System
Requirements

Standards &
Procedures

I I i
Schedule

Constraints Budget
Constraints

x:::axHmt&:!W.:x

System

Development
Personnel

Development
Environment

Process Background 2

N2 Version SecondLevel of
System Development Processes

iimifUfninfiaamMMi

System
Requrements

Nnnrimf
Requirements t

&W9«i?nWt*:
Requirements

j;S$*i&tt& Designs

|Jmpfei£tort Components

jrtegraiips
System

" 5yst8rm
îTesUngfJ

System

Process Background 3

EntryTaskVerificationeXit
(ETVX) Example
PROCESS: Develop Requirements Specification

r®-\
Template for
Requrements
Document
Is Basefined

TASK (Procedure)
 Identify Requirements
 Decompose As Necessary
 Draft Requirements Specification
 Baseline Draft Specification
 Revise Draft Specification ——■—

3—«£>VERIFY Draft
—- Inspect Draft Spec

 Record Defects,
VALIDATE Revised Draft

 Obtain Management Approval
 Obtain External Approval —j

Record Process Metrics •

When
Approved
Then

Requirements
Specification
is ready to

■Jiaseftie

Process Background 4

Motivation for Defining
Engineering Processes

l r f t | W f l B H 6 ^ -, ,'yew ■■•> -• .- ■■■■■■■■■■■•^^

• Implications of Immature Processes
• Motivation for Improving Engineering

Processes
• Implications of Mature Processes

Process Background 6

Implications of Immature
Processes

Characteristics of Immature Processes
People Implications of Immature
Processes
Technology Implications of Immature
Processes
Product Implications of Immature
Products

Process Background 7

Characteristics of Immature
Engineering Processes

Crisis Driven and Poorly Controlled
Depends on Heroes
Top Priority Is Schedule
Unpredictable Performance
» High Cost
» Extensive Rework
» Delayed Deliveries

Process Background 8

People Implications of
Immature Process

MttK^ftK^xw:*:*: :■:»::»»:: :•»:: »■»: ::: :■::: XK:::««:««C«»N««N

Focus on Fire Fighting and Crisis
Management
Process Steps Depend on Individual
Performing Work
Low Effectiveness, High Frustration,
and Adversarial Relationships

Process Background 9

Technology Implications of
Immature Process

•S.*f.\W.V.^V.\\VA*^*</V^\W+**r^^

Technology Needs Are Difficult to
Identify
Implementation of New Technology Is
Seldom Cost Effective
Implementation of New Technology Is
Usually Difficult

Process Background 10

Product Implications of
Immature Processes

Quality Is Dependent On Individual
Performing Work
Rework Is Often Extensive
Requirements Creep During
Development
Customer Is Often Dissatisfied

Process Background 11

Motivation for Improving
Engineering Processes

Characteristics of Mature Engineering
Processes
People Implications of Mature Engineering
Processes
Technology Implications of Mature
Engineering Processes
Product Implications of Mature Engineering
Processes

Process Background 12

Characteristics of Mature
Engineering Processes

• Defined, Documented, Controlled, and
Improved

• Processes Are Corporate Assets
• Focus Is On Product and Process

Improvement
• Performance Is Well Controlled

» Cost
» Low Rework
» On-Time Deliveries

Process Background 13

People Implications of Mature
Processes

• High Sense of Teamwork
• Reliance on Defined Process Rather

Than Ad Hoc Methods
• Development Is Driven By Events

Rather Than Crisis or Schedule
• Little Crisis Management Required

Process Background 14

Technology Implications of
Mature Processes

MMM^WflWHMfiflirmflwoowMW*^^ MM: x :XKJWW :::: xx«:*::x:: ::::•:■::: r inrnrrr"rTrnr>riiwrniiin*MMli—it—*■*■■
i — — w w w — w w w — w w l W M t w w w o i we*j*w*tfw.vw'w*vvww.vw*'̂ vw^

• Technology Needs Can Be Identified
• Quantitative Basis Can Be Developed

to Support Automation Needs and
Selection

• Potential Impacts of New Technology
Can Be Estimated More Accurately

Process Background 15

Product Implications of
Mature Processes

• Cost of Quality Is Very Low and
Independent of Individuals Performing
Work

• Customer Is More Often Satisfied With
Products

• Rework Requirements Are Often
Negligible

Process Background 16

Approach to Defining
Engineering Processes

JMWNWK M^-:MM ^

Preparations for and Modeling
of Engineering Processes

Defining Engineering Processes **,

Outline - Approach to Defining
Engineering Processes

Prepare for Engineering Process Modeling
» Plan Process Definition Project
» Gain Management Approval

Model Engineering Process
» Collect Data on Engineering Process

'» Construct Engineering Process Model
» Verify and Validate Process Model

Defining Engineenng Processes 2

Plan Engineering Process
Definition Project 1

■MHHMIlHaMU!

Plan Engineering Definition Product
» Purpose of Planning Product Establish Objectives of the

Proposed Product
 Ensure Model Will Satisfy Users' Needs (e.g., correct scope,

perspective, and views)
 Establish Criteria to Verify and Validate the Mode! (e.g. project exit

criteria)
» Define Purpose of Model

 What is to be achieved by having model? (e.g., aid understanding,
standardize process, training, basis for process improvement, etc.)

» Identify Audiences
 Who will use the mode? I (e.g., Senior Management, Engineering

Management, System Developers, New Employees, etc.)
» Define Usage

 How will each different audience use the model?

Defining Engineering Processes 3

Plan Engineering Process
Definition Project 2

Plan Process Definition Work
» Purpose of Planning Work Provide Basis for Carrying Out Project

 Ontime
 Within budget
 Correct activities to produce quality product

» Tailor Modeling Process Activities to Meet Objective
 Have objectives of any activities already been met?
 Will any objectives for the product not be met by the standard activities?
 Will the sequence of these activities satisfy the objectives?

» Plan the Process Definition Activities
 Develop schedule for work (e.g., Work Breakdown Structure and CPM Schedule)
 Identify staffing for Process Definition Team
 Develop proposed budget
 Allocate resources to schedule activities
 Document the Proposed Work Plan

Defining Engineering Processes 4

Gaining Management Approval
for Process Modeling Project

Management Contracting
» Purpose of Management Contracting - Obtain management

sponsorship and support
» Identify Management Sponsors
» Identify Project Needs (Budget, Personnel, Facilities, Tools, etc.)
» Develop Presentation Materials

- Purpose of Process Definition
- Identification of Process to be Defined
- Benefits of Having this Process Defined
- What the Final Product Will Be
- What Will Be Needed to Carry Out Definition Project

» Obtain Approval for Project
- Obtain Budget Approval
- Obtain Approval of Work Plan

Defining Engineering Processes 5

Collecting Data On an
Engineering Process -1

^v-vvvwA-jwA-vwAVAwr

• Initial Familiarization With Current Process
» Purposes of Familiarization

- Identify and Collect Existing Documentation
- Translate Existing Documentation Into An initial Model
- Establish Frame of Reference For Interviews

» Acquire Knowledge of Process and Terminology Being Used
- Organization Charts and Position Descriptions
- Existing Process Documentation (e.g., policies, standards, procedures)

» Define Initial Scope and Views
- Identify Groups Internal and External to the Process
- Primary Inputs to and Outputs From the Process
- Identify Producers of Inputs and Customers for Outputs

» Create Initial Model of Engineering Process
- Top-Level Diagram to Show Work Flow Between Producers and

Customers
- Lower Level Diagram Showing Major Activities and Product Row

Between Them
Defining Engineering Processes 5

Collecting Data On an
Engineering Process - 2

CWWWXWOWOO^^

• Preparation For Interviews (Continued)
» Identify Interview Candidates

- Work Top to Bottom Within Organization
» Identify Personnel to Review Model

- Review Team Consists of Process Domain Experts
- Purpose - Resolve Conflicts and Build Agreement On Process

Product
» Select a Review Process (e.g., Walkthrough, Inspection, etc.)
» Coordinate Interview and Review Schedule

- 2-3 Interviews Per Day
- Schedule Backup Interviews
- Logistics - Rooms, Copies of Interview Templates, Tape Recorders

» Draft Confirmation Letter
- Indicate Senior Management Approval
- Describe Purpose of Interview
- Overview of Interview and Review Process
- Request Interviewee Bring Pertinent Documentation/Materials

Defining Engineering Processes

Collecting Data On an
Engineering Process - 3

iiw-ww-WMWV-i-'Vw-im-mnMW-MflMw^^

i Preparation For Interviews (Continued)
!2»>-Review Proposed Interview Schedule With Management
— - - Howto Obtain Management Approval

• Keep Management informed
• Obtain Management Input and Guidance

» Revise and Send Confirmation Letter
- Add Date and Location

» Confirm Interview Schedule With Each Interviewee
- Day Before Schedule
- If Not Available, Schedule and Confirm Backup Interviewee

» Assign Interview Roles to Process Definition Team Members
» Prepare Outline of Interview Questions

- Direct Questions Toward Know Expertise of Individual
- Determine What Process Information Still Needs to Be Riled In

Defining Engineering Processes 3

Collecting Data On an
Engineering Process - 4

*WWsjwwf&MfiW0fi^M***QOGOGa**i&*Ge1*a****ta'aatMaetaea^

• Interviewing Process Domain Experts
» Introductions by Point of Contact
» State of Purpose of Interviews
» State of Ground Rules

- Non-attribution, confidentiality
- If Interviewee has no objections, tape interview

» State Scope and Perspective
- Focus on normal activity, not exceptions
- Proposed breadth and depth of process being discussed

» Describe Interview Process
- Ask Interviewee to think in terms of

• Activities/sub-activities, and their sequence
• Product flows through those activities
• Inputs to and outputs from Each activity
• Controls and Constraints on each activity
• Standards and procedures applied
• Templates and forms used

Defining Engineering Processes 9

Collecting Data On an
Engineering Process - 5

Interviewing Process Domain Experts
» Gather Data - (Referto Building Blocks Chart in Session 4)

- Collect personal data (name, address, phone number) for
follow-up

- Establish interviewee's role in process
- Related information to Initial Process Model
- Document essential process elements for each activity/sub-

activ'rty
- Identify pending issues requiring further investigation
- Define action items, and assign individual responsibilities and

due dates
» Summarize Information Gathered

- Restate issues and action items
- Request suggestions for process improvement

Defining Engineering Processes -|0

Collecting Data On an
Engineering Process - 6

aaft^-toflCflflowooowowwwMowwc^^

• Analysis of Interview Results
» After Each Interview Process Definition Team

- Reviews Results Interview
- Correlates/Consolidate Team Member Understandings, Notes,

Perceptions
- Consolidates Rndings Into Master Template
- Identifies Additional Needs for

• New Data
• Confirmation of Data Gathered to Eliminate Conflicts

» After Interviews Have Been Completed
- Analyze Data Gathered For

• Completeness
• Correctness
• Consistency
• Significance

- Document Issues, Rndings, and Assumptions
- Elaborate Initial Model

Defining Engineenng Processes -*-•

Engineering Process Model
Construction -1

Verify Engineering Process Data to Identify
» Missing Data
» Incorrect Data
» Inconsistent/Conflicting Data
» Insignificant Data

Resolve Data Shortcomings
» Additional Research
» Additional Interviews
» Pre-interview Interviewees Involved in

Inconsistent/Conflicting Data
» Discussions With Engineering Managers

Defining Engineenng Processes 12

Engineering Process Model
Construction - 2

Construct Engineering Process Model
» Use Data to define elements of the engineering process
» Work Top-Down to Define and Document Layers of Activities
» Define Activities and Activity-Activity Product Flows and

Relationships
» Define Work Products and Product-Product Relationships
» Define Mechanisms, and Their Work Efforts
» Define Activity-Product Relationships
» Define Controls and Their Impact on Activities
» Define Activity-to-Mechanism Relationships

Defining Engineering Processes 13

Verify and Validate the
Engineering Process Model -1

»M8*»W»»«»MMtWWM«M!ir^^

Process Definition Team Verifies Overall Engineering
Model For
» Consistency _
» Completeness
» Check for Errors in Representation Such As

- Missing Activities
- Inconsistencies Between Levels of Activities
- Incorrect Connections Between Levels
- Incorrect Connections Between Activities on Same Level
- Inconsistency In Levels of Detail
- Missing Elements For Activities (Inputs, Outputs, Controls,

Mechanisms
- Inaccurate Product Flows of Products, Controls, Mechanisms
- Missing/Incorrect Labels on Flows

Defining Engineering Processes 14

Verify and Validate the
Engineering Process Model - 2

WWW.-yqM-wi -vw-^^

Conduct Engineering Model Review
» Introduce Process Definition Team and Review Team
» Describe Review Purpose and Methodology
» Conduct Step-by-Step Walkthrough, Inspection, or Audit of

Engineering Process Model
Review Team Validates Model By Determining If
» Model Meets Objectives (Referto Exit Criteria Developed

During Planning Efforts)
» Model Describes Current Behavior of the Process Within the

Specified Perspective, Scope, and Purpose
Outbrief Engineering Process Model
» Present Validated Process Model to Management
» Review Outstanding Issues and Action Items
» Present Rndings on Potential Improvements
» Define Proposal For Next Iteration of Improvement

Defining Engineering Processes 15

Examples of Verification and
Validation Considerations

Elements of Verification
» Model Is Understandable
» Model Accurately Portrays Either

- "As-ls" Process
- To-Be" Process

» Model Is Complete, Internally Consistent, Concise, and Accurate
» Models Demonstrating Different Perspectives and Viewpoints Are

Consistent With Each Other
» Model Perspectives and Viewpoints Are Correct for Their Intended

Audiences
Elements of Validation
» Model Versions Meet the Needs of Their Associated Audience
» Scope of Model Is Correct
» Model Will Support Planning, Performing, Quality Evaluation, and

Process Improvement
» Model Is Documented in Formally Defined Syntax and Semantics

Defining Engineering Processes -|g

http://WWW.-yqM-wi-vw-%5e%5e

IDEF Model

Process for Defining
Engineering Processes

IDEF Model of Definition Process

First-Level-Model
Process Definition Process

Organization
Controls Budgets

Information on
Current Process

f l i f p l i l i i p i l l "As-ls" Model
ifiiDSGumjenj|g||| of Process

Processf I ^Process
Definition Team Domain Experts

Management

IDEF Model of Definition Process

Define and Document an
Engineering Process (AO)

■O'MMAv.nV'W'.ftnwwvw^AVwvjv
x :

 w w w w w

w
" r ^ ^ aflwwa

Organization
on

Information

Process

Proposed
Work Plan
Revisions

trols Budgets

Process
Definition

Team

f&t

W8&
w&j&i^p&gfaij:

Project Budget

Approved
Work Plan!

llErgSieelTigl!:
:p||jF?roce^yi¥
flT'"5'v:*>.:S.*r:.. xKv.'.^:. y-ffiSi.'ii:v::"w............■.,..;:■.:.ir>**);.":

Management

"Asls"
Model of
Process^

Process Domain
Experts

IDEF Model of Definition Process 3

Prepare For Engineering
Process Modeling (Ai)

Information
on Current
Process iWkW^BMi

t^mecMm work
^zMd&vzzzvgzxi Plan

Organization
Controls

Proposed

Budgets

,T.;:...,„ Project
Budget

i|Applrpwa|;:t^
kJisfilMS (A2)

Process Definition Team

(A2)

fork Plan,

Propnspri
Work Plan
Revisions
(A

2112
) Management

IDEF Model of Definition Process 4

Plan Process Definition
Project (Ail)

M W K K WMM'MWK'KWSCWMWMOS

Information
on Current.
Process iiiiia

ww; ■•HK**; j*? **tw\ ■*» * ♦ » X w

Planned
Process.
Product

lB la lBi©is^
Proposed
Work Plan.

(A121)

Proposed Wnric

Process Definition Team

Plan Revisions
(A2112)

IDEF Model of Definition Process 5

Plan Process Definition
Product (Alii)

tmmxwiaBsam XSSSSSSSSSSSSSSSZ& v y . \ w ^ w v s i v W i A
IMMMWMMMaWMMMftnrtrWMXi**^^

Information fffSsiJHni^ti
on Current

Process
Purpose of

Model

wmmm
j ^ B B S Audiences,,

for Model

s.DeShel

ifoniMwJe'i

Planned
Process
Product ■»
(A1121)

A Proposed Wnrk

Process Definition Team
Plan Revisions
(A123.A2112)

IDEF Model of Definition Process

Plan Process Definition Work
(A112)

Planned
Process
product
(A1113)

mM A". ftsss. ^*»...*«v.

iBegnfftoje
Work Work

Breakdown [■.■■frh*^{rw
:
J

Scnec
i; ^HKSBiS Structure' B&Wm

irScheaafei
;Te£rn1ahtf

:Resdurces
;
:
Work Plan

(A121)

Process Definition Team

Proposed Work
Plan Revisions
(A123.A2112)

IDEF Model of Definition Process -r

Gain Management
Approval (Ai2)

Proposed
Work ^mimf^sm

Organization Controls

Plan " |rvlanageriwh^
:

(A1123) |:SJ3^sSr5|.

Budgets

^IdenfifyjH
Briefing i^PtafectW
Targets W^^M

^veWM
Presentation j | pudjfficAa
MatenaL NoBrftf" ^ * f

mmz
^aiAPPJoyed

Work Plan,

Process Definition Team

(A2)
Proposer! >

Management

Work Plan
Revisions
(A111)

IDEFModelof Definition Process 3

\

Model Engineering Process (A2)
in-^ftMMff-J^-ML*^^ ; ; ; ; : ; . ; . • ; . ; ; . ;

Approved
Work Plan

(A123) >

Information
on Current
Process

Need
For

More
Process

Data

•: v*v**M*vjMMMAKtMMw*^^

llfal|§|i|
if^rocesss

Project Budget
(A123)

Process
Definition

Team

Process
Data *
.Initial
Model

«lfi*OCeSSiiilJ:

Co'nstnlclgop;

Changes
to Model.

Process
Model

A A A

Process Domain
Experts

"As-ls"
Model of
Process

Management

IDEF Model of Definition Process

Collect Data on
Engineering Process (A2i)

Approved
Work Plan

(A123) v

Information faral&raatiori:

Process

Project Budget

onCme^mmmm

(A123)

Initial Process
Data *"

Initial Process,.
Model

Process Definition Team

Proposed Work
Plan Revisions

(A112) „

Revised Process
Model (A221)

Analyzed Process^
Data (A221)

Need For More
Process Data
(A221.A232)

Process Domain
Experts

IDEF Model of Definition Process -*o

Initial Familiarization With
Engineering Process (A2ii)

m m m t t r m m w f ^ ^ :■:: :■:•:•:•:■:: xXvirxx I :•:::•:•:::•:•:■:■:: :■: :K KHH&KSM

Approved
Work Plan

(A123)

Information
on CurrenJ
Process

Project Budget (A123)

t±
aliiStiKf£
;?RrocessA;
'irSalaW?

Data on
Currant»i^aa,^
Process $$Mm

MImiM And
(A2.1CTView

Proposed Work
Plan Revisions

^Scopfi Initial
t..„.u.,; ^,.~A scope > I I

.Creates
!lmtiari

§IH§
J

(A11)
Initial Process^
Data (A2121)
Initial Process
Moaei (A2i2i5

Project Definition Team

IDEF Model of Definition Process j |

Interview Process Domain
Experts (A212)

Approved
work Plan

Initial Process
Model
Initial
Process
Data

Project Budget

^BiiervTewJ Questions
trep#Mlpn;

%Aff21%

Process
Definition Team

Ident'rtv liC.0OGtJct!J
_ _ ■* ^ V.iVSieTa.n.-HTM'itC « ^ f e s ofExoerts *Merwews

Interview.
Schedulg il(A2322)

Results of
Interviews

Revised
Process _
Model *

rAnalyier.
ResiirteVofj Analyzed »,
Meivlews ~ Process

Data
Need For More
Process Data
(A221.A232)

Process Domain Experts
IDEF Model of Definition Process 12

Engineering Process Model
Construction (A22)

»«««««««•:•:««:: KKWK y.vV. '.'.'.v. HKS^MSKKM

Approved Work
PIan(A123)

Revised Process
Model (A2123)

Analyzed Process
Data (A2123)

Project Budget
(A123)

Verified
Process

Data

Need For Process
 a

Data Analysis

Need For More
Process Data ..

(A2122)

Verified Process w
Data (A231)

Process Model >

(A231)

Changes to Model

Process Definition Team

(A231.A232)

IDEF Model of Definition Process 13

Verify and Validate
Engineering Process Model (A23)

JJH&WHHHt^^
vw^ww.*s.*^s.*.-.*.*.'.w.*ssjv*f^\t^^

Approved Work
Plan (A123)

Verified Process^
Data (A222)

Process mm
Model (A222)

Need To
Reverify

Model

Project Budget

SH!

Process
Definition

Team

(A123)

Verifie
r ■Coadflctii

Model p
!i=Risvtew&

jjp232l

Process
Domain
Experts

Reviewed
Mnriel ,

H \t

Changes to
Model (A221)
Need for More
Process Data>

.^atbgiej
ofiPoclef

(A221)
"Asls"

Model of»

J
Process

Management

IDEF Model of Definition Process 14

.frfrg P M A U l y

Session Yl: How the NWC Handles Software as Product

Chair Dave Vinson
Pantex Plant

Software Quality Assurance Subcommittee
Work Item #16

How the NWC Handles Software as Product
Software Quality Assurance Subcommittee

Work Item #16

Presenters: Member(s) of SQAS WI#16: Management and Control of Product Software
Summary: This tutorial provides a hands-on view of how the Nuclear Weapons Complex
projectij should be handling (or planning to handle) software as a product in response to
Engineering Procedure 401099. The SQAS has published the document SQAS96-002,
"Guidelines for NWC Processes for Handling Software Product," that will be the basis for the
tutorial. The primary scope of the tutorial is on software products that result from weapons and
weapons-related projects, although the information presented is applicable to many software
projects. Processes that involve the exchange, review, or evaluation of software product between
or among NWC sites, DOE, and external customers will be described. These processes include:

1. Identification: what are software product items, how are the product and items identified, how does
software identification relate to system identification.

2. Qualification: what is software qualification in accordance with EP401099, who is involved, how does a
software Process Realization Team work, what is in a Qualification Plan and how does this Plan lead to a
Qualification Evaluation Release.

3. Acceptance: how does DOE accept software product, what is a Quality Assurance Inspection Procedure,
how are product qualification and acceptance related, what are site and DOE roles, what is needed for
customer use (interagency and external end-use).

4. Delivery: what is the mechanism for shipping and receiving software product, how is delivery
accomplished between NWC sites, how is delivery accomplished between a site and external customer.

A Case Study of a recently completed project will be given to each participant for hands-on
review of how the guidelines for handling software product have been applied. Li particular,
examples of project products used in the handling processes that will be reviewed include:
Material List, Qualification Plan, Software Requirements, Test Plan, Maintenance Plan, Software
Production Requirements, Traveler, Product-Disk Labels, Integrated Contractor Order,
Certificate of Inspection, Shipper LabeL Package Label, Complete Engineering Release,
Qualification Evaluation Release, and Quality Assurance Inspection Procedure.
Site-specific issues and the tailoring of the handling guidelines for use in non-weapons
applications will be discussed. Members from several sites who are on the SQAS WI#16
Working Group will be available to discuss the site-specific issues.
Hand-Out Material:
1. Tutorial Slides
2. SQAS96-002, "Guidelines for NWC Processes for Handling Software Product," June 1996.
3. Case Study Notebook
Audience/Restrictions:
This tutorial is primarily intended for personnel who are or will be managing, developing or supporting software
that will be delivered to or used by external customers. Tutorial participants must be a Department of Energy or
Nuclear Weapons Complex employee. Although none of the material in this tutorial is classified, its content may
be sensitive. A valid badge will be required for participants in this tutorial. If you have a question as to whether
you can participate, contact a Forum representative.
Contact Information:
Dr. David E.Peercy
Sandia National Laboratories
P.O. Box 5800, MS0638
Albuquerque, NM 87185-0638
505-844-7965(voice), 505-844-3 920(fax), depeerc@sandia.gov

mailto:depeerc@sandia.gov

BIOGRAPHY

The Software Quality Assurance Subcommittee (SQAS) operates under the DOE Nuclear
Weapons Complex (NWC) Quality Managers to identify and resolve Software Quality issues and
problems common to all DOE sites and facilities. This tutorial is the result of an NWC SQAS
work item to define how to manage and control software as product. The work item was
established to satisfy a need to define a consistent process for handling product software. The
Nuclear Weapons Complex-wide participants and presenters of this tutorial include:

Chair David Vinson, Mason & Hanger, Pantex Plant
Phil Huffinan, Mason & Hanger, Pantex Plant
Alvin Cowen, Mason & Hanger, Pantex Plant
Catherine Kuhn, AlliedSignal Aerospace, Federal Manufacturing & Technologies
Donald Schilling, AlliedSignal Aerospace, Federal Manufacturing & Technologies
Dave Peercy, Sandia National Laboratories
Mike Blackledge, Sandia National Laboratories
Orval Hart, Los Alamos National Laboratory
John Cerutti, Los Alamos National Laboratory
Bill Warren, Lawrence Livermore National Laboratory
Charles Chow, Lawrence Livermore National Laboratory
Ellis Sykes, Department of Energy, Kansas City Office
Gary Hchert, Department of Energy, Albuquerque Office
Kathleen Canal, Department of Energy, Headquarters
Ray Cullen, Westinghouse, Savannah River Site
Faye Brown, Lockheed Martin Energy Systems, Oak Ridge, Y-12 Plant

Dave Vinson, Chair WI#16
Mason & Hanger Pantex Plant
Sldg 22-102
:-X>. Box 30020
Amarillo, TX 79120-0020
Voice: 806-477-4739
Fax: 306-477-4350
E-mail: dvinson@pantex.com

mailto:dvinson@pantex.com

□
4/1/97

How the NWC Handles
Pa. I

Software as Product
presented by

Software Quality Assurance Subcommittee
Work Item #16

1997 Software Quality Forum
April 1, 1997

n
4/1/97

Agenda
Ps.2

■ Overview
■ Introduction to Case Study
■ Identification Process
■ Qualification Process
■ Acceptance Process
■ Delivery Process
■ Specific Concerns
■ Future Direction

(^^$3w
^fflBBF

%h^ B y
^%IS?
^U
WM

J>
1997 Sofware Quality Forum 4/1/96 Page 1

Overview
Tutorial Take-Aways

□ Overview
Tutorial Background

Ps 4

DOE Observation
- Uncertainty Regarding System for Controlling Mark

Quality Software Product
Engineering Procedure 401099
- Software Is Identified As Product
SQAS Team Formed
- Evaluated Problem
- Defined Process
- Developed Training

1997 Sofware Quality Forum 4/1/96 Page 2

□ Overview
Vision

Pit 5

To Control and Manage Software
Product Without Impactmg Production

While Exceeding AH Customer
Expectations

Overview
Definitions

Software - Computer programs,
procedures, rules, and any associated
documentation and data.

SOAS90-001

1997 Sofware Quality Forum 4/1/96 Page 3

Overview
Definitions

P S 7

Mark (MK) Quality - DOE accepted
material that has come through the
DOE acceptance process.

DOEOAP1.3

Overview
Definitions

Pe S

Software Product - a software
deliverable of a realization process.

SOAS96-002

1997 Sofware Quality Forum 4/1/96 Page 4

□ Overview
Tutorial Scope

4/1/97

Software Product is Software that's:

■ Created by a DOE Contractor
■ Qualified by the Contractor
■ Accepted and Stamped by DOE(

■ Shipped as a Product

Overview
Process Summary

4/1/97 PS10

Spedfieaoons

IDENTIFICATION

QUALIFICATION

SW Product Identification
• Part Number
• Component Karnes

Quantisation Plan & Results
Qualified SW Product
Qualifiraiioo Release (QER)
Acceptance Submittal (COI)

DEUVERY »

Signed Acceptance (COD
Accepted SW Product
Stamped SW Product
Delner; Order(ICO)

r»j Delivered SW Product 1

1997 Sofware Quality Forum 4/1/96 Page 5

□ Overview
Process Summary

P e . l l

CUSTOMER NUCLEAR WEAPOSS COMPLEX DEPARTMENTOP ENERGY
r (l , , . , i „ w , fjtciMrwtrtMMkMn *«*• . •»*• W m gC.I Oni UVN

t t i i i i

£***■*» <CtU~

t Process Summaiy j

| PEXTfflCATTON |

U
SVFMiwaUMrf^

QUALIFICATION |

c
UMJTMMMI U M (OCX!

ACCEPTANCE

c
VpKl * ** fut*>lCOI)

Or ion* <Mw<lCO)

T T
ICO •bupMJCMMMrtM*

Odhved
SWhMM

Introduction to Case Study
4/1/97 Pg.1

Overview of Application
Identification Materials
Qualification Materials
Acceptance Materials
Delivery Materials

1997 Sofware Quality Forum 4/1/96 Paae 6

http://Pe.ll

Introduction to Case Study
Overview of Application

Pg.13

■ General Application System
- Use control
- Tl 565A, replacement for T1565 Headquarters Code

Processor
■ Case Study Component

- Cryptographic Processor Firmware Software
■ Life Cycle Logistics

- Developed at Sandia National Labs
- Qualified by Sandia, accepted by DOE/AL
- Delivered to Kansas City Plant for loading into

programmable read only memory

Introduction to Case Study
APCHS Topology

Pg.14

Headquarters
Code
T1SES

PAL Vrapon

Pot taW* Oat*
Modul* Emulator

1997 Sofware Quality Forum 4/1/96 Paae 7

Introduction to Case Study
T1565A Operational Topology

4/1/97 Pg IS

NSA DNA
Source Weapon T1SG3
Data Data Files

Host PC

Cryptographic
Processor

Introduction to Case Study
Firmware Software Functions

Pe.16

Hardware
- Initializes/activates some hardware devices
- Verifies firmware integrity
- Performs self-test on hardware components
Software
- Verifies integrity of operational code
- Copies operational code from NVRAM to RAM
- Initiates execution of operational code
- Provides RAM clear and SHA functions

1997 Sofware Quality Forum 4/1/96 Paae8

□ Introduction to Case Study
Identification Materials

4/1/97 P.c 17

Part Number
- FWSW: 704308-00
Software Development Support Drawings
- SR704308, Software Requirements
- SD704308, Software Documentation (Design)
- TK704308, Test Plan
- AM704308, Control Program

q
4/1/97

Introduction to Case Study
Identification Materials

Pc 18

Software Production Support Drawings
- MP704308, Maintenance Procedure
- SS704308, Software Production Requirements
- TR704308, Traveler (Secure Production Procedure)

Software Deliverable Product
- AT704308, Executable Proaram

1997 Sofware Quality Forum 4/1/96 Page 9

4/1/97

Introduction to Case Study
Identification Materials

Pp 19

Software Qualification Support Drawings
- QP704308, Qualification Plan
- CER 96006ISA, Complete Engineering Release
- QER 951006SA, Qualification Evaluation Release

Material List for Part Number 704308-00
- References all software product materials
- References all software build materials

Disk Media Labels
- Film Bank Materials
- Deliverable Software Product

D
4/1/97

Introduction to Case Study
Qualification Materials

Pc.20

Qualification Plan
- QP704308

Complete Engineering Release
- CER 960061SA

Qualification Evaluation Release
- QER951006SA

Source Inspection (Sandia Specific)
- Source Inspection Request (SIR)
- Qualification Operations Instructions (QOI)
- Qualification Verification Report (QVR)

1997 Sofware Quality Forum 4/1/96 Page 10

□ Introduction to Case Study
Acceptance Materials

4/1/97

Contractual Mechanism
- Integrated Contractor Order (ICO)

Software Product
- Deliverable Media (AT704308)
- Support Drawings

Deliverable Support Materials
- Package Labels
- Shipper

DOE Inspection Materials
- Certificate of Inspection (COI)
- Quality Assurance Inspection Procedure (QAIP)

m

□ Introduction to Case Study
Delivery Materials

4/1/97 | Pg.22

■ Contractual Mechanism
- Integrated Contractor Order (ICO)

■ Shipping Instructions and Labels
- Shipper with InterProject (IP) stamp
- Package label with InterProject (IP) stamp

■ Deliverable Software Product
- Disk media with diamond stamp selected at QAIP

1997 Sofware Quality Forum 4/1/96 Page 11

□
4/1/97

Identification Process
Pe.:

The Identification Process provides a mechanism
for uniquely numbering and labeling each of the
software component elements and relating those
elements to the system in which the software is
executed.

The identification process answers these questions
- What needs to be identified?
- How are they identified?
- How are changes identified and tracked?
- How are certain delivery issues resolved?

□
4/1/97

Identification Process
What Needs To Be Identified?

Pc24

IflL Things to be Identified include:
■ Software products
■ Software product components (e.g.documentation)
Each of these must be given unique identifiers and

labeled in accordance with naming and product
numbering standards and procedures.

For Software Products within the NWC, the
identification process used is the Part Drawing
System and Materials List.

1997 Sofware Quality Forum 4/1/96 Page 12)

□ Identification Process
How Are Thev Identified?

4/1/97

NWC - Software Products
■ The NWC Drawing system identifies a software

product with a six digit alpha numeric
identification number (drawing number) and a two
digit version number (initially 00)

■ The identification number is primarily associated
with the part of the software that is delivered to
the end use customer

■ Example from Case Study:
704308-00

□ Identification Process
How are Thev Identified?

4/1/97 Pc26

NWC - Software Product Components
■ All related software product components

identification numbers are derived from the
associated software product identification number

■ We do this by adding a 2 digit prefix indicating the
software product component, a 3 character version
number, and an alpha "Issue"

■ Example from Case Study
SR704308-000,IssueA
AT704308-000, Issue A (See Case Study)

1997 Sofware Quality Forum 4/1/96 Page 13

□ Identification Process
How are Thev Identified?

Pc:7

NWC Drawing Material List » ■

Software Product and its related components are
tied together on a Drawing Material List which
carries the same identification number as the
software product but with an alpha issue for
version control
This list contains all the software product
components identification numbers along with
their 3 character version number and issue
Review Case Study AML

Identification Process
How are changes identified and tracked?

PcIS

Major changes:
 "major functional change" in software product has one or more

software product components with a significant functional change.
» For example, additional software capability would revise

requirements, design, program, perhaps the user manual
 Changes Required

» Component Version and Issue
» Part Number Version

Minor changes:
 Minimum: Component Issue Increment
 Possible: Component Version Increment

1997 Sofware Quality Forum 4/1/96 r Page 14

D Identification Process
How Are Certain Delivery Issues Resolved?

Pc 29

When a deliverable is broken into parts, either for
physical necessity or for convenience, the order
and existence of the parts must be specified.
This need is satisfied by a change to the software
component identification number version number:
the first digit on the version suffix:
- 0 (zero) indicates no partition
- A. B, C,... indicate as many partitions as there are

letters and in alphabetical order.
Discuss Examples

n Identification Process
Process Summary Vs Case Study

4/1/97 P.K.30

Schedules (QIU

SW Product

1

**

raring Procedures DOE
- EP40I033 DPM
- EP40IM0 - 23
- EP40IW3 - 3 4
- EP40IW5 t i 1

r • EP40I054 1
. cojnici*; V

SW PRODUCT DEFINITION
ACTIVITY

Updated DOE 0U-

SU* Produa Idcaifiesiior*
• Part Number
- Component Karnes

Supplier
PRT

DOE
QAA

DOE -Department of Encr^x
DPM - Development & Production Manual
PRT - Product Reali=iion Team
QAA - Quality Assurance Agcnct
OIL - Qualin Instruction List
SW -Software

1997 Sofware Quality Forum 4/1/96 Paae 15

□ Qualification Process
4/1/97 Pc31

The Qualification Process includes all verification
and validation activities by the software supplier
and customer to ensure the software meets it
stated requirements and satisfies applicable
standards.

The qualification process answers these questions
- What needs to be qualified?
- How is this accomplished?
- Who does all the qualification work?

Qualification Process
471/97 Pg-

Why Qualify a Product or Process?

To See That It Does What It's Supposed To Do!
DOE Requires It!!!!!!!!!

1997 Sofware Quality Forum 4/1/96 Page 16

n 4/1/97

Qualification Process
Pp 33

What Needs To Be Qualified?

For software:
Anything That's Been Identified During the

Identification Phases.

(Weren't You Paving Attention Earlier?????????) J§< -A-\

□ Qualification Process
What Needs To Be Qualified?

4/1/97 Pc.34

Both, Products and Processes!!!!

Products are Qualified to Ensure:
■ Correct Identification
■ Functional Requirements are met
■ Defined software components are available

1997 Sofware Quality Forum 4/1/96 Pase 17

Qualification Process
What Needs To Be Qualified?

4/1/97 Pp35

Processes are qualified to
■ Assure required engineering activities were

performed
■ Assure product is produced per our customer

requirements.
■ Assure configuration management and quality

activities were performed

□ Qualification Process
How Is This Accomplished??

Pe.36

Typical Activities Performed Are:
■ Reviews and inspections of software development

documentation
■ Reviews of software test plans and results
■ Reviews of configuration management, testing

and design practices
■ Reviews of product production documentation

1997 Sofware Quality Forum 4/1/96 Paae 18 ,

□ Qualification Process
Who Does All This Qualification Work?

4/I/S7 P.g.37

The Product Realization Team (PRT) composed of;

Systems Engineering Design Engineering
Quality Engineering Users/Customers
DOE Software Testers

NOTE: PRTs are not limited to those listed, but. can
draw upon the expertise of multiple disciplines
and asencies within the NWC

□ Qualification Process
How Can I Remember All of This?

4/1/97 P,g3S

Plan, Plan, Plan
Qualification Plans are integral to the Qualification

Process because:
■ The plan describes what's being qualified,

qualification activities, evaluation methods, and
PRT membership

■ The plan lets all parties, including the receiving
organization, know what has been done to prove
the product or process acts as advertised

■ See Case Study Example <

1997 Sofware Quality.Forum 4/1/96 Page 19

q
4/1/97

Qualification Process
Process Summary Vs Case Study

P.c 39

Enymm mg Procedures DOEOrdenDOE
- EP41I1D99 - 1330 ID OC-I

EP4U10I6
- EPJOICUO

EP-uiinu
EP401*145

- EPWI3I6

DOE
DPM
-1.3

•' V
DOE On.

S p o S o » »

SWProdoa

te*

DOE
QAP
- 3 1
-3.2
- 3 3

SW PRODUCT ENGINEERING
ACTIVITY

3cflnjljoa Production Build
Rcrjuurments SjsteraTea

Dcvcn Integrate* Tea
Imolemenaljoo

T
PRT

COt -Ccnincsie of Inspection
POE-DcpanmoBcfEncrg
DPM - Development & Pioduaton Manual
PRT- ProduoRcalusUonTcan
QAA-Qualm Assurance Attnn

Updated DOE QIL
QAAPlm

' QuiIiricttioaPUn& Results
Qualified Sofmare Product
QER
COl

DOE
QW

QAP-Quahrj Assurance Procedure
OER -Qualdiatwa Evaluation RCJQK
OIL -Qmtm Inoraoion Ltfl
SW - Sofr«rc

1997 Sofware Quality Forum 4/1/96 Pase 20

□ Acceptance Process
4/1/97 Pi*4 |

□
■4/1/97

The Acceptance Process includes activities that
ensure software product has been adequately
qualified for delivery to the specified ("next")
customer

The acceptance process answers the questions:
- Why do acceptance?
- What needs acceptance?
- How do you do acceptance?

Acceptance Process
Why Do Acceptance?

DOE Policy on Software Product
■ Software has become more complex and a more

important element in weapon/test assembly
performance

■ DOE's policy has evolved to consider software as
product as opposed to part of the product
definition

1997 Sofware Quality Forum 4/1/96 Page 21

D Acceptance Process
What Needs Acceptance?

4'I/97 P c 4 3

DOE Acceptance of Software
■ is required on all software shipped between plants

which is will be used with weapon and weapons
related components, including test assemblies

■ currently for test equipment and development
software DOE has delegated its acceptance to the
individual sites (Testers, including software, must
be qualified prior to use on weapons or
components.)

Acceptance Process
What Needs Acceptance?

4/1/97 P S 4 4

DOE Acceptance (continued)
■ may be required, at the customer's option, on

software provided to customers such as the DoD
or the United Kingdom

■ Acceptance is generally denoted by stamps (IP,
diamond, or star) on packages or shipping
documents

■ Electronic transmittal of software product is not
permitted at this time

1997 Sofware Quality Forum 4/1/96 Page 22

□ Acceptance Process
How Do You Do Acceptance?

4/1/97 Pt-45

□
4/1/97

Submission to DOE
■ The Certificate of Inspection (COI) is the form

used by the contractor to submit software and
other product to DOE, to identify the product
definition requirements, and to certify that it meets
those requirements.

Acceptance Process
How Do You Do Acceptance?

P.e.46

DOE Inspection
■ The DOE Quality Assurance Inspection Procedure

(QAIP) describes the inspection process that DOE
personnel may use as part of software acceptance

■ In general the QAIP will specify verification
- that proper labels are on media
- that content of media is consistent
- that software has been formally qualified (e.g., QER or

equivalent)

1997 Sofware Quality Forum 4/1/96 Page 23

□ Acceptance Process
Summary

Pg.47

DOE Policy on Software Product
■ Acceptance is essential for weapon software to

provide an independent assessment that
requirements have been met.

■ The receiving agency requires an indication of
DOE acceptance if software is intended for use in
weapon product.

D Acceptance Process
Process Summary Vs Case Study

4/1/97 Pp. 48

>'i'ifirfiri. fun

OmWo!

CO!

 EF«»(i99
• EMU 1016
• EWUOVt
. EPwtwo
. Qiuiwi

 EMUlUS

DOEOrJtn DOE DCS
 IJJO.ID OCI DPM

DOE
<?AP
 1.2
3 .1

I

£
I . . . IU

mrntoottcnos •

■1£ 0
Stp-eiCOi

^AccqKolSWFnxfact

fRT

COI •CabCtcaieotltvcptxUoa
DOE •UqvruncniofEnaT^
DfM • D« dopmcte t PnJuction Muxu)
rRT ' ProJuct RctlimjoaTaen

DOE

OADR • Ou«lrt> Aiunncc Defect Rrport
UAT QtalittAnnnccltocoiun:
QDL (A»lJ»c*UaiF*«hm»oRek»c
OIL • Quid* btancuoa Lax

1997 Sofware Quality Forum 4/1/96 Paae 24

□ Delivery Process
:'l/97 P.5 49

The Delivery Process includes all supplier and
customer logistic activities of shipping and
receiving. The Delivery Process should be
sensitive to the variations in delivery of
developmental software product, prove-in
software product, and production software
product.

The delivery process answers the questions
- What will be delivered?
- How is software product delivered?
- How are software product components delivered?

□ Delivery Process
What will be Delivered?

4/1/97 Pc50

■ Software Product
■ Acceptance Documentation
■ Transfer Paperwork

Maybe:
■ Software Product Components

- See Case Study

1997 Sofware Quality Forum 4/1/96 Page 25

Delivery Process
How is Software Product Delivered?

Shipping Activities
■ Receive customer order
■ Transfer product from internal control"
■ Verify product is properly identified, qualified,

accepted
■ Verify product is properly labeled and stamped
■ Package product
■ .Verify package is properly labeled and stamped
■ Transfer product to transportation mechanism

Delivery Process
How is Software Product Delivered?

Receiving Activities
Order Software Product
■ Include any special handling requests
Upon Receipt
■ Inspect package for shipping damage
■ Check for proper transfer paperwork
■ Verify labels and stamps on package'
■ Inspect product for shipping damage
■ Verify labels and stamps on product
■ Transfer product to internal control

1997 Sofware Quality Forum 4/1/96 Pase 26

E Delivery Process
v are Software Product Components Delivered?

4'J.'97 PC 53

Shipping Organization
■ Verify product acceptance documentation is

complete
■ Transfer any support documentation including

: drawings to the receiving organization
Receiving Organizat ion
■ Verify product acceptance documentation is

complete
■ Verify that support documentation is released and

available for use

□ Delivery Process
Case Study Summary

4/1/97 Pc 54

Software Product Order
- Integrated Contract Order (ICO)
Software Product Delivered
- P/N 704308-00
Support Documentation
- Drawings Transferred via Drawing System
- Acceptance/Qualification Documentation Transferred

with Product

1997 Sofware Quality Forum 4/1/96 Page 27

D Delivery Process
Process Summary Vs Case Study

4/1/97 Pc 55

 EPUUW9
. rjuoituo
. ETW1W5
. Er«ii;i6

DOE
OCI

1 r
HOC DOE
nrM O A P
 !.l IJ

f

SWPreducT"

CCX —

s i n m s G |R£Cn\TSG I

Venf.

• «J.1US!p.I*cb

• fsu*p»cljpfif

SUTreJgc! V<nf«
• fmslpKLjpBf
 x p s t n bmllmf
• id. fUr*jp. UbcU

Sofi*wr Product

t t
n a

noE
t

CO! Canfioieoflivpsijea
DOE I)c^nmeaicflJ>&r>
Dril • I »e» dcpiacn! fc hoOueuon Manual
ICO Intc^nta! Contact Onkr

latpixuoo it h m o

PRT froJactRaluationlan
QAA 0uiln>Alsm«cA(Osr>
OAl* Qualit> A»ui*nccPTOC<0ue
SW .5on»ve

□
4/1/97

Specific Concerns

Requirement Not Well Known Across NWC
Complexwide Process NOT Completely Defined
Engineering Procedures (EPs) Mostly Do Not
Address This Process
Only Addressing Software Embedded in Product
What About Test Equipment, Numerical Control,
Development, Process Equipment, Inherited,
Legacy, Simulation, Scientific Codes ?..?..?

1997 Sofware Quality Forum 4/1/96 Pase 28

\ ^

Specific Concerns
P.B57

Receiving processes may vary
Customer may require different delivery processes
Do these processes apply to my site's software
products?

fi

Specific Concerns

Software Qualification Relationships
- Quality Engineer (Role?)
- Product Realization Team (Scope?)
- Qualification Plan and QER (Format & Content?)
Software Acceptance Relationships
- Internal Inspection: Pre QAIP ; *
- External Inspection: QAIP Interface with DOE

1997 Sofware Quality Forum 4/1/96 Page 29

□
41/97

Future Direction

Reengineering of Engineering Procedures
- EP401016,33,34,35,40,43,44,45,54, EP401516

DOE Mission Statement
- Include software product in statement
- Define production, higher product integration

responsibilities
Software Product Scope
- QAIP-like mechanisms will apply to all software
- Not all software will have the same mechanisms as the

WR software product

n Summary^
Tutorial Focus

4'l/97 Pg60

jzst Equipment Sold
Outside

Process Control Sold
Outside

alibration Software
old Outside

^Scientific Applications

1997 Sofware Quality Forum 4/1/96 Page 30

D Summary of Process
4/1/97 P.g 61

l Identification - 8 (or 9) Digit Part No. /
Equivalent 6 Digit Drawings, support components
identification

l Development/Qualification - PRT Controlled
I Acceptance - Final Acceptance by DOE or

Customer
l Delivery - Transfer Like Any Product (e.g. ICO)

□ Help is Available From
4/1/97 Pp. 62

I SQAS96-002 Guideline for NWC Processes for
Handling Software Product

I The DOE Quality Assurance Procedures (QAP)
'Manual

l The local DOE Quality Assurance Agency
l Contacts

David Vinson, PX Catherine Kuhn, KCP
Dave Peercy, SNL Orval Hart. LANL
Bill Warren, LLNL Ellis Sykes. DOE-KC
Gary Echert, DOE-AL Ray CuIIen, SRS
Faye Brown, Y-12

1997 Sofware Quality Forum 4/1/96 Page 31

Session W2: Writing Testable Software Requirements

Dr. Dwayne Knirk
Sandia National Laboratories

Writing Testable Software Requirements
Dr. Dwayne L. Knirk

Sandia National Laboratories

This tutorial identifies common problems in analyzing requirements in the problem and
constructing a written specification of what the software is to do. It deals with two main
problem areas: identifying and describing problem requirements; and analyzing and
describing behavior specifications.

Software-intensive systems are expected to work in a particular environment to bring
about desired effects in that environment. To accomplish these effects, the computing
system must have a variety of interactions with that environment. Its capabilities and
features are directed to establishing a variety of relationships between those interactions,
including stimulus-response, constraint, and historical reference. To establish such
relationships are the services provided by the computing system. The given environment
and required effects in the problem are collectively documented as Problem Requirements.
The computing system interactions and services are documented Behavior Specification.
The relationship between these two sets of information is an explicit and verifiable
behavior design task.

The Behavior Specification characterizes a computing system independently of its
application context. Having a behavioral specification enables a true concurrence in
development and testing processes. It provides a single reference point for all decisions of
software architecture and implementation as well as for test case and testware architecture
and implementation.

This tutorial focuses on determining what facts about a computing system are to be
documented, how they should be expressed, and how they are related to facts about the
application environment. It provides an overview of these basic specification techniques:
• the application of standard problem frames for classifying and organizing the various

requirements,
• the application "of stimulus/response and client/server viewpoints for structuring the

description of computing system behavior,
• the expression of unique, testable action statements with the help of pre- and post

conditions, state models, and datastore models,
• the description of behaviors of components and their architectural composition into the

behaviors of assemblies, and
• the use of these descriptions in Software Requirements Specification documents.

Much of this material in this tutorial is being developed as part of the next revision of
IEEE Std 1175. Part of that standard is a system behavior meta model. Various parts of
the material are undergoing refinement by application in various Sandia projects.

BIOGRAPHY

Dr. Dwayne L. Knirk

Dr. Knirk is a member of the software quality engineering department at Sandia National
Laboratories. He provides in-house consulting to line organization projects for software
engineering processes, methods, standards, tools, and training. He participates in process
assessments and improvement programs, and provides support for configuration
management, software inspections, and process automation. Dr. Knirk's primary focus is
on the two complementary areas of software specification and testing, in which he works
to bring more formal methods into more practical applications. He works actively on
IEEE software engineering standards groups. He is a member of the ASQC Software
Division Methods Committee.

Dr. Knirk previously worked for Programming Environments, Lie, where he was the
architect and principal developer of the automated software test design tool, T. That
commercial product analyzed a formal software behavior description for testability,
designed test cases for demonstrating that behavior, and generated actual test case data.

\

Knirk: Establishing a Three-Way Agreement 04/01/1997

Tutorial: Writing Testable
Software Requirements

Software Quality Forum
Albuquerque, NM

1 April 1997

Presented by
Dr. Dwayne L. Knirk

Quality Engineering Department
Sandia National Laboratories, Albuquerque, NM

SAND97-XXXC
This work was supported by the United States Department of Energy

under Contract DE-AC04-94AL85000.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy

Sandia National Laboratories Page 1

Session X2: Using COTS Software in Development Projects

Lt Col Nancy Crowley
Acting Chief, Space System Technologies

Phillips Laboratory
Kirtland AFB, NM

The Use of COTS
in the

Multimission Advanced Ground Intelligent Control (MAGIC) Program

Lt Col Nancy L. Crowley, Phillips Laboratory PL/VTS

The use of commercial software and standards has been touted as a potential for significant cost
and time savings in developing military systems, specifically, satellite control systems. And while
the savings do exist, commercial software and standards must be carefully evaluated prior to
selection, carefully integrated, and used where appropriate to reap their benefits. For example,
not all Commercial Off-The-Shelf (COTS) products are suitable because they encompass too may
inseparable functions, have a very narrow customer base and/or have no possible replacement
COTS products. A COTS-based system should consist of small components that do one
contained task and integrate with other components through some sort of message passing, such
as files, DDE, OLE, DLL or other appropriate middleware protocols such as provided in the
CORBA environment. A component should be able to be replaced with no, or minimal, impact on
other components in the system. Commercial protocols can be unstable and change rapidly over
time, forcing decisions on when to upgrade the components to new versions, and evaluating the
impact of doing so. Also, COTS components have bugs, and are usually not tested to the
stringent standards seen for some military systems. The features in COTS components are often
not exactly what is needed, necessitating decisions on whether they are good enough, or if some
custom code should be developed and integrated.

The tutorial will discuss the experiences of the Space System Technologies Division of the USAF
Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system's
primary use is a testbed for new technologies that are intended for future integration into the
operational satellite control system. As such, the control system architecture must be extremely
open and flexible so we can integrate new components and functions easily and also provide our
system to contractors for their component work. The system is based on commercial hardware, is
based on Windows NT, and makes the maximum use of COTS components and industry
standards.

BIOGRAPHY

Nancy L. Crowley, Lt Col
Acting Chief, Space System Technologies

Lt Col Nancy Crowley is the Acting Chief of the Space System Technologies Division (PL/VTS),
Kirtland AFB, New Mexico. The focus of Space System Technologies Division is on the
innovative application of software technologies to improve performance and reduce operations
and maintenance costs for satellite control systems, including telemetry, tracking and commanding
(TT&C), mission data dissemination, data processing, and satellite autonomy. Lt Col Crowley is
also the program manager for the Multimission Advanced Ground Intelligent Control (MAGIC)
program. MAGIC is developing the architecture for the next generation satellite control system
that provides a low cost, flexible software architecture that allows plug and play of COTS
products in a vendor independent manner.

Lt Col Crowley was born May 13, 1955 in the Bronx, New York." She graduated from Theills
EBgh School in Theills NY, in 1973. She received a Bachelor of Science in Electrical Engineering
from the University of New Hampshire in 1977 where she was a ROTC distinguished graduate.
She later received the Master of Science in'Digital Engineering and the Doctor of Philosophy
(major of software engineering, minor of artificial intelligence) from the Air Force Listitute of
Technology in 1982 and 1994 respectively. Her research was in object-oriented methods for
software requirements analysis.

Lt Col Crowley entered the Air Force in 1972 and was a flight test engineer for Tactical Air
Command. There she conducted operational test and evaluation and flew in fighter aircraft in
support of projects. After her masters degree, she was assigned to the Flight Dynamics
Laboratory, where she was the software engineer for the digital flight control system of the X-29
Advanced Technology Demonstrator and the Ada focal point for the laboratory. There and in
subsequent assignments she was a technical consultant to the Swedish government on the
development of the digital flight control system for the JAS-39. Her next assignment was at the
Systems Acquisition School, Brooks AFB Texas where she was a course developer and instructor
of software acquisition courses. There she was also a system administrator for a UMX and PC-
based networked system that serviced the students and staff at the school. After completing her
Ph.D., she came to her current assignment in Oct 94.

Outside her Air Force duties, Lt Col Crowley teaches software engineering, software
management, and computer science courses at local Universities. Her and her husband own a
computer consulting business. Both her and her husband enjoy riding horses.

Phillips Laboratory PL/VTS
3550 Aberdeen Ave SE
Kirtland AFB NM 87117-5776
Voice: 505-846-0461, ext 313

. .--« 505-846-6053
-"2-o-nail: crowleyn@plk.af.mil

mailto:crowleyn@plk.af.mil

• Develop advanced satellite control concepts to:
• Improve operator effectiveness
• Support new ops concept (front room/back room)
• Enhance operational capability
• Reduce USAF Satellite Control Network (AFSCN) costs

• Focus on: |
• Telemetry analysis I
• Decision support j
• Operator training I

• Integrate technology into USAF core TT&C system
• Technology: Use COTS integration, message passing between

components, open distributed systems, object-oriented development,
relational and object-oriented databases, and automated reasoning
techniques to develop the next generation ground stations.

Page 1

MAGIC
Attributes

• Multimission - contains knowledge and data on multiple
constellations and block releases

• Intelligent
- customize environment for each mission
- enable operator to manage multiple missions
- increase operator capabilities within each mission

• Extensible - easily expanded for new major functionality
(e.g. constellations/block releases)

• Portable to multiple platforms
• Maintainable - easily modifiable to accommodate new in

scope functionality
• User friendly
• COTS plug and play - highly vendor independent

MAGIC
COTS Components

Maximize use of "little COTS" components
- small components
- do a single isolated task
- communicate through messages

Little COTS components are easily replaceable
- No or little impact on other components in the system
- Key is single isolated task and well defined interfaces

MAGIC used many small components, commercial
standards, and standard PC computer hardware to
achieve lost cost and flexibility

Page 2

MAGIC
Technology Impacts

If we want to reap the benefits
of commercial technology
development:

- we cannot force multilevel security
requirements on our ground control
programs

- need to accept system high (C2
level) security in order to use

. commercial operating systems and
the products that go with them.

- we must be very careful before
setting standards. They become
outdated quickly and stop innovative
yet high payoff technologies from
being integrated into military
systems

MAGIC
Technology Impacts

Given that we can take advantage of advances in
commercial hardware and software, we will see great
advances in:

- affordability: we are seeing at least a 25 percent decrease in cost for the
same item each year

- capability: software tools and products are constantly being improved
and new products developed

- performance: large increases each year in the hardware speed and
storage capabilities for the same cost

feKeyAtOiSmartIyZusinglcommerci%technology:§^#
eMusticee^n,,top.of-fte.fechnoIoiw±andcons^tiy*.evafuate^tiie.^^^
%Hrh2B(*m~^&r<&^JttF*!KW&l*IJ *;±i-jf^\&*r*ttf£z&L*li-i. *^^*T^-^^ff^J!^*i^»t*^r*J*^^s-Xa^S&-

Page 3

MAGIC
Technology Impacts

• Using commercial technology requires a change in our
approach to acquiring systems

• Should not overspecify new systems because we anticipate no
major changes to the system for 10 -15 years

- Over-specifying for far term future requirements drives up the cost of the
system because it forces specialized hardware and software

• Use an evolutionary cycle rather than a revolutionary cycle
- Specify what will be needed for the next 5 years
- Expect an upgrade before 5 years
- By that time, the hardware and software capabilities will be significantly

greater at a comparable cost

rsgfeWellrdesigned systems usmg loosely coupled components ' ' "*^ ' -
rxtojanlevolutionaryj cycle:£il

MAGIC
Commercial Technologies *

The commercial world will develop:
- Generic hardware and software tools, such as databases, graphical user

interfaces, expert systems, modeling tools, analysis tools, network
management support, task management tools, etc.

- Some specialized space applications (ground systems and their
components, station keeping, etc)

- Must be willing to compromise in some requirements in order to use
some commercial components.

- COTS components have costs such as the cost of integrating and testing
new versions

JHatabases^ndfexpert^ystems^
SmessageTpassingMatheBthampurchasing^bigLCOl^^^^

Page 4

Phase 1: Telemetry Analysis
Phase 2: Decision Support
• Known anomaly decision support system (operator in the loop)
• Known anomaly independent decision support (autonomous)
• Unknown anomaly resolution (operator in the loop)

Phase 3
• Operator training

Phase 2 and 3 are conducted in parallel

MAGIC-1

MAGIC-1 is the first phase of MAGIC.
MAGIC-1 established the basic
architecture which will be used
throughout the multi-year MAGIC
program.
MAGIC-1 is currently installed in
Space Operation Complex (SOC) 33 at
Falcon AFB CO.
MAGIC-1 is a real-time telemetry
capture and display system, as well as
a post-pass telemetry analysis
system.

Page 5

MAGIC-1 is a real-time telemetry analysis system that
meets the following requirements:

- Capable of archiving 6 simultaneous telemetry streams
- Keep telemetry data for the operational life of the satellite
- Keep one year's worth of data on-line
- Uses six analyst workstations
- Provides telemetry plotting and display real-time
- Provides operator warning of events
- Provides trending and analysis post-pass
- Has two-level password protection
- Is C2 functional
- Provides color print capability

MAGIC-1 Architecture

6streams I I I I I I

VMEBox

Analyst
Workstation ion j

Analyst
Workstation

Analyst
Workstation

Analyst
Workstation

Analyst
Workstation

r. T. .
Data Storage Device/
Server

T

Analyst
Workstation

Pnnter Services
(color and B/W)

Page 6

• There are three modes of operation: pre-pass, real-time
and post-pass.

• Pre-pass setup, where the system is set up for the
satellite(s) that will be sending data

• Real-time during the pass, where the system will be
interacting with the operator real-time

• Post-pass, where the data is sent for storage, and the
system can be used for analysis of any stored satellite.

• The pre-pass operations are setting the system for the
satellites that will be monitored.

• The front end is loaded with the telemetry stream format
and the calibration information for a particular satellite.

• The network is setup to send a satellites data to one of
the workstations. During real-time, a workstation can
only work with one satellite.

• The workstation is setup to handle the data from that
satellite.

• The pre-pass operations are done through a single
windowed interface.

Page 7

During real-time operations, an operator is using the
analyst workstation to monitor the satellite.
The system will either present any of a number of preset
data screens, or a custom screen.
Each screen will consist of plots of analog data and
displays of discrete points.
ALL telemetry points, regardless of which are currently
being displayed, will be examined by the system. If any
go out of the normal range, the operator will be informed
so corrective action can be taken.
The status of each subsystem is displayed
MAGIC-1 does not contain intelligence on diagnosis of
potential problems.

MAGIC-1 Workstation
Architecture: Real-Time

telemetry data
(across network)!

data gather data manipulation/
distribution

telemetry

User

store data
(network)

• * *■ database
(MS SQL)

events/
subsystem
status

telemetry

<3UI

Expert
System

Page 8

8275
ACE
ACEOFF
TIMIHG
ACECMD
ACETZM
RAM
ROM
MUXA/D

NUDET
PET
HRAM
HRAKAP

BOARD

SADA
SADB

B ON
DXS

3 ON
B ON
B ON
A ON
B ON
B ON

PR-.KHL
PR-HHL
PY->KHL
PY-KHL
ES
ESOFF
ESSEL

B OH R+SS
0 R-SS

12345600 P*SS
300 P-SS

75077 2051:172
ON PSENSR ES
ON RSEHSR ES
ON YSENSR R/YD

EPLOG EHA
B ON ELFSIG EHA
A EN

B THRLOC EHA
TTRQMD AUNL

B CBHCTL OVDS
B DELTAV TERM
B E/WTKR PITCH
B NSOFFP DIS

0000

OFF
ONPR

SADPOT
GYRO

DIS PTBR A EN
RTHR A EN

B YTHR A EN
OFF NSTHR LIS

-77 PM ACS
UPDATE 16SEC
STRCKD EHA
PATCH ENEX
SAPDP EHA
BIASUP EHA
RACCUP EHA

SDNACQ R/S
EARTHACQ DIS
LUNECL IHH
FAILBHD DIS
KSSCKD DIS
TLMFKT NORM

PCBE A EN
RCBH A EN
YCBH A EN
NSCBB DIS

CONFIGURATION V5M02 AD 10
DH1A 10110100

BFHPRTA OH DHIB 01001010

HBRCMD RSET
M2XCMD RSET
M2XCKD RSET

DH2A 01000010 f

HBRCE
M1XCS
H2XCE

GDAPORT OFF
GDACKD RESET
GDA-AZ -4.39
GDA-EL 3.21
GDAAZC 0.00
GDAELC -1.37

DH3A
DH3B
DH4A
DW4B
DW4C
DW5A
DW5B
DW6A
DW6B

00011011
10001010
00101101
10100001
11100111

oooooooo
oooooooo
oooooooo ;
01000100 i

vm-iBmrmMMmmnr-mmm-utm
FUe Pisf'^Rcpta*/ Pwitf"***^-'̂ - ^U^BVr~c'^^c!-^^J*i^D*k^€S!!i&i&^^*?-r*^ W*
y r«CSi I j fcy- ? Prop" 1-&"A- i" TTXC I >>«■/'•■? rSPPS f ;^y> ,;Tl«n»-|>y*'&-^StSy4Sagt;rc«aS^£^^ Extti«T

5 RMCUP:
ZUauU*rai3'&

R8£U?*£s;£* b

RBtASCV-i , >•■

AcnvmES - f
SUBSYSTEMS'"
uiwi" - ' . " - '>'
•»;-»■»£'•?- I

-.\?*<>z;£^-:m&M^m&^m?>i& §£J*W''

**>*f-&&.'?* 't&a^ i*go?:V„ K*«?*£^iik5>^iSg^=.*jitf«T."^=>i«')Oft-j^;i(

l««iif*.?''&'•?. uSa ^US~ "iKn'-riiks'^a !«:«« ->r>-î *7j*a igav.iy.jri5^r5S5?y? :

„ f"

■.•taut.* «g -~.'-"^-^ya^^jfcgss&gj^-^gfeg?*;»^r.

:«? "3 — —■ — - '■-T^Ta-ggSrjgsjafegg^g t.
I. * 1*1 ■ ■ 1 ■ ' I ■ *■— * - - ^ -■** - - ^ — - - ■ ■*

sii.r"---'>V

—.taiswi-ns-nt
BUViznSMZ* «-

|35-?&.,-2,:«?5C

S>V-»." .TJ- - -

' * & ■ " * '

* D e l e t e ^ S«ppfei*|

iSS^ î".'.*.
aaSag^-v»''-«»r-"'-.

SPI 10-5S2 ~ ~

YOT-S3.."
RCTT.SS0 "

Page 9

During each pass, the data is downloaded to the Data
Storage Device for permanent storage
Key data points are summarized and stored in a separate
database for trending and analysis
An operator can use any of the workstations to do
analysis on data. This includes trending between
satellites of the same family, as well as analysis of one
satellite. Each workstation will have access to all satellite
information stored on the Data Storage Device and the
summarized key data points.
The data is available during an on-going pass. This
allows real-time display to occur on one workstation
while post-pass analysis is conducted on the same pass
on another workstation.

MAGIC-1 Workstation
Architecture: Post-Pass Cf *

User data (ODBCj^

GUI/local
database/analysis
functions (Visual
Basic)

database
(MS SQL)

\ . comr

summary
database
(MS Access)

nands

r i o t
Ana
(PV-

ung an
ysis Sj
WAVE]

a
rstem

Page 10

TJ
0)

(O

[
a
I
|
F

f:

§ § § § § § § § § § § '
S S S S S S » s s s s i

IlimmsM
mmmui

agt«*S86figfe^l!

i i J i i l ' i f i « ^ ^ S ^ !

JSS6S083t8Ss|H

'3

H3

i'i"i*m

mi

Ihi'
■Pit

il'H

xr:

Set

Set

I gn^

■i-n-

tndow Close

gt
SlMMlllSS^^F^^iS;£S&b

liinVi'^Tfffii

I6U0M2
I6U0N3 5

12: tfc 12: 0 : 12: 0: 12:
11 12 13 1*1 IS
September
1S96 CH60UT

S z_
12: 0: 12: 0: 12.
11 12 13
Seplembe*

0: 12. 0: 12: 0: 12. 0: 12:

tindow Close

S|H[W|T|-X.i5-?j£^
PUt Window 1 3D Plot

Page 12
72

indow Close

BIBIHI?!
Plot window 1 A c t u l l D a U

Poss: 1 Mnemonic:
 P A

" n
05/23/199605/23/1996

«* * *A*^
0. 30. 0. 30. 0. 30. 0. 30. 0. 30. 0. 30. 0. 3a
■22 23 a- ill 26 27 28

13:

Poss: 2 Mnemonic: PATT
0 5 / 2 * t / l 9 9 6 0 5 / 2 t / 1 9 9 6

a 30. a 30. a 30. 30. 0. 30. a 30. 0. 30. 0. 30.
1 20 21 22 23

Poss: 1 Mnemonic: PBASE
0 5 / 2 3 / 1 9 9 6 0 5 / 2 3 / 1 9 9 6

a 30. 0 30 0. 30. 0 30. 0. 30. 0. 30. a 30.
2 2 .23 21 2 S 2 6 2 7 2 8

13:

Poss: 2 Mnemonic: PBASE
05/2*1 / 1 9 9 6 0 5 / 2 V 1 9 9 5

iTlr
30 0 30. a 30. 0. 30. 0. 3a 0 30. 0. 30. 0. 30

:16 .17 :18 :19 2 0 2 1 2 2 2 3
7;

% ^

BlglHl VWx:^"i
PlotWIndowl Curve Fit.

Mnemonic: CH*P

!
HwnencOUP
Road Povrowl Cove
PtjJ^Knul CoaUmg tl.
A 0: 7.7530507812500CO0CE*OO«
A 1 : 25IgaCBfiXOpOX0E«C10
A 3 : 2S2WS77tBeS1<03CE*020
A 4 : 1132237S1G353W8CEG3
A 5 : 2S7S332221C2WS4S0E.C29
A S I.ZS3S1510$M51522DE*033
A 7 ■ 262*7091 M3507353CE«037

FaedlrBsrCuvc
L r w Cocttotrts
At t 265fSS3ZS8008*537g*000
A 1 . 1.56860SlQ3355*aOGGE*003

m 13

Page 13

• Decommutator VME Box
- Integral Systems software using Harris Nighthawk box
- 6 frame sync boards
- one IRIG time generator board
- software for generating engineering unit values
- software for placing data on the network
- can handle 2 levels of subcom, NRZ-L encoding scheme, supercom,

varying word sizes, bi-level split words, and some derived values

\;Data Storage Device
- Dual Pentium P5-100 ALR
- 14" monitor
- 120 meg RAM
- 40 gig SCSI 2 hard drives
- 8 gig tape backup unit
- Windows NT Server
- 10 base T Ethernet network cards ..jr..
- Microsoft SQL server as the relational database

Page 14

• Analyst Workstations
- Pentium P5-100
- 17" monitor
- 2 gig SCSI 2 hard drive
- PCI bus
- 64 meg RAM
- Double speed CDROM
- PCI SCSI controller
- Windows NT
- Graphical User Interface
- Microsoft Access Executable (Post-Pass)
- PV-WAVE

• Windows NT=was chosen because it provided the
capabilities needed with cost and platform advantages

• Windows NT hardware platforms less expensive than
UNIX platforms

• Software for Windows NT is less expensive than UNIX
software

• Hardware maintenance costs for Windows NT platforms
are less expensive than UNIX platforms

• Windows NT provides hardware independence
• The native Windows NT applications needed were

available

Page 15

Approximate
hardware/software cost for
6 stream system is
$300,000
Cost kept down by using
Windows NT-based
systems, instead of a UNIX
based system
All components open.
Maintenance costs low.

The expert system will be enhanced to examine out-of-
limit conditions and other system information to
determine if it can identify a known anomaly
If it is a known anomaly, the expert system will have a
defined solution
If it is a known anomaly, the expert system will tell the
operator for approval of its decision and the proposed
solution
Only with the operator's permission will the expert
system implement the proposed solution
If it is an unknown anomaly, the expert system will give
information to the operator for resolution
Additional functions will be added, such as orbit analysis,
planning, and commanding.

Page 16

■ Time tagged minor frames sent from the front end
• Software decommutation performed for each workstation that

needs data
• Stored data consists of:

- raw stored in files
- summary data consisting of maximum, minimum and average value over

a period of time that is definable for each satellite
• Changes required to handle higher data rates
• Flexible: any computer can connect to network and get data if

they can host the front end communication software (WEDGE)
and the software decommutation system (SDS)

Provides an architecture that will be used as a
testbedfor new technologies

MAGIC-2 -Architecture

Front End

Central WEDGE

1
SDS

1
.Database

WEDGE

SDS

Al

WEDGE
*

SDS

I
GUI

Page 17

MAGIC-2 Real-Time &

Front End

MAGIC-2 Postpass
■•■53 og?

SDS

1
'

Postpass
Analysis

Tool

Workstation

* ■ * - ■

: raw data

: summary
data

D

Files

DB Table

atabase Comput er

If user requests detailed data, postpass requests SDS
decommutate from the raw files.
If user requests data over a period of time, postpass uses the
summary data stored in tables in the database.

Page 18

MAGIC-2 - Independent
Decisions

The decisions the expert system makes will be compared
to those of the satellite experts to ensure that expert
system is mature
When confidence in the expert system is achieved, the
system will be permitted to make independent decisions
on known anomalies without prior operator approval
For an unknown anomaly, the expert system will provide
information to the operator and provide support in
anomaly resolution
Note: known anomalies are those that have been
identified and have defined solutions before the anomaly
occurs

MAGIC - 3
Intelligent Operator

Training
Current training approach

• Canned simulations (rote learning)
• Separate from the operational system (non-realistic training)
• Human trainer presence required

MAGIC approach
• Reactive, dynamic training (Al-based)
• Integrated with the operational system
• No human trainer required
• Computers maintains model of student progress to customize

training
• Reduces cost by using the operational system as its core

Page 19

Future Programs

Satellite Autonomy
- Once the expert system has

been verified and validated,
portions can move to the
satellite .

- Placing an expert system on the
satellite will reduce the amount
of data that must be sent from
the satellite to the ground

- The first area that will be
examined for autonomy is
health and status

Machine Learning in Ground Control and Autonomous
Satellites

- The knowledge in ground control stations and intelligent satellites will
have to be continuously updated.

- Updates are required to:
- add the increasing available knowledge about the satellites gathered as they

age
- Changes that occur in the satellites as they age

- The knowledge can be manually changed, but it would be better for the
system to learn as it gains experience with the satellite.

- Techniques for machine learning wil l be investigated and a prototype
ground/satellite system will be developed and tested.

Page 20

In Closing

MAGIC will rapidly mature
high payoff technologies for

satellite control ground
systems

Page 21
21

Session Y2: Software Inspection Process Overview

Larry Lane & Randy Dabbs
Sandia National Laboratories

Overview of the Software Inspection Process

G. Lawrence Lane and Randy Dabbs
Sandia National Laboratories

The Software Inspection is a formal in-process review method that provides immediate
improvement in software product quality and produces metrics that indicate opportunities
for process improvement. When adopted as a part of a defined, repeatable software
development methodology, Software Inspections provide a mechanism for process
control. The Software Inspection Process is not limited to formal reviews of code but
applies to all software products. Software Inspections have consistently been shown to be
very cost effective and is one of the most efficient ways to remove defects in all software
products.

This tutorial introduces attendees to the Inspection Process and teaches them how to
organize and participate in a software inspection. The tutorial advocates the benefits of
inspections and encourages attendees to socialize the inspection process in their
organizations.

The processes which are introduced in this tutorial agree with the methods recommended
in the Sandia Preferred Processes for Software Development. -

BIOGRAPHIES

G. Lawrence Lane

Larry Lane is a Senior Member of the Technical Staff at Sandia National Laboratories. He earned
a Master of Arts Degree in mathematics from the University of Kansas. Larry joined Sandia
Corporation in 1959 as an assembly language programmer in the field data reduction department.
He has also worked as a operating systems programmer and was responsible for the selection and
installation of Sandia's first general purpose time sharing computer. Larry also worked as a
computer consultant for large scientific computers, as the second computer ombudsman, and was
responsible for the development of an electronic tracking system for electrical testing of radiation-
hardened microcircuits.

Larry moved to his current position in the Quality Engineering Department in 1991, where he is
an instructor for the Software Quality Engineering course and the Software Inspection Class. As
a software quality engineer, Larry has led numerous qualification efforts for new and upgraded
software projects, particularly in the areas of use control and weapon security. He has helped
develop and teach a customized version of the software inspection course to meet specific Sandia
organizational needs.

Randy Dabbs

Randy Dabbs is a Senior Member of Technical Staff at Sandia National Laboratories. He has
earned a Master of Science in Electrical Engineering from the University of New Mexico. He has
Seld positions at the Sandia Particle Beam Fusion Accelerator in the areas of data acquisition and
signal processing; the Kwajalein Missile Range in the areas of range computer systems
engineering, range operations, tracking software modeling and development, reentry mission
project engineering, digital radar signal processing, radar controller real time software,' and
software configuration management; and the Sandia Kauai Test Facility in the areas of range
computer .support and operations, range safety software development, countdown software
development, CASE tool selection and modeling of range operational software.

In his current position with the Sandia Quality Engineering Department, he has participated in
instructing the Software Quality Engineering course and the Software Inspections course. In his
role as software quality assurance engineer, he has participated in numerous software inspections
for both internal and external customers. In addition, he has helped develop and teach a
customized version of the software inspection course to meet the specific needs of Sandia
organizations.

G. Lawrence 'Larry" Lane Randy Dabbs
Sandia National Laboratories Sandia National Laboratories
PO Box 5800, MS0638 P.O. Box 5800 MS-0638
Albuquerque, NM, 87185-0638 Albuquerque, NM 87185-0638
Voice: (505)845-9122 Voice: 505-845-9232
email: gllane@sandia.gov email: rddabbsi@sandia.gov

mailto:gllane@sandia.gov
mailto:rddabbsi@sandia.gov

Software Inspections
(Formal In-Process Reviews)

A Tutorial Presentation
At The

1997 Software Quality Forum
April 1,1997

tartSmHumiGprogrem Ubcratocy
op*jraud byS*m*S*Cocpcnrdcn. •
loddiMd IfanJn e-erpmrv. fcr t h .
Urtktd S t a t s D*jp**tm»rt of Erargy
tndM-Cortna DEAco4-«ALasa>a

7l*ne/D*bbta±lMrfL*x lOTSoftwvrQualiQ'Fctun l l f l] Ssntfe KatlOnal Isb0f8t0nes

Who Are We? What Do We Do?

Sandia Software Quality Engineering
Objectives:

Promote software engineering methods
and practice

• Software Quality Culture
• Software Development Policy
• Software Life Cycle Processes
• Software Reliability Methods
• Process and Product Metrics

RxuVD-rffes&DRyLxie lOTSeftwweQttaiitjrFcram JF j l] Sanda National Laboratories
Quality Jifafnecrit-cDcp-irt&a* 12325 April 1.1997-2

Who Are We? What Do We Do?

Sandia Software Quality Engineering
Functions:
• Sandia Software Management Program Lead
• Develop qualification evaluation approaches

for weapon software
• Consult with groups developing nonWR
software

• SEMATECH Software Reliability
Improvement

RKdyDtWrttUnyL** l997SoftinreQiutyFcnfn [r f l j 5hnrih ffrtirral IrfmiAtniiB*
QualfyEQfneangDcpwtXKnt 12326 ApriU,19973

Tutorial Goals
• Introduce the Inspection Process

 Learn how to organize and participate in inspections
 Understand the major elements of software inspections

» Participant Roles
» inspection Process Steps
» 'Guidelines for Effective Use

 Experience the inspection process through the workshop
• Socialize the Inspection Process

 Recommend attendence at a formal inspection course
 Recommend inspections on your software products

•Advocate the benefits of Inspections
 Cost savings
 Shorten delivery schedule
 Reduction in defects

XsntrlMblxAUnjrLse 1997Softw»rQuilj*jFom"j VP] S a n f a ffalMHl luU»dlll i t3
Qab;B«i*<*«rDcpiH]>ci<.12S2S April],19974 «•—■*»

Software Inspections

•Formal inprocess peer reviews of
code or associated documentation

•Set agenda
•AH issues are recorded and resolved
•Language independent

HBoyD^btLLviyLane I997SoftwveQuib9F6nxn I f M Santfe National Laboratories
OuilcyfiiBDecrinffDcDU«naC 12325 A m i 1.19975 ^ ■** QuiJqr BiiinetringPepirtnat 12326 April 1.19975

Definition
•A formal evaluation technique in which

software requirements, design or code are
examined in detail by a group to detect faults,
violations of development standards, or other
problems in order to prevent these defects
from propagation into operational products

•A structured peer review requiring advanced
preparation, planning, and possibly rework
and followup

•A static test of the software

KxxtrMbi f tUnrUoe iw7sc<tw»r<}1I>i*<rr<«ui* I f f l] Sande National laboratories
Qui*j*/Blfx»crjinglkp*tft!unt!232fS Apri l I .19976 ** '

Background on Inspections

•Created in 1972 at IBM by Michael Fagan
•Institutionalized by large software

development organizations (e.g. IBM, HP,
AT&T)

•An aid to productivity as well as quality
 The Process Control Mechanism for software

•Can be used to review requirements,
design, code, test cases, etc.

KaaOfOibtttmrrljex 1997SoftinrcQuaI*9Fonin I f M SamSa NSbOHal laboratories
Qmlty Onmam Ptpmniat YZSTt Aprill.19977 ' — ■ '

Software Inspections
• CONS

• Mistaken as a "Final Inspection" in the Deming sense
• Can add 515% to net resources up front
• Requires some training
• Mistaken as too "low tech" to be so effective

PROS
• High return on invested time and effort
• Feedback to developers avoid injecting defects in

future work'a
• Serves as checkpoints to facilitate process management
• Measure performance of tools and techniques
• Part of training for new people

R«Kt*D*fe,*.ijn,L«x i997soft»ireQu*i)tFonia [m l Sandia Natural Laboratories
QaaIfrBl*«a^Dq>Maa«123:'*S Aprill.19978 '——'

Benefits of Inspections
>Defect Reduction
■50-90% of all defects discovered by inspection

►Cost Improvement
■1025% reduction in development costs
■Up to 95% reduction in corrective maintenance

costs
►Staff Hours
■Overall reduction by 1040%
■Shortens tail end of schedule

Randy Xtafcb*ft. UnyLvx
Qualxjr Bifimnng Dcpntsol 12326

1997 Seftwve QtnGqr Forus
April 1.19979

(j f i) Sandta National laboratories

Inspection Experience Summaiy
People

Resources

ICorJrgl

Without
Software
Inspections

Schedule

(Fagan "86)

i, ^«<lW<reOTeiB.tht jue»underlhe*< two calces a £ ^

(iiiiM.rjn*g AttrfflffiflBifTTrtTrftff TT iaSrhJ^SSSSSWare inspection technique 6 aot«sV<J.

JPL* Experience
•Inspections are three times more effective
than other methods

•Save approximately $1600 for every
defect before test
■Cost to fix later vs. cost to find & fix in

inspection: $1700 vs. $105
•Average inspection discovers 16 defects

(4 major, 12 minor) for $25,000 savings
•Some defects cost as much as $10,000

eacn to TIX later ■ *iEEE.EBTmx*Revau<sw

KaxtrDiUs&ljnyUDC 1997SoftxmQuiliqrForm Wft] SatHfe National laU0ialtf«3
Quilty Erif7tc««Dq»*i>al 12326 April 1.199711 * — '

Comparison of Defect Identification
Techniques

METHOD
Self Checking
Peer Review
Walkthrough
Inspections

COST
Low
Low

Medium
MediumHigh

EFFICIENCY
< 20%
< 35%
< 50%
> 60%

Sourt«C^«r»Jon«,Sc*w»mM»a«ur«m«rH»odE«6mMiOT

WHY? Because Software Inspections:
• Have more formality and rigor
• Have defined methodology for inspections
• Require carefully kept records
• Require that all participants are active and responsible
• Require preparation
• Are repeatable

R>a4M*!&Un7LKC 1997SofhnrtQu»l«ljFonrn M i l Satllfa National IflOUBtUia
(falty nltAIU,iai*)<fm*aetl2i*£ Aprill.199712 •—'

Defined Methodology

►Defined Process Steps
■Planning, Overview (optional), Preparation,

Meeting, Rework (as necessary), FollowUp
►Clearly defined participant roles
■No more than six people at the inspection

No fewer than three
■Must include a Moderator, Reader, Recorder

and Product Author

Rand/ Dabbt & lany Lane
Quahry Bigneorng Depanna* 1232*5

1997 Saftwvt Quality Faura
Apnl 1.1997 13

@ 3 Sanaa National laboratories

Process/Part icipant Overview

Planning

(ABUIT"""")

Preparation

QM»tcmer~)

C\e\tftcten\

^

 J_w
0«**vJ** ,

Meientet 2
f fcsaecUn >J

^ (pVcrQ J

■
y

^ /

Ran* W*« & Unjr Lane
Quafaty BiiJCKums Departed 1232S

Meeting

(M t t l m u r)
(AntHm*")
(_ Re»*jer~~)
(Recorder ^
f'laspectan "\
■̂ (PeVir) J

1997 Softwwe QoaljT/Fonxn
April 1.199714

Rework

C A«th»r~~)
a

q.

FollowUp

(Mxieraf r)

(A»U»r)

(r r) Sanaa National laboratories

Inspector
•All participants are inspectors
•Attend overview if necessary
•Review material to be inspected using any

additional references available
•Spend an adequate amount of time

preparing (approximately 1 hour/10
document pages or 1 hour/100 lines of
source code)

•Note any questions or problems, note
preparation time

R*v)yD*i<!!& Lany Lane 1997*><rft<nreQiialityFonin H l l Sawfa National LaUUtHUlieS
r^«yB>jVxOT>il>partwn*.1232S April 1.199713 *—"■*

Author
•Determines when software is ready for inspection
• Works with Moderator to select team
• Verifies that all inspection entry criteria have

been met
• Places the product under configuration

management
• Ensures that the code builds cleanly (minimum)
• Prepares an inspection package
• Acts as reference during inspection

RanoyDattiJtLanyLane 1997 Softimt QuaUty farm l m] Sawfa National LatuatUUS
QuaIiyB«n*ii>«D*a*rti»cn*.lB2S Aprill.l9971« * — '

Moderator
•Verifies the material ready for inspection
• Prereviews the inspection package
• Determines if overview session is required
• Determines the reader and recorder
• Ensures that team has adequate expertise

■Proper mix and size
■Don't overuse good people. Team members

should spend less than 20% of their time in
inspections.

• Verifies that each inspector has prepared

Ran*Da»«a.LanyLane i997Soih«t(3uaiityr<»«n (r f f l Sandia National Laboratories
r^<yBitineainrlD<pani>a<I232« April 1.199717 * — '

Moderator
(continued)

• Keeps discussion on track
• Discourages problem solving in the meeting

■ Focus is on finding defects
• Preserves feeling of teamwork

■ Professional attitude maintained
■ Sensitive to physical arrangements
■ Sensitive to need for breaks

• Verifies that all problems are resolved
■ Summary Report to management or

• Signs off on product
■After rework complete

R«wJyr>feb»JtL«TyL»e 1997SeftwvcOoiliQrFbnin
QuiIiE]r&)^nnrin(X>cpirt»CEtl2325 April 1,199718

project leader

^ S a r i O B National laboratories

9

Reader

•Presents the software at the meeting
■Paraphrases line-by-line content
■Relates material back to higher level
work products (requirements, design,
etc.) if available

• May have longer preparation time

K w * Daiit 4 Lany l a >
QrjiaFyB*̂ MlLUaj>tD<*paf*fnoll232S

1997 Software Quahty Forum
April 1.1997-19

Sandc National Laboratories

Recorder

•Records problems found during the
inspection

• Notes the problems on the Defect
List

• Keeps the meeting minutes

Qmbgr Enjaactriqf Dcpmrxnt 12326
1997 Seftwvr QtaJjqr Foma

April 1.1997-20
I Sandb Ifetiorel Laboratones

10

This Slide is Intentionally Blank

Xan4rIMD>t.Jr. Lany Lane
Qually Buncoing Department 1232S

1997 Software Qualiry Fonan
April 1.1997-21

(5) SareSa National laboratories

Steps in the Inspection Process

STEP

• Planning -

• Overview

• Preparation

• Inspection meeting

• Rework ——————

• Follow-Up

OBJECTIVE

Coordinatio

Education

I Understand Product

iJ
D

C Find Defects

c Correct Defec ED
■> [Verify Corrections j

Randy DaKn a. lany Lane
Qmlty EnJnetrMrt Prpartrar* 12325

1997 Software Quabry Fonaa
April 1.1977. 22

SanoTa National Laboratories

Planning
•Author and moderator participate
• Determine that the entry criteria have been

met
• Prepare the inspection package
• Determine the number of meetings required
• Schedule the meetings
• Select the participants
• Determine if an overview meeting is

required

Rm^rDifcbx&IjrrjrL»c 1997SofbnrcQualicjrFocus i W l S o x f e National IfibOIBtDOeS
Qsat^BipQeeric«DcpmBaAl2325 April 1.1997 23 * — '

Overview

•Educate inspectors about the software
• Omitted if all inspectors understand

the product
• Inspectors familiar with product need

not attend
• Lowlevel technical gathering
• Informal

K»oyDal*.tLaByLane]997SoftwareQuaIi*Fcnin I jf\\ S a n f e National laboratories
QuiliryErijirair*D<p«rtjxn*.12J2S Aprill.199724 *■—'

Preparation

•All participants except author
• Review the material to be inspected
• Record any questions or problems
• One hour per ten pages of

document
• One hour per hundred lines of

noncommented code

ito^Dabbaj-LanyLaoe i997se<bnteQiiaii<yFenra (| f f l Sandra National Laboratories
Qiu*^B«irieo*jDep*M*«iicn:1232t; Aprill.1997-25 '——'

Inspection Meeting
•Moderator ensures that participant's

preparation time is adequate
•Goal is to detect and identify software defects
•No attempt to fix defects in meeting
•Team assumes joint responsibility of product

quality
•All defects recorded; minutes kept'
•Team should come to consensus regarding

inspection status

RnoylMaVt&LanyLarx 1997SoftwareQoauryFon«» I f T l l Sandfe NationalLabt«olUit3
QualflBip1eo^Dq»rnrMilia2*S April 1.1997-26 ' — '

What Makes Inspections Work
•Synergy

■Three to six knowledgeable people
■Focus on common goal, supportive
■Prepared and active
■Group dynamics focused in positive manner

has effect of increase in number:
"Phantom Inspector"

•Detachment
■The work product is detached from the

individual
■Focus is on the work product

RanoyDatts&LanyLanc 1997SoftanreQualityFbrurn M M Sands National Laboratories
Quality Er^ncaingDepinmal 12J2* April 1.199727 * — '

Rework

►Author:
■Corrects defects"
■Works to resolve open issues
■Investigates questions raised in the

inspection

RanoyM*atLanyLane ' 1997ScrtDnreQuali<yFonia (r f f l Sanffa Nationallaboratories
Otr^ABnxmraSo'jrtna* 12326 Asrill.1997.2S **■ "* QalsfB«nefr^l>l>a<tsall2J2rS Aprill.199728

http://Asrill.1997.2S

Inspection Outcomes

•Rework required, moderator reviews
changes

•Rework required, only rework
reviewed by team

•Rework required, entire product must
be reinspected by team

R»viy Datbt A Lwy tax
Quilljr En^jncoim Departnox 12326

1997 Softmrc Qalny Fonxn
Apnl 1,199729

I Sandia National Laboratories

Inspection Preparation

•Dedicate a preparation period
•Prepare in a quiet location away from
distractions

•Note confusing, incorrect, or missing
items
■Mark your review copy

Knoy DaUw * Larry Lane
Qualify 54JU^MigD*p*re"qt 12326

1997 Software Quaury Fomn
April 1.199730

(5 y Sandra National laboratories

15

Followup

Moderator reviews rework
Moderator verifies all defects
corrected
>A!I open issues resolved
Moderator signs off or schedules
new inspection meeting

KanoylMaXitLaiyLaDe 19*77 Software Quality Forum | f f l | StaTtb National laUKcttUifcS
QuauqrBuporxn«DcpanDaxl212>S Aprill.199731

Forms
• inspection Profile

■ Cover for inspection package
• Inspection Defect List

■ Primary working form during inspection
■ May choose alternate Defect Type Lists by inspection type,

e.g., Defect Type List for Requirements, different type list
for source code

• Inspection Summary
■ Primary form for data retention

• Inspection Management Report
■ Show resource utilization
■ Process tracking mechanism => Schedule vs work

completed

RooyDattt&LanyLo 1997SofhnreQu>UyF*um f | l | Sanrfa National LaMOiaUHS
Quau*y

5«>rxanjI>twti>citl232*S Aprill.199732

Project,

Inspection Defect List

Document Date:. Page:,

Inspection Typo: D Requirements D Design □ Code O Test Plan D Other

Page Location Defect Detect
Type

Defect
Seventy

Defect
Source

FollowUp
Check

MuTTum arc swim
MlsAroojeus rr>bKOa«MTt Mjalaacr
COsConfMrory lOaUpe IMshano
D*.»D*X» REsRaaajroi
rCaincottt* ST>SUnORk
rPvl/MrTK* U/BUnrWacaa

l U i ^ Ddoit Lany Lane
Qua/^i3^iw*aiLkpanrng7'.12i26

SR.SWR«i»m
SDiSWOap
SC<Ceong

1997SoftwyeQuali*yFcnan

Page OK.

Apnll.lSSUll •*2>WZb

Software Inspection Exercise
Workshop

Rnoy Dabbt & Uny Lane
QuaIxyErupheenBCl>7parfniat 12325

1997 Software Qualay Forum
April 1.199734

| SanrSa National laboratories

17

EXERCISE SCHEDULE

• Preliminary (5 minutes)
 Organize into inspection teams
 Assign inspection roles
 Handout Inspection Form Package

• Preparation Time (15 minutes)
 Read and annotate defects in BOLT DISCRIMINATOR

REQUIREMENTS specification
• Inspection Meeting (20 minutes)

 Conduct inspection on requirements specification (15 minutes)
 Recorder summarize defects found: Total and major (4 minutes)
 Team determine whether reinspection is required (1 minute)

Group Reports (20 minutes)
 Identify total number and total major defects
 Describe a few of the major defects found
 Discuss difficulties/problems/good aspects of process

Randy DabljiLnyLane " 1997 SoftwareQuabty Fbrum | | T » Samfa National lallUBta'»3
QualxyErupaetrir«DcpanEi<itl232>: April 1.199735 • — '

WRAPUP

R«>*D<*.4Lanyl«>e JOTSoftwareCruaUtyFcnra ffl SanOB National laboratories
OuatoFjttznrioBDcsartiicnt 12326" Aoril 1.199736 * ■* Qual^Bjbeo^Dq>artn>c* 12315 April 1.199736

Guidelines for Successful
Inspections

Allow adequate preparation time
Limit inspections to 2-hour sessions with no
more than 2 sessions per day
Identify problems; don't try to solve them
Disassociate the author from the author's

work
Stress preparation, concentration and

tolerance
No management participation
Choose the right participants

Kasoy Dacoa 4 Lany L a e
QuaUyE

1997 Sofhnre Quality Fonaa
April 1.1997-37

[t f l i SandM National laboratories

Why Organizations Stop
Inspecting

Lack Of Management Support
-Schedule slips, "not enough time"
-Results not immediately visible
Lack Of Training And Discipline
-Too little preparation
-Lack of concentration and focus
-Meetings too long, too frequent
-Too much material covered
-Same inspectors overused

Rmoy J>th, ft lany Lane
Qualfy LuiwccraiKDcparlncrl 12326

1997 Software QuahtyFcrua
April 1.1997-3S

@ j) Sanda National laboratories

19

Recipe for Destroying an
Inspection

Invite your boss,.
Invite everyone
Try to fix things
Make it last forever
Do it on a Monday morning or Friday afternoon
Blitz through large amounts of material
Get involved with personalities

RaodyDabbsiLanyLaoe 1997SoftwarcQuafatyI:ormi (r i l l SaTlOB National LaU»ollJU3
Qual^B«o*xn«D*-pans<xtl2326 April 1.1997-39

Additional References
• "Experience with Inspection in Ultralarge-Scale

Developments," Russell, G. W., IEEE Software,
January 1991, pp 25-31.

• "Getting Started on Metrics -Jet Proplusion
Laboratory Productivity and Quality," Bush, M. W.,
IEEE Experience Report, 1990.

• Structured Walkthroughs, Yourdon, Edward,
Prentice - Hall, Englewood Cliffs, New Jersey, 1985.

• "Lessons from Three Years of inspection Data,"
Weiler, Edward, F., IEEE Software, September 1993,
p.38 -45.

• "Annotated Bibliography on Software Inspections,"
Brykczynski, William, Software Engineering Notes,
Vol.. 18, No. 1, January 1993, pp 81-88.

JUn<'jrDet*.iL*«iyL>ne 1997So(hnreQuali<yFonro (*) S e n f e National laboratories
Qual**yB*jirx<rintPq>ai*««i-U232f; April J . 1997-40 *——'

Opening Session: Keynote Address

Capers Jones
Chairman, Software Productivity Research

Burlington, MA USA

Software Quality for 1997 - What Works and What Doesn't?

Capers Jones
Keynote Address:

Software Quality for 1997 - What
Works and What Doesn't?

Capers Jones is an international consultant on
software management topics and Chairman of
Software Productivity Research, Inc. (SPR) in
Burlington, MA. Following graduation from
the University of Florida, Mr. Jones began his
software career as a programmer in the office
of the Surgeon General, Washington, D.C..
Prior to becoming Chairman at SPR, Mr.
Jones also worked at the Crane Company,
IBM and was Assistant Director of
Programming Technology at ITT in Stratford
CT. Mr. Jones has published nine books
dealing with software areas, including;
Programming Productivity, Software
Measurement, Software Quality. His tenth
book, Software Cost Estimating is scheduled
for publication in early 1997. Mr. Jones will
share his experience and insights in his
keynote address "Software Quality for 1997 -
What Works and What Doesn't".

Keynote Address; April 2 1997,09;00 -10;00 am, TTC Auditorium
This presentation provides a view of software quality for 1997 - what works and what doesn't.
For many years, software quality assurance lagged behind hardware quality assurance in terms of
methods, metrics, and successful results. New approaches such as Quality Function Deployment
(QFD) the ISO 9000-9004 standards, the SEI maturity levels, and Total Quality Management
(TQM) are starting to attract wide attention, and in some cases to bring software quality levels up
to a parity with manufacturing quality levels. Since software is on the critical path for many
engineered products, and for internal business systems as well, the new approaches are starting to
affect global competition and attract widespread international interest. It can be hypothesized that
success in mastering software quality will be a key strategy for dominating global software
markets in the 21st century.

Capers Jones, Chairman
Software Productivity Research, Inc.
1 New England Executive Park
Burlington, MA. 01803-5005

Phone 617 273 0140
FAX 617 273 5176
Email capers@spr.com

mailto:capers@spr.com

— Software Productivity Research

SOFTWARE QUALITY IN 1997:
WHAT WORKS AND WHAT DOESN'T

,m G-wMwZr-f&nfgtfatfh-r A r t
" BirLrftat, Mmakotax 01903
\ 61727X0140 Toe 6J7MXSJ76

CepytptOlMrBySPR *MR>(rtt*R»Mn»d

NATIONAL IMPUCATIONS OF TECHNOLOGY

• High-technology products are critical to national success

• Quality is the key market factor for high technology

• Computers and software permeate high-technology
business

• Quality is the key to software success

• Quality must become part of national cultures

• Senior executive action is needed

FUNDAMENTAL BUSINESS LAWS OF 2000 AD

LAW 1: Enterprises that master computers and software
will succeed; enterprises that fall behind will faill

LAW 2: Quality control is the key to mastering computing
and software. Enterprises that control quality
will succeed. Enterprises that do not control
quality will fail.

LAW 3: Quality cannot be controlled unless it can be
measured.

C0P)(*9tO1»7byS>>R *aRifr*aR«f4*v*r*

BASIC DEFINITIONS

SOFTWARE "Software that combines the
QUAUTY characteristics of low defect

rates and high user satisfaction"

USER
SATISFACTION

"Clients that are pleased with a
vendor's products, quality levels,
ease of use, and support"

Gep»n?t01<»7frySPR Mtte-paRtMrv-tf

CAUTIONS ABOUT HAZARDOUS QUAUTY
DEFINITIONS

"Quality Means Conformance to requirements."

Requirements contain 15% of software errors.

Requirements Grow at 2% per month.

Do you conform to requirements errors?

Do you conform to totally new requirements?

Whose requirements are you trying to satisfy?

Cce>nfft019S7t>yS>ft M R j o s n t w v *]

CAUTIONS ABOUT HAaZARDOUS QUAUTY METRICS

"Cost per Defect"

• Approaches infinity as defects near zero

• Conceals real economic value of quality

Civy>9t01997bySPR M Ri?«> R»urv»d

COST PER DEFECT PENAUZES QUAUTY

p®
Pool

Function Points
Bugs Discovered
Preparation
Removal
Repairs

Total

Poor
Quality

100
500

$5,000
$5,000

$25,000
$35,000

Cost per Defect $70

Cost per Function Point $350

CcojnTtot'rirDySPfl MRip*B.wrv^ SVWUALSTv'

BASIS OF THE "UNES OF CODE" QUAUTY PARADOX

When defects are found in multiple components, it is invalid to
assign all defects to a single component.

Software defects are found in:

requirements
design
source code
user documents
bad fixes (secondary defects)

Requirements and design defects outnumber code defects.

"Defects per KLOC" makes major sources of software defects
invisible.

®
Good

Qualify
100
50

$5,000
$2,500
$5.000

$12,500

$250

$125

©
Excellent
Quality

100
5

$5,000
$1,000
$1.000
$7,000

$1,400

$70

®
Zero

Defects
100

0
$5,000
$ 0
$ 0
$5,000

co

$50

Cop)n?t01997bySPft **R*0*"-WW-3 SWOUALB7*

FOUR LANGUAGE COMPARISON OF SOFTWARE
DEFECT POTENTIALS

Defect Origin

Requirements
Design
Code Zxc
Documents
Bad Fixes

TOTAL DEFECTS

Defects per KLOC

Defects per Function
Point

CopynpiolS'.'bySS**: AaR»*/*sR.>urv*x*

Assembly

35
75

165
50
25

300

30

6

«

Ada

35
75
25
50
15

200

100

4

Obiective C

35
50
10
50
5

150

120

2.4

Full Reuse

15
6
2

10
2

35

140

0.7

SW3U*tSTW

LOC VERSUS FUNCTION POINT QUAUTY LEVELS

s o a.

o a

4 -

% Z u
c

a
tr-

IO

•Assembly

• C
' Fortran

• COBOL

• PUI

• ADA83
• ADA9X

• C++
• Generators

• Smalltalk

20 30 40 50 60
—I

70

Defects per KLOC
CtorflOmJbfSlH Mfafttflntnte ar-ouAisjuo

KIVIAT GRAPH OF MAJOR SOFTWARE RISKS

Unplanned
Changes

Inadequate
Defect f

Removal

Schedule
Slippage

, Deferred
< Functions

C0pyx?tOlS97t>ySPR Mlbftittnant

CONSISTENTLY GOOD QUAUTY RESULTS

Formal Inspections (Design and Code)
Joint Application Design (JAD)
Quality Function Deployment (QFD)
Quality Metrics
Removal Efficiency Measurements
Functional Metrics
Active Quality Assurance
Formal Configuration Control
User Satisfaction Surveys
Formal Test Planning
Quality Estimation Tools
Automated Test Tools
Testing Specialists

CcD)n9tOW7tySPR MR>srKsR-M*rv«4

MIXED QUAUTY RESULTS

• Total Quality Management (TQM)
• S El Assessments
• SEI Maturity Levels
• Baldrige Awards
• IEEE Quality Standards
• Testing by Developers
• DOD2167AandDOD498
• Reliability Models
• Risk Assessments
• Year 2000 Repairs

&P>o(n01SJ7bySPR. MR>swRt imd

-

$VhQUAL9ni3

QUESTIONABLE QUAUTY RESULTS

• ISO Quality Standards

• Informal Testing

• Manual Testing

• Passive Quality Assurance

• LOC Metrics

CflOyn^tCIWTtySPR. MKtpts fin***}

*

SAQUtSTlU

)

A PRACTICAL DEFINITION OF SOFTWARE
QUAUTY (PREDICTABLE AND MEASURABLE)

• Low Defect Potentials (< 2 per Function Point)
• High Defect Removal Efficiency (> 95%)
• Unambiguous, Stable Requirements (< 2.5% change)
• Explicit Requirements Achieved (> 97.5% achieved)
• High User Satisfaction Ratings (> 90% "excellent")

- Installation
- Ease of learning
- Ease of use
- Functionality
- Compatibility
- Error handling
- User information (screens, manuals, tutorials)
- Customer support
- Defect repairs

J

SPR AND ISO QUAUTY PROCESSES

Defect Potential Estimation

Defect Removal Efficiency
Estimation and Measurement

Delivered Defect Estimation
and Measurement

User Satisfaction Measurement

Inspections and Reviews

Testing

Process Analysis -

Cop)nfrt01997bySRR A»R<mRw*v»d

SPR

Yes

Yes

Yes

Yes

Rigorous

Rigorous

Rigorous

ISO

Missing

Missing

Yes

Yes

Informal

Rigorous

Informal

SAQUU.'miS

)

8

WORK CATEGORIES RELATED TO PRODUCT SIZE

o a.

a a
3

2.
C
O £
c
o
£
o
a. Code Related

r
10

I i i i I l i
20 40 80 160 320 640 1280 2560 5120 10240

Size of Program in Function Points

CC0)A9<O1997**SPR MR-T t sRvMn-M j svtou*oni7

PERCENTAGE OF SOFTWARE EFFORT BY TASK

Size in
Function Points

10,240
5,120
2,580
1,280

640
320
160
80
40
20
10

MgU
Support

18%
17%
16%
15%
14%
13%
12%
11%
10%

9%
8%

Cce»ngft01997bySPR A J R - ^ * j R M W V W I

Defect
Removal

35%
33%
3 1 %
29%
27%
25%
23%
2 1 %
19%
17%
15%

Paperwork

35%
32%
29%
26%
23%
20%
17%
14%
11%
8%
5%

Coding

12%
18%
24%
30%
36%
42%
48%
54%
60%
66%
72%

Total

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

SMQUALSmt

U. S. SOFTWARE QUAUTY AVERAGES

Defect
Potentials

Defect
Removal
Efficiency

Delivered
Defects

First Year
Discovery Rate

First Year
Reported
Defects

(Defects per Funct ion Point))

System
Software

6.0

9 4 *

0.4

65%

0.26

Cor»n0HO1997bySS'R M Rignri R«tt*M*J

Commercial
Software

5.0

90%

0.5

70%

0.35

Information
Software

4.5

73%

1.2

30%

0.36

Military
Software

7.0

96%

0.3

75%

0.23

Overall
Average

5.6

88%

0.65

60%

0.30

SVOUAL97M9

CURRENT U.S. AVERAGES FOR SOFTWARE QUAUTY
(Data Expressed in Terms of Defects per Function Point)

Defect Removal Delivered
Defect Origins Potential Efficiency Defects

Requirements
Design
Coding
Documents
Bad Fixes

TOTAL

CONCLUSIONS

1.00
1.25
1.75
0.60
0.40

5.00

77%
85%
95%
80%
70%

85%

0.23
0.19
0.09
0.12
0.12

0.75

Projects with large volumes of coding defects have the highest removal
efficiencies
High-level and O-O languages have low volumes of coding defects
Capy iQt t01997bySf f t M R i O t t R i w v t d SWOUAL9TC0

RELATIONSHIP BETWEEN SOFTWARE SIZE AND
DEFECT REMOVAL EFFICIENCY

(Data Expressed

Size

1

10

100

1000

10000

100000

AVERAGE

Defect
Potential

1.85

2.45

3.68

5.00

7.60

9.55

B.02

C9t*Vt01BS7bySPR MHirl»R«ttM0

in terms of Defects per Function Point)

Defect
Removal
Efficiency

95.00%

92.00%

90.00%

85.00%

78.00%

75.00%

85.83%

Delivered
Defects

0.09

0.20

0.37

0.75

1.67

2.39

0.S1

1st Year
Discovery

Rate

90.00%

80.00%

70.00%

50.00%

40.00%

30.00%

60.00%

1st Year
Reported
Defects

0.08

0.16

0.26

0.38

0.67

0.72

0J3Z

SWQUAU7V1

SOFTWARE DEFECT REMOVAL EFFICIENCY AND
THE FIVE LEVELS OF THE SEI CMM

(Cumulative Percentage of Defects Removed Prior to

SEI Level 1

SEI Level 2

SEI Level 3

SEI Level 4

SEI Level 5

C*vyi01O*997fcySSlR MthftlRntMC

Minimum

70.00%

70.00%

75.00%

80.00%

90.00%

Average

85.00%

87.00%

89.00%

94.00%

97.00%

Deployment)

Maximum

95.00%

96.00%

97.00%

99.00%

99.90%

SevwHjarai

11

SOFTWARE DEFECT POTENTIALS & DEFECT
REMOVAL EFFICIENCY SUGGESTED FOR EACH
LEVEL OF SEI CMM

(Data Expressed in Terms of Defects per Function Point)

SEI CMM Levels

SEI CMM 1

SEI CMM 2

SEI CMM 3

SEI CMM 4

SEI CMM 5

CecyVt01997 tv SPR AIP»yjtiRM*v-*d

Defect
Potentials

5.00

4.00

3.00

2.00

1.00

Removal
Efficiency

85%

90%

95%

97%

99%

Delivered
Defects

0.75

0.40

0.15

0.08

0.01

SWOU/W7BJ

SOFTWARE QUAUTY IMPROVEMENT

a. u.

10-

9-

8-

7*

6 .

5 .

4 .

3 .

2

1

0 .

U.S.ana^urope
Average \ I • Canada

\ ^ «Japan

\
(SB CMM 5)
Best In Class

~i i r
50% 155% 60% 65% 70%

I I
75% 80%

I
85%

I 1
S0% 35% 100%

Defect Removal Efficiency

C0pjngrcO1997tySPft MRjohaRvaarMC

U.S. INDUSTRIES EXCEEDING 95% IN
CUMULATIVE DEFECT REMOVAL EFFICIENCY

Year 95% Exceeded
(Approximate)

1. Telecommunications Manufacturing

2. Computer Manufacturing

3. Aero-space Manufacturing

4. Military and Defense Manufacturing

5. Medical Instrument Manufacturing

6. Commercial Software Producers

CcpmrtOt997bySPR AflRt(f*»R««rv*J

1975

1977

1979

1980

1980

1992

SMWUTOS

U.S. INDUSTRIES MAINTAINING MARKET
SHARE INTERNATIONALLY

1. Telecommunications Manufacturing

2. Computer Manufacturing

3. Military and Defense Manufacturing

4. Commercial Software Producers

5. Aero-space Manufacturing

6. Medical instrument Manufacturing

C0B)n?tO1997bySPR A U h f A C w v i d SWUALSTtH

DEFECT REMOVAL AND TESTING STAGES NOTED
DURING UTIGATION FOR POOR QUAUTY

Formal design inspections
Formal code inspections

Subroutine testing
Unit testing
New function testing
Regression testing
Integration testing
System testing
Performance testing
Capacity testing

CcoytgttO'997&ySPR. MRicrcsRnaox*]

Reliable
Software

Used
Used

Used.
Used
Used
Used
Used
Used
Used
Used

Software Involved
in Litigation for

Poor Quality

Not used
Not used

Used
Used
Rushed or omitted
Rushed or omitted
Used
Rushed or omitted
Rushed or omitted
Rushed or omitted

SVttUat9TV27

U.S. SOFTWARE DEFECT POTENTIALS ATFIVE-
YEAR INTERVALS FROM 19-45 TO 2000 AD

(Data Expressed in Terms of Defects Per Function Point)

MIS

2.00
2.25
2.50
2.50
2.75
3.00
3.75
5.00
5.00
5.50
6.00

3.66

Outsrc

3.00
3.50
4.60
4.75
5.00
5.50

4.38

Commer.

1.50
1.75
2.50
3.00
3.50
4.50
4.75
5.25
6.00

3.64

System

2.50
2.50

. 3.00
3.25
4.00
5.00
6.00
6.00
8.50
6.00
6.50

4.66

Military
1.50
2.00
2.50
3.00
3.50
4.50
5.50
6.25
7.00
7.00
6.50
6.50

4.65

Average
1.50
2.17
2.42
2.50
2.75
3.44
3.42
4.08
4.83
5.08
5.13
5.58

3.84

Copt tnO tM7 toy SPR MRitfttRtMfWtf. SVOOAL9712t

Year
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000

Average

End-User

1.00
1.50
2.00
2.50
2.50
3.00

2.08

U.S. SOFTWARE DEFECT REMOVAL EFFICIENCY AT
FIVE-YEAR INTERVALS FROM 1945 TO 2000 AD
(Data Expressed in Terms of Percentage

Year
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000

Average

End-User

60.00%
63.00%
65.00%
67.00%
70.00%
75.00%

66.67%

MIS

78.00%
79.00%
80.00%
80.00%
81.00%
82.00%
82.00%
84.00%
84.00%
85.00%
88.00%

82.09%

Copt>*tort01997t>ySPR. MRtgrxtRturv***

Outsrc.

85.00%
85.00%
88.00%
90.00%
91.00%
93.00%

88.67%

of Defects Removed Before Deployment)

Commer.

80.00%
82.00%
84.00%
85.00%
89.00%
90.00%
92.00%
94.00%
95.00%

87.89%

System

83.00%
85.00%
86.00%
86.00%
88.00%
92.00%
94.00%
94.00%
94.00%
96.00%
98.00%

90.55%

Military
80.00%
80.00%
85.00%
85.00%
86.00%
87.00%
90.00%
91.00%
92.00%
93.00%
95.00%
96.00%

88.33%

Average
80.00%
8033%
83.00%
82.75%
83.50%
85.00%
8Z33%
84.00%
85.50%
86.67%
88.50%
90.83%

84.03%

S*QUH.*TQ9

U.S. SOFTWARE DEUVERED DEFECT RATES AT
FIVE-YEAR INTERVALS FROM 1945 TO 2000 AD

(Data Expressed in Terms of Defects Delivered Per Function Point

Year
1945
1950
1955
1960
1965
1970
1975
1980
1985
19S0
1995
2000

Average

End-User

0.40
0.56
0.70
0.83
0.75
0.75

0.65

Ceoy>0t1O1997tySm, HSbflltmrMa

MIS

0.4*
0.47
0.50
0.50
0.52
0.54
0.68
0.80
0.80
0.83
0.66

0.61

Outsrc.

0.45
0.53
0.54
0.48
0.45
0.39

0.47

Commer.

0.30
0.32
0.40
0.45
0.39
0.45
0.38
0.32
0.30

037

System

0.43
0.38
0.42
0.46
0.48
0.40
0.36
0.36
0.39
0.24
0.13

037

Military
0.30
0.40
0.38
0.45
0.49
0.59
0.55
0.56
0.56
0.49 *
0.33
0.26

0.45

Average
030
0.42
0.41
0.42
0.44
0.50
0.47
0.51
0.57

= 0.56
0.48
0.41

0.49

SVSOWU7O0

SPR QUAUTY PERFORMANCE LEVELS
CUMULATIVE DEFECT REMOVAL EFFICIENCY

(Development Defects +1 Year of User Defect Reports)

SPR
Performance Level

1. Excellent

2. Good

3. Average

4. Marginal

5. Poor

CeP)O9!t019g7byS»t MRip-SRtwwd

Efficiency Measured
at One Year of Usaae

> 99%

95%

87%

83%

< 80%

SVtQU4U7U1

OPTIMIZING QUAUTY AND PRODUCVVITY

Projects that achieve 95% cumulative Defect
Removal Efficiency will find:

1) Minimum schedules

2) Maximum productivity

3) High levels of user satisfaction

4) Low levels of delivered defects

Comngrt019S7f/SPR MRtomRaMrvod sv*QUALsra2

ORIGIN OF SOFTWARE DEFECTS
Because defect removal is such a major cost element, studying
defect origins is a valuable undertaking.

IBM Corporation (MVS) SPR Corporation (client studies)

45%
25%
20%
5%
5%

Design errors
Coding errors
Bad fixes
Documentation errors
Administrative errors

20%
30%
35%
10%
5%

Requirements errors
Design errors
Coding errors
Bad fixes
Documentation errors

100% 100%

TRW Corporation Mitre Corporation Nippon Electric Corp.

60% Design errors
40% Coding errors

100%

64% Design errors
36% Coding errors

100%

60% Design errors
40% Coding errors

100%

Ccpj*VtCtW7t>ySPR. MRt f fsRiwvtd

FUNCTION POINTS AND DEFECT REMOVAL

Function points raised to the 0.3 power can predict the
optimal number of defect removal stages.

FUNCTION
POINTS

1
10

100
1,000

10,000
100,000

1,000,000

Cepyt.rt019fl7bySPR AIRpjfttR-m»v»d.

DEFECT REMOVAL
STAGES

1
2
4
8

16
32
64

SVWWU704

77

FUNCTION POINTS AND TEST CASES

Function points raised to the 1
probable number of test cases

FUNCTION POINTS

1
10

100
1,000

10,000
100,000

Ccc*/19*C01997bySPR M(b*nR i i i f v id

.2 power can predict the
for full test coverage.

TEST CASES

1
16

251
3,981

63,096
1,000,000

Sv*JU*tf l7\35

RANGES OF TEST CASES PER FUNCTION POINT
FOR SOFTWARE PROJECTS

Testing Stage

Clean-room testing
Regression testing
Unit testing
New function testing
Integration testing
Subroutine testing
Independent testing
System testing
Viral testing
Performance testing
Acceptance testing
Lab testing
Field (Beta) testing
Usability testing
Platform testing
Stress testing
Security testing
Year 2000 Testing

Total
Ccp>n0*tO1997sySPR MR>pT<»Rta«v«J

Minimum

0.60
0.40
0.20
0.25
0.20
0.20
0.00
0.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.00

Average

1.00
0.60
0.45
0.40
0.40
0.30
0.30
0.25
0.20
0.20
0.20
0.20
0.20
0.20
0.15
0.15
0.15
0.15
5.50

Maximum

3.00
1.30
1.20
0.90
0.75
0.40
0.55
0.60
0.40
0.40
0.60
0.50
1.00
0.40
0.30
0.30
0.35
0.30

13.25
SV-AUA-LS7138

FUNCTION POINTS AND DEFECT POTENTIALS

Function points raised to the 1.25 power can predict the
probable number of defects.

(Defects in requirements, design, code, documents, and
bad fix categories.)

FUNCTION POINTS

1
10

100
1,000

10,000
100,000

Ccw>n£tt01WTt>ySPR Al Rifts R*Mrv«d

POTENTIAL DEFECTS

1
18

316
5,623

100,000
1,778,279

SVWU*L87\37

RELATIONSHIP OF SOFTWARE QUAUTY AND
PRODUCTIVITY

• The most effective way of improving software productivity
and shortening project schedules is to reduce defect levels.

• Defect reduction can occur through:

1. Defect prevention technologies
Structured design
Structured code
High-level languages
Etc.

2. Defect removal technologies
Design reviews
Code inspections
Tests
Correctness proofs

Ccpy'9*aO*997t>ySPft M* fngt* ttwmd. Snouaur

19

DEFECT PREVENTION METHODS

Requirements Design Code Document Performance
Defects Defects Defects Defects Defects

JAD's

Prototypes

Structured
Methods

CASE
Tools

Blueprints &
Reusable Code

QFD

Excellent

Excellent

Fair

Fair

Excellent

Good

Good

Excellent

Good

Good

Excellent

Excellent

Not
Applicable

• Fair

Excellent

Fair

Excellent

Fair

Fair

Not
Applicable

Fair

Fair

Excellent

Poor

Poor

Excellent

Fair

Fair

Good

Good

G»)»i?tei»7by$PR AIRIS«JR-WV*3

DEFECT REMOVAL METHODS

Reviews/
Inspections

Prototypes

Testing
(all forms)

Correctness
Proofs

Requirements Design
Defects Defects

Code Document Performance
Defects Defects Defects

Fair

Good

. Poor

Poor

Excellent

Fair

Poor

Poor

Excellent

Fair

Good

Good

Good

Not
Applicable

Fair

Fair

Fair

Good

Excellent

Poor

Copjnfft01M7by£PR. AURipttRtMn-wl

DEFECT REMOVAL ASSUMPTIONS

1. Excellent

2. Good

3. Average

4. Marginal

5. Poor

Methods

Formal

Formal

Informal

Informal

Informal

Cep)f>*7101997tySPR AJRif f t t f iwMd

Training

Formal

Formal

Informal

Informal

Informal

Experience

Substantial

Mixed

Mixed

Little

None

Enthusiasm

Good

Good

Mixed

Minimal

Negative

Management
Support

Good

Moderate

Mixed

Minimal

Minimal

SMQUA197U1

1.

2.

3.

4.

5.

QUAUTY MEASUREMENT EXCELLENCE

Excellent

Good

Average

Marginal

Poor

Defect
Estimation

Yes

Yes

No

No

No

Defect
Tracklna

Yes

Yes

Yes

No

No

Cce>neTt01997»ySPR. MRtT"RW4*YW*.

Usability
Measures

Yes

Yes

Yes

Yes

No

Complexity
Measures

Yes

No

No

No

No

Test
Coverage
Measures

Yes

Yes

Yes

Yes

No

Removal
Measures

Yes

No

No

No

No

Maintenance
Measures

Yes

Yes

Yes

Yes

No

Snou*4S7tf2

TOOLS USED BY SOFTWARE QUAUTY ASSURANCE
(SQA)

(Tool Capacity Expressed in

Tool Categories
Statistical analysis tools
Quality estimation models
Spreadsheet
Graphics/Presentations'
Word processing
Configuration control
Test case generators
Database
Defect tracking/Analysis
Reliability estimation models
Symbolic debuggers
Electronic mail
Appointment calendar
Phone/Address fi le
Complexity analyzers
Test path coverage analyzers
Test execution monitors

Totals

CceyigrtolS97tySPR AaRiffviRtmid

Lagging

750
750
500
500

500
500

250
300
100
100

4,250

Function Points)
Average

1,250
1,250
1,000
1,250

1,000
750
500
500
500
300
150

200
200

8,850

Leading
3,000
2,500
2,000
2,000
2,000
2,000
1,750
1,500
1,000
1,000

750
700
750
500
350
350
350

22,250

SWOU0L97V3

INADEQUATE DEFECT REMOVAL IS THE
LEADING CAUSE OF POOR SOFTWARE QUAUTY

• . Individual programmers are only 25% efficient in
finding bugs in their own software.

• The sum of all normal test steps is often less than
70% effective (1 of 3 bugs remains).

• Design Reviews and Code Inspections however are
often 65% effective.

• Reviews and Inspections can lower costs and
schedules by as much as 30%.

Ccp*/>fitt01997tySPR *aRiontlRMMV*** SWOUAI97U4

LESS THAN 25% OF U.S. ENTERPRISES USE
REVIEWS AND INSPECTIONS

• Most managers have no notion of defect
removal rates achieved.

• Reviews and Inspections add significant
up-front costs and time.

• Managers do not believe the significant
savings gained during integration and
testing.

• Most software professionals initially oppose
having their work reviewed.

CootnQrtOlfWt'ySPR MRtgttr.Rnmd

DEFECT REMOVAL EFFICIENCY

• Removal efficiency is the most important quality measure

Defects found
Removal efficiency =

Defects present

'Defects present" is the critical parameter

Ovy*9101997t-/Sm MRigraaR*Mrv*jd

DEFECT REMOVAL EFFICIENCY (cont.)

1 2 3 4 5 6 7 8 9 10 Defects

\5"2*J? p l r a t i o n« 6 s Second operation 2 defects d e S £ ? ^ m 1 ° fr°"» * °«" 50% efficiency or 60% efficiency \s
\ Cumulative efficiency 8 ^ ^

defects from 10 or 80%-^
efficiency

Defect removal
efficiency =

Cumulative defect
removal efficiency =

Cton9rt01997bySPR MRignaRMarM**

Percentage of defects removed by a single
level of review, inspection or test

Percentage of defects removed by a series
of reviews, inspections or tests

SttOUt97V7

RANGES OF DEFECT REMOVAL EFFICIENCY
Lowest Median Highest

Requirements review
Top-level design reviews
Detailed functional design reviews

Detailed logic design reviews
Code inspections

Unit tests
Function tests
integration tests
Site/installation tests

Cop-)"?* Otfi?7 by SPR AIRi-Ttsftt-Mrv-M-j

20%
30%
30%
35%
35%
10%
20%
25%
25%
75%

30%
40%
45%

55%
60%
25%
35%
45%
50%
95%

50%
60%
65%
75%
85%
50%
55%
60%
65%
99%

SVAUt f lN I

NORMAL DEFECT ORIGIN/DISCOVERY GAPS

Defect
Origins

Requirements Design Coding Documentation Testing Maintenance

Defect
Discovery

Requirements Design Coding Documentation Testing Maintenance

Zone o f Chaos

C<e»nQ*io1&97tySPR /JRi?*sR»u'»K'

DEFECT ORIGINS/DISCOVERY WITH INSPECTIONS

Detect
Origins

Requirements Design Coding Documentation Testing Maintenance

Defect I 11
Discovery | |

Requirements Design Coding Documentation Testing Maintenance

Comn9rt01997tvSPR MRt-mR«u(v*>t*

SOFTWARE DEFECT REMOVAL RANGES

WORST CASE RANGE

TECHNOLOGY COMBINATIONS DEFECT REMOVAL EFFICIENCY

Lowest Median Highest
1. No Design Inspections 30% 40% 50%

No Code Inspections
No Quality Assurance
No Formal Testing

Copyi0rlO1997eyS*3R A R g n R i f M d SMQ*J«l97tf1

SOFTWARE DEFECT REMOVAL RANGES (cont.) i
SINGLE TECHNOLOGY CHANGES j

TECHNOLOGY COMBINATIONS DEFECT REMOVAL EFFICIENCY

2. No design inspections
No code inspections
FORMAL QUALITY ASSURANCE
No formal testing

3. No design inspections
No code inspections
No quality assurance
FORMAL TESTING

4. No design inspections
FORMAL CODE INSPECTIONS
No quality assurance
No formal testing

5. FORMAL DESIGN INSPECTIONS
No code inspections
No quality assurance
No formal testing

Caoyi*?f01997*»ySPR MRtoTARttarvad

Lowest
32%

37%

43%

45%

Median
45%

53%

57%

60%

Highest
55% i

60%

65%

68%

SNCUAIST67

26

SOFTWARE DEFECT REMOVAL RANGES (cont.)
TWO TECHNOLOGY CHANGES

TECHNOLOGY COMBINATIONS

6. No design inspections
No code inspections
FORMAL QUALITY ASSURANCE
FORMAL TESTING

7. No design inspections
FORMAL CODE INSPECTIONS
FORMAL QUAUTY ASSURANCE
No formal testing

8. No design inspections
FORMAL CODE INSPECTIONS
No quality assurance
FORMAL TESTING

DEFECT REMOVAL EFFICIENCY

Lowest
50%

53%

55%

Median
65%

68%

70%

Highest
75%

78%

80%

G»)»V101M7bySPR MRlttSft««rv**-3 SVW3UAL9TtfJ

SOFTWARE DEFECT REMOVAL RANGES (cont.)
TWO TECHNOLOGY CHANGES (cont)

TECHNOLOGY COMBINATIONS

9. FORMAL DESIGN INSPECTIONS
No code inspections
FORMAL QUAUTY ASSURANCE
No formal testing

10. FORMAL DESIGN INSPECTIONS
No code inspections
No quality assurance
FORMAL TESTING

11. FORMAL DESIGN INSPECTIONS
FORMAL CODE INSPECTIONS
No quality assurance
No formal testing

Ccpyngtt01997byS7PR «lR*[raR«Mrv-><*

DEFECT REMOVAL EFFICIENCY

Lowest
60%

65%

70%

Median Highest
75% 85%

80%

85%

87%

90%

SVKXML9W

SOFTWARE DEFECT REMOVAL RANGES (cont.)
THREE TECHNOLOGY CHANGES

TECHNOLOGY COMBINATIONS

12. No design inspections
FORMAL CODE INSPECTIONS
FORMAL QUALITY ASSURANCE
FORMAL TESTING

13. FORMAL DESIGN INSPECTIONS
No code inspections
FORMAL QUALITY ASSURANCE
FORMAL TESTING

14. FORMAL DESIGN INSPECTIONS
FORMAL CODE INSPECTIONS
FORMAL QUALITY ASSURANCE
No formal testing

15. FORMAL DESIGN INSPECTIONS
FORMAL CODE INSPECTIONS
No quality assurance
FORMAL TESTING

CcpmirtOlMTbySPR MRiffttf-l-tMnffd

DEFECT REMOVAL EFFICIENCY
Lowest Median

76% 87%

77% 90%

83% 95%

85% 97%

Highest
93%

95%

97%

99%

SVWUAL87tf5

SOFTWARE DEFECT REMOVAL RANGES (cont.)

BEST CASE RANGE

TECHNOLOGY COMBINATIONS DEFECT REMOVAL EFFICIENCY

Lowest Median Highest
1. Formal design inspections 95% 99% 99%

Formal code inspections
Formal quality assurance
Formal testing

CtoyrtfiOW7b,SPft MRsvRwmd SWOUJU71M

DISTRIBUTION OF 1500 SOFTWARE PROJECTS BY
DEFECT REMOVAL EFFICIENCY LEVEL

Defect Removal Efficiency
Level (Percent)

>99

9599

9095

8590

8085

<80

Total

Cepy>{rC01*H7feySPR * ■ tbpaR»wr*d

Number of Projects

6

104

263

559

408

161

1,500

Percent of
Projects

0.40%

6.93%

17.53%

37.26%

27.20%

10.73%

100.00%

SWOUALS7S7

APPROXIMATE DISTRIBUTION OF TESTING METHODS
FOR U.S. SOFTWARE PROJECTS

Testing Stage

General Forms of Testina

Subroutine testing
Unit testing
System testing of full application
New function testing
Regression testing
Integration testing

Specialized Forms of Testina

Viral protection testing
Stress or capacity testing
Performance testing
Security testing
Platform testing
Year 2000 testing
Independent testing

Cce»n{t t01997bySPR M R i f l t t R * « a n r M

Percent of Projects
Utilizing Test Stage

100%
99%
95%
90%
70%
50%

45%
35%
30%
15%
5%
5%
3%

SWQUAUTtt t

29

APPROXIMATE DISTRIBUTION OF TESTING METHODS
FOR U.S. SOFTWARE PROJECTS (cont.)

Percent of Projects
Testing Stage Utilizing Test Stage

Forms of Testing Involving Users

Customer acceptance testing 35%
Field (Beta) testing 30%
Usability testing 20%
Lab testing 1%
Clean-room statistical testing 1%

Cceyiet01997brSFR M n t f a R n m d SV\QUAL97£9

AVERAGE
BYAPPUC

Class of Sottwar

End-user

MIS
Outsourcers
Commercial
Systems

Military

Average

NUMBER 0
ATIONSIZE

(Size of Applic.

1

1

2
2
3
3

4

2.50

Cep)*v10>997&ySPR AB Riffra Rtaarwrf

10

2

3
3
4
4

5

3.50

F TEST STAGES OBSERVED
■AND CLASS OF SOFTWARE

ation in

100

2

4
5
6

7

8

5.33

Function Points)

' 1K

6

7
9

11

11

8.80

10K

7
8

11
12

13

10.20

100K

8
9

12
14

16

11.80

Average

1.67

5.00
5.67
7.50
8.50

9.50

7.02

SWOUAU7V0

NUMBER OF TESTING STAGES, TESTING EFFORT,
AND DEFECT REMOVAL EFFICIENCY

Number of
Testing Stages

1 testing stage
2 testing stages
3 testing stages
4 testing stages
5 testing stages
6 testing stages*
7 testing stages
8 testing stages
9 testing stages

Percent of Effort
Devoted to Testing

10%
15%
20%
25%
30%
33%*
36%
39%
42%

Cumulative Defect
Removal Efficiency

50%
60%
70%
75%
80%
85%*
87%
90%
92%

'Note: Six test stages, 33% costs, and 85% removal efficiency are U.S. averages.

Copyi*7,Ol997t)ySPR MR^WRMOT**] SVtQU*t97ttI

NUMBER OF TESTING STAGES, TESTING EFFORT,
AND DEFECT REMOVAL EFFICIENCY (cont)

Number of
Testing Stages

10 testing stages
11 testing stages
12 testing stages
13 testing stages
14 testing stages
15 testing stages
16 testing stages
17 testing stages
18 testing stages

Percent of Effort
Devoted to Testing

45%
48%
52%
55%
58%
6 1 %
64%
67%
70%

Cumulative Defect
Removal Efficiency

94%
96%
98%
99%
99.9%
99.99%
99.999%
99.9999%
99.99999%

'Note: Six test stages, 33% costs, and 85% removal efficiency are U.S. averages.

Camng*tOt997bySPR AB R>gm R i f m d SVWQU*iS7«J

CONCLUSIONS/OBSERVATIONS ON DEFECT
REMOVAL

• No single method is adequate.

• Testing alone is insufficient

• Reviews, inspections and tests combined give high
efficiency, lowest costs and shortest schedules.

• Reviews, inspections, tests and prototypes give
. highest cumulative efficiency.

• Administrative problems need special solutions.
Ordinary defect removal is not adequate.

• Maintenance costs are cumulative, expensive and chronic.

CC0)n9TtO1997tySPR Aa R*m R«Mrv*** SVtQUAUra

Software Quality in 1997

January 9,1997

Abstract

For many years, software quality assurance lagged behind hardware quality assurance in
terms of methods, metrics, and successful results. New approaches such as Quality
Function Deployment (QFD) the ISO 9000-9004 standards, the SEI maturity levels, and
Total Quality Management (TQM) are starting to attract wide attention, and in some cases
to bring software quality levels up to a parity with manufacturing quality levels. Since
software is on the critical path for many engineered products, and for internal business
systems as well, the new approaches are starting tp affect global competition and attract
widespread international interest. It can be hypothesized that success in mastering
software quality will be a key strategy for dominating global software markets in the 21st
century.

Capers Jones, Chairman
Software Productivity Research, Inc.
1 New England Executive Park
Burlington, MA 01803-5005

Phone 617 273 0140
FAX 617 273 5176
Emailcapers@spr.com

Copyright © 1995-1997 by Capers Jones, Chairman, SPR, Inc.
All rights reserved.

mailto:Emailcapers@spr.com

INTRODUCTION

Software has become one of the most pervasive technologies of the 20th century. Within
the past 30 years, software has spread from a small number of comparatively specialized
applications to become a critical factor in almost all engineered products. Software has
also become a major factor in consumer goods, and in company operations, military
operations, and government operations. Thirty years ago, poor software quality was often
annoying, but today poor software quality can literally shut down a phone system, a
defense system, and even a company. Any reasonable prognosis makes software even
more critical in the future, and hence software quality will become more critical than
today as well.

As many countries strive to compete in the international software market place, quality is
now a major topic for both software vendors and for outsource contractors. Any country
or company that wants to achieve a major place in world software markets must achieve
and maintain high software quality levels.

Barriers to Software Quality Exploration

Progress in all forms of engineering is heavily dependent upon accurate measurement and
precise metrics. Software achieved notoriety as being the worst measured engineering
discipline of all time. The main barrier to software quality control in the 1950's, 60's, and
70's was a simple lack of good quantitative data about software quality levels, reliability,
defect removal efficiency and other basic quality data. This lack of data was not because
software managers and professionals did not care about quality, but because there were no
effective metrics prior to 1979 that could actually be used to measure software quality.

Historically, software quality was measured crudely in terms of "defects found per 1000
source code statements" (normally abbreviated to KLOC). Unfortunately, that metric
contained a built-in paradox which caused it to give erroneous results when used with
newer and more powerful programming languages, such as Ada, object-oriented
languages, or program generators. The results were so poor that several leading
companies stopped trying to measure software, and lagging companies never started.

Li 1979, A.J. Albrecht of IBM published a new metric for measuring both software
quality and productivity, which he termed "Function Points." A Function Point is a
synthetic metric derived from five visible external characteristics of software
applications: 1) Inputs; 2) Outputs; 3) Inquiries; 4) Logical files; 5) Interfaces.

Function Points are completely divorced from lines of source code. In a sense, Function
Points are like European Currency Units (ECU), which are synthetic metrics that allow
rational economic and financial studies across multiple national currencies. Function
Points allow rational quality and productivity studies across the 400 or so programming
languages that have come into being.

2

In 1986, Function Point users formed a non-profit association, the International Function
Point Users Group, or IFPUG. This organization and its affiliates now have over 500
corporations and government agencies as members in the United States, Canada, Europe,
South America, and the Pacific Rim and membership is growing by more than 45% per
year.

It is an interesting business phenomenon that measurement of software quality and
productivity is now among the most rapidly growing technologies in the entire history of
software.

One of the advantages of the Function Point metric is that it can be used to predict and
measure all sources of software errors, and not just coding errors. Based on a study of
more than 6700 software projects published in the book Applied Software Measurement
(McGraw-Hill, 1996), the average number of software errors is about five per function
point, apportioned across the following major defect origins. However, the "best in
class" software organizations are achieving defect potentials of roughly half the total of
"average" groups as shown in Table 1:

Table 1: U.S. Averages and "Best in Class" Defects per Function Point

Defect Origins Average Defects Best in Class Difference
per Function Point Defects per

Function Point

Requirements
Design
Coding
Document
Bad Fixes

Total

1.00
1.25
1.75
0.60
0.40
5.00

0.40
0.60
1.00
0.40
0.10
2.50

0.60
0.65
0.75
0.20
0.30

2.50

These numbers represent the total numbers of defects that are found and measured from
early software requirements throughout the remainder of the lifecycle of the software.

Complementing the Function Point metric are measurements of defect removal
efficiency, or the percentages of software defects removed prior to delivery of the
software to clients. The U.S. average for defect removal efficiency, unfortunately, is
currently only about 85% although the best projects in leading companies such as
Motorola, Raytheon, IBM, and Hewlett Packard achieve defect removal efficiency levels
well in excess of 99%.

All software defects are not equally easy to remove. Requirements errors, design
problems, and "bad fixes" tend to be the most difficult. Thus, on the day when software
is actually put into production, the average quantity of latent errors or defects tends to be
about 0.75 per Function Point, with the following distribution as shown in Table 2:

3

Table 2: U.S. Averages for Defect Potentials and Removal Efficiency Levels

Defect Origins

Requirements
Design
Coding
Document
Bad Fixes

Defect
Potentials

1.00
1.25
1.75
0.60
0.40

Removal
Efficiency

77%
85% .
95%
80%
70%

Delivered
Defects

0.23
0.19
0.09
0.12
0.12

Total 5.00 85% 0.75

The best companies are using state-of-the art methods to lower their defect potentials, and
coupling that with state-of-the-art methods for removing defects with high efficiency in
excess of 95%. The results can be quite impressive.

COMPARING U.S. QUALITY DATA WITH INTERNATIONAL DATA

The author's company, Software Productivity Research, collects data on both productivity
and quality in more than 20 countries. Although that may sound like quite a lot, it is still
only a small and partial step toward a true global survey of software quality.

From the data collected, provisional averages on international quality levels were
published in 1993 in the author's book, Software Productivity and Quality Today — The
Worldwide Perspective (Information Systems Management Group, Carlsbad, CA).
Following are excerpts from some of the preliminary global findings, with some data
revised during 1995 and 1996:

Table 3: International Comparisons of Defect Potentials and Defect Removal

Country

Japan
Canada
United States
Norway
Sweden
France
Italy
India

Defect Potential
per Function
Point

4.50
4.55
5.00
4.95
5.00
4.75
4.85
5.10

Defect Removal
Efficiency
Levels

93%
86%
85%
84%
84%
83%
83%
84%

Delivered Defects
per Function
Point

0.32
0.64
0.75
0.79
0.80
0.82
0.82
0.82

4

Germany
England
South Korea
Russia

4.95
4.85
5.20
5.50

83%
82%
83%
80%

0.84
0.87
0.88
1.10

The margin of error of this data is very high, except for the United States, and the
information is presented primarily to generate discussion about the two key topics of
defect potentials and defect removal efficiency levels.

Within every country where the author and his colleagues have collected data, the ranges
of defect potentials and removal efficiencies are very broad. Some companies are
achieving potentials of less than 2 defects per function point and eliminating more than
95%, while other companies have defect potentials approaching 10 per function point and
eliminate barely 75%.

Although for every country, the range of performance is quite broad some six industries
stand out internationally as achieving the best overall software quality levels:

Industries With Best Software Quality Results

1. Computer manufacturers
2. Telecommunication equipment manufacturers
3. Defense and weapons system manufacturers
4. Aerospace manufacturers
5. Medical equipment manufacturers
6. Commercial software manufacturers

Companies within these six industries typically average more that 95% in cumulative
defect removal efficiency, which places them well above the norms of the 40 industries
for which SPR has collected quality data.

Four characteristics set these industries apart from industries with less effective quality
control approaches: 1) Usage of formal design and code inspections; 2) Usage of formal
and active quality assurance functions; 3) Usage of trained testing specialists and formal
testing departments; 4) Usage of a powerful suite of defect estimation, defect tracking,
and other quality control tools.

A common characteristic of these industries in every country is that much of their
software controls physical devices such as computers, switching systems, weapons
systems, aircraft, and the like. The single exception is that of the commercial software
vendors, and in this industry it has been learned by trial and error that poor quality loses
business.

5

TOOLS AND METHODS USED BY BEST IN CLASS QUALITY PRODUCERS

There are major variances from company to company and country to country in the sets of
tools and methodologies used to approach software quality. However, the best in class
organizations have a common nucleus which includes these factors:

Qualify Measurements

The most striking difference between leading organizations and lagging ones in every
country is that, without exception, the leaders know their quality levels and user
satisfaction levels because they measure these factors very carefully.

The quality measurements in leading companies vary slightly, but usually include these
elements: 1) Software defect volumes are measured from requirements or design
throughout the rest of the development cycle and into the field; 2) Defect severity levels
are measured, ranging from serious through minor; 3) Defect origins are measured, so
that problems with requirements, design, code, documents, and secondary problems are
known.

This software quality data is collected on a daily basis, and then summarized at monthly,
quarterly, and annual intervals to show trends over time. In addition, the leaders also
measure user satisfaction, although the frequency of user surveys is normally once or
twice a year.

Quality Methods

The leading companies did not become good overnight. Most of them have been engaged
in software quality control work for 20 years or more. Therefore the leading companies
have developed a set of proven methods that are known to work. These methods are
sometimes defined under two headings, defect prevention and defect removal. Here are
some examples: 1) Formal inspections of design, code, and other deliverables are used
by essentially all software quality leaders since these activities are highly effective in both
preventing and removing software defects; 2) Active and energetic software quality
assurance groups, which may exceed 5% of total staff, are often found in the industry
leaders.

A very interesting correlation is that in every country the best in class quality producers
tend to utilize formal inspections of design, code, and other deliverables. Formal
inspections are one of the few kinds of defect removal operation to exceed 60% in defect
removal efficiency, and on average are about twice as efficient as any common form of
testing. (High-volume external Beta testing by more than 1000 clients simultaneously is
the only form of testing that is more efficient in defect removal than inspections.)

Both industry leaders and laggards test their software. The most striking difference
between leaders and laggards is what the leaders do before testing begins. By means of

6

defect prevention approaches such as Joint Application Design (JAD), Quality Function
Deployment (QFD), formal inspections, and various flavors of structured analysis and
design, the leaders usually have far fewer problems attributable to the front of their
software development life cycles. Therefore when testing begins, the code developed by
the leaders is substantially free from serious problems long before testing even starts.
This translates into quicker testing cycles and fewer delays of final delivery.

Two important topics do not yet have any strong empirical correlations with software
quality results: ISO 9000-9004 certification and the SEI capability maturity levels.
Although the ISO standards are aimed at quality, they have not yet created any significant
results within the software industry.

Indeed, as this report is being drafted a world wide web conference is on-going, hosted by
John Seddon of the United Kingdom, to discuss whether or not ISO certification degrades
quality rather than enhances it. In late 1996 a British "watch dog" government agency
directed the British Standards Institute to stop making claims that ISO certification
improved productivity or quality without empirical evidence to support the claims.

The SEI maturity level concept is also surprisingly ambiguous in terms of quality. There
is a lot of overlap among the various SEI levels, and a surprising observation is that the
worst software that is created by SEI level 3 organizations in terms of quality can lag the
best software created by level 1 organizations.

However, some recent studies within the past two years do indicate an overall
improvement in quality as SEI levels climb upward from level 1 to 3, 4, and 5.
Unfortunately, the total number of samples is too small for statistical certainty.

Following are the current ranges of software defect potentials and removal efficiency
levels observed from among client organizations that have utilized the SEI CMM:

Level 1 Quality: The software defect potentials noted from several hundred projects in
Level 1 organizations run from about 3 to more than 15 defects per function point but
average about 5.0 defects per function point. Defect removal efficiency runs from less
than 70% to more than 95% but only averages about 85%. Thus the average number of
delivered defects for Level 1 organizations is about 0.75 defects per function point.

Level 2 Quality: The software defect potentials noted from about 50 projects in Level 2
organizations run from about 3 to more than 12 defects per function point but average
about 4.8 defects per function point. Defect removal efficiency runs from less than 70%
to more than 96% but averages about 87%. Thus the average number of delivered defects
for Level 2 organizations is about 0.6 defects per function point

Level 3 Quality: The software defect potentials noted from about 30 projects in Level 3
organizations run from about 2.5 to more than 9 defects per function point but average
about 4.3 defects per function point. Defect removal efficiency runs from less than 75%

7

to more than 97% but averages about 89%. Thus the average number of delivered defects
for Level 3 organizations is about 0.47 defects per function point.

Level 4 Quality: The software defect potentials noted from 9 projects in Level 4
organizations run from about 2.3 to more than 6 defects per function point but average
about 3.8 defects per function point. Defect removal efficiency runs from less than 80%
to more than 99% but averages about 94%. Thus the average number of delivered defects
for Level 4 organizations is about 0.2 defects per function point

Level 5 Quality: The software defect potentials noted from 4 projects in a Level 5
organization ran from about 2 to 5 defects per function point but currently seem to
average 3.5 defects per function point Defect removal efficiency ran from less than 90%
to more than 99% but averaged about 97%. Thus the average number of delivered defects
for a Level 5 organization is about 0.1 defects per function point although there is
obviously an insufficient sample at this level.

To illustrate the overlap of quality among the five levels of the SEI CMM, the following
table shows our minimum, average, and maximum numbers of delivered defects per
function point for each of the five CMM levels. Note that the best results from Level 1
are actually better than the worst results from Levels 3 and 4, even though the average
results improve as the CMM ladder is climbed.

Table 4: Software Delivered Defects at Each Level of the SEI CMM

(Defects expressed in terms of defects per function point)

Minimum Average Maximum

SEI Level 1
SEI Level 2
SEI Level 3
SEI Level 4
S B Level 5

0.150
0.120
0.075
0.023
0.002

0.750
0.624
0.473
0.228
0.105

4.500
3.600
2.250
1.200
0.500

Although samples are small for the higher levels, there is now evidence from studies such
as the ones carried out by Software Productivity Research (SPR) in 1994 which indicate
that when organizations do.move from CMM level 1 up to the higher levels their
productivity and quality levels tend to improve, although there is quite a bit of overlap
among the five CMM stages.

Quality Tools

What is easily the most visible difference between industry quality leaders and quality
laggards is the set of tools available to the leaders, and totally absent from the lagging
organizations. The leaders usually employ a set of quality tools that include some or all
of the following: 1) Quality estimation predictive tools; 2) Defect and quality
measurement tools; 3) Test planning tools; 4) Test coverage analysis tools; 5) Software

8

reliability predictive models; 6) Complexity analysis tools; 7) Statistical analysis and
reporting tools.

These tools have the general characteristic of putting quality in tangible, quantitative
terms so that the underlying root causes can be explored and improved. The laggards
tend to have no quantitative data, and hence are unable to take any kind of carefully
planned corrective actions.

Since each of the quality tools cited in this section is roughly 1000 function points in size,
it can be asserted that the leading quality assurance groups have in the range of 6000 to
8000 function points of quality-related tools available. By contrast, laggards with
marginal quality levels often have less than 500 function points of quality-related tools, or
even none at all.

Quality Culture

A final aspect which separates the laggards from the leaders is the culture of quality
among the leaders, and its absence among the laggards. The word "culture" does not have
a very precise definition, so in this context the meaning is the following: when visiting
the industry leaders, almost everyone you talk to cares about quality and many of them
also know something about it. When visiting the laggards, you tend to find some people
who care about quality of course, and a few people who know how it might be achieved,
but these quality-conscious people often feel isolated and even angry that their executives
have no particular interest in the subject". There is no substitute for executive awareness
of the importance of quality. When you meet an executive vice president or a CEO that
can carry on a serious conversation about software quality, you can be fairly sure that the
company is a pretty good one. When you visit a company where the executives know
nothing of quality and give the appearance of not caring either, you can be fairly sure that
the company will have some tough times ahead.

SUMMARY AND CONCLUSIONS

Now that the dimensions of software quality can be measured, it is obvious that there are
two powerful sets of technologies which must both be deployed in order to be successful
with software: 1) Defect prevention methods; 2) Enhanced defect removal methods.

The set of defect prevention methods includes all technologies which can simplify
complexity, and minimize the tendency to make errors. Examples of software defect
prevention methods include Joint Application Design (JAD), prototyping, structured
methods, clean-room development Information Engineering (IE), Object-Oriented
methods (OO), Quality Function Deployment (QFD), and of course software quality
measurement programs. Synergistic combinations of defect prevention methods can
reduce defect potentials by more than 50% across the board, with the most notable
improvements being in some of the most difficult problems, such as requirements errors.

9

The set of defect removal methods include structured walkthroughs, formal inspections,
audits, independent verification and validation, and many forms of testing. Accurate
measurement of defect removal efficiency has revealed some surprising findings. One
surprise is that most forms of testing are less than 30% efficient in actually finding
software problems, due in part to the fact that test cases are almost worthless for finding
requirements errors, and not terribly effective in finding design errors. Against front-end
requirements and design defects, formal inspections often achieve more than 60% defect
removal efficiency rates.

The "best in class" software producers now have defect potentials of less than 2.0 errors
per Function Point, coupled with defect removal efficiencies that hover around 99% and
may exceed it for mission-critical software. This combination yields delivered defect
totals of only 0.02 defects per Function Point, or more than an order of magnitude better
than U.S. norms and provisional international norms as well.

It can be hypothesized that international competition in the software domain will intensify
as we move to the end of the 20th century. Since high levels of software quality are
associated with high market shares, quality control is now a major topic of global
competitiveness.

10

Session Al: Software Management

Chair Don Schilling
AS/FM&T

Session:
Paper #

Al:l

Al:2

Al:3

Author(s)

Rodema Ashby
Sandia National Laboratories
David Harris
Sandia National Laboratories
Joe Schofield
Sandia National Laboratories

Title

The Right Rock: Finding/Refining
Customer Expectations
TCAMS Lessons Learned

The Next Silver Bullet - Or Just
Another Shot in the Foot?

The Right Rock:

Finding & Refining Customer
Expectations

Finding: Organization Chart Review
Customer Interviews
Customer Desires Matrix

Refining: Quality Functional Deployment
Child Design Matrix
Requirements Document
Acceptance Test Document
Create the User Manual
Rapidly Prototype if Configurable
Incrementally Build if Custom Dev.

Rodema Ashby, 844-2087, mrashby@sandia.gov
3aodagt*ajfcJtJi*tfa*jifabontoyq)tmtdby
SandiaCopcnrjaia Inr i f tmiIr lar tnCmfaaf.
fcrtbcVai£4Sti*esDtyMtiamtG*&BxrvnitT
CoXnclD&ACCM-'MAL-BOOO.

Can't Tell the Players Without
a Scorecard

» Who is the Customer?
» The person using the system?
» Your Manager? Other's Managers?
» The person who paid for the development?
» A Sandia Initiative Director?

» A Stakeholder is anyone who will assess &
affect the project success
» You don't get to pick, & ignorance is not bliss

mailto:mrashby@sandia.gov

Goal: Figure out the Politics,
as best you can

Draw an organizational chart, with everyone
involved in the project.
If there are other companies involved you
need to chart.that organizations) players also.
Review and assess the Players:
» Who is powerful.listened to, gets their way?
» Who could ruin your career?
» Who has money and interest?
» Who wants the Project to Succeed?
» Who wants their pet technology used...

Organizational Chart Example

Top oTree
Boss of Org. 160 & 180

One Manager
Org. 160

B.Fast
Org. 168

Bea Worker j 0. Plebian

SEckTaBcman i
Org. 181

Patricia Guru j

I Manny Two
Org. 180

Mark Time

I
D.Warbucks

Org. 182
j Berry Smart
j Org. 183

Junior Achiever I Worker Bee

Stakeholder Interviews: Open-
Ended Questions

• Listen, Take Notes, Don't Argue or Sell:
Listen, and ask questions just for more
information, clarification

• Encourage Daydreaming:
» What would a perfect solution look like?
» What is really desired? (not how, what)
» How would this make things better?
» If appropriate, show similar systems,

demos, etc.

Stakeholder Interviews:
Scoping the Problem

• Start to get a Feel for Metrics:
» How can I convince you the project has

delivered?
• What's the Bottom Line:
• » What would you settle for?

» What's most important?

Creating Order out of Chaos:
Matrix of Customer Desires

• Brainstorm with customer group if available
• If there are customers with very different

needs, create a list of desires for each
customer from your interview notes

• Create a Customer's desires matrix, noting
who cares most about what

Document Customer Desires
as Measurable Objectives

> Example: Instead of "User Friendly":
»"Novice can use the system to do x after 30

minutes of training"
»"Users with more than 1 hour's experience

make less than 1 error perl 2 major
operations as described in the Acceptance
Test

u

Find Common Priorities &
Plan Strategy

• Review Complete Customer Desires Matrix
with all the Customers: Find Overlaps
» Ask for rank order requests

• Quality Functional Deployment (QFD): How
will we deliver?
» What's technically possible: what will it cost?
» Where's the biggest payoff/risk?
» Create cost/options estimates for approaches
» Determine our presentation/proposal plan

Negotiate Deliverables

• Review the options with the customer,
along with the measures that will be
used to prove success
» Make it clear how much some different

options may cost:
» anything can be done if there is enough

time and money
• Create the Requirements Document

5

Write the Acceptance Test
Before Development Starts

• Write the Requirements Document
• Write out the Acceptance Test criteria for

each requirement:
»this defines exactly how the requirements will be

measured
• Review & Renegotiate the Requirements and

the AcceptanceTest Doc. with the Customer
• Create a Detailed System Test in the general

design phase as implementation details arise

The User Interface is
Defined/Refined during Proposal

• Prototype and review the initial user
interface quickly (Reusable code?) .

• Use the people who will actually be using
the system for the user testing:
» They become champions for it's acceptance
» They know their jobs, and how it will be used

• Complete the User Manual before coding
the User Interface: It's the Requirements
Document & Acceptance Test for the Ul

Rapidly Prototype the whole
system if possible

• Reusing a configurable system increases
robustness and cuts development time

• Demonstrate and Modify System as
Requirements are renegotiated

• If New Development, Build Incrementally
• Structure the Project with Many

Milestones: coordinate incremental
changes to deliver new functionality

Summary: Listen, Document,
Review, Update

• Find out who the customers really are:
Organization Chart Review

• Find out what the customers want:
Customer Interviews

• Figure out what the project needs to deliver:
Customer Desires

• Figure out how the project will deliver:
QFD, Proj. Plan, Child Design Matrix .

• Document how we'll know we delivered:
Acceptance Test, User Interface Manual &
Milestone Reviews as the Project is Implemented

1997 Software Quality Forum
David L. Harris, 6544

Santa Cop-mM^a LetWi*w»ltotaCm-f-trtj
fat t*X)cet*-t 3MJK D^*m*e*r£M-£r u t e
Ca**dD£-ACO4*MAL»C0a

*» CMAH Overview
TCAMS Overview
Software Cost Reduction Via Reuse
Managing Risks Via Assessment and
Mitigation
Conclusion

• Provides backup command, control, communication,
and intelligence capability to the Commander in Chief

>. Tech control is the facility that provides
communication for the CMAH battlestaff

• TCAMS automatically controls and monitors
the communication assets within tech control
- Collects and displays alarms
- Manages communication circuits
- Controls devices (cryptos, radios, PBXs, etc.)
- Maintains the tech control logs

1,000,000 Lines of source code
250 Objects
3,000 Source files
8,000 Library units
135 Screens
125 Database tables
1,000 Devices

1,000,000 LOC /10 FTE / 5 Years = 20,000
LOC per FTE per year (100 LOC per day for 5
years)

We could not afford to
manually produce all of
the required code; we
had to become more
efficient
Adequate COTS was not
available

$*£ ^ "^£&£ *■*■ ^

§v>» Design decisions are made once, embodied l
:

within the metafiles, templates, & object
generator rules, and reused for each object
Source code templates are written once and
reused for each object
A translation (Shlaer/Mellor) vs elaboration
(Rumbaugh) OOD approach was essential
in achieving the large per cent of reuse

Reuse and automatic code generation reduced the
number of lines of manually written code, thus
reducing cost
Greater than a 90% reduction
was achieved in some SW
components
The selection of a translation
OOD approach supported
this cost reduction

TCAMS Wrong Decisions
Technology
-Database
- Ada Compiler
-GUI Builder
- Real-time OS
-HW Platform
-CASE Tool
- Device Control
- Security

Initial Decision
Oracle
Meridian
Builder Accessory
P-DOS
DEC 3000
Cadre
Spaghetti

Final Decision
Ingres
Alsys
X-Designer
VxWorks
DEC 5000/260
None
Automated
Redesign

i V S i ^

Uncertainty and risk due to the lack of
adequate knowledge
- Try a technology to find out its characteristics
- Lowest bid wasn't the lowest cost
- Newer technology became available
- Planned hardware upgrades
- Changes in customer requirements

Each of these initial technical decisions was
based on sound engineering analysis
Things just didn't turn out as expected
This is exactly what
happens in all large
software projects

• There is risk in every technical decision and -;
you must manage these risks

• Risk Assessment
- Early detection and acceptance of failures
- These were wrong decisions not bad decisions

•- • Risk Mitigation
* * - Don't pretend that you know something that

you don't

Project success was not due to any particular
engineering technology, it wasn't OO, it wasn't
Ada, it wasn't SQL, it wasn't any of the above

It was due to an ability to deal with uncertainty
and to manage the technical risks involved in
developing a large software system

(Or
The Next Silver Bullet

Just Another Shot in the Foot?)

Joseph R_ Schofield, Jr.,

Sandia National Laboratories

W»>Mfc»M»»a>crt*^bytft»tJi*TrfS*jta«r^lrt*ii*rt*rf The
** ccffi-Hed varaion of Hit m atari*. H evjltbt- ttrnxxjh A p r ^ f ^ p u t ^ Raaaarch. he. (602) 885-5828.

JkUrm&igSyXem Oevek4Jtimz*dkiTm 15. nuenby ft.

1997 Software Quality Faun 1
Joat^ 11 Sc*-rfd4 fc Sarafa KMiortal U *

jradKrrgtanrX&for

The productivity associated with the introduction of new
technology can be depicted in four simple stages

p
r
o
d
t i
c
t
i
V
1
t
y

t i m e

1997 Software Qoa&jr Tenia 2
Jo.tphR.S<iof«ii.>.S«i*Si National Laba

jciobofrdaaDdiajov

f

/

maturings

Retaining the three "growth" stages and adopting a second technology
provides the necessary ingredients for initial productivity loss!

p
r
o
d
u
c
t
i
V
i
t
y

cf j

I 1 c / /
h 1

I V
V '■/

y '■£/

t i m e

The phrase "one step forward, two steps back" is illustrated.
1997 Softwve Quality Fonxn 3

Joseph R. SdJofidd. Jr. S»£s NMiouI Ut»
jnehcf@an£igor

Adding a third "technology venture" and elapsed time indicators
recognizes the desire to do "more faster"!

"Discontinuous Process Improvement" or "Continuous Process
Disimprovement" using Technology

1997 Software Quality Fcnsn 4
tacefeR. ScboTi^*. Stiofe National Laba

jFtchovQnnrn soa

2

The quest for productivity has demonstrable ups and downs.

We're bleeding now - but expected productivity leaps lag still.
1997 Software Quality Fbnan 5

Jona* R. SoVaficU. Jr. SaoaaNatioaal Labi
jrichofQT*n*Sa^qr

What's it all mean?

Options include

Will be described in the session!
1997 Software Qualify Fdnaii 6

Jca*rhllSo,»fid4*..SandaN«x<iinaha
jndiof@zaD<£a£ov

3

Session Bl: Software Testing

Chair Larry Rodin
Pantex Plant

Session:
Paper #

Bl:l

Bl:2

Bl:3

Author(s)

Debra Sparkman
Lawrence Livermore National Laboratory
Nancy Storch
Lawrence Livermore National Laboratory
Dwayne Knirk
Sandia National Laboratories

Title

A Working Testing Process

Testing the Design and Operations
of a New Badging System
Establishing a Three-Way
Agreement: Specification, Code, Test

A
1997 Software Quality Forum

rgus

A Working Testing Process

Debra Sparkman
Lawrence Livermore National Laboratory

April 1997
This work was perftmned under the US Department of Energy by Lawrence Livemiore National Laboratory

under Contract No. W-7*W5-Eng-48.

m Lawrence Livermore National Laboratory

Argus Overview tfgus
Q Automated Security System

Q Intrusion Detection

□ Access Control

Q Dispatch Center

JLlawrence Livermore National Laboratory I

Argus Overview A rgus

CENTRAL ALARM STATION
SobHoct

fctncctnputar
SECONDARY ALARM STATION

(ijU-Lawrence Livermore National Laboratory

Developer Testing A rgus
Q Unit/Package Testing

Q Ada test packages for shared modules

□ Integration & System
Q Performed on development system using "mock" utilities

rgus Af
Independent System Testing A
□ Conducted on separate system

Q Based upon configuration of all customer sites
Q Physical equipment in most cases
Q Flexibility to configure system to allow parallel testing for

different sites

Q Focus on regression testing and new maj'or feature
testing
Q manual testing
□ repeatable

HE Lawrence Livermore National Laboratory

Independent System Testing cont. J\.
□ Test planning based on priorities

□ Time.allows, perform special feature and defect
correction testing

Q Test anomalies tracked and reviewed by Test
Leader

O Test summary

Q Maj'or coordination efforts, frequent meetings with
development staff

□. Metrics collection of cumulative failure profile.

I ^Lawrence Livermore National Laboratory

Testing Process Tools j \

Q Test procedures priority & pass/fail log

Q Test incident report

Q Test sequence log

I (^-Lawrence Livermore National Laboratory

Argus
Test Procedure Priority & Pass/Fail LoJ\
Q Excel spreadsheet

Q Testers input data during testing
Q start & stop times .
Q pass or fail status
Q Initials
Q comments

Q Automatically calculated fields
Q duration

Q Status reporting
Q testing completed
Q testing to be completed

till

fill

£J3

SAS

m

Excel Spreadsheet ^ M J

> a
1 1
y i

ltd fiiain I2e

teSJScstitiUI
cafcTiEisstik

ftiit;iCroCit;tiB&
sbalBjifalrkSio;
SitfeKSt

aSijiJEkaaijiiEa
&&SXL

Hhaki

fetfe

■fSlfe

■aafe

Id

1

1

1

1

Hfoi
(BSflf

7:H

a

a

a

i i
•

Hi

\tm

mm

Slirl

US

its

Eti

liS

mi

0*.

m

;;

i

«

bid

6J7

!!

I

«

(In)

532

!1

5

15

F

I

I

f u n

i

1

J

?

S?

idisEabi

I (]L.Lawrence Livermore National Laboratory

Testing Process Tools A rgus

□ Test procedures priority & pass/fail log

□ Test incident report

Q Test sequence log

(U^rLawrence Livermore Nat ional Labora to ry I 10

Test Incident Report j)[gUS

Q FileMaker Pro Application

□ Real-time defect reporting

Q All defects are collected
Q Software
□ Hardware
Q Test Process (tester error, test procedure defects)
□ Test Configuration (test system specific data)

I ([^Lawrence Livermore National Laboratory I

Test Incident Report cont. ^
□ Two Impact Categorizations

□ Testing impact
Q Release impact

□ Status & Approval Signatures
Q Assigned to
Q Resolved by
□ Retested by
□ Approved by

N|L*Lawrence Livermore National Laboratory I

rgus

12

Test Incident Tracking System A rgus
T a r t Znddao l TncSclngSyatam.

7*rt2w*l*4am Bl. 19487
ZMtSKtK 12/18/96

3S£j r AFP 2.2A HYBRID
AFPTC8TP6TP9,TP11

I*rt fcW.ii.Ua ttyt Sp*r3tm*.n,

Software
R»*p*—.t<U.l»i

R e p e a t a b l e
acjLHutxr pQivcvCy)

O y tim l » i f t l * lAunt«m«nc« *c<*unt (S U P T Z S T) P*utMtt««t*n&Ua>natlKfttu«mUk<i*»«cv>i*TTt*4«aAd
o«n£ic«3*dl«rMlf>t«>t*n t h * Hybx id . It«J**t »*«nt«vr«AMtth«ArP.StmtMncOTifiptktiOT.iftt«n*Kt*ndvv«,j
ch*Qt^l*Jiiij»*Ji.w>4I^*WM^^5^m.^Ji»t>ta\&»rtf 2 0 * T ^ 2 3

TMtvtf&nyact Hinn
C M i ^ a m t i M M M i ^ * ^ 4 M t t t H ! t i x w . t a i w ^ .

I U I M M Impor t K«**l« Ti« &«!•>• JUl*i

tn/07/f7 i»i>»«Lul.»* **•*»•» paclwJ**! £» ATP 2.3b. N**4Li tet* »«l«*t»at la*
Z2Tl*/K-*v*f>^I^<^t-*lU,*~ll'i-rt-^m*'r^<A*M
aWI^^mtk««H^v«*«w^A77,«nMtaUluly'An>2J3b.lu.

Ed
JUtaMV?; S t w c

aftpynwftky: Dobrm

CocUUo

W o n g

X**: 12/39/96

DMI: 1/8/97
I*%: 1/10/97

""Jtlnd_
"■Naa»_

" P r f n l _
""KIafcw
""Qui t_

({L,Lawrence Livermore National Laboratory I 13

Testing Process Tools M US

□ Test procedures priority & pass/fail log

Q Test incident report

Q Test sequence log

I ^Lawrence Livermore National Laboratory I 14

http://-fcW.ii.Ua

Test Sequence Log AP r°us

□ Provides a sequence of activities

□ Global viewpoint of product testing

Q Logs software products version & date identifiers

(jL^Lawrence Livermore National Laboratory I 15

Test Sequence Log A rgus

Date andTlma

961213. 1445
9G1213. 15:15

961213. 15:15

961213. 1 5 2 0
961213. 16*25
961216. 0750
961216. 0800
961216. 12:10
961216. 1 4 2 0
961216. 16:15

961216. 1620

Teat Procedure
i d

Teat Sy at em
Software
Configuration

Teat bax/aeneor
rack wlr ino

Comments

Seqan preparation lor testina
1. AFP2.2a. 4Dec. 16:1732, checksum 26e5 (ArP_ES3) (Master AFP)
2. AFP2.1b. 30 CM. 22:43. checkaum 0cb9 (oulboard_«lawe) (oulbcerdAFP)
3. AFP 2.2a. 4 Doc96. 16:17:46. checksum c9cd (Hybrid)
i . Argus VAXTools 6.4 (4 Doe. 1236)
>. Argus Teds 6.6. 10dec1996 1000
5. SI LASS* 3 Host 4.6. ISNov. 18:31
7. Freeway 1.1.27Aug. 1058
3. CAIN 19.07 ducd12oec1996. 17:19.
).Con*tde2.0b. 11Nov. 1629
10. MPC3.04. 4 Deo1996, 1136
I I.SILAS Host 19.7. 21Nov. 0 8 2 9
I2.CMU2.9. 11Sop. 11:34
13. CCTVServer 1.7. 21Dec1995. 1552
14. Phonebook Server 1 3 . 22Dec, 10:13
IS.TIme Cede 1.2. 22 Dt»199S. 0839
I6.VMU1 4. 13FA. 1049
real box/sensor rack wiring: { (Hybr id aensor rack). (AFP. Fsheaor Wslcyctcsl box). (FTU
3luoil tent bar)) .
Wrecked system functionality.
Suspeneadteaxinopreoaration tor thedav
fesumed preparation tor testina
3eoan testina
Suspended testina
^esumedtestina
*4eed to review results of tests with Ridt and Br ucebel or cooler mining if several Fiofease
Motes tests pss&eoY failed
Sussenebdtestinofor thedsv.

E Lawrence Livermore National Laboratory 16

Test Summary Report

□ Overview of defects found

□ Outstanding defects

Q Test procedures executed

A rgus

Q Provides evaluation of product test
Q pass/fail of product

HE Lawrence Livermore National Laboratory 17

Summary A rgus

G Manual process

Q Repeatable

Q Process tools
□ Defect tracking

Q Report Summary

(JLrLawrence Livermore National Laboratory 18

Resting the Design and Operations
%fa New Badging System

Nancy A Storch
SE/SQA Group

Lawrence Livermore National Laboratory

The 1997 Software Quality Forum, April 13,1997

u

'?%?%*fl*f\
■'<■ ■•■;%

-pOE mandated that LLNL be rebadged
with the Standard DOE Badge

I,. :«<ttar»«rt<<.<.Y<<w...y.y.v:v<»OTr.v<W^

• Safeguards & Security decided to replace the
existing clearance & badging system because
of outdated hardware and software.

• The project decided to produce the badges
with a video imaging system.

• There had to be new badge readers and
revisions to the Access Control System.

n

t*\ $ t^yj'.'!'

rlkere were many stakeholders in the
derail effort

• Badge Office (BO) & operations
• Central Clearance (CC) operations
• Security Information System developers

supporting BO & CC (reengineered system)
• Video Imaging and Badge Making System

(new system)
• Access Control System (new release)
• Rebadging Project Leader

u

'(^iffhe systems were being developed
QjAdependently
'"■x/':&<ii.«i&*i^^
" &*& . <$*\
t&vm^xsm 9 There was limited communication between

the work groups
• The Rebadging Project Leader needed vision

of how all the systems would work together &
assurance that his time table could be met

• Customers & users didn't understand all the
changes taking place

• We wanted to save time & $ by early testing:
—integration of the systems
—usability of individual systems
—operational flow

• We wanted to f ind the best configuration to
streamline the rebadging process [■

^MWe decided to test the design and
>P^%gerations in a full-scale mock exercise

• We brought all of the systems together in a
probable area to be used for rebadging

• We brought all necessary parties together:
developers/managers from each system,
operations & maintenance personnel,
rebadging Project Leader, users played by
operations personnel, observers

• 22 people participated in 3 half-day sessions

u

'■$he 3 systems were in different
Mages of development

\tKiUAtAKiMV<£ttiL£lltMeMU4*e& tJt<Atei*u£.-.-,*M&t,M*rle,ilt>t't,

• The Security Information System was mocked
with paper prototypes of screens as it was in
early design of the UI

• The Video Imaging and Badge Making System
had a running software prototype

• The Access Control System was a pre-release
of an update for a production system

u

r $he mock exercise was performed
{^ing typical rebadging scenarios

■yWsNil • Details of the scenarios were prepared
beforehand

—customer profiles
—messages and data communication between systems
—realistic artifacts were used for existing & new badges

• Operational variations with 2 or 3 station
stops/customer were evaluated. Steps incl:

—presentation & validation of old badge
—request to print new badge
—take photo of person
—pickup the printed photo
—turn in the old badge
—enroll & encode the new badge
—issue the new badge U

Y~ '

 tMarticipants were coached in their
%^ji&les and expectations

^^'&i^^^y^^*&•K'^ft7^^>^v^fr^rt*^l^^^^^ffr^wry™

§L5S?»..wssl5

• Users were taught how to use the new
systems' hardware/software

• Customers were given profiles and mock
badges

• Developers/observers were standing by their
systems

• Manager/observers floated with note pads
and stop watches

• Independent trained observers were
positioned in key areas

u

gaming from each session was
(applied the next day

'^--•^•M-K-tt-M-t^^

• Each session started in the lounge area with
an explanation of the scenarios we would be
testing. Roles were assigned.

• After scenarios, we gathered again and
collected observations, recorded metrics and
did some analysis.

• A facilitator compiled lists of issues,
problems, and action items which were added
to with each session.

• A plan was made for the next day based on
what had happened. The day's activities,
questions & comments were recorded.

• We held a final concluding session L£

IMajor benefits:

• Looked at future integrated operations while systems
were in different development phases

• Found a better operational scenario that hadnt been
thought of before

• Had enough lead time to redesign and order additional
equipment

• Able to check some improvements made between
sessions

• Discovered usability problems
• Uncovered major issues (10), problems (2), action

items (11) which hadn't been considered before
• Recorded what we did and our discussions

U

fEach stakeholder went away with
Mnefits

y. . ^ M 4 X 4 < c « « ^

• Badge Office decided to look at another
badging location & do more mock exerciseDs
with other badging scenarios, resulting on
operational changes and remodeling

• Central Clearance (played customers) became
familiar with their sister organization, the
Badge Office

• System developers uncovered
misunderstandings, erroneous assumptions,
and omissions

• Rebadging Project Leader learned more about
the systems and operations, and gained
confidence that rebadging would work i ■

y^An evaluation gave high marks to
ySkfike exerciseU
••^■ftyrt'M>^fr>'',;A>fl>fo*^'V'*>'.'>^^

• A crosssection of 36% of the participants
responded (including the Rebadging Project
Leader)

• A scale of 1 (low) to 5 (high) was used to
measure satisfaction with
—(overall) method 4.4
—(overall) results 4.4
—benefits 4.3
—use of time 4.3
—participate again 4.3
—sponsor again 4.3
—personally helpful 4.1
—materials 3;9 L 5

#;^IJL What were the costs?

• Needed a lot of preplanning (1.5 mo) &
coordination (~12 people)

• Sessions had to be well planned & controlled
• Required buy-in, commitment & participation

from a lot of people (22)
• Developers had to prepare & move their

systems/prototypes in, and support them
during the exercise

• Required an appropriate location
• Needed good observers
• Resolution of issues, problems & action items

had follow-up costs . m

Khiric EsSabSshngiTHreeWay Agreement 01 April 1997

xKnmmsstiisifsst

Establishing a ThreeWay Agreement:
Specification, Code, Test

Software Quality Forum
Albuquerque, NM

1 April 1997

Presented by
Dr. Dwayne L. Knirk

Quality Engineering Department
Sandia National Laboratories, Albuquerque, NM

SAN097XXXC
This work was supported by the United States Department of Energy

under Contract DEAC04S4AL85000.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy

Sandia National Laboratories Psgel

Knirk: Establishing a ThreeV*y Agreement 01 Apnl 1997

>:y.:y."i "£'/■'■'•'.'&&&&.

High Quality Software Testing
tS***VN*e*s<*+eVf*e**>*ei*ye*^^

♦ Goal: Exercise the software to reduce our ignorance
• Demonstrate it does we expect, and nothing else

• Expose whatever bugs may be present

♦ Constraints
• Finish on time

• Finish within budget

• Achieve minimum assurance

• Identify the unknown

Sandia National Laboratories Page 2

KnitK Establishing a ThreeWhy Agreement 01 April 1997

High Quality Software Testing

*> The testing we do answers two questions:
• Does it work?

• What doesn't work?

♦ The testing we don't do reduces our confidence in the
answers

•» Every test case has a unique purpose

To show something about the software that no other
test case shows

mm

Sandia National Laboratories Page 3

Khiric Establishing a ThreeWhy Agreement 01 April 1997

•A*.WSS.*-.\\\'.WfWWWWSr\rW*^^

Development and Testing CoProcesses
■jKw »■•: ^."#.*;3if^^K^S^

Conception Formulation Implementation

Mechanization

Evaluation

Demonstration

/
*.""

RcQutwnsnts

^•..

Batnvtar
Spaaflcaacna

Sotwara

A

A
Y

Taataan
Ow a jn

A
\

\

Y

\ X
Paaa/Fa»

/ X
/

/

£2£

BahaMcr

X
Sp oorficsb on
AQfwntnt?

y

k

Sandia National Laboratories Page*

2

Knife EstaMsnkig a ThreeWhy Agreement 01 April 1997

Development and Testing CoProcesses

♦ Mechanization View
• What the software product

is to be
• How to build the product

design/plan components to
build and structure to
assemble

• Fabricate or acquire
components

• Build assembly structure

♦ Does every part of
mechanism work?

•> Demonstration View
♦ What will show it is what it is

purported to be
♦ How to build assurance:

design/plan component
demonstrations and
assembly demonstrations

♦ Fabricate or acquire
situations

♦ Execute in situations

♦ Is every behavior and
characteristic present?

Sandia National Laboratories Page5

Kniric Establishing a ThreeWhy Agreement 01 Apnl 1997

Development and Testing CoProcesses
S ^ ^ S ' m ^ W . ^ S J S
Vb*.WS*V.W.<VVV.»a''^WMArW>W**WaVWV

>
V

>
>V^^

♦ Software: the mechanism implementing the behaviors
in the specification
• Coverage goal exercise all parts of the mechanism

♦ Testware: the situations demonstrating the
mechanism's behaviors
• Coverage goal exhibit all behaviors of the mechanism

♦ Results: a 3way agreement between
• Behavior Specification (and Problem Requirements?)

• Software Code and Data

• Testware Code and Data

Sandia National Laboratories Page 6

Khiric EstabasHng a ThreeWhy Agreement 01 April 1997

The Testing Problem
*M. ^ I X K U W X S R

♦ Infinite Possibilities
• Finite number of requirements and behaviors

• Infinite input and output domains

• Infinite number of structures (paths)

• Infinite number of possible bugs

♦ Limited Resources
• Limited time

• Limited staff

• Limited equipment

Sandia National Laboratories Page 7

Knife EsiabBshing a ThreeWhy Agreement 01 April 1997

Levels of Test Objectives

♦ System
• Endtoend functionality and performance
• Other llities," safety, security

♦ Subsystem or Functional Build
• Interface definition and consistency
• Interunit protocols "

♦ Units
• Functions
• Limits
• Constraints

Sandia National Laboratories Pages

Khiric Esiablishng a ThreeWhy Agreement 01 April 1997

Requirements
xmi*mix'x**«sxissmi

♦ Assert what successful use will mean to the user

• Increased productivity, faster response, expanded scale of
monitoring, larger extend of control, higher consistency,...

• Reduced error rate, fewer missed deadlines, lessened damage,...

• Examplepoor
"R3.3.C The system must be able to do automatic signal detection using state
ofpracb'ce signal detectors." (True quote)

• Example better
"R3.3.C The signals from which locations are determined may be as weak as
[...] with a signal to noise ration as small as [...]. The location determination has
a precision of 1 part in [...] and an accuracy of [...]."

Sandra National Laboratories Page 9

KnMc EstabSshng a ThreeWhy Agreement 01Apnl1997

Requirements
mmmmmtmsimm

.*.AVUV
,
.V'.V/,V/..>%*VAV'AaAVtVVaVV^

<> Stated in the language of the problem domain
• Standard problem frames

♦ Describe the "givens"
• Components and shared phenomena
• Causeeffect dependencies
• Equations of state, constitutive relations

• • Physical laws, social expectations (safety, reliability)
• Human background, bias, and limitations
• Economic, technologic, and legal constraints (EPA, OSHA)

♦ Express the "to be's"
• Transformations now beyond our ability or increased performance
• Relations to be established, conditions to be met
• Historical references

Sandia National Laboratories Page 10

Khiric EsSabfaring a ThreeWhy Agreement 01 April 1997

Specifications

♦ Behavior
• Observable activity when measurable in terms of quantifiable effects

on the environment whether arising from internal or external stimulus

• The peculiar reaction of a thing under given circumstances

♦ Behavior Specification
• Focuses on the functions required of the executing software

• Expressed in terms of observables of software behavior

• Allows many possible software implementations

• Must be predictive to answer questions of the following sort
"In situation Q, what does the computing system do when P
happens?" (and P happens, often when it is least expected)

Sandia National Laboratories . Page 11

Kreric Establishing a ThreeWhy Agreement 01 April 1937

■MW'aaa'^VWWVVa'lrMrMr'WVttWi'a'a''^^

Specifications

♦ Stated in the language of shared phenomena
• Standard interaction patterns

♦ Describe the interactions between the application
environment and the computing system
• Direction (input, output)
• Aggregate structure (by value, by reference)
• Representation medium (digital, analog), format, units
• Time and value granularities (continuous, discrete)
• Time and value domains (possible values, event times)

♦ Express interaction sequences and coordination
• Stimulusresponse interactions (causeeffect)
• Serialization and concurrency
• Internal "real world" model

Sandia National Laboratories Page 12

Kniric EstabSjnfng a ThreeWhy Agreement 01 April 1997

Dependencies

Threeway agreement

sufficient/

Behavior
Specincation

sufficient N

Software

necessary

necessary

Testware

Sandia National Laboratories Page 13

Kniric Estobfesring a ThreeWhy Agreement 01 April 1997

Dependencies

♦ Software
• Necessary
• Sufficient

all specified behaviors are realized by the code
all implemented behaviors are desired

Behavior Specification -**—*- Software

♦ Testware
• Necessary
• Sufficient

all specified behaviors are demonstrated in tests
all demonstrated behaviors are desired

Behavior Specification -**—>■ Testware

What do these two equivalencies suggest?

Sandia National Laboratories Page 14

Kniric E*tfabfisKng a ThreeWhy Agreement 01 April 1997

Establishing ThreeWay Agreement

Derive/Modify/Check j
Software

■H Create/Modify/Check
>J Behavior Specification

j Execute Software
using Testware

X

Derive/Modify/Check
Testware

Sandia National Laboratories Page 15

Kniric Estabastting » ThreeAfthy Agreement 01 April 1997

X-yXX4&:<&S%SS88&$S

Establishing ThreeWay Agreement
VWkVVWbV^,Vt ' .M/VV**MaVWN^^

♦ Process
• Design test cases from the behavior specification

• Execute tests on an instrumented code

• Examine test outcomes for behavior pass/fail
missed services, missed state transitions, incorrect retained data updates
wrong boundaries, violated constraints

• Examine execution trace for structure coverage omissions
missed segments, missed branches, missed branch sequences
missed units, missed canreturn pairs, missed data defuse pairs

• Quit when all? behaviors pass and all? structures are exercised

• Otherwise, change specification,"code, or tests, and iterate

Sandia National Laboratories Page 16

Kniric Establishing a ThreeWhy Agreement 01 April 1997

Verification Expectations
•'■'/■■■',;ysy,;s:sswet$

♦ All test executions
• Successful demonstration of all selected behaviors

(macroscopic interactions)

• Successful exercise of all hardware instruction streams
(microscopic implementation)

♦ Behavior Coverage as well as Structure Coverage
• Behavioral equivalence between microscopic operations and

macroscopic interactions

♦ This is concurrent evaluation of Testware and Software
with respect to the Behavior Specifications
• Each should be necessary and sufficient

Sandia National Laboratories Page 17

Kniric Estabkshing a ThreeWhy Agreement 01 April 1997

Validation Issues

♦ Will the product meet the Problem Requirements?

♦ Prelude
• Verify Behavior Specification with respect to Problem Requirements

(but are the Problem Requirements correct?)

♦ Postlude
• Create and instrument an application environment as described in

the Problem Requirements, operate the product in selected
scenarios, and evaluate its effects on the environment

Sandia National Laboratories Page 18

Krwic EstabSshmg a ThreeWhy Agreement 01 April 1997

The Big Picture

♦ Problem Requirements
• Stated in the language of the problem
• Basis for behavior design and for system validation testing

♦ Behavior Specifications
• Stated in the language of interactions
• Basis for software and testware development

♦ Behavioral Equivalence
• Specification and code
• Specification and tests

•o Testing the Equivalence
• Specificationbased test case design
• Structurebased execution traces

Sandia National Laboratories Page 19

10

Session CI: Software Quality for Scientific Applications

Chair John Cerutti
Los Alamos National Laboratory

Session:
Paper #

Cl:l

Cl:2

Cl:3

Author(s)

John Ambrosiano & Robert Webster
Los Alamos National Laboratory

Ed Russell
Lawrence Livermore National Laboratory

Orval Hart
Los Alamos National Laboratory

Title

Software Quality and Process
Improvement in Scientific Simulation
Codes
The SQA of Finite Element Method
(FEM) Codes used for Analyses of
Pit Storage/Transport Packages
Software Quality Assurance at the
Weapons Engineering Tritium
Facility

Software Quality and Process
Improvement in Scientific

Simulation Codes

John Ambrosiano and Robert Webster
Computation Methods Group

Applied Theoretical and Computational
Physics Division

Los Alamos National Laboratory

Motivation
• This study looks at the quest for better simulation code

quality through process modeling and improvement

• Scientists often doubt the value of standardized methods
for software development and QA saying they believe the
process models on which they are based are not
appropriate

• The goal of this study is to discover the processes by
which computational scientists produce production and
prototype simulation codes and to compare these processes
with standard software process methodology

Background
• The authors of the study are computational scientists who have

been involved in both large and small simulation code projects
for many years

• The subjects of this study are scientists and computer scientists
• within the Applied Theoretical and Computational Physics (X)
Division of Los Alamos National Laboratory

• X Division is responsible for developing and maintaining
simulation codes used in nuclear weapon design and
assessment

• One of the goals of this study is to try to understand our own
code development processes at LANL better

How this Study was Conducted
• The study is based on the experience of the authors and

interviews with 10 subjects chosen from simulation code
development teams at LANL

• This study is descriptive rather than scientific
- evidence is manly anecdotal
— taken from a small sample in an isolated population

• The aim is to discover and develop ideas that could lead to
better and broader studies

• In order to provide a frame of reference for the study we
referred to the SEI Capability Maturity Model (CMM); also
used were two books by Watts Humphrey:
— "Managing the Software Process," (1989)
- "A Discipline for Software Engineering," (1995)

The Capability Maturity Model
• The CMM suggests incremental process

improvement guidelines:
- Level 2, repeatable: institute certain key practices on a

per project basis
- Level, defined: move toward uniform organization-

wide implementation of practices
- Level 4, managed: instrument key practices with

appropriate measures
- Level 5, optimizing: use measures to optimize the

process

CMM (continued)
• The CMM suggests key practices at each

level specific to software engineering
• Key practices considered essential to reach

level 2 are:
- Requirements management
- Project planning
- Project tracking
- Subcontract management
- Quality Assurance
- Configuration management

General Statistics
• Project size: between 2 and 15; average 6
• Many projects described as ongoing for years (1 to

15); average 5.5
• Numerical application domains covered:

- hydrodynamics, radiation transport, neutronics,
computational geometry, data analysis,
electromagnetics, and plasmas

• Estimated lines of code: 30,000 to one million;
average about 250,000

Production Codes vs Prototypes
Production codes were distinguished as follows:
• Designed to be used by someone other than a developer

• Well documented; reasonable learning curve

• Serve as repository for models and algorithms proven to be
useful; a historical archive of community experience in the
intended application domain

• Give correct or expected answers to an agreed set of posed
problems of practical interest

Production Codes vs Prototypes
Of the code projects discussed in interviews, a

majority were described as production codes
rather than prototypes

Starting from Scratch vs Legacy
Code

• The majority of codes were said to have
started from legacy projects; note:
- Actual reuse of code segments was minimal
- Legacy projects were treated as standards

A

i

s

Typical Development Process:
Concept Phase

New or
Extended

Application
t Regime u \

\
-a ••.

New Computer
Performance —*m-
Opportun'rties

r i
Demand for

New
Features

. + i
Code Project

Concept

Team
Formed

.- -■

/

/

Legacy Code
as Basis for

Requirements

/ \
Demand for

Better
Integration

>

Dê ̂elopn

Consider

Supporting *.
Features,

L *m.m

Consldtr
Novtt

Features In
Scltnct or CS

>-

tiei T

I
v
N
/

/

t Process
Team

Formed

, I ,
Team Leader

or Team i
Discuss |

k Approach J

+
Basic Design

and
Conventions
Agreed on .

+
Team Members

Assigned to
Individual Units

Usually Based on
Discipline

)

\

Nj

J: Des

Consider
Submodels
Required

Consider
Legacy

Algorithms
and

Architecture
• — — ■ — — — • *

Examine
Legacy
Codes

*■

ign

"

Development

Source Coda
kAnttved

i

■ ^ '

Write or
ModtyThalr

Package!

Two or More
T-s-m MMeb-tre

Ma-pate
Packages kta

Coda

t"
f Cod. '

onTtX
Probwnis

" ^ ^
1 RsojMSIon

Teat*
1 PftfutDWd

' 1

HawVarston
Raiaased

' •*

Process , 1 (cont):

V
X
TeamMaeteto

Ravtow abates*/
and Progress

s
1'

AtxunJatad

Warrant Naw

^ \ , '
KawVantan
avegrated

*- r
f 1

Reports and
Docuroantatlou

bsuad

Comparison with CMM Practices:
Requirements Management

Majority (80%) reported
requirements were not
developed in detail
Interviewees told us the
principle requirement is that
the model produce the
"correct" answer

When questioned further told us that the codes had to
reproduce the results of the legacy production codes

CMM Practices: Project Planning
• Most projects (70%) did not have a documented

project plan with specific tasks, timelines and
milestones

• 60% said the project was planned in an informal
way

OOCURlSatcd BBORQU DOOC

CMM: Project Planning (cont)

• Architecture and design broken down by scientific
discipline

• Design strategies largely functional (one object-
oriented design; a prototype)

• Milestones driven by user demands; in the past closely
linked to the nuclear test schedule

• Little or no data (e.g. LOC) used in estimating
development time or personnel costs

CMM: Project Planning (cont)
Majority reported no design review process
whatever; individual module design left to the
discretion of the implementer
Sometimes a common architecture or framework was
discussed at a high level

"Some (30%) said
there were informal
design reviews during
team meetings

Design Review

70 *
60 •
50

40 '
30 ■
in
10 •

o • : ■
i

>»

CMM Practices: Project Tracking
► Since projects were not planned in detail, they were

usually not tracked; schedule problems or risks were
dealt with informally at team meetings

• Highlevel progress reports were sometimes issued
(30%)

• No statistics were kept on
development time and effort
at any level

Progreas Documented

70 ■
60 •
JO •

•» •
30 •
JO ■ ■ ||i|P

9

CMM Practices: Testing and
Quality Assurance

Few projects kept any statistics on defects. Those
reporting some defect tracking (40%) maintained a
bug report list. No statistics were kept on number
of defects, type or effort expended in repair.

Defect Tracking

30 *
<0 ■

30 •
30 ■

10 '

•m no

CMM : Testing and QA
All projects did a fair amount of testing
Unit tests done almost always at the discretion of the
programmer
Integration tests were unplanned
Function tests mainly scientific or mathematical test problems
Regression test suite was typically employed

A Tale of Two Projects (cont)
(The novel project)
 Met its benchmarks of hypothetical test problems
 Did not meet expectations when used on the intended

design application
 Involved new algorithms, new architectures, and new

programming methods (sometimes together)
The other project
 Had no new methods
 Involved 6 people for 3 years, and produced 300,000

lines of code
 Is considered a success

■ • • * ■ -

Exploration Explored: Looking at
the Solution Landscape

• One interview concerned only algorithm development as
opposed to code development

• The following is a process model based on that interview

..

""
What do

colleagues
recommend?

r ■>.

Is th* approach
considered appropriate

for this regime?

N

j

•»

What is the
problem?

*.

 ^ i r ^~-

Choosea
class of
methods

What general
methods might be

applied to this
problem?

r
 u ' a .

How have
colleagues

solved
similar

problems in
the past?

12

CMM Practices: Configuration
Mangement

• All reported some configuration management practice

• Disciplined, planned configuration management was
not typical

• Some sort of source
control was universal

A Tale of Two Projects

• An interesting contrast arose between two projects: .
- A well-regarded, well-used production code
- An ambitious and novel development effort

• The novel project
- Had the largest team (10-15)
- Produced the largest number of LOC (over one million)
- Used formal methods more extensively
- Was officially supported for about seven years
- Was terminated by management before completion

Exploration: Narrowing the
Search Space

-<
Hava capable colleagues
been unable to get this

approach to work for
similar problems?

*.

Acquire a
validation

suite of test
t problems u

1

^ ■ - ^ ^

' Build a
testbedfora

class of
L methods

\ ,
Choose a
method to

explore

Does the proposed
method satisfy the

constraints?
■■

•>

<

/
/

Is there detailed
documentation In

the literature?

Exploration: Looking for the
Right Stuff

Eureka! On
to the reel

problem CQultorchooae |

anothermethod I

13

About the Exploratory Process
• Two interesting features stand out

- The process is a scientific process rather than an
engineering process (as it should be)

- At almost every stage, the aim is to manage the risk of
exploring unknown territory

• The difference:
- Conventional software process models are based on

process definition, process control and management of
resources

- In exploration, the emphasis is on not getting lost

Is There Something Special
About Simulation Development?

Yes
• Imprecise requirements
• Higher risks in design and implementation
• The potential for open-ended testing and

validation
• Strong links to legacy code
• Relatively small project size

Suggestions
• hi spite of some unique aspects, process improvement and

QA guidelines such as the CMM can be of value (a
substantial number of projects already incorporate CMM
key practices in a weak form)

• On the scale represented in this study, one might develop
some set of guidelines that falls between the CMM and
the Personal Software Process (PSP) [Humphrey, 1995]

• Large organizations with several projects of this scale may
be able to coordinate some generic activities like
configuration management and defect reporting to
advantage

Suggestions (cont)
• We see no a priori reason for not adopting current software

engineering standards in some areas (perhaps with
appropriate customization to project size); these include:
- detailed defect reporting
- records of development time and effort
- detailed project and design documentation

• One substantial way to reduce the risk is to separate
exploratory projects from production projects as much as
possible

■ 15

Suggestions (cont)
• We suggest project leaders try to nail down requirements

as much as possible
• Requirements should state as cleariy as possible the limits

of applicability for the product; domain applicability
should be defined in part by a benchmark suite of tests;
benchmarks must be representative of real problems and
not merely hypothetical

• Once there is a way to define initial requirements and
manage changes to them, other practices such as detailed
project planning and project tracking should be much easer
to institute

How to do a Better Study
• Would use a much larger sample and design interview

procedures more formally
• Would seek involvement of leading software engineering

professionals
• Would consider conducting longitudinal studies (over the

whole project development time) with appropriate
measures

• Would extend the study other communities:
- weather and climate modeling
— air quality and water quality modeling
— aeronautic analysis
- electronic component modeling

The SQA of Finite Element Method (FEM) Codes Used
for Analyses of Pit Storage/Transport Packages

JJWUCTJ.TOJJJJA-JJJMWWIWWW

1997 Software Quality Forum
Albuquerque, NM

April 1-3,1997

SQA Requirements of DTED Quality Assurance Policy
and Plan for projects with high risk level

Division leader responsible authority for approvals
Formal design reviews
SQA Plan
Requirement and design documentation
Configuration Management Plan
Verification and Validation Report
Software documentation (user manual)
Overall quality management is controlled and maintained by the DTED
QA system

sn-aa-SEw****

FEM Code example - DYNA3D

Originally developed at LLNL in the late 1970's, -100,000 loc, -700
subroutines
Nonlinear, explicit, three-dimensional solid and structural mechanics
code for analyzing transient dynamic responses
Wide range of material models
Interactive graphics with some material model drivers
Available on many platforms, including 32-bit and 64-bit UNIX-based
machines
"Legacy code"

S70204-7£ttQ«i*.

SQA Plan Outline
Purpose and scope
Definitions and acronyms
Organization and responsibilities
Documentation
Software development process, methods, tools and metrics
Reviews and audits
Testing
Problem reporting and corrective actions
Tools, techniques and methodologies
Code control
Media control
Supplier control
Records collection, maintenance and retention
Training
Referenced documents: ISO 9000-3, IS012207, IEEE 730.1, IEEE 828, etc.
Associated documents: SRS, SDD, CMS, V&VR

9703044 EW-rwn

Configuration Management System (CMS) Elements (life-cycle
phases emphasized are design modifications and maintenance)

Currently informal implementation
Management, documentation and release control of new versions of
configuration Kerns, eg., software, libraries, data bases, user
documentation, etc.
Verification methodology
Validation of baseline changes via benchmark problems
Status accounting, including software problem reporting process
Periodic review/audit process of baselines.
Use of CM tool, Concurrent Versions Systems (CVS), for multi-person
development
SQA repository for baselined versions
Software problem reporting form

Version control
Configuration manager is responsible for version control
Baselined (public) versions are checked out via configuration manager,
and are available to users
Experimental versions- under development or containing non-
baselined changes- are not under configuration control, but are
available to users for beta testing ("user beware")
Version status accounting includes version identification, changes,
verification method, benchmark problem validation.
Major software modifications go through formal change control
process, including review of system/software change request

~r***i ,.~T

DYNA3D Benchmark Suite (platform-specific for
each code)

• Experimental tests
• Analytical solutions
• Comparison tests
• Sensitivity studies of models

Future work, CASE tool for configuration
management system

• Automated tool, formal implementation, FY98
• New version of source code is compiled and executed
• V&V is performed via a suite of test problems for a particular

application and platform
• Baselined software is moved to configuration management repository

and to "public directory"
• Documentation of software changes and new version is reported
• Software is periodically baselined via the above process (-3 times

annually)
• Software changes are integrated into code manuals

8

Summary

• The SQA methodology that has been described, in concert with the
DTED QA system meets regulatory requirements for high quality
management of software used in support pit storage/transport projects

• This methodology utilizes the guidelines of ISO 9000-3: Guideline for
Application of ISO 9001 to the Development, Supply, and Malntenanee
of Software, for establishing welt-defined software engineering
processes to consistently maintain high quality management levels

• The format recommended In the IEEE software standards has been
"tailored" to implement SQA plans and specifications

870304.17 EttCfem

Software Quality Assurance at the WETF

%4&&<&*Hir^ &^<i^k&,>*S^'^tf'\$\$^'*L V, ,S^ ^ V$^ i v ^ \
. ' ' i v " ASfW ' . f *JCA . * A % * "K" jf" *. f VWiV 5 <•' ■> **S S **ev ' , V \ "i. \ . A ■SO1 % .<■* * S * X W w l . *. • j ' A ". > X \ ^
\" -$*S* s&FJ ' V .^y* /'WS ^ V / Z ' / A A N .SW /ft. \ '*„••< \ A ^ / / 7W.V 'vov ,*%*> '•••. >A MO* *. AXi *•&*'••■<•••• <: \

.ir?^*2 i&i.

Orval Hart

Software Quality Assurance at the WETF

Orval Hart

WETF IMPROVEMENT/DIFFICULTY REPORT 000448'
Improvemen^Dmcutt^JDescrlptlon (circle one) WIDR#

;zr^ sAt-t rt*J!/<4s <;ybXg. TA&,//? A"*i, *;>////*&&/&«/?> "■&//*'** Me

SafetyRelated? /I/O

WIDR Index Description
Signature jg?.
Typed Name W / . ^ ^ J Q A S
Date of Report /f~/$~-92

^

Disposition of Improvement/Difflcutty
■ P • t^tuOett fc

Dispostion Steps Configuration Control?
Corrective Maintenance?
NonConformance Report
SWP
RWP

■¥ e*^

Work Order
Priority | fj

'•■^yK^
TSM Signature, Date(s) &A*/f2.

Functional Titles Associated Document Changes
1. Designer/Originator
2. Section Leader
3. Tritium Systems

Manager
4. Building Manager
5. ENG Division
I. Database Custodian
/ . ICS Hardware

Specialist
8. Equipment

Custodian
9. HSE Division

Representative
10. WETF Electronic

Technician
I I . Nuclear Material

Custodian
12. Facility Coordinator
13. Database Designer
14. ICS Software Specialist
is. filed. TecJL

(Databases Procedures Software Drawings

WIDR Review/Assignment Documentation

Review 3 Review 4 Action
Required

W

Action Completed

Iffii

Action Checked
By

WiVvMa

Equipment/Component Identifiers
Serial Number
Manufacturer
Model Number
LANL Property Number
Item Description

Room» I Gtovebox
Measurement l ist Parameter Name
Symbol

1 Other Equipment/Components To Be Identified? TN/A
Form No. WETF 01

Revision No. 3

Date December 12.1990

Page No. 1

WIDR (continued)
Comments

•S4ac*-. ^aAeA.
VsSo vol-te^e.

Me.aS»-<T£* *-M

WIDR#

— I

I
o
o

*SiXf AASUtW-***-* "Ha. ^M Xu* ^s>" 6- |-^M *-*-^^SZ^a
M&u JU<-«a *|Jle**ur d e r ^ j L t t ^

^o-n v ••.•>..

Action Taken

Action Completed (TSM)
Completion Date

E /T*-L>y\

^IM^U
Form No.

Revision No.

Data

Page

WETF 01

3 "

December 12,1990

2

WETF SYSTEM TEST
Summary of Test Objectives

7 ^ vterrfy Weft" *l£e. -$&*<&. i ' j ^v r -a^O 5 * i*U reprft , $u.naJroy< Preliminary Q

In-Use [x]

Other Q

Responds to WIDR (s)

44S

TEST PREREQUISITES
Test S/W Installed

- BTC

Ver.

2.Z7

Conflauratlon Used for Test

t4c**-MX\

Verified Bv

(Ds U^
Test Conductor

TEST RESULTS
L2_| Test Results are acceptable
I | Retest required.* Referenc

• l oUw Toil Fullu-M, Only.

>
e Test Lop for:

Dale(i)

Facility Conflauratlon
No Alterations . r-n
Required ^

Alterations l—|
Required. Ref. '—'

Test No. 4 4 S

Page 1 of -2_

Bv: n, Mar-i-
SubmlttM

Reviewed: <£f-44pt£&

Date: $/?/??

Verified By

^f^£r^
Test Witness

Reviewed by and Date

Test Conductor

POST TEST ACTIONS
Op. S/W Installed

ye3

Ver.

-—

Other Actions

*VA

Verified By and Date

Test Conductor

Facility Configuration

Restored to Pretest (
Configuration |_J

As Noted below | |

^^e^M?
Test Witness

Verified By and Date

^fS4^^vy^
Test Witness

•W2/9I.ROV.0

I -
(0
UJ
I -

S
HI
I -
w
> ■
</)

is
Q.
s
o
o
Li.
ED

plH '<>
/ uc -^9

•*-4 •JO

7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
7/31
10:55

10:43:
10:50:
10:50:
10:50:
10:50:
10:50:
10:53:
10:53:
10:53:
32

34 HVM-
14 EZS-
24 G0M-
24 GOM-
28 GOM-
23 GOM-
6 FLM-
23 HVM-
23 HVM-

H312A RACK- H3 + 12V PWR, ANALOG
ETCRUN ETC SMODE RUN
LI LOAD IN- G.B. 02
LI LOAD IN- G.B. 02
LI LOAD IN- G.B. 02
LI . LOAD IN- G.B. 02
WH20TK WASTE WATER TANK LEVEL
H312A RACK- H3 +12V PWR, ANALOG
H312A RACK- H3 +12V PWR, ANALOG

DIID3 - CHANGED TO: SET
43 WPM-TK5L1 SLP1- PR.
6 EZS-ETCRUN ETC SMODE RUN

DIID 1125
7/31 10:55
7/31 10:56
10:58:27

DIID 1104- DUDS - CHANGED TO: SET
10:58:39

DIID 43
7/31 10:58

9 .42
1

1 5 . 8 8
15 .88

. 1 6

. 1 6
1148 .23

12 .19
12 .19

8 2 6 . 3 5
0

LO
OK
HI
III
OK
OK
OK
OK
OK

HI
LO

U
C
A
C
A
C
A
A
U

A
C

 D U D S CHANGED TO: SET
39 EFAEXHSK T f t gTUT R QH A' APJj_

1 0 : 5 9 : 3 5
DIID 43
7/31 10:59
7/31 lis 0
11: 0:17

DIID 1104
7/31 3 1: 0
***** THE
11: 1:30
*IID 43
7/31 11: 1
7/31 11: 1
11: 5:30

DIID 43
7/31 11: 5
11: 5:40

DIID 1144
7/31 11: 5

- DUDS - CHANGED TO: RESET
:36 EF.ArzE.XHSK -TMn-STK FLOW _ALARM .
:10 EZS-ETCRUN ETC SMODE RUN GTfi. cle. *£a-Mf

- DUDS - CHANGED TO: SET
:20 EZS-ETCNULL ETC CMODE NULL <2T^ M R-uTO
TIME IS 11:00 ' THE DATE IS 07/31/92 *****

1 HI

_Q_QK_

- D U D S - CHANGED TO: SET
:31 EFA-EXHSK TM- STK FLOW ALARM
:33 EZS-EXHSKFAI TM STACK FAIL FLAG

(«;*/>■at'ts. /ouj £J e,vZ

 D U D S CHANGED TO: RESET
: 3 1 EFAEXHSK • T M STK FLOW A L A R M , r e v e r t 4/<

1 OK

0 OK

1 HI
1 HI

0 OK

7/31
7/31
7/31
7/31
11

DIID
7/31
7/31
7/31
7/31
7/31
11:16

DIID

6:
6:
6:
6:

11:
11:
lis
lis

8:36
4 -

11: 8:
11: 8:
lis 9:
11:10:
11:15:
31
4 -

DUDS - CHANGED TO: RESET - i ̂ .
40 EZS-EXHSKFAI TM STACK FAIL FLAG rei-ŝ T -p-1 Y 1 0 OK

RACK- H3 +12V PWR, ANALOG 9.52 LO
RACK- H3 +12V PWR, ANALOG 9.52 LO
RACK- H3 +12V PWR, ANALOG 12.19 OK
RACK- H3 +12V PWR, ANALOG 12.19 OK

13 HVM-H312A
13 HVM-H312A
42 HVM-H312A
42 HVM-H312A
■ DUDS - CHANGED TO:
36 EVA-EXHSK
38 EZS-EXHSKFAI
2 FLM-WH20TK
41 WPM-TK5L1
21 FLM-WH20TK

RESET
^f/X TM- STK VOLT STATUS I *>.4iaV Wad ̂ ^ '0 CO

TM STACK FAIL FLAG 1 HI
WASTE WATER TANK LEVEL 1201.58 HI
SLP1- PR. 950.06 HI
WASTE WATER TANK LEVEL 1146.13 OK

7 / 3 1 11:16:
1 1 : 1 6 : 4 0

DIID 1144
7 / 3 1 11:16:
. 1 : 1 7 : 3 1

/IID 1125
7 / 3 1 11:17:
7 / 3 1 11:18 :
7 / 3 1 11:20:
7 / 3 1 1 1 : 2 1 :
7 / 3 1 1 1 : 2 1 :

D U D S CHANGED T O : SET " _ _ eP(H

32 EVAEXHSK T M STK VOLT STATUS v**
6
**"

 t s d l
6

* ^ * * " i *OK

D U D S CHANGED TO: RESET Ce5&"+ -\^-1 $*%.
4 1 EZSEXHSKFAI TM.STACK F A I L FLAG 0 OK

■ D U D S CHANGED T O : SET ,
3 2 EZSETCNULL ETC CMODE NULL ^ ^

 Cjsd
"
& ^

r
° ^

4 EZSETCRUN ETC SMODE RUN £ \ & c*<£& cic.**A
53 WPMTK5U2

1 WPMMB4
3 W0MHX60T

LPk PRESSURE (U2>
DRY22 TANK PRESSURE
MO2 0 2 MONITOR

3 b l . / l Hi
5 2 9 . 9 1 LO

 . 2 7 LO

A
U

U
A
U
A
U

A
U
A
C
A

STACK INTEGRATED
incri
min.
00
01
02
03
04
OS
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
•43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

;ase in
OOxx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

T2 REPORT FOR 07/3 1/92
stack integrated T2 during the minute, in
01XX
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

02xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss.
miss'
■miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

03xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

04xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi ss
.miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

05xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

06xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
.miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

07xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
' miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

mCi
08xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
-miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

vat
24

ue at 0814 of:
hr aceum

long-term
09xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

10xx
miss
miss :
miss o

accum
11xx

0
0

miss
miss
12xx
miss
miss

fof miss
miss

;
4' Of miss

miss 3
missO
miss
miss

1 Of miss
Lfif
n> 0

miss (Tail*
missi,.
missj-j
miss*
miss
mistfj
miss*
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

0
0
0
0

miss
miss
miss
miss

fail
fail
fail
fail
fail
fail
fail
iail

0
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi ss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

13xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

mCi last reset at
mCi last reset at
14xx

•miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss'
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
mfss

15xx
miss
"miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
. miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

16xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

irmddyy hhmmss
: miss
: miss
17xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
• miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

miss
miss

18xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi 88
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi ss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss

19xx
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss

20xx
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi ss
mfss
miss
miss
miss
miss
miss
miss
miss
mfss
mfss
miss

21xx
mfss
miss
miss
miss
mfss
mfss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
'miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mi ss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

22xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
mfss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss

23xx
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
mfss
mfss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
miss
mfss
miss
miss
miss
miss
miss
miss
miss
miss

Software Quality Assurance at the WETF

"y'y

j&&~fir*W f£)f~i*~%& -y-,Vy&<^, ^sy^*-,,^M,,- ^ w v * <%v»,
lAtiif'AA.^A X .i..A*...j(£&^"..AA..&A l&.....A*y...>...A'm..&* .v L.i'.*...*A...A>.A>.>>„.^ ..'...'-. " . * v

Orval Hart 3

Software Quality Assurance at the WETF

Orval Hart

Software Quality Assurance at the WETF

^
!
/ / ' i A <"Z;yUyi-yyy~\?^<y-,y.

' I ' lT i iy yjl Ml I II.II.IIIIII.HU.
1 I l l I. Llil.i. ' i inii n 11 l l . l i i ■ ■ f̂a ■ 11 ■_ 1.11.1.1.11.1 m i n i . 1,1 L.LU i i.i n 11 u 11J t.t.ra 1.111111 j 11111.I.I.I«1...1.I

j >!&«3as'<«tK«m$«.*ass^i«ss«r^

pSSSSKj

••.■&'"yy.^a,:'>,^iw>\y::^«s*::<'^^

. ^ i i i i i i i i i n iu i i i n i i m i ""'•'•^I'SaS'SSsgfigSS

hS*»SSSSSSSSS\SSSSS\SSSSS\SSA'*AS\\SSSSSS%*WAV^SSSSSSSSV».SSSSSsV. . _ . .
 , A W A ssssssssssssssss\ss^s^%ssssssswss'*^su&Cssssv>Zssvsssssssvts'vv
X ,ASS*N*yNs>SSW*SVVWNsSS*^SSSVrtS
■J ySVS^OKWV^^A^WWWWkV^ A%*£ssS*NsSSSSVS,JVl. IWrtWX%SV*A^*tX'^SSSsXNS*KW',AS*W*.S'N'M« W W W
"•'^■•s'v>Xs*K^sv*.ss%ss*N'v>Wsv.sss*K*w;^^

; 'mmssaamum
;*^>**x*SS\iiS555v. .V*^*CSWSSSSSSSV>ASVS^SSSSV*.SAS\SS^SS%SV>.SSS.^WS*^SSV*A\S^

xmm S SSSi^^iSSSSSSSSjiSSSSsJar^SSS!?; S :ST^t^;s»^»KSj^'aSts«t«:SS^»«SKSij.|.i | u |] u 111 w v w i " u' Cjj1 ■ | u u11 " | ■ ■ 11 ■ ■ ■ u ■ | ■ te

sasS!**:
[s s s s s s s . s s s ^ s s s s s s s V A ^-t**l***e+t***)*M**H'e*l*t*e*l***eeye}

i s J w S K S s ^ t . . A \ R « i « ^ w w ™ j IM ' *! I ■ I " " m E m * ' Ml j t ttt M 11M ■ I ■« f tt'tl 111 '< >*M I 'f w Ss
v ^•■A.sssW'.sjyaM* ■* ■»JK«C!!>j>,kTi.+Vrt*sV'S \ s \ s ./ 'AssssswssviAsss^ssssswsssssssvissvvssssssssslS'y ss

•>"*
^ • s

55 ^
•W

Orval Hart

http://ii.ii.iiiiii.hu.1
http://ll.li

Software Quality Assurance at the WETF

rt/̂ ^w-" %>" 1

Orval Hart

Software Quality Assurance at the WETF

> .m^y^

,&#i i isf fe ••■iSv. ST**"*; •**.s*wm*>&a»^ <

Orval Hart

Software Quality Assurance at the WETF

Workfione:
■SSSKS

HI*

pActual

TdHtc

Tot r
Co* L

□
* 3 sa£KS|sl

TtoprehrtaaMicn.'aftwafl (Bring was perfan'radw^
upgrade docunerit. TheMV9500hasbeenh*daledastheproceucdcr*pUe(andb
nowwtago^aonerncnthinUMtedpenod 2/12/37

^<oii>iinii"iniip"
> V W 5 •• >•*„ v . ^

l!>WI M t ' " " " ' H I) f l l " "»M ' IH ' l " l "MMM !■■ I (■

■ yf

%''¥■

t'yyy,

) '

| l .Theoebvityrtvofve*tt>eupgredeof ICS Control computer .hardware that moots or exceed* the
potiorn icnco *ipocjficflfaon(sj or the hardware current^ wet serv ice .
2. T h e activity require? a subctantabve change to procedureWETF43P4CS^ ,R1 , a s described in t h*
safety enafcwsc, «nd TYPO type changes to WETFOBJCS0&
3. T h e ectryity « not o tes t or eitpennent
4 .Although t he ecbwty and/or change be*»g considered is not spocicaly described r> the current WETF
FSAR document, any acodant scanario invotvnp equpment or processes coveted by iHx change is of a
type akeedy described a n d analyzed in the current WETF FSAR document
J5. There is no new Lsnbng Condition for Oporetnn (LCD] or odm**strobve controls). nor is there any
change to a n eoeshng LCD or odmrmltahve control. required by the achviy bong considered in order to

'■SST

Orval Hart

Software Quality Assurance at the WETF

OrvalHart

I

MMIMMMII'lMM«IMMIIM')IMH'W***WWII»»ll»»»ll»IMIMIMMM»IMIIIIIIIIIIMIIt ™ ft.. /•*>■ j >.■:■,

w:zi<

j &

:m
fc%

>;■>-£

i-y 'M

■i/&

? > w

y?f>

nun
1 g f £ « S B.

r x
no i * *

3 cm ci 0

I
3^1

^SShMefa.*.

ms

§
to
|

it*
R

1
R
o

S

r

Session A2: Software Engineering Processes

Chair Kathleen Canal
Headquarters Department of Energy

Session:
Paper #

A2:l

A2:2

A2:3

Author(s)

Michael Bell
Lockheed Martin Energy Systems

Stewart Meyer
Westinghouse Savannah River Co.

Karen Jefferson, Terry Porter &
Todd West, Sandia National Laboratories

Title

Function Point Count Adjustment by
Means of Scaling Touched Function
Points
Using An Automated Code
Management System To Improve
Configuration Control Practices
Software Engineering and Graphical
Programming Languages

Function Point Count Adjustment
by Means of

Scaling Touched Function Points

Michael A. Bell

Lockheed Martin Energy Systems, Inc.
Data Systems Research and Development

Software Engineering
Oak Ridge Y-12 Plant

.Roles of Software Project
Management

Supports software development projects and
application support.

Plan
Control

FPCA<$uabnantbySc-atoisTtMCh l̂njncb'onPi)M> MttMA.Bd.UU£S.0ak!»'»Y.12P-art

1

Role of Software Metrics

• You cannot plan and control what you
cannot measure.

• Size is a critical measurement for planning
and control.

• Software 'size' is hard to measure.
- Subjective
- Relative

FPCAd|uatm*rtbrSar<^Taici^Fucx£onPta*i<s MrJuaiA. Bit.IMES.Oakftdjc Y-12 Hart

Software Size

• Size - of project and application - has two
flavors:
- 'Functionality' or utility embodied in the

product or development project.
- 'Effort' or amount or work required to

produce/maintain the product or complete the
project.

FPCMju-tartbySab-flTo-xs^Functi'-flPci'to M d t M l . < M . LMES. Oik Ridg* Y-12 (tort

Function Point
• A quantification of a software product's or

description's functionality.
• Measures functionality that the user

community requests and receives
- User-visible
- Consumer-relevant

• Based primarily on logical design.
• Independent of implementation technology.

FPCAt$uaM*ritbyScaCrijTouch^RinebonPari(s Mdu*l A. Bal. LUES. Ort Raise Y-12 Ptart

Function Point Analysis

• Examination over a span of time of
- Project or application
- Sequence of related software projects
- Group of different but similar software projects,

• Compare
- Productivity
- Quality

FPOAtSuataart by Sci^Toocf^Functxio Porta Mthaxl A. M . LMES. Ort R-dJt Y-12 Fteri

Function Point Analysis

• Discern productivity & quality trends /
factors.

• Identify areas for concentrated observation
and detailed analysis.

• Gauge the overall progress of software
development/support measures.

• Assess the effectiveness of tools and
techniques.
FPCA*J*u**m*«X by Sc-aWij Tou*»d Fundion PcWs Mch»ai A. B«l, LMES. Oai Rdf* Y-12 Pttrt

Function Point Analysis

• Compile a historical database of software
development and support information.

• Used to improve the accuracy of software
effort-required estimates.
-Planning
- Control

FPC Adju*ra«* by -Scat-ng Touchtd Function Pant* Mduai A. B«I, LMES. Oak Ridge Y-12 Ptmt

Two Uses for Function Points

• Express the amount of functionality
delivered or supported by a given effort,
independent of the technology and
implementation details.

• Estimate or express the amount of effort
required by a given effort, taking into
account the technology and implementation
details.

FPC A*Jjuatmant byScatoi*)Toucf>id Funebcn Ponti Mchaal A. Bd. LMES. Oak Ridge Y-12 Plant

Desired Qualities

• Express functionality and effort in a format
that can be used on an enterprise wide basis
to provide a common measure of software
portfolio size and work effort levels.

• Find a measure that is comparable
["normalized"] between a wide range of
types of software and environments.

FPCAtifJ^irtbyScitrigToochrtFoncSonPortt Mdlaal A. bet, LMES. Oak ftXge Y-12 Part

Contradictory Goals

• Factoring in technology differences and
other factors reduces the degree a function
point count measures "pure" functionality.

• Leaving out technology differences and
other factors reduces the degree a function
point count measures actual work effort
required for a given project.

FPCA**pj*ta*a*byScai*ngTouchadFuretimPcarts Mdiaal A. 8*1. LMES. Oak Ridge Y-12 Plait

Contradictory Goals

• We want both 'functionality' and effort.
• Function points gives us functionality.
• Effort can be estimated (and expressed) by

adjustments to the function point count
(FPC).

FPCA*Surtaa**bySeaIir>sTouchedFun^Pdnt» Mdiaal A. Bel. LMES. Oak Ridga Y-12 Plant

Unadjusted FPC (UFPC)
• Suitable for measuring the data

transformation and manipulation
functionality of a system

• Minimal influence from the implementation
environment and technology level of the
tools and methods employed.

FPCAcTjuabnWbyScalngTajchedFundienPants Mchaet A. Bel. UUES. Oak RtSge Y-12 Plant

FPC Adjustment by Value Adjustment Factor

• Adjusts FPC by deriving a multiplier - the
Value Adjustment Factor (VAF).

• VAF is derived from 'degree of influence'
of 14 factors that affect the function point
count.

• 'Value adjusted FPC = UFPC x VAF

FPCAi*tu«m>ntbySare^TajchedFuncbonPon** MtJiael A. Bel. IMES. Oak Ridge Y-12 Ptart

FPC Adjustment by Value Adjustment Factor

• Designed to account for the influence of
communications, distributed processing,
performance requirements, complex
processing, heavy usage...

• VAF factors were drawn up before network-
based distributed systems were common.

• VAF adjustments are less relevant today in
accounting for 'non-functionality' effort.
FPCAcjuatartbyScafcgToochedFgocfconPart. Mchaal A. Bel. IMES. Oak Rrige Y-12 Plant

FPC Adjustment by
'Touched' Function Points

• UFPC which also counts 'touched' function
points in addition to added, changed or
deleted function points (ADC FPs).

• Used in enhancement or support efforts.
• Counts 'touched' function points of any

altered implementation of a system, or
subset of a system (e.g. the user interface),
even if no functionality changes were made.
FPCA4u*Xma-*bySc!angTcud!*rtF-m*mPont> Mchael A. Bat. LMES. Oak R«jg» Y-12 Pant

FPC Adjustment by
'Touched' Function Points

Compensates for work performed that does
not significantly affect the FPC.
Touch-adjusted FPC = U F P C ^ + FPCt0UChed

Can yield a more realistic measure of the
level of effort required.
Over-compensates for non-functionality
effort in some cases.

FPC AtJjvtmM* by Sating Toochtd Function Pant* MchMl K Set. LM£S. Oak RxJoe Y-12 Plant

FPC Adjustment by
Scaled 'Touched' Function Points

Variation of touch-adjustment used to adjust
the FPC without over-compensating.
$cale the touched function points to ADC
function point equivalents.
Scaled touched function points (STFP) can
be added to the ADC function point count
to arrive at a FPC that is representative of
the level of effort.
FPC Adjuitm writ by Seating Touehtd Function Print* Mchael A. Brf. IWES. Oak Ridge Y-12 PUrt

FPC Adjustment by
Scaled 'Touched' Function Points

• Total Work = WorktoctionaIity + W o r k ^ . ^ ^
• Workf^^ty is measured by the ADC FPC.
• W o r k ^ . ^ , ^ is measured by STFPs.

Total work (in ADC-equivalent function points)
= ADC FPC + scaled touched FPC

FPC AtJrujOiurt by Sca t r j Touched FuncSon Peart*. Mchael A. Bel , IMES. Oak Ridge Y-12 Piatt

FPC Adjustment by
Scaled 'Touched' Function Points

• STFP = Scale x Touched FPC. -

• "Scale" converts touched function point to
"ADC-equivalent function points".

• Basis for the scale is the statistical correlation
between effort hours spent per touched
function point count on a group of 'related' or
similar projects.

FPC Atfj-L-fltrnwit by Seating Touched Function Pont* Mchael A. Bel . LMES. Oak Ridge Y-12 Plant.

Source of Scale Factor

• Metrics repository can provide data that will
enable the calculation of Hours/Touched FP.

• From the repository, we can also derive
ADC FP/Hour.

• This enables us to compute
Scale = ADC Equivalent FP / Touched FP =

ADC FP/Hour x Hours/Touched FP

FPCAdhJ-mrtbySoingTcxx-hedFuKfionPants Mchael A. Bel. LMES. Oak Ridge Y-12 Ptart

Validation
("Your mileage may vary.")

• STFP technique is valid only if there is
significant correlation between effort hours
and (unsealed) touched function points.

• In preliminary sample projects, the correlation
seems quite good.
— The more time spent, the more FPs are touched.
- Correlation coefficients were mostly in the 80% to 95%

range.

• STFP technique is "self-correcting".
FPCAdpja*m*rtbjSafcjTcu*edFut»ionPdntt Mehaei A. Bel. LMES. Oak Ridge Y-12 Plant

11

Implications

FPC adjustment by adding STFPs holds the
promise to accurately represent the level of
effort required.
Unadjusted FPC represents the level of data and
transformation functionality.
Function point counts (or estimates) can be used
to measure both technology-dependent effort
and technology-independent functionality.

FPC Afljtfltfnvs by Soffig TOUCTMO Function Port* Mtftael A. Bel , LMES. Oak Pjdge Y-12 Plait

Function Point Count Adjustment
by Means of

Scaling Touched Function Points

Questions ?

Comments can be sent to
mxb@oml.gov

FPC Adfutfm « 4 by Sat ing Touchsd Fundi on Paints Mct iM l A. B« l . LMES. Oak Ridg« Y-12 PSw*

12

mailto:mxb@oml.gov

USING AN AUTOMATED
CODE MANAGEMENT
SYSTEM TO IMPROVE

CONFIGURATION CONTROL
PRACTICES

Presenter: Stewart Meyer

Savannah River Site / OPSDTB970001 1

Systems
« DCS with 21 nodes
■ DCS with 3 nodes
• Laboratory System
• Process Information System
■ Process Composition System
• 18 PLCs
• 6 Mini's with various Support Applications
• 7,604 Configuration Items
• (Adding the full scope simulator product soon)

Savannah River Site / OPSDTB970001 2

Previous CM Deficiencies

• Software documentation not integrated into
plant CM process.

• Used a directory hierarchy for development
vs. baseline.

• Change sets were entirely in paper.
• System backup the only protection.
• No audit trail on modules.

Savannah River Site/OPS-DTB-97-0001 3

Previous SCM Deficiencies
(continued)

Conflicts with temporary modifications.
Errors introduced by patches.
Status accounting not tied to plant CM.
Inadvertent overwriting of source files.
Ineffective setpoint control.
Hand off to production build process not
documented well.

Savannah River Site/OPS-DTB-97-0001 4

Process Improvements
• Software change process integrated into plant

change process.
• Software change status accounting integrated into

plant change process.
• New/updated SQAP's and SCMP's.
• New configuration indexes for systems.
• Introduction of the SCMS.
• Introduction of the media library.

Savannah River Site/OPS-DTB-97-0001 5

SCMS Overview
(Software Code Management System)

• Hosted on a DEC Alpha 3000-400.
• Operating system is OpenVMS.
• CMS is the SCM tool.
• Independent system using a client/server

approach.
• Focuses on source/baseline control, not

version control.

Savannah River She / OPS-DTB-97-0001 6

3

SCMS Overview
(Continued)

• Interface is a simple, in-house developed,
text based menu system.

• Many multi-step functions are automated.
• Enforces policies outlined in SCMP's via

pseudo functions.
• Employs very tight security and access

restrictions.

Savannah River Site / OPS-DTB-97-0001

SCMS ACCESS

M
B n

□ - i

TBJCTerXMmxw

HHtWOKaMtoSOfi

□
DEC A m

KOCtangRav

■Utaar

SavannaKaVer Site / OPS-DTB-97-0001

4

SCMS Security
• Uses either Proxy or Captive accounts.
• General users cannot perform tasks at

command prompt level.
• Access control at the OpenVMS level

supported by additional ACLs at the CMS
level.

• Several levels of access enforced.

Savannah River Site/OPS-DTB-97-0001 9

SCMS SCM Approach
• All changes become variants.
• CMS classes used to track baseline as well

as SCR lists.
• Variants created after implementation phase.
• Variants loaded to production system for

validation.
• Variants promoted to next generation.

Savannah River Site/ OPS-DTB-97-0001 10

SCMS SCM Model
CSus-Bueine

- -

•"HEET"

SCRCkss

(1A1

Savannah River Site / OPS-DTB-97-0001 11

Standard Functions

Many common commands are provided on the
menu, such as show elements or generations.
Concept is to allow full use of the tool without
having to learn the command language or complex
command syntax.
Generally, there is no "programming" involved
here, just converting user input to a command to
the CMS. (Advanced users may use qualifiers.)

Savannah River Site / OPS-DTB-97-0001 12

Enhanced Functions

• Check out by element, group, or class.
• Check in by SCR number.
• Different library history types.
• Class merges.
• Automatic merge class creation.
• Management reports.
• Transaction comments generated.

SavannahRiverSite/OPS-DTB-97-0001 13

Enhanced Functions
(continued)

• FTP file transfers to workstations.
• Promotions by class
• User log file.
• Empty and delete a class
• Saved user configuration.

Savannah River Site / OPS-DTB-97-0001 14

7

Enforced Policy Functions

• Upon check in, an SCR class is created,
variants produced, and inserted into this
new class. Variant letter codes are created
automatically.

• For non-concurrent libraries, reservations
are denied while any variants exist.
Modules released after promotions.

Savannah River Site/OPS-DTB-97-0001 15

Key Improvements

• Each product is stored in a separate library.
At any time, the current baseline can be
ascertained, as well as work in progress.
This, plus the configuration index, have
improved the identification of the product
makeup, to include vendor supplied OS,
tools, and other support products.

Savannah River Site/OPS-DTB-97-0001 16

Key Improvements
(continued)

• By using the SCMS functions provided,
patches are now stored and verified.
Reports from the developer produced after
verification are checked against the same
report run on the production system after
the patch is installed. This provides instant
feedback on possible errors introduced due
to typo's or incorrect field modifications.

Savannah River Site/OPS-DTB-97-0001 17

Key Improvements
(continued)

• By performing merges within the controlled
environment of the library, a necessary
function when allowing concurrent
development, unknown file corruption has
been reduced to zero incidents. There is
still a chance of overwriting a file, but it
will be discovered in the SCM process and
final close out during the SCMC review.

Savannah River She/OPS-DTB-97-0001 18

Key Improvements
(continued)

• In using the SCMS we can now perform
periodic verifications on controlled systems
with confidence. Executables as well as
source may be subject to this control and
review. The elements in the library are
compared to the equivalent on the
production system.

Savannah River Site/OPS-DTB-97-0001 19

Key Improvements
(continued)

• Configuration audits are now much easier.
Using the group or class contents we can
produce reports on the current status of any
library. There is also a separate status
accounting database application that, when
used along with library reports, provides a
clear picture of product status, schedule
implications, and resource assignments.

Savannah River Site /OPS-DTB-97-0001 20

Future Enhancements

• WEB enable the interface for the various
workstation clients.

• Integrate the status accounting functions
with the library functions.
- Verify SCR numbers.
- Automatic work flow.
- Modules automatically reserved.

Savannah River Site / OPS-DTB-97-0001 21

Software Engineering and Graphical
Programming Languages

Sandia National Laboratories

Karen L. Jefferson, Terry Porter, and Todd West

SmeaCaTO'ajca.a lim.|*»*M*/*JftC«TP«y.

Cwe^ipCJtfOt.'MALaMrjo
SamSa National laboratories

Project Overview

Project: Advanced Atmospheric Research Environment
(AARE)

Goal: Replace existing US capability to collect airborne
radionuclide samples.

Customer: Air Force Technical Applications Center

I Sanaa National laboratories

AARE Software Overview

User Interface

^ii;'## J

Hardware

Particulate
Sampling

WACS
Avionics
Detectors

a*f

w , *-?ii @J S<4

Graphical Programming Languages

B3~

Sir

(S J Sanoa National laboratories

Customer Needs

Maintainable and Reliable Software
Required following elements from Mil-Std 491

Software Quality Plan
g j f j s l Software Requirements Document
g§j[ji§ Software Design Document

Software Test Plan
I Coding Standards
| Configuration Management
Test Log
Programmers Manual
Users Manual

Sande National laboratories

£5 Software Requirements Specification

Developed a model of the system and system interactions.

• Developed and documented a syntax and semantics for the
AARE stimulus/response language.

• Each stimulus/response pair was easily transformed into
testable assertions.

[^TjSandB National laboratories

3

Software Requirements Specification

Example

.'•HniltT-i.. .- , , CITI I j ' l i
i i i i*^*tf i i l l

HD*^**
 l
T\'M-.*taTta^H^itJ'C'tejtrTrrj|'i£^r*'.

w StnEciag

• Each stimulus/response pair was independent which mirrored
LabVIEW's undetermined execution ordering.

• Traced system requirements to software requirements.

I SarxSa National laboratories

E Software Design Document

Reflected data flow paradigm of LabVIEW.
Tied design elements to specific software requirements.
Example

■+-+ -r—1-

DtaaUeAnand
Forward OparV
C*OM, Forward,
Spoof. and Ctae*

OtsxbteAftand
Forward Open/
CtoM. Forward.
Spoof, and C O M

Log ro* vara
VafcaOpanand

Sande National laboratories

Documented good coding practices
- Dataflow
- Wiring
- Global and local variables
- Naming conventions

Detailed code documentation
- Labeling wires and structures
- "Get Info" functionality

Sande National Laboratories

Utilized history mechanism to maintain description of
revisions.
All Vis maintained in library files.
Initially developer maintained modules locally.
During integration, one copy of software existed.
Fraught with perill!

I Sanola National laboratories

Summary

• Configuration management weakne
smaller projects.

• Successful in adapting engineering
graphical programming language.

• Maintainable and reliable code was
Force.

sses limit LabVIEWto

processes to a

delivered to the Air

[f j l j SaaJB NaUxial laboratories

Session B2: Internet WEB Applications

Chair Faye Brown
Lockheed Martin Energy Systems

Session:
Paper #

B2:l

B2:2

B2:3

Author(s)

Kevin Hill
Pantex Plant
David Leong & Fran Current
Sandia National Laboratories

Jennie Negin
Sandia National Laboratories

Title

Internet Strategies for Engineers

Exploiting the Intranet: A New
Architecture for Enterprise
Information
"Rightsiztng" Software Quality for a
Web Services Organization

'Vy'/y'"y"y# A

*yy yy&UA(itM<MH&&AW>V»l0>Wt^^

ernet Strategies For Engineers

Kevin Hill
Mason & Hanger Corporation

Mario G. Beruvides, Ph. D.
Industrial Engineering Department

Texas Tech University

introduction

■ Literature
m Research Problem
■m Subjects
■ Questionnaire
m Results & Analysis
* Conclusions

Information Gained From
r^LUerature

■%n®!% *&•$
&r fy&tS s ■. **v.v ■.».•. ^

Hoards of information to search
through. (Robinson, 1996)
Human involvement needed.
"Digest" and "Topics -' options on
LI STSERV platform can make mailing
list information easier to sort through.
Caution: Lurkers (Schwarzwalder,
1995)
• Avoid posting questions or subdivide.

^Information Gained From
i^^iterature

Companies may need to develop
Internet strategies (Cronin, 1996).
Some predict interest in the Internet will
fade due to false expectations based on
media hype (Makulowich, 1996A).
Search for a fact (Buckley, 1996).

.m£search Questions
:■/<■,ftfAtxuttjWt^^

How is the Internet being used by
engineers?
What problems are being encountered
in engineers' Internet usage?

Wit,?'
, / :■ 4'y* iects

■y^.---»-v..*-™y:\~™.,.MYs*x.-^^

Phone calls made to contacts at
companies.
Surveys sent to those who agreed to
distribute them.
Majority are engineers working for defense
related companies.
Less than 10% engineering managers.
One third are test equipment design
engineers.

-tjf'i^:

« ■ > ; . . • »» ^

Left Blank
5%

Design
43%

Manufectiaing
8%

Quality
Related

13%

(Hill & Beruvides, 1996)

\estionnaire - General
- Vyriir*wv*v»ftwM>rrffr«»i«t^^

What type of engineering work do you
do?
• Design, Manufacturing, Process, Other

(specify)
How long have you used the Internet?
Obstacles
Has the Internet changed the way you
do part of your job? - How?

file:///estionnaire

v'sJiy/py-vV ;

^^testionnaire - General
• % tfS&L*Wfi*>Wi*rM^

Benefit from training?
Most helpful aspects of Internet?
Comments

-Questionnaire - Rate the

^ : V > V 1 t t (> t f . y . a < > . f r V » i r i | i ; m 1 f t Y l i * V r Y t V r r ^ m§mA
IP Reliability of information from the

service.
The amount of unwanted information to
sort through before desired data is
found (clutter).
The degree of approval that your
company has for the service.

10

: *î af*wf*Wftsft*f
,
fXWcwwccawcaftw*wwftc<wflOMW*f^^

Response rate of 67% (61 of 91
surveys completed and returned).
Surveys received from 6 states and at
least 5 companies.

11

**£i
i&'rmTmfflTrttnYfflfflYiWffl^^

« * Exhibit 4 Use at Home & Work
so

so
70

g.
| 6 0

tt»
I
55 30

20

10

0 uu ■*-*-* \ ■ ' \ **"* I -^ I

i S
H*Alhom*
W=Alwak

5 § £ % 2 5

i i * n i
Internet Service

O so me times
□ often
■very often

(HiU & Beiuvides, 1996) tt

'bkiBResults
.. %tfaWIMItAWt&t4^^

Exhibit 5Outter

TailrtarbOTOfncnba*.**
responses far asch cttegoiyis
shown abovt ban. TNt
nunbar tqutfelOOK. For
exainpit.7 > 100% fcr R C .

Dsome clutter
□ much clutter
■very much clutter

(Hill & Beruvides, 1996) 13

■■■'■"■ fy

7?"' sss.% w ^4'f.
/¥< Results

>̂ ».:»>:||;̂ >TO»»..a»«m'»ffl̂ ^

Exhibit 6Reliability

* I e o

Internet Service

§
1 0 0

& 8 0

S
% 6 0

m 4 0

-% 2 0
a«

n J

58

%
't
k
■ ^

1 L

57

z
i

sH
:"..
>

i

32

~
*<

1

35

i

24

4
s

'„,

s

1

28

B;

..:
 j

19 7

:Si

;

■ — ,

Total number of ranfelerfc
response*; far each catogcfy
is tf»n above bare. Ths
tunberequelslOOV For
esample. 7 «100S far R C .

D somewhat reEable
□ reEable
■very reEable

(Hill & Beruvides, 1996) f4

% $ & > & ■

Exhibit 7 Company Disapproval

54 54 28 31 22 25 17 11

—
1
—

1
—

1
—

1
—

1
—

1
—

1
—

1
—

1

D

1

Total number of ngnoJai*:
responses far each category
is shewn above ban. Th*
lurfcerequals 100% For
example. 11 = 100% far RC.

5

I ten let Sendee

Oindfriorent

□ disapproves

■ hgtrfy dsapproves

(Hill & Beruvides, 1996) 15

t^M&w long have you used the Internet?
$P&a$«

M&M >3years

23 years
13%

1 to 2 years \
20%

0 to 1 year
53%

(HH1& Beruvides, 1996) 16

'y-,"y",/y
Y
,^yy%"

^Mgults From General Questions
**S^&ia2. J_lave yQU used ffe jnfemef fyr arjy Qf

the following?
• Vendor information - 75%
• Software updates & bug fixes - 75%
• Pose technical questions to vendors - 36%
• Pose technical questions to newsgroup -

30%

17

^S&isults From General Questions
y-/..'y' ' ' ' ■■' ****s
^^ftWiVtittV^VjllK'^W^^^

'Mart mi
E-mail was written in by 26% of the
individuals in response to the question
"What aspects of the Internet have
been most helpful to you." "Availability
of technical information" was written in
by 20% of the people.
Problems - Speed, bandwidth or traffic
problems written in by 18%

18

i^v>"

l/V^af obstacles have you encountered
in your Internet usage?
• Lack of time to explore - 74%
• Lack of knowledge of available

resources - 56%
• Lack of training - 48%

19

Rencounter recurring obstacles in using
Internet. •3$ K%^j^

Uncertain
15%

Disagree
30%

Strongly
Disagree

3%
Left Blank

3%

(Hill & Beruvides, 1996) 20

'r'.'JUhe Internet has changed the way I do
'■■WJV&

l^g$h of my job.
""*" ~"~ Disagree Strongly

Uncertain 10% Disagree
15%

Strongly
Agree
18%

Agree
56%

(Hill & Beruvides, 1996) 21

Ijwould benefit from more
xmf&aimng on Internet use.
V-«,t- n

'/Z'iZ'VyfflW?''

I

(Hill & Beruvides, 1996) 22

11

^Conclusions
--^%'W*)aw<c«ac^iA*f'3««»*cwt«c»Msca«cc6Cfl'^^

« ^ . ^ ^ a c ^ 0ffime jS an obstacle.
Training or advice from a "guru" may
help.
Access to vast amounts of data does
not always mean improvement in work
practices.

23

k:^£B>nclusions
' l ^ M m ^ 1 l i ^ - j : ^ m B m ^ f f r> •'M'Vt*------y>-'---.

Much more needs to be investigated
about Internet usage.
What degree of change has the Internet
had on engineers'jobs?
Can the Internet cut down on lead time?
What type of information is accessed?

24

REFERENCES
■ Buckley, W. F. (1996). Is the Internet really filled with endless

wonders? Amarillo Daily News. May 6, p. 4A
■ Cronin. M. J. (1996). Global Advantage on the Internet- From

Corporate Connectivity to International Competitiveness. New York:
Van Nostrand Reinhold.

■ Makulowich, J. S. (1996A). Net sitings: Future trends on the net
Online. January/February, pp. 37-38.

■ Robinson, K. L. (1996). People talking to people: Making the most of
Internet discussion groups. Online, January/F*k>ruary, pp. 27-32.

■ Schwarzwalder, R (1995). Engineering and the Internet A survivor's
Manual. Database. April/May, pp. 72-74.

■ Hill, Kevin and Beruvides, Mario, "Strategies For Coping With The
Internet A Survey of Engineers' Usage And Problems" Proceedings of
the 1996 National Conference of the American Society for Engineering
Management pp. 317-323

13

Exploiting the Intranet:
A New Architecture for Enterprise

Information

David J. Leong
Internet Technologies Project Leader

Sandia National Laboratories

Sawfa
SM4.fja*wlf*^mIA«Mo-ycp«Ta^)*j I FU l $&&&.
S.ft*.CaT>g«w*.a !ii.«n.*Wr.r.iC««w*T. W M - T UOOfStanQS
far *M TJMW satm S ^ r t M * . (T M I ? ***a*r

What is an Intranet?

• It is not cyberspace.
• It is a communications architecture.
• It is scalable to the enterprise

national,
lsbontonss

An Intranet Works Well Because:

• HTML is viewed commonly among the 3
desktop platforms (PC, Macintosh, UNIX).

• Existing documents can be relatively easy to
convert.

• New documents can be easily created in a
variety of ways

• The Web architecture is "nice" to your
network backbone

© National
Lafcorata

Key Points to Success

• Timeliness of information
• Information ownership
• Intuitive top level homepage

4
/ m \ Sandia
I m] National
U £ J Laborata

What kind of information

• Static Stuff
- Periodicals,
- Manuals

viewed?

Bulletins, Newsletters

- Corporate Policy and Procedures

5

can be

fV*-Jl Sandia
l m | National

Applications that Access
Database Information

• Dynamic Data
- Employee Phonebook
- Property Inventory Data
- Financial Information and Cost Reporting

6 © National
Uboretn

3

Three Tiered Client/Server
Architecture

Presentation

•n<iy»>wi-f

Function
C Peri Shell script NSAPI ISAPI

Data

Sybase Oracle Informix

Sandia
National
Laboratories

Applications that Update
Information

Interactive Interfaces
- Conference Room Scheduler
- Employee Timecard
- Electronic Purchasing Requisition

Sandia
National.
Ubontorias

Interactivity and Update Capability
What's Needed?

• Network security
• Client side event handling, JavaScript
• Web based workflow
• Full featured client side computing, Java

© National
Uborata

Security

• Client authentication scalable to the
enterprise

• Access control lists at the document and data
level

• Encryption between the client and server

10 © National
Irfxntn

5

Web Workflow from Action
Technologies,

^ s * ^ *

!

t
11

Metro

[| f c | National
U £ J laboratories

Java Capabilities

• Semi-full featured programming language
• Write once, run anywhere, network-centric
• Offers socket level connections
• Security? It is getting better...

12
f f f c l National

Applications on the Web, for the
Web

• "New On Our Web" (What's New)
• Subscription Service
• Web maintenance utilities
• Metrics gathering

© National
labonta

What's Next

• VRML will add a new dimension
• Plug-in support
• Microsoft's Active X
• CORBAandDCE

14

•

^^^J laboratories

All these things sound great, what
is the catch?

• Moving target syndrome
• Computer security

- Network centric computing is a new paradigm for
those who have been tasked with protecting your
networks.

• Cultural changes within MIS

15 [S | National
UfiZJ laboratories

Some of the Challenges

• Technical
- Network backbone must be sound.
- Distributed system expertise
- DNS, IP Routing,...

16 © National
laborata

Challenges (cont.)

Political
- It definitely helps to have a supportive CIO.
- It must not be an enterprise solution, not just

another tool coming out of an IS sandbox.
- Preach about the scalability.

17
Sandia
National
laboratories

Challenges (cont.)

Cultural
- Demonstrate the ease of use.
- Show users how this makes their daily job easier.
- MIS programmers can be reluctant to accept

cutting edge technologies.

18
Sanaa
National.
laboratonss

The Lessons Learned

The technical barriers can be overcome easily.
The cultural and political barriers are real and
must be addressed from the start.
Plan for growth.
The Internet Technologies are rapidly evolving. If
it seems overwhelming now just wait 6 months.
Get started!
Make it a tool for your company, not a toy.

19 MS) laboratories

"Rightsizing" Software Quality for
a Web Services Organization

Jennie L. Negin
April 2,1997

jlnegin@sandia.gov
505-844-4653

krt*Vc-UtXMmD*ptTtn>-&<*{Tjiar0W6ar
C«nnaDtACOi44ALnODCl

Sandia
fefonal.
IsboratonBS

Why intranets are Taking Off

Leverages installed networks & desktop
investments
Levels the playing field for PC, Mac, UNIX
Models the modern, distributed,
empowered organization
Information pull vs. paper push
Integrates words, graphics, data, audio
-and introduces new challenges in software &

information quality

Sanaa
National
laboratories

Page 1

mailto:jlnegin@sandia.gov

We want to "Stay in Business"

Meet customer cost, requirements &.
schedule
Meet management reporting requirements
Build an organization that people want to
work in
Build a niche - know your value added
Keep your eye on the future

Sandia
National,
laboratones

WebCo Organization Quality

Processes for business-related tasks, e.g.
-Naming files
-Answering e-mail & WebCo voice mail
Project plan
-Aligned with mgmt. & staff's performance plans
-Meet to monitor cost, performance & schedule

» challenge of constant change
-Update monthly, report quarterly
Documented on the Intranet
-includes plans, processes, calendars, etc.

Sandia
National.
laboratories

WebCo Product Quality

• Our products
-Pages & Forms
-Applications
-Top levels of the Intranet

• Our processes
-Gather customer requirements
-Prevent rework through proper design,

implementation & testing
-Maintain/support the product when used

retire when not
Sandia
National,
laboratories

Observe

Designing web pages is a lot like
designing good software
Good software design covers code &
documentation
Computer people are more likely to follow
good design principles for code than
documentation

mmtixstf
Sandia
National,
laboratories

WebCo Life Cycle for Pages

f j E l Sank
4amtuts*F 7 I F i l l National

1 " * laboratories

Considerations

• The WebCo customer pays for the work
• Rigor is a function of size of job, desire of

customer, importance of information
• We advise but don't dictate
• We have to maintain what we produce

-Single source publishing is getting there — tools
• Pages may be more than words & pictures
• Standards, e.g. Common Look & Feel

(CL&F), are in infancy
• Broken pages are not "showstoppers"

® Sanaa
National
laboratories

Life Cycle for Pages

Requirements
-Always ask "who will be using the page" "why"

"what do they expect to do?"
Design
-Default is a menu plus some embellishments
-Goal Oriented Design process in progress by

Andrea Cassidy'
» borrows from software design

Implementation
-Use Tool Kit - templates, CL&F
-Prototype & refine

tnmsuiscf
Sanaa
National
laboratories

Goal Oriented Analysis &
Design

Requirements/Analysis - our first step
(define the product and its goals)
-What is the product?
-Who is using the page, what are their goals?
-What is your content? (information elements)
Design - Goal oriented methodology
(design the product so that its goals are met)
- Information — How should information be

chunked?
-Interaction — How should it work?
-Presentation - How should it look?

10
Sanaa
National.
LsbofStonss

Life Cycle for Pages - cont.

• Test - does it meet the customer's goals
-Usability
- Navigation — tests interaction — i

• Production
-FTP to server
-Processes for maintenance

• Support
-FTP from server
-Date changed pages
-Configuration Management is in

■VaWTRX-SQf 11

■ole of tools

infancy
f j j j l Sandia

1 3 2 1 laboratories

WebCo Life Cycle for Applications

© Sandia
National
Laborato*

Considerations for Applications

Has to satisfy customer, management &
programmer - right amount of rigor
Has to match the "risk" of the application
-corporate or workgroup; cost; political
Has to support the speed at which the
Web changes
Integrated Information Systems (IIS)
Design Review Process for Low Risk
Applications - "Lite" Cycle

13 i m i National.
laboratones

• Planning, Conceptual Design Review
(CDR), Detail Design Review (DDR) can
be done by e-mail

• Unit Test & Integration (Code & Test) by
developer wittv-approval from Design
Review Team v"

• Testbed - IIS & user testing
• Final Design Review (FDR)
• Production & Deployment
• Maintenance & Support

I Sanda
14 i m » National.

' uDOfatones

"Lite" Cycle Stakeholders

• Communications/Marketing
• Corporate computing help desk
• Customer Service Units
• Database Systems
• Human Factors
• Infrastructure
• Production services
• Monitoring
• Security
• Testbed
•Training

•wmjm-JQr IS
f j Q Sandia
l m | National
\JL) laboratories

Are Our Products Rightsized?

• We're recovering costs
• Customers are happy, returning & referring
• Management is happy
• Programmers, designers and authors are

happy

tnmjmzqt 16 © National
laborata

Session A3: Software Process Improvement I

Chair Mike Lackner
AS/FM&T

Session:
Paper #

A3:l

A3:2

A3:3

Author(s)

Don Schilling
AS/FM&T
Don Rathbun
AS/FM&T
Michael Tiemann
Headquarters Department of Energy

Title

Quest for Excellence 1996: Reaching
for the Stars
Command Media System at the
Kansas City Plant (KCP)
Departmental Information
Architecture

■l^f'yyfffM^M^l,
j '4/'''/ IM 'yt yf"'-$

Questfo

Donal wc tilling
trial Federal Ma #asi% ng & Technolo

iEMcellence
yffri I" '■■i *■•• ^ 1

% * "*

Reaching For the Stars

•::TOfiiktakttMVrUfl*^mt»\Aiiimt^r£M3luMmCatna*^::.

SQAS Forum April 13,1997

SQAS Forum April 1-3,1997

"it

SQAS Forum April 1-3,1997

SQAS Forum April 1-3,1997

SQAS Forum April 1-3,1997
J

SQAS Forum April 1-3,1997

'^MPM^^^^^^^^^S^

SQAS Forum April 1-3,1997

* ""{'.

SQAS Forum April 1-3,1997

Command Media System at the Kansas City
Plant (KCP)

Don A. Rathbun, Staff Engineer
AlliedSignal Federal Manufacturing &

Technologies (FM&T)*
Presented at the 1997 Software Quality Forum, April 13,1997

Kirtland Air Force Base, Albuquerque, New Mexico
Sponsored by

Department of Energy (DOE) Quality Managers
Software Quality Assurance Subcommittee of the DOE Quality Managers

Weapons QuaUty Division, DOEAIbuquerque Office

♦Operated for United States Department of Energy under Contract No.
DEAC0476DP00613
©Copyright AlliedSignal Inc., 1997.

Total Findings by third party auditor 60, plus 21
Observations.
 Document & Data Control Findings 29

(Business process findings, not findings against work
instructions to the factory floor)
♦ Corrective action taken:

 New Command Media System implemented to replace the
paper document system that was in place at the time of the
preassessment Implementation was started 9/94.

 Training on new Command Media System.

AS FM&T Business Model Development

Functional Business Areas
Materials

Management
Production Engineering Finance Program

Management

Business /
Functions, ̂

Business /
Processes''

Functional Business Areas (5+or 2)
.. A major ares of activity within the business that

"*" » consists of a group of Business Functions.

Business Function (5 + or 2)
A business function fa a group of activities which

^ ^ together support one aspect of furthering the mission
^■^f the business. Categorizes "what" not how, such as

^Order Entry. Purchasing, Ship.

Business Process (5 + or 2)

Process ji^EBBiBl^—fr^iTmTri] >
Mips

A process is a specified activity that is repeatedly
executed in a business. A process can be described
by inputs and outputs, has a deCnable start and stop, and
identifies what fa done not how, e.g. Receive Material,
Detail Design, Project Management. 3

COMMAND MEDIA PROCESS

i..WAIiI/MAP::|
H::i:AS3s!iJ

GAKHiiiii
"ANALYSIS:

jjjjDEVELOPIilj
•iJOCbMENTS

iiVALIDATE:
JIlPROCESSii 4|:EPBOSHJ;

Structure
tmMz&Agm
W^SS&SXS^IIi.

Business Model -
Defines the home
for command media.
Command Media -
Defines how the
process is
conducted.
Controls - Maintain
the integrity of the
business model and
command media.

Command Media Numbering Scheme

Process Descriptions: xx.xx.xx.xx
Work lnstructions:xx.xx.xx.xx.xx

xx. xx. xx. xx. xx L
— > -
—** -
— * -

>

identifies Work Instruction
identifies Process Description
Identifies Business Process
Identifies Business Function
Identifies Business Functional
Area

3

Authors of Command Media

*$&'

• %J§mS§,
• fii^l^^^^

■ Document processes
through the

4 development of Process
1 Descriptions (PDs) and
1 Work Instructions (Wis).
1 ■ Identify required training
1 and qualifications.
1 ■ Desion formfc) fhaf will
9 co//ecf required quality
1 dafa and demonstrate

objective evidence.

7

Document Presentation
Concepts and principles are based on the
Information Mapping® seminar by
Robert E. Horn attended by KCP Command
Media Specialists.
Information is grouped into (7± 2) blocks
(no more than 9 pieces of information).

By chunking (grouping), the reader
• benefits from improved understanding of the

subject,
• finds 'chunked'information quicker,
• tends to group items automatically.

Process Map
Example

Controls.
Cmtom ar Orrjar,
EquptmntPrrxftM Capab&an
OurittyRaquramants

krput*

Rtarrbuutia
Orcan

Ordar

Diraetiva
Schaaiing
Ordarm

Ordan

XXJOUOUOC Project Mansgtmant
AraaiMCijatffn*yi*ajijaa<ii*»aXt>aoa*jTj^indloyl«m*rt*hfipl*MTnhg
arid omttotomaunt&aMcuatamarim^miattiarw mat.

UtatatPrtaadt Plan ftsM knptaffiant
Prqttt MnlcrPre'Kt Raara

Piqad

R*%i«wCmtam*sr D*y»top Pnfd
OrOtx Plan

StfKtPnafKt Confirm/Docum«*
Laidar Cwtomv

MartjjrAaaamNa
Tom EtaUahMXfca

EttaUM Pitfact AaaaaaCMantfr
Fl« Raaoureas

UartaV
Cuatotnarf
E*aU»

Ccrtacta

Budgatng

Partocm HfcltW
BuyAnalyaa

Eatabbahraant
ofDaMien

Manufactunncj
an)

RaaaurcasAra
AvalaUa

Ensura Continous
fcnpiiAWiant

E*aH«rh
AaauraneaPrceaaa

EnauraCUftena*
RaqutwnarU
An Mat

Ccnenuoua
fcnptwnant

EnauraPredtKt
DaMbcnla

Prqad
Ranfta

Oapoarion

OoaaOut

Aithfca
Pitact H«

Resources:
Cufianar Ordar.

kioujbuf Dtgaiaannfj.
SubjactAraaEaparts

►

Prefect Plsn

FtulRaport

Command Media Access-

♦ System is built on Microsoft Access® and
Visual Basic®.

♦ Documents are created in a Microsoft
Word® template and release is controlled by
the Business Systems Management team.

♦ User access is through a click on an icon on
a Window® of the Program Manager of a
user's PC.

10

Command Media Viewer

When a document is accessed by a user,
Outside In®, by Systems Compatibility
Corporation, permits
• Electronic viewing of the document,
• Printing ail or part of the document,
• Copying all or part of the document to the

clipboard.
\Outside In® will not permit the document
accessed to be altered by a user.

11

Summary of Results After Implementing
The New Command Media

Assessment Total Findings Document & Data
Control Findings

Preassessment?^ 60 29_
*Preassessment2/95 48 23 *
• Certification 4/95 . 1 5 3

6-Month Periodic 4 1
10/95
12-Month Periodic 11 3
5/96
18-Month Periodic 5 1
10/96

12

file:///Outside

S£^»1

Summary of Results

Rndings Summary

Graphical representation
of the 27month history of
findings during the
ISO9001 certification
process and from the
required periodic audits to
retain certification.

60

50

40

30

20

10

0

13 Preassess
#1

H Preassess
#2

■ Cert Audit

m 6Month
Periodic

□ 12Month
Periodic

■ 18Month
Periodic

ISO/COMMAND MEDIA
OPERATIONAL STRUCTURE

13

Practq Ste t r i t Ca*awWTfr
Parpa*: Ova*a»a^dan^(n*3erwaanpnxas.btsedpl£or^liyofCaafini^
Mc&tiTiAc*uvKitiii*fflaa-*^m*$ait-*ri&e.
Tn-farmry. Qutrlilyrcn'nvs of activities and issaes.
Ckakr. Majgexnent Representative
Maaakarc 6KCPKxstca+Mir^arcntRqresenti£ve

Pvyaae Majg^at)dmasee^day4o^aymyritrW)a'tcA'n&^B*aaata
Ma^»viCom*i«xlM«iiiplacar)ail,quiljty,co!t^tivllH*^th.
Fruwairy: Ad hoc, axe<>{ twice son!hly.
Mcraakcrr 8 sdud^ ISO Coordinator

Baaaaess SysCMBB Maaaj
Provide aJiiii ttsUafjyc support for the
ntiHijhrnent and maintenance oCPPs &.
Wis induing foumt review, release
control* and archrvil.
Moaktrs 4

ISOCMraHntar
Ensure plantwide compliance to the ISO
9001 Jtuidrji RtspcRacJefcfrasuriig
Command Meda supports ISO 9001 and
for pafbnniig revi ews and evaluations
throughout tie ISO 9001 processes.

Practxsacaakn
Owners ofthe plant processes.
Responsible for the technical content of
PDsandWls.

Ca*aiaaia<**t***tfciSfacfaJla»»agroup of local area cqart^liiirjedinpixcessmippingwith
cxprsaKemproceaa^tsedplilcaophy'. AvailabletopKmdeassistjnceasneeiled

14

Continuous Improvement- Command Media System
• New User Interface/Delivery

- Intranet Browser - Netscape®
• New Data Management Engine

- Lotus Notes® - 4.0 or greater
• New Functionality

- Cross-Document Searches
- Hypertext
- Possible "Lower Level" Document Links

• Timing
- Functional Prototype - 6/97
- Production System - 8/97

15

Departmental Information Architecture
Software Quality Forum

April 1-3,1997
Albuquerque, NM

:iSffiA<XA«^ecam*;AytoiiOffifco& &

ca-^ir-tboAvaiit

Team

jQNtt&iafe

Introduction

Team

/jfAC
■ X y„-y<y ^'f't y„JX $* <K, yift T'&$%,

Department of Energy Strategic Plan

Information Technology Management
Reform Act (IMTRA) of 1995

Telecommunications Act of 1996

Office of Management and Budget (OMB) Guidance

OMB Memo, Government Performance and
Results Act of 1993

cfat/rtftecMajftQ ppt

Introduction
Team

-y>"
$jpll3#^^ ' *'^

„.'*Hte',..

fWi"

pfy Support simplified work processes (reduced,cpsi^vv^^lf"}/;%
improved effectiveness) r5? 0^» ; , ;Wl | i ;

p^Demonstrate a return on iavestmentfequal to 6r better:s'/;/}'-.
r than alternative resource" use^jisklcffusted)^"^' £<&/%%',

■■•• .•■■• ■•■.■'>'■.■■.•. ^ ■•> . . ■■ ■■ > ' '* . ',!,;/'?.?,"'..

j&aBe consistent with other agency architectures... and
specify standards (achieve vision and F2K goals)

c*»e,Vo*»G,*

DOE Information Architecture Model

DOE
Architectural

Model Concept

Sore* VOmLIlx£aoAt^ab4{ranr.auf<«l

DOE Information
Architecture Concept

Team

Architecture Guiding Principles
(Parti of 2)

The aichitectuie is user-centric (information comes to the user).
The aichitectuie provides flexibility with modular design and
implementation.
The architecture will be established on an "open systems" philosophy.
Systems must be interoperable.

Sow V B t M f TTrrFffrtaiTmr * " ■ * " * a ^ y * A

CtVWy^., thvTtHt

Architecture Guiding Principles
(Part 2 of 2)

amammxamaamawmaasam
Team

Security is designed into all architectural elements, balancing
accessibility and ease of use v/iihprotection of data.

•j Information stewards should be identified to ensure quality and
accessibility of information resources.
DOE complexwide access to information is the rule rather than the
exception.
The Depaitment's mission will be accomplished by use of emerging
technologies to synergistically support business processes.

3«JW v-%*—T TTrrFmrriTfrTa * t f - * ' * - r * J

C-W.J!|*-«>A*&PK

J |JK| | |L Information Architecture Integration Model

Team

IM Functions Business Relations

RECOTOS
i.*AHAG&X£>ir

>rWC*.TtOi.

«AMAGEU»JT
:::flVE8BtG»Ts *cou©raoN

Setnr V«ia--xl^Tf-rT<y^-iaXj*rtt.'rt-^er

C a W y ^ L r t ^ P f f t

Information Architecture Publications

Team

Volume X The Foundations - March 1995
DOE IA Standards Adoption/Retirement Process

January, 1996
DOE IA Profile of Interim Adopted Standards Guidance

November, 1996
DOE IA Baseline Analysis (3 Parts) - December, 1996

(DOE IA Baseline Analysis Summary)
(See http://www.hr.doe.gov/iat)

DOE IA Guidance - est. April, 1997
DOE IA Vision - est. May, 1997
DOE IA Architectural Methodology Guide - FY97

caWnatAafiaa

Team

Information Architecture Program
Future Directions

(Highlights)

Iriitia^DepartmeafellA ProlgraigWY97\

Publish DOE IA documents
Increase awareness - IMPACT meetings, speakers, programs, literature
Provide help on selective LA start-ups and out reach
Focus attention on IA successes
Establish seed money for worthy IA initiatives

rM^e^ili4-^l^tiMtioriali^IA Program Goals (F£9i8ft

Establish grants for selected pilot IA efforts at sites and within programs
Reinforce Phase I education and out-reach
Establish a measurement program (e.g^ standards used)
Conduct liaison visits outside of HQ
Update DOE IA Baseline Analysis and focus on business processes
Build local architectures
Conduct meta-data and architectural cross-cutting reviews

5

http://www.hr.doe.gov/iat

DOE IA Guidance Highlights
riaraaraWttiiaBMitM-aMwnwrff-TOurfi111^

Team

Eight Guiding Architectural Principles

Minimal Departmental Architectural Design Characteristics

Architectural Program Guidelines
Roles and Responsibilities

Process Ownership
Data Stewardship

Methodologies, Design Approaches, and Modeling
System Design, Development, and Implementation Objectives

For Increased Flexibility and Interoperability Based
on Investment Objectives and Technological Maturity

Best Practices, Benchmarking, and Measurement

Standards

Team

Information Architecture Program
and Software Implications

A highly flexible and interoperable architecture depends
on quality software - everywhere, in parallel, and
concurrently

Software integration of COTS (software NOT invented
here) will increase through extended re-use of objects,
meta-data, and code in an increasingly heterogeneous
environment

The use of middleware and COTS solutions will increase
interoperability needs and to extend groupware and work
flow capabilities throughout the business areas

User-centric Departmental and Corporate Systems users
will increasingly rely on computing resource transparency

J

Team

*********** *!VV*a> ** ****** **+*■**■?*'. '*'"*•.% j

?M ̂ DiscnssioitL „4\-

4i%7 /"
syy„ t.y?/y//yy' ,,..,.,/„ *',,?',, ,,,, X^
'/f %f ,/„?}'% i yy , '"/y , , " , ,
<,, ,y,,'//*' ,y,//'<; ' ,, / t '/

' i '"', %'y yy,,"«'

ft-/;

£:.
yyZ,

ear»««bcMVsnt

Session B3: High Integrity / Formal Methods I

Chair Dave Peercy
Sandia National Laboratories

Session:
Paper #

B3.1

B3:2

B3:3

Author(s)

Larry J. Dalton & Marie-Elena Kidd
Sandia National Laboratories
Victor Winter
Sandia National Laboratories
Alex Yakhnis & Vladimir Yakhnis
Pioneer Technologies

Title

Meeting the High Integrity Software
Needs of Today and Tomorrow
An Overview of the ASTSoftware
Construction Methodology
Towards Automated Construction of
Dependable Software/Hardware
Systems

•feeling too High Integrity Sottwar* Nttfe of
Today and Tomorrow

Presented at: The 1997 Software Quality Forum
April 1,1997

By Larry Dalton & Laney Kidd
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

High Integrity Software Project Sandia National Laboratories

HIS Prtstntetion Outiint

The Problem and Our Vision

Introduction of HIS Research Domains

High Integrity Software Project Sandia National Laboratories

» Of* tflte **«*■*%* 0 i « ^ ^

Fundamental errors in the design and testing of
the software for the inertial reference system
(IRS) caused the failure of the first Ariane 5.

Arane 5 bunch on June 4.1996

High Integrity Software:
Reliable

" Safe
Secure
Robust to Malevolent Attack
Quantifiable Surety

Sandia is conducting "world class" research in software/systems
assurance for systems that protect nuclear weapons, nuclear
reactors, financial systems, medical records and that control the
car you drive to work.

3*wm&MibiiUbbUMUMbtliSS' iUiUbUUllUMilMUUtbUUUbllUAlUibUi&bllUblbbtliKe*«**w** Arane 5: Launch +36 7 sec.

High Integrity Software Project Sandia National Laboratories

Th*conH>^^ofsystenttl(Kf%^%s«t«vnu^
fester rate than ow ability to manaootho rtsfcs
"Despite SO years of
progress, the
software industry -
remains years
behind, perhaps
decades short of the
mature engineering
discipline needed to
meet the demands of
an information-age
society."

Scientific American
Sept 94

... an order of magnitude
growth in system size
every decade (with

attendant vulnerabilities)

A growing dependency on complex systems without attendant surety
simply means that some really bad "train wrecks" are coming.

High Integrity Software Project Sandia National Laboratories

Tha WS vision Is simpte
but immanstfy difficult to achlava

Vision:
Establish quantifiable confidence
that a system is safe, secure, and

under control

Achievement of this vision is a Grand Challenge that requires
great talent and resources

High Integrity Software Project Sandia National Laboratories

Softwara Surety Tachnlouts today and in
tha tutors

: , / ' " , ,'/,y y , , ' , / ■

Qualitative
■4 y* / * **ss*s4**P.* ,/■■>

fsBEBSssf • _ &

Today |
Today, we have we// established software evaluation
methods, but they do not give us quantifiable confidence.

High Integrity Software Project Sandia National Laboratories

High Integrity Softwara
«A Bio Part of tha Prohlam*

"Several significant studies on the sources,
nature, and distribution of software defects
underscore the importance of specifying a
complete, clear, and correct set of
requirements for the software. For example,
[Basil and Pem'cone, 1984] and [Jones, 1991]
provide evidence that approximately half of
software defects can be traced to errors
made during the requirements stage.",
Source: High Integrity Software for Nuclear Power Plants,
Candidate Guidelines, Technical Basis and Research Needs,
the Mitre Corp. Prepared for the U.S. Nuclear Regulatory
Commission, June 1995

High Integrity Software Project j i f l Sandia National Laboratories

HIS Prasantation OutAlna

The Problem and Our Vision

Introduction of HIS Research Domains

High Integrity Software Project fnpj Sandia National Laboratories

Corractnass Rasaarch Tracks hava a focus
Develop and assess
methods and tools for
"correct by construction"
systems and software
Develop and assess
methods and techniques
that improve the informal
specification domain
Development of virtual
objects for full-scale
testing of automated
systems (robotics)

Jz*^5**' ru i ' y^
s%

The Correctness Research will provide methods and tools for
building surety into systems and software

High Integrity Software Project Sandia National Laboratories

Abstraction* Synthasls and Transformation
tAST1 Protect

Q Why:
o One of the major concerns in the

development of high consequence
software is the construction of
correct machine executable code
from a nonalgorithmic formal
specification.

Q What:
o Develop theory and tools that

model the real world as directly as
possible and support verifiable,
highly-automated software
construction.

Q How: >
Q Point of contact:

o Victor Winter of Sandia
High Integrity Software Project

**ia^V^^^r*K^t^r^^^^K V ^ ^ ^ W N l W

:
;Absttaction::;;r

:
:-f:-i

:
;:;;

;
:-;;;-

;

:|;l.Siatic State Space;;;:^|:;
;V;VJ ̂ Transitions, ■■''■;& -:

f■•'■:'.
.Synthesis::::::
Z'\ Automated Reasoning"'

' Provides "Correct By"" "
Construction" Algonthm

Transformation
Automated Syntactic
Rewrites
Verifiable

implementation

Sandia National Laboratories

Vlsuattiation of Abstract Obtects Protect
Q Why:

o It is problematic to assess correct
implementation of requirements
for high consequence software

Q What:
o Improve cognition of software

systems behavior and improve
software surety confidence

a How:
o Provide an environment that

allows visualization of abstract
objects and animation of program
behavior incorporating
requirement constraints.

Q Point of contact:
o Guylaine Pollock of Sandia

High Integrity Software Project

Visualization
'"Medium

Constraint Verifier

Sfafio'4
Dynamic

Program .
(Target Code)

Requirement
Constraints "

...System. „
Requirements

Sandia National Laboratories

Softwara Tasting for High Consaquanca
Automatad Svstams Proiact

Why: Software testing difficulties
■ not possible to run system for extended

periods of time
■ not possible to operate system outside

hardware design specifications
■ limited supply of raw material
■ error conditions cannot be created without

causing hazards to equipment and peop
What:
o Create the capability of testing large

complex systems using Production Control
Software through the use of a combination
of virtual and real objects.

How: >
3 Point of contact:

o Lilita Meirans of Sandia
High Integrity Software Project

CocCTptaal InfrtUTWrtcrTC

Sandia National Laboratories

Systems Immunology™Tracks hava afocus
Q Develop and assess methods and tools that "immunize" systems

and software for fault conditions
Q Develop and assess methods and techniques that are immediately

applicable to today's high integrity software problems and needs

MgWf
*&^H
Augment Modits
wkhPEx

a (bd ♦<<!»'

lJ»plae.ofeo<J» ^ * ^ j S t * ^
-**■ •path m « upg%a point

TatsttCodcwrni^
tflibtddtd P£» M S

The Systems Immunology™ will provide in-situ (embedded)
methods and tools for dynamic fault management

High Integrity Software Project m Sandia National Laboratories

Critical Softwara Eyant Exacutlon RaBabBlty
(SEER)Projact |»"" l«3H!

Why: — — —
o Software developers

employ adhoc,
complex, and potentially
buginfested methods to
ensure critical software
event sequences.

What:
o Provide a high level of confidence that critical software driven event

execution sequences are maintained in the face of transient software or
hardware failures in both normal and abnormal operating environments.

How:
o Develop a repeatable, mathematical based solution using finite automata

(FA) to develop a method to enforce critical event execution sequences.
Point of contact:
o Laney Kidd of Sandia

High Integrity Software Project Sandia National Laboratories

Digital Davica Isolation & IncompattbQity
IDfflProiact

o Why:
o It is not possible, with

absolute certainty, to say
that a computerbased
system will never reach a
disastrous failure state. For
identified critical functions,
Dll can guarantee
safety/security for normal
operating environments.

Q What :
o Provide an electro

mechanical "stronglink like"
device (integrated circuit
size) that keeps electrical
paths of critical signals open
in case of faults.

High Integnty Software Project

1^1 Op r v
f WPi

1 T O W f f t T
r

V
) ■

f^sss^; Ma ■:..
m-'f""y.;

I Q How:
Q Point of contact :

o Steve Becker of Sandia

Sandia National Laboratories

Sacurlty & Svstam Fault Analysis Prefect
Q Why :

o Softwarecontrolled systems can reach unacceptable states due to
either hardware faults or software design faults. Analytic methods are
needed to identify hardware that, should it fail, will allow the system to
reach an unacceptable state.

Q What :
o Develop a topdown fault analysis methodology which will be the basis

for a design strategy for highconsequence systems.
Q How:

o The analysis methodology, based on FaultTree Analysis, will identify
highconsequence hardware failures in softwarecontrolled systems.
We would also like to extend this methodology so that it can be used
to develop safe and secure software code

a Point of contact:
o Edward Fronczak of Sandia

High Integnty Software Project Sandia National Laboratories

Systems with unkn^ l i ^^^^^^S^^ i | | Jyue to
be builj^'^^P^^^ft^^^BIISjII^

Quantifiable c g n f j ^ f ^
monumental l|ls|tjha|ftasjirie^^
without greaisucejiss 0 V S " « i ^ . ^ | j ! a * d | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ S
New approacie^riev£^
science, frefhjJdeas, great q&pĵ raS^̂ ^̂
great determination and resource! .wff.be reqii t^: |oif | | l i i ; l^
several years to achieve the vision of quantifiable ^ ^ : i | | | | i p
confidence in software based systerns>. ' ^1 1;> I f l l l
It is absolutely essential that wejeommrt ourselves to ;;
improving the science of sqflr^re--based^ystemsj^llliylyjlsil

|il!»*

http://wff.be

ABSTRACTION,

S YNTHESIS &
T RANSFORMATION

Victor L. Winter

•bote n a ina?narwn bbonftry cf-nwdk-j
State Ca}><ratM t̂ Uidtf>-wJ*-t*WCgnpiqr.
fcr IMIJO*** St** DtpstSMrteTCaaTCr «rf«
C«*»AD.C-ACO«-J*iaMC00

=©

Outline
• Context of this research

— High-Assurance Software Construction
• Domain Specific Software Construction

— An initial formal model: <S,T,'P>
— Abstraction
— Synthesis
— Transformation

• An Example

Software Construction

Validation

The Process of Constructing Software

algorithm
design,
optimization

formal or informal?

Proof Development

Direct Proof: The implementation satisfies the
specification
- proofs are often at the wrong level of abstraction
- inability to reuse proof parts in other applications

Meta-Verification
- prove the correctness of the software development

process

3

Safety-Critical Single-Agent Reactive
Systems

• Reactive System
- some aspect of time usually plays a central role (e.g., state

changes may take time—they are not instantaneous)
- controller polls sensors to determine what state the

system is in
- parallel activities are often possible

• Single-Agent
- all transitions initiated by the controller
- deterministic transitions

The Production Cell: A single-agent
reactive system

m

Formalization:
<S,T,P> + Specification

• Static state space
• Transition set
• Parallel Potential
• Specification

* Provide a direct mapping into the formal world.(i.e., model the real
world as directly as possible)
• Support verifiable, highly-automated software construction

The Formal Model

• Static State Space
- a discrete multi-dimensional space
- does not have a temporal dimension (e.g., motor on)
- cumulative information (past states + current sensor

information)
• Transition Set

- defines single state changes
• Parallel Potential

- defines which transitions can be carried out in parallel

©

Specification

• The set of all algorithms that solve the problem
• Defined in terms of the formal model

Software construction:

Specification + <S,T,P>) implementation

Abstraction and Synthesis

Transformation
• Syntactic Rewrites
• Verifiable within an extended denotational

semantic framework
• Automatic Application .
• Purpose:

- optimization
- introduction of low-level detail
- targeting a specific computing resource (e.g.,

single processor, multi-processor)

Modeling Phase: Transitions
• {Precondition} move {Postcondition}

{state(fb(0, x>), table^ ,R(y2, v3)))}
add_blank
{state(fb(l, xj, table^ ,R(y2 ,y3)))}

{state(fb(x1, x2), tableOi, R(0,1)))}
tableright
{state(fb(x1 .Xj), table(0, R(l,l)))}

■^r

©

Parallel Potential

{
(table_up, table_down),
(tablejeft, table_right)

}

Construction of a Formal
Specification

• Definition:
. processed - a plate is processed when it

"disappears" from the table

• Mbnnal Specification:

"The objective is to make the system
process an infinite number of plates.'

©

Formal Specification Template

spec = [state(fbfo, x j , table(0, R(yi,y>J)\
state(fb(x3, x4), table(l, RCft, j/J))];

[state(fb(x3,j:4),table(l,R(yi,3/2))), _
state(fb(x5,x6), table(0^(y3,^4)))] spec

^^^mp^^m^^^^i

Synthesized Abstract Algorithm

controller = ({ state(fb(0,0) table(0,R(0,0))) };
addjblank;
fb_motor_on;
fb_motor_on;

);
({ state(fb(0,0), table(l,R(0,0))) };

tablejright;
table_up;
table_down;
tablejeft;

{state(fb(0,0), table(0,R(0,0))) };
);
controller; ©

11

Transformation Phase

•. Theorem: If two moves are independent, then
they can be carried out in parallel

if{Q}(ml;m2) = {Q}(m2;ml)
then {Q} (ml || m2)

• A transformation:
(?; tablejeft; table_down; ?)

(?; (tablejeft || table_down); ?)

©

A Conditional Transformation
♦ if m2 || m3 then

(ml\\m2);m3

((ml;m3)\\m2)

• An Instantiation

((table_right || table_up) || (addjblank; fb_motor_on));
(tablejeft || table_down>,

. (((table_right || table_up);(table_left || table_down)) || (addjblank; fb_motor_on));

Note that optimizations are starting to localize component
behaviors! ©

Optimized Abstract Algorithm

Abstract Algorithm =

(add_blank; lb_motor_on; fb_motor_on); f

where

f = (((table_right || table_up);(table_left || table_down)) || (add_blank; fb_motor_on));
(fb_motor_on);
f

©

38Z8S222ZS22£2!8$$2Z

Towards Automated Construction of
Dependable Software/Hardware

Systems*

Alexander Yakhnis and Vladimir Yakhnis
Pioneer Technologies & Rockwell Science Center

1997 Software Quality Forum, April 1-3
Albuquerque. New Mexico

*Thh research was partially supported by Sandia National Laboratories

mmmtswss&i
1 I

^Dependable systems

♦ admissible initial conditions imply functional
behavior

♦ inadmissible conditions imply safe behavior
♦ it is difficult to subvert system function and/or

safety:
Aby agents unauthorized to use the system
Aby authorized use of a system

^Dependable systems: challengies

♦ Requirements keep changing:
A during requirements analysis
Aduring design
Ain the course of system use

♦ Adapting to changed requirements
AHow to localize a needed change in the system?
AHow to be sure that the system is OK now?

♦ Do we need to know why requirements have
changed?

'""•«'»»™™™»™»»»f

^Partial Delivery of dependability: Understanding

♦ Understanding system requirements and system
organization
A Hierarchical sequence of nonobject models
A Object models

♦ Limitations
A Usually "objectoriented" is not combined with "hierarchical"
A Objectoriented approach was so far mostly limited to the

softwareonly system components

^Outline of the proposed approach

♦ Hierarchical object models linked by correctness
preserving maps

♦ Initial model is a (partial) system model capable
of expressing some requirements on system
behaviors

♦ Split the requirements into several more simple
conjuncts

♦ Satisfy each conjunct by incrementally extending
a model satisfying the first conjunct

^Outline of the proposed approach
The Nature of Hierarchies

♦ The number of requirements increments bounds
the depth of the hierachy from below

♦ A complexity of satisfaction of a requirements
increment influences the number of levels needed
to achieve the increment satisfaction

10

WOutline of the proposed approach

♦ Is it top down or bottom up construction?
♦ It can be either or both:

ATop down for several requirements increments
ABottom up for several other requirements increments

11

'Outline of the proposed approach

Components of the approach
A Object models

■ ■ Universal Language Notation (UML)
■ UML supporting case tool (under development by Rational,

Inc.)
A Abstract State Machines (ASM) models

■ for proofs and automated prototyping
A Viituarprocesses in hardware description language

■ VHDL (for executable prototyping)
A Correctness preserving maps (CPMs) and transformations

12

^Outline of the proposed approach
The automated tools

Visualization tools for the approach
A Industry animation tools

Rigorous design tools
▲ Deductive Synthesis
A LG algorithms
A Gametheoretic algorithms
A Generic algorithms

Rigorous Verification Tools adapted for partial functions
A Formal specification languages: LARCH, Zed, Penelope
A Software verifiers: Computational Logic, Inc., Otter
A Other provers: PVS, HOL, LARCH PC
A Gamethreoretic based verifiers

Validation Tool: VHDL Virtual Prototype

13

timmmamummmmimmmiiissstm,

^Outline of the proposed approach
System Modeling & Requirements Analysis
_ . ' r \ T \ A J^taaa^mm^a*maaa**a*aa*aa*aa*aa*aMa^maa*h. ^aJMWtMrtMMN

: Requirement jOOAg extended | C o J A S M

j ̂ t ^ n t F ^ ™ ^ ' ^ ^

i Requirement i
subset, ■

12nd Increment!

model
extension

° ° A | extended | C o
~^*1UML Model!

CPM

ASM
Model

Co = compilation U = understanding
CPM = correctness preserving map UML = unified modeling language
ASM = abstract state machines OOA = objectoriented analysis

ffltomqiVrW!^^ pnwwwpitf^

^Outline of the proposed approach
Rigorous Design

"Correct by construction" synthesis
■ "Winning strategies" via MAS
■ "Almost winning strategies" via

Linguistic Geometry (LG)
■ Deductive synthesis (DS)

A Proved refinement
transformation (RT)

A Generic algorithms
"Formally verifiable" design
■ First design, then prove coirectness

by constructing correctness
preserving maps (CPMs) between
design levels

(extended
UML Model!

ASM
Model

(extended |Co
UML Model!

ASM
Model

i OOD

(extended \
c
^_

UML Model!

CPM

ASM
Model

15

^Prototyping and Simulation in the
Course of Design

OOD

RB21
u're™ent I V i extended 1^2. fAStX~\ Co| "{,J^L" | rimui,tion T ^ g

._.?***• . r ^luMUModei^^l M o d d l ^ virtual *^ § ?

CPM
T~ jprototype

Abatrmrtion •

^Removing Obstacles

♦ Partial functions and operations
A Array x(l:100), division of numbers

♦ Presence of nonalgorithmic requirements
A Absence of starvation, deadlock

♦ What is the basis for uniform treatment of
software and hardware?

♦ Dealing with uncertain sensors

20
™>»t~<tmx>xxt*<*«i>^^ xemm»>*xmmK*^^

▼/4 Control System with Uncertain Measurements
Guaranteed Guidance to a Position

Model vehicle dynamics
▲.Position x
A Velocity y
A Acceleration aF1,0 or 1
▲ Dynamics

■ x'(t)=y(t)
■ y'(t)=a

Requirement
▲ Find a control strategy to

reach the target at (0,0)
from any point (x,y)

▲ using sensor with error

Classical solution tails to reach the origin
due to imprecise sensor measurements

21

NB

^A Control -System with Uncertain Measurements
Restating the Problem

♦ Reachability problem
▲ View a measured location p in

the phase space as a disc (vs.
a point)

▲ Golden disk: D(p,e)
▲ Place the golden disc

completely inside the red disk
D(0,r), rD3e

♦ Stream= Bundle of all
trajectories
▲ through disk D(0,r2e)

SB

sensordat&v
.a=l

▲ without switching

a=l

11

^Advantages of the Approach

♦ A choice of hardware or software implementation
may be postponed until later model design stages

♦ System prototypes and simulation of system
behaviors are available at the earliest design levels
and long before any hardware is built

♦ The approach provides a collection of parameters
of confidence for system dependability

24

wCurrent Progress of the Approach

V. Yakhnis [3] describes hierarchical object models
A. Yakhnis, V. Yakhnis and V. Winter [1] describe verification in the
presence of partial functions
A. Yakhnis [2] describes verification with respect to specification of
concurrent processes
V. Yakhnis, A Yakhnis, B. Stilman [4,5] describe how to rigorously
build control grammars in linguistic geometry used in order to satisfy
computationally intractable requirements

25

+Refi erences
1. A. Yakhnis, V. Yakhnis, V. Winter, Software with Partial Functions: Automating Correctuess
Proofs via Nonstrict Explicit Domains, Proceedings of CADE-] 3 Workshop on Mechanization of
Partial Functions, New Brunswick. 30 Jury 1996.
2. A. Yakhnis, Refinement of Strategies Within Multi-Agent Strategic Approach and Linguistic
Geometry, The IIGSS, The Second Workshop, Session on Formal Construction of High Assurance
Systems via Linguistic Geometry and other Methods, January 9 -11.1997.
3. V. Yakhnis, Constructing Hierarchical Object Models via Object-Oriented Stepwise Refinements.
The IIGSS. The Second Workshop, Session on Formal Construction of High Assurance Systems via
linguistic Geometry and other Methods, January 9-11,1997.
4 V. Yakhnis, A. Yakhnis, B. Stilman, Managing Large System State Spaces via the Linguistic
Geometry (LG) Trajectories, Intelligent Systems: A Semiotic Perspective, Gaithersburg. MD.
October 20-23.
5. B. Stilman, V. Yakhnis. A. Yakhnis, A New Approach to Formal Proofs of Correctness in
Linguistic Geometry, The IIGSS. The Second Workshop, Session on Formal Construction of High
Assurance Systems via Linguistic Geometry and other Methods, January 9- 11.1997.

26

13

Session A4: Software Process Improvement II

Chair John Hare
AWE United Kingdom

Session:
Paper #

A4:l

A4:2

A4:3

Author(s)

Cathy Kuhn
AS/FM&T

Ann Stewart
Lockheed Martin Energy Systems

Gail Benefield
Lockheed Martin Energy Systems

Title

AlliedSignal Capability Maturity
Model Assessment & Improvement
Processes
Lessons Learned on Utilizing the
SEI/CMM in the Federal
Government Work for Others
Environment
"SWiM" Your Way to Software
Quality

I

;
:
i^^ ' .^5^

: w
V/>^?^¥

J
A"

; ,
¥'V5?5ft '?**<

,
".^

:
.K.^ -SP*!£ss^.'ffi'*£.'i?*$?S£'"Si

l
'*>''.'., iSSS.'^". sV:!

;
S?^^V.

>
\«.f>/.,V^:*'?. Y>*".\,7 S^fJ!?*^VV.*^Vft*.SV.%?S'.'.

AlliedSignal Capability Maturity
Model Assessment & Improvement

Processes
VA*CwVW.̂ JVV*.>W.̂ .*"I*./£v>./CvvC'y*>^ /M/M.' lw'/A!% V/WV/AV

1 A*V %VVWAVĵ ^A^VJVVV^Wftrtn*VWi*\%%W^̂ rtf̂ .*> VaVaVAWAi** % Vl*" VAVAW •V.V.'.V.ViA.V*'.*'

by
Catherine M. Kuhn

AlliedSignal Federal Manufacturing & Technologies/KC*

Q^«a^aya^Ur*aad*aalaaDafailT^<rfEf^CTyuofiafCo**»tfWo.
D6ACC*7*J0P00*J».
CanntMJUkadSoia/ he. 1MT

Answers:
>■ "Competition is Fierce"
>■ "Higher Quality Products Are Demanded"
*■ "Lower Costs Are Expected"
>■ Software is involved in eyery aspect of our

business from receiving an order, thru
production, to shipping

SQAS Forum April 13,1997

Answers:
>■ "It's clear if you don't have mature, managed,

processes - you will always be behind in terms
of meeting customer expectations for quality,
speed, & cost"

But How Do You Get There??????????

AlliedSignal efforts to improve Information
Systems Software Processes

Why Information Systems?
^Information Systems software drives and

controls the business - its critical to the
company's economic well being

SQAS Forum April 1-3,1997

\£, The AlliedSignal Process
■■ j"iTiHm

f̂ Improvement Cycle
Critical

Organizational
Challanga

'"■"<--> i * - ^ :

Ĵ £ The Process Improvement Cycle
^ The Details Corporate Level

d&.-'ily&^i&SS}^

Critical
Organizational

ChaHenje

All major IS Sites (16) will achieve Software
Engineering InstituteiSEI) Capability Maturity
Model (CMM) Level 2 by October 1,1997

/&taMiJh\ AlliedSignal ownership established Corporate
^ ^ y Information Officer reporting to the President

fD*a\as»\
\ Staff J

Staff assigned to
•Train
•Assess
•Help

SQAS Forum April 13,1997

'\£s The Process Improvement Cycle
^ The Details - Site Level

^ B ^ « N FM&T ownership established - Director of
$*>™«®tj Information Systems reporting to the President

Swi!-a*|s Information Systems Software Process Group
^? :~ Software Quality Assurance Group

Process Improvement Champion

.c««t.:-x Meet the AlliedSignal Goal via Assessments and
Process Improvements

jj^ The Process Improvement Cycle
The Details - Site Level

s^^a^^>:&^>?fts«-^^

03
en •»
CO

<

4)

s

i i

^Established 3 Types of Assessment
^Coordinated by AlliedSignal
>-Based Upon SEI CMM

Progress
Assessment

CMM Based
Appraisal

Quarterly
Self Assessment

Confidence in Accuracy of Results

SQAS Forum April 1-3,1997

il^ Who is the Software Engineering
\ Institute (SEI)?

>■ Established in 1984 at CarnegieMellon U.
> DOD Initiative for Software
> Championed standards of excellence for

Software Engineering
>■ Promoted various areas of software

Engineering SEI process improvement
methodology and assessment was one
deliverable

jj£ Contacts for General SEI
ff^ Information

M&-yyys>:*w¥&yS':*x-^^

» SEI Customer Relations: (412) 2585800
> SEI Fax Number: (412) 2685758
> Internet Address:

customerrelations@sei.cmu.edu

> Mailing Address
Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 152133890

10

SQAS Forum April 13,1997

mailto:customer-relations@sei.cmu.edu

5. Optimizing Continuous Process j * Defect Prevention
Improvement }• Technology Change Management

|» Process Change Management
4. Managed Product and Process [• Quantitative Process Management

Quality j * Software Quality Management
Engineering Process {• Organizational Process Focus

• Organizational Process Definition
• Training Program
• Integrated Software Management

, • Software Product Engineering
| • Intergroup Coordination
! • Peer Reviews

2. Repeatable j Project Management j * Requirements Management
• Software Project Planning

>

1. Initial Heroes

j * Software Project Tracking and Oversight
j • Software Subcontract Management
• • Software Configuration Management
'•• Software Quality Assurance

f

Site Quarterly Assessment
■S^S^.ft*M^.V!:V^?fl^^ . .■v&^&J&vw^^^^ JWftwWyf: a f i ^ i ^ ^ S S ^

Series of Questions / Excel Spread Sheet
Similar to Questions Asked During Other
Assessments
Completed by Site Personnel
Submitted to AlliedSignal
Reported to Site & Corporate Management

12

SQAS Forum April 13,1997

Progress Assessment

> Led by AlliedSignal Trained Assessors
> Conducted Every 68 months
>■ Used to Guide Site Quarterly Assessment

PreOnsite

Dcteraiae
Seaftal

AsaessxneBt

ltkoHIJtmi
CaOcct

Dactasestsfer
lUiha

 D a y l i D a y 2

BrkOog

ATLAATC
Review

Dcctaaetxts

HaMDiaceafci
wttk

Practitioners

Briefing

Day3

Briefing

Dekrlrfwtth
Sp«uor.£
Managers

HiMDuctudts
witfcS/W

Praject Leads

ATL • Assessment Leader
ATC Assessmant Coord mator(Oi*Slte)

13

^ CMM Based Appraisals
4^&&w->.-'Awyj^^

>Key Sites Will have CMM Based
Appraisals

>~Will be a formal CMM appraisal
>~Will Only Be Done If a Business Need

Exists
>~Very Time Consuming

14

SQAS Forum April 13,1997
7

■KKMKKSSffiSSVKK*̂ ^

RAPID - Recommendation,
Action Planning, and
Improvement Definition
Process Guide

>- Designed to improve the
process of producing
Action Plans after an
assessment has been
performed at a site

15

axq&- ̂ 5&7 ■
<^4s Rapid Process

Develop Recommendations

1. Prioritize on Importance & Classify
Assessment Findings

Type Definition
Obvious Solution
Needs Further
Investigation
Out ofScope

Action
Assign to Individual
Give to
Recommendation Team
Give to Management

2. For Type 2 findings Develop, Prioritize,
Classify Recommendations & Report Results

Type 2 Reconunendations Continue on in the process

16

SQAS Forum April 1-3,1997

j ^ Rapid Process
Develop Action Plans

■r+StAfr**' f A*. j "&V ■*■*
 f

*
f
'^

rJ
&-V'y/'*''Y***' * " * W / A % W M V W V y / ^ j v A W / / / ^ * * A W > / / j ^ - . V ■v**.v. v ^ . j " . -A*. ■

1. For Each Type 2 Recommendation form
a Total Quality Team:

•Identify a Sponsor
•Develop a Charter
•Form the team

Review the recommendation & CMM
Review the current process/procedures
Defined Desired Outcomes

5. Identify Proposed Solutions
6. Document Proposed Solutions &
Implementation Plan
7. Development Pilot Plan

-2217

^L_ RaPid Process
Implementation

(Training)

1. If needed, Pilot Changes
2. Implement Changes by Updating

•Train requirements
•Procedures
•Technology Library
•Organization

3. Train Personnel

(OrnChst)
18

SQAS Forum April 1-3,1997

Rapid Process
ReAssess & Repeat Process

PI ^
Champions

j f S'\ Wan X Fv*»ci*t» pBtW

« . V. : : :: :1.tSSOnsL*aiTWd.:
: / /■■} j X

I? ,' X R « v t o T a c t k a l P t a n / / / . ' / f

InsritutionBJJza] \ ?:

« i Assessment
\ V " : V ^ • .: v s^—^r -y-

\ . ^ — - K * f OewlopA /*; Develop^ x . j s

R«eoni.:) I ^ Action } ..-J"'
■Sfcj >raend.&'on*j£_:*r\i Man"^iK^5 '"

19

$£$$$s&s$$$i$&£$s£z$i

RAPID Process
 ^ F ^ 5 key elements which make it effective

5^»wo»»'««»>x«»wc«X' ■c«o««««wxAV ' ' ,«''>v*Mv»X\ ̂ WKXXXX■*<• *^*w«w*>^*o*x*t*"w ■^frx^^^>x■:«*^x*>x''x■x•^w;■■■^^•^^

Support from Management
Alignment of Improvement with the

Organization's Strategic Objectives

Coordination of Improvement!
Activities

Use of Total Quality Teams

i*« Making Changes Permanent

SQAS Forum April 13,1997

>- Establish Software Process Group
>- Re-Write All Information Systems

Procedures
>- Establish SQA Group
>■ Developed Checklist and Standardized Forms
>■ Process and Project Assessments

21

\L Ten Commandments of
j % n pai

^}\ Process Improvement
s-*tt$^-^*&<<M>-^^ '^WBMS&fia

I. Recognize that the real problems are not technical, they are cultural and
managerial.

II. Accept no responsibility for process improvement without adequate authority
to implement: Management commitment, Budget, Dedicated staff, A one
company outlook, Enforcement capability via personnel practices and SQA.

HI. If a process exists and doesn't work - fix it; only if a suitable process doesn't
already exist should you create a new one - "Borrow Uninhibitedly"

IV. Never ask the developers to implement a new procedure unless the benefits to
them obviously outweigh the added effort.

V. Don't put any procedure in place just to pass an audit - think each procedure
through and adapt it to local conditions well enough that the benefit-is obvious,
or don't do it at all.

22

SQAS Forum April 1-3,1997
11

Ten Commandments of
^ Process Improvement

VL Make incremental changes based on experience with pilot programs and get
"real time" feedback on the effect of process changes by talking with
practitioners.

VEL Grandfather existing practices whenever significant project disruption is
likely.

Vm. Make simple "common sense" productivity improvements as rapidfy as
possible - focus on the basic tools & improved working conditions.

DC Automate with cheap tools whenever appropriate and provide adequate
support and training before putting the automation into general use.

X. Coordinate closely with other sites and industry.

23

SQAS Forum April 1-3,1997

SIIIIHiSIIIlffi!

lllSlillllS^

:::::::HrK«::

liiisiiffliB

!;PJw!^:$E^^

:jDlsii|n:In&^

Customers include:
♦ DOE Program in Oak Ridge and Washington;
♦ Internal LMES programs;
♦ Federal Agencies (DOD, IRS, FBI, others);
♦ Private enterprise under Cooperative Research, and

Development Agreements (CRADA's).

iMffiSffliPOT

••■•HiHJi!!:::::::!!!^

illi^lliliiHiJJe&ohsBear^^

jiiijIlijijjIjilljIrSErc

l|1994 SEFCMM adopted as DSRD"s process improvement approach.
:::il: Process Improvement Teams established.

DSRD Software Process Standards published,

1:1995 SFJ/CMM-based internal review conducted.
SEPG established.
Qualifjrbased infrastructure established.
Technical and Management Review Program established.

1:1996 Initial SEI assessemenf conducted and plan developed.

RHIliIfflilSllilllli

Camegli^Mellon^
. problems faced by the software industry.

■ SEI developed the Capability Maturity Model (CMM) as a
Framework to improve software engineering processes.

■ CMM is an emerging national standard for evaluating
capabilities of software development organizations.

■ A 1996-97 prerequisite of Department of Defense software
contracting.

5

OVERVIEWbiriSEI MATURITY MODEL KEY PROCESS

•The Capability Maturity Model
(CMM)

•Developed by Software Engineering
Institute (SEI) affiliate of Camegie-
Mellow University /

•Process Focused

•Emerging National Standard /jjj:

, 'DOD prerequisite

XT i
/ :

■f :

f ,.*.—~~.

.̂UjjUiUjjUIUL

LEVEL 5UJPTIMEINC

Process chuige mwsgement
Technology ctxnge nangement

Dc&ct prevention

LEVEL 4-MANAGED

:::*:::::^:Softwire-qutotxi*ni^

■:USUUu:j::;::U::U:;;j;;:;^

j

LJ
s

~~j:l:::i:::::::j::-

:; LEVEL 3-DEFINED.:;

iH^"::i::::::r!:I^*r<^<W^::::::::::i:::
g SE.'S s 5 S E-is E S iS s s s is. rs Ex S S s rS sx r'E s S 5. ^■^?^

l
^*^i^,'*-^*J

i
^^ i^!?^?^

l
^??

:
?^

,
j^

,
^??s is is is iss r S is S S S E E'S'T E E S S .5 is £ TX S is S 5 s E 5 SS !TT IS

sssssssrx j .ssssss irziEiizs ss r r i : J^^^C^TyT^^T JP^ ̂ ~^??j'_*
-
^?^J

,
J?

l
?*

,
d^T**S ErEsrErs :E isEsEEjr :EEsszE £s E s is £ : z z

IlilalegrttrfMl^ceiiMJtigffTient::"::::::::::::::::::::;:::::::
::::::::::::iTr**^i^*^

: iprgireotbOTi graces Xxjs.s::: :::::i:s.:'':sss:.s:::^;::::.::

Softwe. c6ri6£uritxon muagcaiixt" \. -

Stuwue qaabtyaisaj

SaEW^ pro^cttodang i^OTenighti:

i:i:**i::. RcQtnieniccU'management.'*

{JVEC.flCTIAI;:.::::H::::r:j*jjj:jn:j^

liBliii!
||jjjjjg]|il:c^^

|^eppt9;r£^ri;;C^^
llM$l:][IMpn||^

IliromptMib^^
!li;li^i|k1istiM?a
liilmlrabierc^p^ie^i|;i;ii!!;;i;l;:^y;::;;;;i'■■:■. •" :

:^iiiii; ■'■. .;;.i:i:|!-i:h;!
| ! ipC6nciue&
| j ! § : ; | r | e i ^ e r ; c i ^

)

I l l iSa j^^

i^^^&^^K^^^^MBS^^^U

;;;;:Sustainmeiit;iJj;j;;;:

■:<^
;
Prograim;i: :;Maiapihe^T«IimcaI;"

Peer Reviews

SEI Action Teams
PMT Teams
SEPG

CiUllb | PzDCe8cT i
I Improvement i

t 4p
Approach

Impiovement Cycles

Software Standards
PMHandbook E

Processes/Directive S
Action Plans I I

L
T
S

5

Ilkccomplishments

! Developed Standards
> Documented Processes
Established SEPG and Action Teams

i Developed Management Metrics Program
; Developed Software Engineering Process
i Completed External Assessment 1996

Illissons Learned
I jomrnon Barriers to Success

jilbnagement Commitment
jlpulture Change
I limited Resources
■ Substaining the Improvements

ISSHIiSiSBH

Lessons Learned
What could we have done better?

llHamSiMi
^Te^MeMters;
II"

133?^

|| |§§sons Learned
IKlHat could we have done better?

llitfbrmation dissiminatioii
|i!Web page
! ♦ Brown bag sessions
Staff* s Commitment/Involvement
i f Include all staff in effort
| ^Emphasis payback

'""''' Security |f..
■'W'^i Requirements H:

\ Corporate Information
Management Strategy

Software Management:

■ " " " " — — " ■■ ■ ■■■■ — *■- -■■ - ■■■ !■-■■ " | V " | | -

*&'#
'"y "■ ys/yfy^jytf .//',(}-i/j/''//"'/^y'. f, 1 '■„',.* '

'>'„'■',■■;.

V.A ,^,vy/yv„i ■^tyyy-fySyyyv-", y-i-, /• yy> -
„yy'//A™y-f, i a rSM* *<■»' ■'■-■>, i!-'„,y\

;/ y- -^^y-X;--,,-',', £•
/ . '< • * ■ . . %■;.%«■«• SAVRTS. s . % A / \ A \ ■

yyyy y

•*miV^yK*y^-Xrf<rv*KV'

- _ f «i t tt tl* -

\ \

' & /s fj' & " & & JS//f'xi '

\
-J-J

£ jfe**-- i

-&&*™*&JS&* :s£lc^»*MA**it~bjis&66***^**jBtA~....~j!et~j....**UMb—5*a*^«A^..a^£Aua^^M.?a«g*...

vfrHy

^ T " """̂ '\ ̂ l ^ ^ o ^ '
cement v'?*>
aax •aaaryata.-^\^ -atar •^1^ .atf . ^ ,_ *, %■, \ ■• ^ •. \ \ V. '

f ^
SLW ^■■ŝ v

\ *w.s\v. ...v. ■*. •. ^

. J K ! £ ^ . < # * S S J W S & & ^ ■

^ « W S i

■*?■

" ■ • " ^ * * IILIIU* *••••'Jar vlv .aaty-^ak"- latf **■•*• * • * M i l l ' A S i*^*> ■.•■.•.■>•.%■. ■A.».
A
\v. ■ •■*, ■ ^ . w. •._.■ A Xf ..*/> HV ? * \ . / . / » H

' ^£&-yj%'% , {£•;
;^v

A> AV A^AA R ^.AVV »VS*A . ^ % ^ & * C C i S V

j$&.,...

■lasting * r vr~
s:* t^. ^ . J O

; N >

,-'-, -$»/&■**■'- ■■*-&■. *■------*-\iiy- *• <\YS! !*V"(Slf
, ,y-y, %",„?* i- ,----* -^«,, ,-£$>&%;> ,y. - — -&- '■"■.«•. &— - - i , - — &.-.-

■£!SN*S>W*J'!?M*»M&*M*. »^^y>■«v^■^^^^^^^^^^^■••A^•^^

N \>V>
\

* ^ v

* "Hpt*ffii
» i \ ^ ">\ \

S*$««: '̂̂ *A'0^ xSwS^Sx%5<»i«¥.«?«»« x:

r \ V A % .*" ■•• *V "4. V V VA J -. *. *»̂ N A A% ■*. * \ \ W, % % a i \ V % *C 1>*V> N ** <* % ■»■ A

.A*™' * * ^ *" . .» . "i ^rf ■'.'■V vS. AV. ■ A v . K N ; . . * ■ * ■ : * ■ ? * * . . *.. J i r

•&&•&*$&•&&•&&'$•&#&•&&'$

>iy>3y>.i%.<&y-m*'J&w

■4a. *\',y'f*.Zi~Y' *'«' io.'taX*':K?*r'*s*'"
_ , J p } *tf ** ** vU*Xv «• *M>M* +f +*******+*+ A

,,,,fHy¥M,%y%?,'?yy;yy;,'i

%ffi/f v ■'V^y'^.. • * ■>/• ■ "."A;

hdabiAdte^HHi i **■ ** *

s5

sss

ss<ss
s"5J.s>

>'
'','/■'

Hs ■-■ s

«8 >££■•■

>
% ' st

>.J.sS.s5ss

isl's^s?
g^yyW^*My:£:<^M?-^?S^^$2y}$M

WsssySs ,- ' --

•s^isSJs^fjfXsss s . IsSsSss,

»

fa.

■s\s 5. s"s , JiVs; ; s S S (ss s s s s%
SS.S ^ ;. s"s^;sSS Ss \ SS £• s %^ S ĵ S ..

▼ BJ^ HV» V ™ A rrtft / l / U M ajaftfk y IA A "Va A A*. . / •& ' * A*VA ■Cv' a*^ •

'4t^#U^§^l^p^j
; s~ , \>t

 \ _■■ •■ » J? ■ * s * j **. y "V. ■■ ■ ^ — — »_ i — ** _— —
V*.rf^y * VW*«SS ./^rt*X*l A*> *A*V̂ £ *i> S A S*V*.̂ y*AV VA *. &*. *S ** V1 ^ V̂ AtASNV*. *1 NA ■/ *A ^ SSVM SU*A

siT«r,^£ ,*8S»s!f*s5r~r'> ^ — , " — * *■— *■*" '■

•■": ' S5:sss5SvSs^ ssSwlSfes
s. tivO**** ^ s w « s^;

. A N\ *\% \ *k

sSs^SsV;;*

11

•****& V f *>kWIW S A W ********* * *** J ** A AAVAn

■̂ s < y .. sss s ' s s s ' ss s ,V„,S' s is A

IAA"AS "A"A\ A%VA<AAVAS v.v,v AA*. *t A ^WAAV.'AAVWA'A w .
ssS?S V ^ ^ ^ S & ^ * K 5 S > * S S , S ^ ' , ■*«ss^\ssSS^,s . x ,
j S s > ^ ^ ^ ^ S s S S ^ S ^ ^ J S S g J , s . s S . . . s s s s s * s S . v s v s s . s v . v

iyy-syzx,,,,' y wj'jrw; ,„>•.
' s **■ • ' s ^ ^ ' S ^ S s '

,yi,,,„„y„„„ ,„„„„,„,,y,yi
'.,"/yyy""„y"'yS',;;

^M^^^^^%fesl^^/^3:
* * a S . ^ K ^ ' * f l A j ■ J*»«V . / *»* aTajJ^i ■.*."*■ VllM II* X * l > ^ \ * X s \ W ^ C f r w ^ V A v y / w ^ H \ S W * A s WAV

12

Session B4: High Integrity / Formal Methods H

Chair Larry Dalton
Sandia National Laboratories

Session:
Paper #

B4:l

B4:2

B4:3

Author(s)

Mikhail Auguston
New Mexico State University

Marie-Elena Kidd
Sandia National Laboratories

John Sharp
Sandia National Laboratories

Title

Debugging Automation Tools Based
on Event Grammars and
Computations over Traces.

A Method for Critical Software
Event Execution Reliability in High
Integrity Software
Business Rule Enforcement Via
Natural Language Modeling

Debugging Automation Tools Based on Event Grammars and
Computations over Traces

Mikhail Auguston
Department of Computer Science,

New Mexico State University, Las Cruces, New Mexico, USA
Phone: (505)-646-5286

fax: (50S}-646-1002
Email: mikau@cs.nmsu.ed

Major problem in debugging automation:
the inability to express the mismatch between the expected and
the observed behavior of the program on the level of abstraction
maintained by the user.

Suggested solution:
to define a precise model of program behavior as a set of events with
two binary relations: inclusion and precedence

Motivation for this work:
we propose to research and to design software testing and debugging
automation tools, in particular, a language for computations over
source program execution history

Examples of such computations:
•assertion checking,
•profiles,
•performance measurement,
•debugging queries

mailto:mikau@cs.nmsu.ed

Essential features of this approach:

• The notion of an event grammar provides a precise and formal model of parallel program
behavior defined as a set of partially ordered nested events

• Event attributes provide complete access to each target program's execution state
• The inclusion relation yields a hierarchy of events; assertions can be defined at appropriate

level of granularity

• Events can be detected by automatic source program instrumentation

• Patterns and aggregate operations on events describe computations over event traces

• Our approach is nondestructive: assertion text is separated from the source program's text

• Ability to formalize universal assertions and to define debugging rules and strategies

Events

• A particular action may be performed many times, but every execution of the
action is denoted by a unique event

• Every event is associated with a time-span that has a defined beginning and end.

• A composite event is a (partially ordered) set of other events.
• An event occurs when some action is performed in the target program execution

process. For instance: a message is sent, a statement is executed, or an
expression is evaluated.

• Each event should be detectable during the target program run time by an
appropriate (automatic) instrumentation

An event grammar for an OCCAM subset
ex-program::
ex-process::
ex-action::

ex-assignment::

(ex-process).
(SKIP | STOP | ex-action | ex-construction | e>
(ex-assignment | input | output)

(eval-righthand-part destination)
eval-righthand-part:: (eval-expr)
destination::

input::
output::
eval-out-expr::

(variable | array-elt)

(channel [wait] rendez-vous destination)
(channel eval-out-expr [wait] rendez-vous)
(eval-expr)

Note: input and output of the same message share the same

ex-construction::
ex-SEQ::
ex-conditional::
eval-condition::
ex-cond-branch::
ex-loop::
ex-one-iteration::
ex-loop-body::

(ex-SEQ | ex-conditional | ex-loop | ex-PAR |
([ex-replicator] ex-process *)

.-instance)

rendez-vous event

ex-ALT)

([ex-replicator] eval-condition + ex-cond-branch)
(eval-expr)
(ex-process)
(ex-one-iteration +)
(eval-condition [ex-loop-body])
(ex-process)

ex-PAR::
parallel-process::
ex-ALT::

ex-guard::
ex-alternative::
ex-replicator::
base-expr::
count-expr::

ex-instance::
eval-act-parametei
ex-instance-body:

eval-expr::
eval-simple-expr:
eval-dyadic-cxpr:
eval-lst-arg::
eval-2nd-arg::
array-elt::
eval-index::

([ex-replicator]{ parallel-process *})
(ex-process)
([ex-replicator] channel* (alt-wait | eval-condition) *

[ex-guard] ex-altemative)
(input)
(ex-process)
(variable base-expr count-expr)
(eval-expr)
(eval-expr)

(instance-name eval-act-parameter * ex-instance-body)
:: (eval-expr destination)

: (ex-process)

(eval-simple-expr | eval-dyadic-cxpr)
(constant | variable | array-elt | eval-monadic-expr)

(eval-lst-arg eval-2nd-arg perform-bin-op)
(eval-expr)
(eval-expr)
(array-name eval-index)
(eval-expr)

eval-monadic-expr:: (eval-arg perform-mon-op)
eval-arg:: (eval-expr)

\

This model makes it possible to formalize assertions of the type:

• "all variables in the program must be initialized before using in
some expression",

• "file must be opened, then the read statement is performed zero or
more times and after that the close statement is executed",

• "at least one variable, changes its value during one loop iteration",

• "after the execution of a subprogram P the value of variable X
remains unchanged",

• "there is an attempt to assign values to the same variable in two
parallel processes" (data race condition). _

Assertion examples

PAR
Channell ! Messagel

Channell ! Message2

Dynamic constraint

EXISTS Snapshot:: { Ol: output, 02: output}
,(channel-tag(Nearest-incIuded-channeI(Ol)) =
^channel-tag(Nearest-included-channel(02)))

SAY 'Attempt to use channel' source-text(Nearest-included-channel(01))
'in two parallel processes:'
source-text(Least-embracing-paralIel-process(01)) 'and'
source-text(Least-embracing-paralIel-process(02))
'in output statements' sourcc-text(Ol) 'and' source-text(02)
'respectively'

* This is an example of an universal assertion

Dynamic constraint - data race condition

PAR
X:« expr l

X :« expr2 '

EXISTS Snapshot ::{D1: destination, D2: destination }
(location (Dl) = location (D2))

SAY ('Attempt to assign to the same memory location'
source-text(Dl) 'and' source-text(D2)
'in two parallel processes:'
source-text(Least-embracing-paraIlel-process(Dl))
•and"
source-text(Least-embracing-parallel-process(D2)))

• Yet another example of an universal debugging rule

Variable X remains unchanged after each instance A calL

FOREACH C: ex-instance:: (instance-name IS 'A') FROM ex_program
value-at-end (C, 'X') = value-at-begin (C, X")

Description of the process property of merging two streams:

"The number of input items equals the number of output items."

FOREACH P: ex-instance:: (instance-name IS "Merge') FROM ex_program
CARD{(input:: (channel IS'A') | channel IS *B')) FROM P} =

CARD { output:: (channel IS 'C) FROM P}

A

B
■ Merge •

C

Performance measurement (in modeling mode)

SAY 'Total time is'
+/ {| ABC: ex-instance::(instance-name IS 'ABC') FROM ex-program

APPLY duration(ABC) |}

Samples of possible profile request

SAY 'Total number of parallel processes executed is'
CARD {ALL parallel-process FROM ex-program}

SAY 'Total number of assignments to the variable X executed is'
CARD { ex-assignment:: (destination IS *X") FROM ex-program }

References.

[Auguston, Fritzson 93] M.Auguston, P.Fntzson, PARFORMAN - an Assertion Language for
Specifying Behavior when Debugging Parallel Applications, in Proceedings cfthe Euromicro
Workshop on Parallel and Distributed Processing, Gran Canaria, January 27-29,1993, IEEE
Computer Society Press.

[Auguston 94] Auguston M, A Language for Debugging Automation, in Proceedings of 6th Intl
Conference on Software Engineering and Knowledge Engineering SEKE'94, Jurmala, 1994,
pp. 108-115

[Fritzson, Auguston, Sbahmehri 94] P. Fritzson, M. Auguston, N. Shahmehri: Using Assertions in
Declarative and Operational Models for Automated Debugging, Journal of Systems and
Software, v.25, No 3, June 1994, pp. 223-239.

[Auguston 95] Mikhail Auguston, "Program Behavior Model Based on Event Grammar and hs
Application for Debugging Automation", in Proceedings of the 2nd International Workshop
on\ Automatedand Algorithmic Debugging AADEBUG'95, Saint-Malo, France, May 1995.

[Auguston, Fritzson 96] MAuguston, P.Fntzson, PARFORMAN - an Assertion Language for Specifying
Behavior when Debugging Parallel Applications, InternationalJoumal on Software'
Engineering and Knowledge Engineering, VoL 6, No 4,1996, pp.609-640.

Experiments with the prototype implementation
of PASCAL assertion checker

have demonstrated some interesting features:

• different kinds of dynamic analysis can be described as an appropriate
computations over the trace, e.g. debugging queries, assertion checking, profile
measurement,

• computations over traces may provide values which otherwise can not be found in
program states,

• informative and readable messages can be generated,

• universal assertions and debugging rules can be presented as computations over
traces.

7

A Method for Critical Software Event Execution
Reliability in High Integrity Software

Sandia National Laboratories
Laney Kidd

Software Quality Forum
April, 1997

This work was supported by the United States Department of Energy under
contract DE-ACO4-S4AL85O0O.

High Inteprity Software Project f f f i l Crit'cal Software Event Execution Reliability Project
RKKM31/9T 1

Presentation outline

The Problem

The Computer Science Basis

Our Method

Progress & Plans

Summary

I

Hiph Inteprity Software Project llfol Crit'cal Software Event Execution Reliability Project
(iKkictar 2

We are focused on a problem
Q Ensure critical event sequences are maintained in

all environments
o normal conditions
o faulty hardware or software
o harsh environments
o malevolent attacks

Q Avoid "music boxing" through an event sequence

Our goal:
Provide a high level of confidence that critical software
driven event execution sequences faithfully execute in

the face of transient software or hardware failures in both
normal and abnormal operating environments.

Hiph Inteprity Software Proiect Crit'cal Software Event Execution Reliability Proiect

The current solution to the problem is ad-hoc
Q No formalized methods exist
Q Ad-hoc methods are employed (a very creative

process)
Q Results

o probably the correct event execution sequence is enforced
o greater software complexity
o harder to maintain software
o hard to repeat the "process"
o possibly more bugs

1 We suggest a math-based, repeatable, easy to maintain solution

Hiph Inteprity Software Proiect f t j t l Critical Software Event Execution Reliability Proiect

Presentation outline

The Problem

The Computer Science Basis

Our Method

Progress & Plans

Summary

Hiph Inteprity Software Proiect Crit'cal Software Event Execution Reliability Proiect

What is a Finite Automaton (FA)?

"The finite automaton is a mathematical model of a
system, with discrete inputs and outputs. The
system can be in any one of a finite number of
internal configurations or 'states/ The state of the
system summarizes the information concerning past
inputs that is needed to determine the behavior of
the system on subsequent inputs." [Hopcroft 1979]

Hiph Inteprity Software Proiect i r j t l Crit'cal Software Event Execution Reliability Proiect
-ndcVHATC

Here is an example of an FA

Transition
Diagram ~ * ^ * ^ % ^

Transition
Table

t
States
i n Q

«flo

<Sl

««2

%

inputs fa 2

a

3*
o

0

0

n

0

%
0

0

d

0

0

%
0

t

0

* •
0

0

| Q a state
—> an input
f \ a final state

Hiph Inteprity Software Project \tti\ Critical Software Event Execution Reliability Proiect
MMHM2U97 7

Here is an example FA execution path

i
|a|nd

k

and
k

a|njd|
A

a|n|d|
A

^^^—u
r-r~f**r »cfife

 a >(£& " >(S^ >((S%
^ ■ ^ ^ ' « i f ^ . i w ^ ^ r t * ' j j ^ t x y

J •
SSBi£&» HSaV^ffl^^SSMSl 1

~ ^ X ^ ^ l

4
™̂ —*^^*^i^®^® 1

Hiph Inteprity Software Proiect I f f t l Critical Software Event Execution Reliability Proiect
fndclflMT B

What is a Regular Expression (RE)?

Q REs are simple expressions describing
languages that are accepted by an associated
finite automaton (FA)

□ REs are simple ways to express languages
o (one 'a'followed by one 'n' followed by one 'd') or (one 'a'

followed by one f)
o a((nd) + t)

Hiph Inteprity Software Proiect HSl Crit'cal Software Event Execution Reliability Proiect

What is the
Regular Expression (RE) notation?

Q Let A and B be sets of input symbols
o A = {b,c}
o B = {all, oat, at}

Q Relations Meaning Example
AB 'Concatenation

A + B Selection
i
Kleene Closure

i Positive Closure 1 or more

A followed by B

AorB

0 or more

birth infancy childhood adulthood
A B = {ball, boat, bat, call, coat, cat}
b oat = {boat}
dog * cat + reptile + fish
A -i- B = {b, c. all, oat, at}
b + oat = {b, oat}
automobiles*
a* = {e, a, aa, aaa,...}
doctors-on-duty*
a* = {a, aa, aaa,...}

Hiph Inteprity Software Proiect [i j t j Crit'cal Software Event Execution Reliability Proiect

Presentation outline
The Problem

The Computer Science Basis

Our Method

Progress & Plans

Summary

Hiph Inteprity Software Proiect f lpf Critical Software Event Execution Reliability Project
mdcU2M7 11

Think of a path through pieces of code
a(bd + c(g*)e)f

= piece of code

= path

V = check point
EHI = critical event
m - update point

Hiph Inteprity Software Proiect jifel Critical Software Event Execution Reliability Proiect

Or, think of an event sequence through code
a(b + c+

)d

KJx V

= piece of code

= path

V = check point
E 9 = critical event
•> = update point

Hiph Integrity Software Proiect t 5 * I Crit'cal Software Event Execution Reliability Proiect

The SEER method adds prologues,
epilogues, and a Finite Automaton

implementation module
Normal Code

* \

'Policed" Code.

RE of the Critical
Software Event
Execution

0- piece of code V = eh** P°'nt
(prologue)

• critical event Ifr *c update point
(epilogue)

^

•■•3 •-ZT

"Police" module
takes calls -
from""-^ andafr*

MocEulei

High Integrity Software Proiect f>f<l Crit'cal Software Event Execution Reliability Project
IMK1JW97 u

This is the SEER model
Requirements Models

Augment Design Models
with FA & RE

a (b + c*)d

y * piece of code
***path

Target Code with
embedded FA "police"

v = check point
■ I = critical event
■» *• update point

'HolrexfJ

High Integrity Software Project j l y 1 Crit'cal Software Event Execution Reliability Proiect
mtkV2tM 1$

Presentation outline

The Problem

The Computer Science Basis

Our Method

Progress & Plans

Summary

—

1 ,

High Integrity Software Proiect \ltt\ Crit'cal Software Event Execution Reliability Proiect
mckU3*07 18

Our progress and plans at a glance

FY96 FY97

Research
& planning if

FY98

Develop Single processor fault detection
methods to ensure software critical event
sequences based on Mathematics and
Computer Science

Apply methods to
fault correction and
distributed
environments

Create initial
method

Create
demo

Benchmark 1
method

I

Automate
FA module
creation

Hiph Integrity Software Proiect j f i j Critical Software Event Execution Reliability Project

Publications to date
"Ensuring Critical Event Sequences in High Integrity
Software by Applying Path Expressions," Proceedings of
the 14th International System Safety Conference,
Albuquerque, NM, August 1996, pp. 6C2-1 - 6C2-14.
"Ensuring Critical Event Sequences in High Consequence
Computer Based Systems as Inspired by Path
Expressions", Proceedings of the International Conference
and Workshop on Engineering of Computer Based Systems
(ECBS), Monterey, CA, March 1997.

High Integrity Software Proiect Irft l Crit'cal Software Event Execution Reliability Proiect

Presentation outline

The Problem

The Computer Science Basis

Our Method

Progress & Plans

Summary |

High Integrity Software Proiect f fp i Critical Software Event Execution Reliability Proiect
mUVnffl 19

Critical Software Evtnt Execution RtBabfflfr
(SEER) Project

Q Why:
o Software developers

employ ad-hoc,
complex, and potentially
bug-infested methods to
ensure critical software
event sequences.

Q What:
o Provide a high level of confidence that critical software driven event

execution sequences are maintained in the face of transient software or
hardware failures in both normal and abnormal operating environments.

a How:
o Develop a repeatable, mathematical based solution using finite automata

(FA) to develop a method to enforce critical event execution sequences.
a Point of contact:

o Laney Kidd of Sandia
High Integrity Software Proiect Crit'cal Software Event Execution Reliabititv Proiect

Business Rule Enforcement Via
Natural Language Modeling

John K. Sharp, PhD
Sandia National Laboratories

Natural Language Modeling
Overview

• Based on mathematical analysis of elementary
sentences

• Separates analysis from the documentation of
analysis
— Specified analysis procedure that is understandable
— Can provide information to graphical models

• Creates validated fact types that support all
business rules

• Improves productivity

itaKLW raa*2

Business Rules

• Some are needed to define structures for storing
data.

• Many are needed to enforce restrictions on the
population of data in the defined structures.

• All are analyzed with the same Natural Language
Modeling procedure.

J

• 1
• 2
• 3
• 4
• 5

Natural Language Modeling
Procedure

Highlighting and Verbalization
Placeholder Assignment
Qualification and Identification

Paternization
Diagramization

taXM l*apa

J

2

Examples Using the Natural
Language Modeling Procedure

• Movie Marquee
• Sports Team
• Professor Assignment

Session

1000
1200
1500
1900

Movie Marquee

Monday Movie Presentation
Theater 1 Theater 2 Theater 3

Jaws Snow White Invisible Man
Jaws Mad Max Invisible Man

Mad Max Fantasia invisible Man
Jaws Fantasia Invisible Man

Jial ■mt r**a<

3

Natural Language Modeling Procedure
1 Highlighting and Verbalization

•Verbalization and highlighting is done by highlighting a limited example of
information in the subject area and asking the subject matter expert to create
a sentence.

Movie Presentation
Session £ w MM

imm\:%smm 1200
1500
1900

Jaws
Mad Max
Jaws

Theater 2

Snow White
Mad Max
Fantasia
Fantasia

Theater 3

Invisible Man
Invisible Man
Invisible Man
Invisible Man

Verbalization: Jaws is showing Monday in theater 1 at 1000.

jkaXLU h f l

Natural Language Modeling Procedure
2 Placeholder Assignment

•Placeholder assignment identifies the part(s) of a sentence that can have values
that change.

Jaws is showing Monday in theater 1 at 1000.
Mad Max is showing Tuesday in theater 2 at 1200.

•The values that can change are (Jaws and Mad Max), (Monday and Tuesday),
(1 and 2), and (1000 and 1200).

Jaws is showing Monday in theater 1 at 1000.
Mad Max " " Tuesday " " 2 " 1200.

Natural Language Modeling Procedure
3 Qualification and Identification
Jaws is showing Monday in theater 1 at 1000.

•The sentence is now tested to determine if a valid fact type can be qualified.

Potential Fact Type:
<MovieName> is showing <Day> in theater <TheaterNumber> at <Time>.

Jaws Monday 1 1000
Allowed?

another Monday 1 1000 N
Jaws another 1 1000 Y
Jaws Monday another 1000 N
Jaws Monday 1 another Y

Question: Given that fact instance "Jaws is showing Monday in theater 1 at 1000."
is true, is it allowed for another valid Movie [for example "Mad Max"] to exist such
that the fact instance "Mad Max is showing Monday in theater 1 at 1000." is tnie?

Answer=No

Natural Language Modeling Procedure
3 Qualification and Identification (cont.)

•The sentence analysis produced two "N" answers so the corresponding objects
must be analyzed together in a sentence to determine if they are independent

Potential Fact Type:
<MovieName> is showing in theater <TheaterNumber>.

Jaws 1
Allowed?

another 1 Y
Jaws another Y

Question: Given that fact instance "Jaws is showing in theater 1." is true, is it
allowed for another valid Movie [for example "Mad Max"] to exist such that the
fact instance "Mad Max is showing in theater 1." is true? Answer=Yes
Result: Movie and theater are independent of each other, so two sentences must be
created from the two previous "Y" answers and either movie or theater.

fatOM ratals

Natural Language Modeling Procedure
3 Qualification and Identification (cont.)

Jaws is showing Monday at 1000.
Potential Fact Type:
<MovieName> is showing <Day> at <fime>.

Jaws Monday 1000
Allowed?

another Monday 1000 Y
Jaws another 1000 Y
Jaws Monday another Y

Question: Given that feet instance "Jaws is showing Monday at 1000." is true, is it
allowed for another valid Movie [for example "Mad Max"] to exist such that the
fact instance "Mad Max is showing Monday at 1000." is true? Answer=Yes
Question: Does Jaws, Monday, and 1000 at any moment in time identify exactly
one movie showing on day at time. Answei=Yes

Natural Language Modeling Procedure .
3 Qualification and Identification (cont)

Theater 1 is in use on Monday at 1000.

Potential Fact Type:
Theater <TheaterNumber> is in use on <Day> at <Time>.

1 Monday 1000
Allowed?

another Monday 1000 Y
1 another 1000 Y
1 Monday another Y

Question: Given that fact instance "Theater 1 is in use on Monday at 1000." is true,
is it allowed for another valid Theater [for example "2"] to exist such that the fact
instance "Theater 2 is in use on Monday at 1000." is trae? Answei=Yes
Question: Does 1, Monday, and 1000 at any moment in time identify exactly
one theater in use on day at time. Answer=Yes

fuHLM r rar i :

Natural Language Modeling Procedure
4 Paternization

•Paternization is the specification of the general fact type that can
be populated with instances.

FTl: <MovieName> is showing <Day> in theater <TheaterNumber> at <Time>.

jtaKUl n«t l3

Natural Language Modeling Procedure
5 Diagramization

•Diagramization presents a relational diagram that can be populated
with instances and read using the associated fact type(s).

Movie_Day_Time

Movie
Name

Day Theater
Number Time

Jaws Monday
Snow White Monday
Mad Max Tuesday

1
2
1

1000
1000
1200

FTl <MovieName> is showing <Day> in theater <TheaterNumber> at <Iime>.

aaNLM r a f t l l

Movie Marquee
Enforced Business Rules

• 1 Only one movie can be shown at a time in a
theater.

• 2 Only one copy of a video tape will be leased
at any time.

jtaHUC Hra>15

Sports Team
Problem Statement

A player can start for only one team. A team plays only
one sport. A sport has a required number of starting
players. A team must start the number of players required
for the sport the team plays.

jk»NJJ< FajaM

Sports Team
Fact Types

FTl <Player> starts for the <Team>.
FT2 <Team> plays <Sport>.
FT3 <Sport> starts <NumberOfPlayers> players.
FT4 <Team> has <NumberO£Players> actual starting players. **
FT5 <Team> has <NumberOfPlayers> required starting players. **

** derived facts

jkjxu-f r« t i7

Sports Team
Diagram

required**
starting

of Players

actual **
starting

fl of Players
<Team> plays <Sport>.
<Team> has <NumbetOfPlsy as> actual starting players. **

FT5 <Team> has <NumbetOfPlayers> required starting players. • •

Sport
Name

starts
of Players

FT3 >Soort> sarts <Numba01PIayeis> players.
Player

Player
Name

starts
for Team

FTl <PIaye*r> starts for the <Team>.
•a>OM r*«a l l

Sports Team
Enforced Business Rules

A player can start for only one team.
A team plays only one sport.
A sport has a required number of starting players.
A team must start the number of players required for the
sport the team plays.

jkiKLU *afcl*>

Professor Assignment
General Requirements *

(1) Course ID exists in the database
(2) Professor ID exists in the database.
(3) Professor has earned at least one degree in at least one subject
required for the course where that degree is at least equal to the minimum
degree level required by the course for that subject
(4) Section ID exists in the database.
(5) Section is for the designated course.
(6) Section is not already assigned to be taught by another Professor.
(7) Professor is not already teaching four sections.
(8) Professor will not be teaching more than the maximum teaching
credits when the proposed section is added to their teaching assignment
(9) Professor is not already teaching a section at the same time as
the proposed section.

* Oct to Dec. 1995 columns fay Barbara von Halle
in Database Programming and Design

yuKM Va«t20

Call
No

14077
12615

Professor Assignment

Department Course Section
Prefix No.

MATH
MATH

121 001
145 004

** 1995-96 UNM course catalog

Instances**

Course Title Credit Day Time Building Room
No.

College Algebra 03 MWF 0800-0850 MH
Intro toProb& Stat 03 T R 1100-1215 MH

102
120

Instructor

Staff
W.Zimmer

jkxXUf Pir)K21

Professor Assignment
Fact Types (partial list)

FT-1 Call No. <Call No.> is in the <Department Prefix> department
FT-2 Call No. <Call No.> exists.
FT-4 Course No. <Course No.> exists in the <Department Prefix> department
FT-5 Call No. <Call No> is for Course No. <Course No> in the <Department Prefix> department
FT-6 Section No. <Section No.> of Course No. <Course No.> is offered in the <Department Prefix>
department
FT-7 Call No. <Call No> is for Section No. <Section No.> of Course No. <Course No> offered in the
■(Department Prefix> department-
FT-8 Course No. <Course No.> in the <Department Prefix> department has the course title <Course Title>.
FT-24 Instructor "instructor ID> has the name <Instructor Name>.
FT-25 Instructor <nstructor ID> exists.
FT-26 Call No. <CalI No.> is assigned to Instructor <Instructor ID>.
FT-28 Instructor <Instnictor ID> has earned a <Degree> in <Subject>.
FT-29 <Degree> degree exists.
FT-30 <Subject> subject area exists.
FT-31 <Department Prefix> <Course ID> requires a minimum of a <Minimum Degree Level> degree in
<Subject>.
FT-32 <Degree Level> degree level exists.
FT-33 Instructor <nstructor ID> is allowed to teach <Department Prefix> <Course ID>.**
FT-34 <Allowed Degree Level> degree level can be substituted for a <Minimum Degree Level> degree
level.
FT-35 <Degree> degree is at a <Degree Level> degree level. jtaxut *^a.a

11

Professor Assignment
Diagram (partial)

Caacaa
No. "^S

©
™**T-«

.PET s
Ho. »*— S ^ d

1

\ y
\
n=i=-
UrtfT-J

cal

1
SMio Oarm

^
|

m7T-K

"femdfaaqrpc
jfcaNLU r*c23

Professor Assignment
Enforced Business Rules

Professor has earned at least one degree in at least one subject
required for the course where that degree is at least equal to the
minimum degree level required by the course for that subject.
Section number of course in department is identified by a call
number.
Professor teaches course identified by call number.
Course in department has title.
Professor has name.

jkaXLM ttatlA

Conclusion
• Natural Language Modeling may be used to

analyze any business rule.
• All business rules may be specified with set theory

constraints against elementary sentences.
• The analyzed facts may be validated by any

subject matter expert.
• The implementation may be tested against the

validated requirements.
• Accountability may be assigned for all aspects of

the project.
• Productivity improves when applications are built

according to precise requirements.
JaaNUC r*«t2J

(

13

Session A5: Software Quality: Experiences & Year 2000

Chair Cathy Kuhn
AS/FM&T

Session:
Paper #

A5:l

A5:2

A5:3

Author(s)

Larry Desonier
Sandia National Laboratories

Bruce Johnston
Pantex Plant
Curt Holmes
Lockheed Martin Energy Systems

Title

Guns for Hire -
Experiences of Quality Software
Development Under the Gun
The Year 2000 Challenge: A Project
Management Perspective
Year 2000 Awareness

I

*

\

'm'l'\~" \ s&®&
+?.<.fl*iW\Vk

.'xwss ttyryy, yy. \\ ••> •*?•$ *•

sissy ■■ ■"*. K5V.X
;¥ ,s
>r»s
■c^

*.v \\\yr •. AWAS. . A

The

There is neu^Mmgftmmgi
r M K » J S " k k ^ . ^ ' . --.Lis,,., * vt-\\ii\

' > _ , 5

,/A-A- %ijttjysf*S*. "•

to do itm&%&&\, »

b:- $#$* - ,^ of;,' *, "|% ~

'5 $Mx ■'■■ *¥ -^ 4s ^ sv% ̂ " ■■

' ■" *V ""v" ■""» . v. "* ""A S V ' .w J

$
v $ A •. , ■.V -A S *. **A*

,&■<& ? V H „ i ''-..;..'<m

J
-&

&&

Small Grams****®? -J*®*'*. •\ *&?} i*4$k j tSaKT '" O* ■»■.■.■. *i***i . \ A*li S J*

+ 2 to 3« A<? More than 4
+ 2 Man Coding
♦ Coheshe Group

>•>
 s "■? ' J \ VA^ *•§

% % ^ ' , „ * ' S>§y$

**&<&' 'J"*,',,' '„/",«',''"^ '
'■",;%/',',?"■;? {-:
wy •"••■■ 4W4AVA-S *

.> ■.£'*• * ^
V

 * ^ V . ^ ' .y%-y?X"',* is,
LVVW *. *. v *rtv.v. V . ,*iv *f/?y/JW • , .

. ;yy>%$,t---i h.i, Ad*, >'y,$'"& ' .;

^*#p

Code Remm^m i*
aU A.VS *AVA *. _ S -.A- i'A A?

♦ In u hurry one man re^em^m-
**"*£2k& ?■■'"■■■ ^ *\ s« /
v\ A A W W . Vr j v. . " > . ♦ Project Leader

<%ylxt%$, CfW
^l-^f-

-sm.'
. . . „ . . . ,y,-,y 'y>}yyyy?,?j,

Proportional Devem^Hg^
+Start Smaii

♦ Menus- ser Front End
♦ Dialogs

♦ Sow Guts

®%^,&::-.-i$.-yyy,\?? ' ',y./' fySSSOyi

" / ^

Summargl

♦ Standards
♦ Reusability
♦ Smaii Groups
♦

+ Start Smaii - End Bfr--<SWgW!$

S S S S S K ? ^ ^sfe ̂.V*&<+* ' ',yyy,A"'"" '"
.KSffi^ ^"0 Vs^$>sS«£. % ' •.•yylyy "&y y*
4*S^\<:VSK.KASS1 SS^>>^ .. :" f., '$,

/',/,»/,^y?<m'.' y
f*%.

:'&AV'W&
■;$y

fr>

;-** t4pproiacH: f
■■ Top Down Approach (VPs, CIO)

i. Present Corporate A\^r£n|j

■'• Assemble inventory,of AppI iMi^ |§ | | ^ v

'1" Assign Platform'Champion's;;'|£ :i£::;;i!!^

Ik Efi r form^iWKnarW

J

4

V ATSfA*** A ■V." ./".V *.AA A f V . VW.V V^*^H**^^ " . ^A . " ."WW A*. *m* A*f f f rf* .V ** JV A* f S 'A* A* A* JA'A'A'A'J' V.f ^ SA*SA*S*A*S A*

,? f 'oww-^-' ■"■H'i$, ^A, " o" '.P ' f'M""- A, 4 A'il "WW "A?As,

**&.:.7^fli»iE&^
si .«.»^^»si«4di^rf£S ; t &.^?A£Afj»JA.L'A. \. i; yAA?.'...tAAMk? -!"k.

♦ What Is The Challenge?
I Existing software which represents Year as a twodigit

field will probably not correctly handle the Year 2000
when 00 becomes greater than 99.

♦ Two Related Questions:
% Will my company's software correctly handle the year

1999? (98 and 99 in a field were often used as a "flag")
» Will my company's software correctly handle the Year

2000 as a leapyear or not?

♦ The Single Largest IT Project Which Most Organizations Will
Undertake Li The Next Several Years.
» All Corporations And Government Agencies
» All Platforms And Systems, Including Firmware

♦ Senior Executive Support And Ownership Is Essential In All Cases.
♦ Time Is Of The Essence.
♦ There Is No Quick Fix. Remediation Can Be Difficult And

Potentially Expensive.
♦ Business Operational Risks Associated With Partial Solutions Far

Out Weigh The Potential Cost Of Remediation.
♦ Strong Technical And Project Management Skills Are Essential.

yf,\ , ■• ,?>. •■^y^\ „> ",,;•,,,„,„>% ■> , y$yi.,, ^-y^yyyyy--,-. -,\y\-- •■•■••

*&ix**.>taA»A~**i*AMf'SAt'yxyyyyyy.y&^ > .y.yv.}./'yyyyyy,^x,-yyyyy. yyyyy. T&y-.y**

i

ms^sffl^am «
♦ Accounts receivable And Accounts Payable Systems
♦ Payroll And Personnel Systems
♦ Financial Systems Debt And Interest Calculations
♦ CreditCard Transactions
♦ Inventory Systems
♦ Cost & Scheduling/Project Management Systems
♦ Security Systems
♦ Regulatory Date Compliance Systems
♦ EDI Transactions With Vendors, Suppliers, Customers, Partners

And Government
♦ Firmware And Programmed Hardware Systems

■,"'A4A'f''

\»Z¥.
% +

i^iyWSA^^Jfy»t,M^

"•A^fAyj-A"Avy^

&fJZA-s y.'.-Syy:4y./'.'V.-^-\%\ ' <.-.■ A y •. v»\>.^^ ry* .••i-.t-.-X ^ 4 S .v..>^ •>>*■. \ > .■>..■ .-^•'< .■•*
A'AVA'A.^^^^A'A'AHV^^^^A-A'A^A' *A* SS A*. JA?A*A*A*AV. S S*A*^A*AVAV^^^A.*i*^A-A*A ASSS**̂ .\SSSVAA Ŝ*W"̂ V.̂ VAS A'^A-AVJ' A*Af^AVAVA*A*A*A\

■,ffiWy?yyppp™A*#Viy1!Ayy: ~;pyy^*t^y™$ps^$?®Z;yyf-y*'<-- ^?S«l8w8*<S!!<ir<W*&'$:3f'm- "■
'%8®0S18S8S5&ASS8y%S^gs^^

J. P. Morgan (7/22/96) Bidusny Analysis conservative
estimate of $200 billion in the U.S. and increasing
US current estimate ranges between $600 billion to $1,000
billion and is increasing
US Federal Government Year 2000 Survey (7/30/96) $30
billion and increasing
Department of Defense (Defense Secretary William Cohen)
current estimate is $1 billion
Department of Energy current estimate is $128 million

A^A'AA^fAAyf--

' f,,< %,„yyZi' '''\ %'Atf 'A m«'£,
,wAA>
'ii'Jy ' ,

■Z-CyS .' ' , i ,

'yf#r ",
,,,yy",y , y

■'■"'; j , ,

/ J t ^ . / y wSs^-ygsy Af j. j. t y. .

fi¥33X.

J. P. Morgan Industry Analysis
www.jpmorgaac»ni/M^elDataInd/Research/Yeai200/#Why
US Federal Government Year 2000 Survey
www.yeai2000.corn/archive/NFsurvey
OMB's Report Getting Federal Computers Ready for 2000
www.fcw.com/pubsyfcw/1997/0203/omb2000
Year 2000 US Government Report Card 1996
www.comlinks.com/gov/reOcaid
General Year 2000 Information www.yeai2000.com

S £ s ^
sv!\sylsy,*.ssv.vy" *. ^^SL^*5^*^8 ^•■Y:M;

&A * V,V> * ,,w AAk, X,v£A\ AA A&. >. AAAAn A\'A"%A<, A,*' -A1AA' yAA ,
•.A**. J *. SS > J- . V . A 1 * ttt A" f S t t A* A*. A* A- ttt ttt ttt > S t f . .* * J *tt . t t t tftt t t t

&%'<:

■ > ■ * : , .
tA* tttttttf tttttttttffft ft A*ttffffff ttt
tttfttt.t tttSA-Jttfffftt At ft, S ttt jfftff J

",yy %AAAf

♦ USDA's Year 2000 Program www.usda.com/da/infores/year2000
♦ Federal Guidance Package infosphere.safb.af.miIHwid/fad/fedguide
♦ Digital Testing Open VMS www.digital.coin/info/yeai2000
♦ Viasoftwww.viasoft.com
♦ Platinum technology

www.pIatlnum.eom/products/wpapeis/alphabethnn#y
♦ Tick, Tick, Tick Y2K 2000 AD Inc. www.tickticktick.com

'iAflt
. %>AAA^>

"AM, '-J
?

/4
iA,:s

A, AAA1'

http://www.jpmorgaac�ni/M%5eelDataInd/Research/Yeai200/%23Why
http://www.yeai2000.corn/archive/NFsurvey
http://www.fcw.com/pubsyfcw/1997/0203/omb2000
http://www.comlinks.com/gov/reOcaid
http://www.yeai2000.com
http://www.usda.com/da/infores/year2000
http://www.digital.coin/info/yeai2000
http://Viasoft-www.viasoft.com
http://www.pIatlnum.eom/products/wpapeis/alphabethnn%23y
http://www.tickticktick.com

m? 'iA'^MA'
—■ ■•■ - - &J, ■$&
A&%AAzAt(i%%-; ,ip. S t a t e s i%'<

■rA/<<

Foresee No Problems
■ 21%

■ 1 3 % Unaware

■ 4 % No Action

□ 28%
Have Begun Correcting

34%
Flanning Phase

(

♦ Establish Organize Management & Team Members
♦ Provide Statement of Enterprise Goals and Objectives
♦ Generate a Software Management Plan
♦ Perform Enterprisewide Inventory and Assessment of Automated

Systems Size & Scope of Problem
♦ Evaluation of Tools, Techniques and Methods
♦ Detailed Plan of Action Providing Enterprise Solution
♦ Pilot Project, Prototype or Proof of Concept
♦ Test, Verify and Validate Correctness
♦ Audit, Analyze and Measure Results
♦ Implement Full Scale Conversion Program

. ttt ttsstssssy-sttt ttt/ ft t Jt* tttffftttt t . . t

W%$%£$'fcA*A''A"/'
"' • • < " • • " ^ *^y/yy-yy

_. . y''i'i
!■ "■

A-

^ i i " /

AAA

R A ' W W (« W W W / « / / A ' r t « « k V ^ A v W V^AW^AWWAitAVSVA « SS AfiAVSAVtA^SSSAftStStAVSAVtAyA^VAWAVfA A * * S W . * J I U U U J A « • . j _ . . _ . . u

%®mMMi&^AiW^&&$k^&™&A?^«iX'?---- ws&$?%?AA£?%??^Ax&:;'.?A&: ■?
^ ^ » ^ ^ . ° s ^ A ^ ^ ^ ^ V { «A*J>> ,••*, *.

rXx:K«x^«j^\\x\'Nx.'Xr^'X^^

S ^%A&&ZyyAyyM^J9iA3M!M^*,<£:^*^
.,„ , 'tyiyyT3%!A^A<A^~Z^t™^ \ ■. i ,A*sA^AA™2^ TTA-t. T
'Hkf' .X < "*,&<?'.' "'P'sy, ,X* '¥'{'?''/' Z * * ^ 1 ' s ■■•"■ ' ^V? vV ; ^ s"% ..•••S'Ji

T't'g&z; ^

'■4;AA',',-4<''''sAy>y;/A?A,yfy'AyArA-£^AA---'?, , ;--/ <,,- " -
• > «\» «

^ f l i ^ ^ i C S f ^ J ^ " ' Z "" VoT F^XX v<. XX • XV < ~ v ' , ^ r " T ^ s x ^ ~ \ X« "*5V ¥«■" 1* «^"

««><S"<sssfrA
v*''*",'*> ^ •*•* ♦■ s tJ**t<■ s ^ s * ¥•■'■>•¥**■*' y^,jt <■■•'•••. ■"■"•■ f \s* ■••'•■ ■"■■ "^X s

l l j j j j j j j ^
lyrlliijHIIIIiimSoJBrw

Ay,/{tAv„yy,-y.
yy'/yyty'' ; ..

1

A'Ai'y"'-A„yy^{A"'A','y^y"'J''';-AA/{',A'"-;'" K/,A S/5i x̂> ' ' 7
AA¥,wAAZfA'';,'"AAAA;,AAMt-M'/,'<A,i">, * , \

W^1

*8ua
?w

||I||B||0^3M
lllillffiBllSM
i i i i i i
IlllSilll^^
IIIII.I§I^^

AA'AZ A,/AAAyA'AAAA'P'"''',,;""AAA'-'"A', '" ',;-?, ̂ "f"""'''"'' " A'""'
w,CJ,,, i ,y/y,,„ ,„yi4-,^,yy-y',^y., y' y, y/-y,y,, ',.?,.,$... ,., -y , ,,„, ̂. . , '
^?^'T *W*A^*S»/i'A'**)r»» ' :

*■ *r*''-,'■ ','>'■■■' '■ #•* ■'

.A'AZA

§.....

AA

'Wi<iSsi&AAyyyyy-,-yyyyyyy ,;y-

^8sr
'AA at.} ?,i&i

■?-
•ts^tfosstyssAy..

■j-. * yyyyyyyyyyy*, ■* ** "£** ■"* ■ ■ H w w ^ *.fAv -y.vA*

-SA", WAA' ,«: '■■-- -AA,<y ;■■' -
SSS<<V.SVS*rtS<\SS*l>KsSSS*ts SSS SSSSSSSSSSSSSSSSSSSCssssSSSSi"

Bliyillfffl

ll|Si§|g:eg|i|
ifilSniirtDbc!;!!:!

l|;;h.i:!;A|̂ licatipn;^ QSrtOT^|f||MiniJMi;l;|

erri ViSidhl!;:::il:;i!I:il

«&

X5*

•/'A%A2&A#/yA'AAy'''''A,''''^y'r',r'^g^rA^trr^''^^,''^"'""A''"■"■rt.r-'-""-^™<'■-;- -"™~-'^
9 /,AyyJm,M"A. AA„vAt',:■y:;?^,*,,WlX-^^yft-afif}*1t. A' uA'- -}"<,A? •"•'•.'■ ,V, 5"

WzBrtMsW^
il!l;EuSe.i;GollMyoM

IIIBIHIIH

l i I i l frastfuGt^ ;:iiH:njnnun^hliilH!ilHfH=llllHtlllllEllHI

Session B5: Software Standards for Quality Engineering

Chair Patty Trellue
Sandia National Laboratories

Session:
Paper #

B5:l

B5:2

B5:3

Author(s)

John Hare
AWETJK
Larry Rodin
Pantex Plant
^fichael Lackner
AS/FM&T

Title

ISO and Software Quality Assurance

Licensing and Certification of
Software Professionals
Operational Excellence (Six Sigma)
Philosophy: Application to Software
Quality Assurance

l !M(l i .? j^

Background for Presentation

Certification Programs

Licensing Programs

Why Become Certified?

Certification as a Condition of Employment

Certification Requirements

Examination Structures

SOFTWARE

ENGINEERING CERTIFICATION

V/s

Working Group Members

i p r cB i&k i i&p
;:«m Bosworth
i;Faye Brown
jlRuss Busbee

^^.Barfeara Cambeti
Bob Corey
Anna Dixon
Phil Edwards
•lean Evans

:AIb^u*rqii«,
::
NH!i

Denver, CO
Oak Ridge, TN
Aiken, SC
Livermore, CA
Livermore, CA
Aiken. SC
Richland, WA
Pinellas, FL

Tina Heath::::!;
Cathy Kuhn
Steve Lloyd
Travis Mover
Dave Peercy
Larry Rodin
NancySmfth
Ann Stewart
Royce Tyler

:IOakWdgev?rN:!!lj|||
Kansas City, MO
Los Alamos, NM
Aiken, SC ,
Albuquerque, NM
Amarillo.TX '
Aiken, SC !
Oak Ridge, TN
Los Alamos, NM >

h
Hi

A

IHlwBl^^^M^^^i^S^^^^
v -"

a row 188888 88^ l i l »S8CT^^ ,..„,. ,■

i iiiliiHiiiiiiiiiiiii SOFTWARE
iiiJiiHliiliiiiii ENGINEERING CERTIFICATION

WORKING GROUP

j ObjectiYes:;:;;

■ • :::::Kesearefi[softwarerelated certification and licensing efforts,.

;• ;:;:;Provide (periodic) status reports to the Quality Managers concerning
ililHCertification, showing trends from previous reports,

5 CbrripM^i deliverables:

• :::::Wh
:
ite

!
p^per on licensing and certification of software professionals, S

iHlilllillillilHsiilllii *
" • iiiiiDynamic

:
Resource Notebook on "Software Professionals" certification ^

jjijjiand.Bcensing programs: scope (categories/target groups), bodies of ^
:;;;;: k'riowi&d'ge, resource requirements,... „ -j

DEFINITIONS

JCertifirajra;^
fproqii|j|ifl
|profiai§icy;wirtfimpni
|Body5|p|SoS[!J|lg|;i|;l3

^A,

'or iiflff :il^w|tsl'i^£^

ill:!

SQ|=TWARE:ENGINEERING;:qERTI0CAT1QNS!!

liTnstifufe for" Certification :6f Computer Profes'siOT^

l!$?i^aJl!£^RiJ^
il|l|il:l::i!:::i:!:!ICerBi^;i^
ii i i i II i m 11111111=11 •^*ilf5i?jr*ii ̂ If ?H]|t^^l'*! ̂ liHHis*??̂ '̂ *??̂ * f̂ ssf z^^isf^ rt sS|Hc>iriaif ['Vfî eiriii ̂ i=H8- î?l̂ if il iilliiiil iiiiiiiiiiiiiiiiiil
l iJ i l l i l lp jppl i lHHii i i iy i i i i i^
illi!!!!!!!!!!!!!!!!:!!!^
iililiiiiiiijli!!!!
ilHIHii!::!!*!!:!:!!:!:!!:!!™:!!!!!!^^

JJjflnfericanSociety

llllllllllllllllllllSoft*^^

m:mM*i

LICENSING OF SOFTWARE ENGINEERS

Sary Ford, Software Engineering Institute (SEI) Technical Staff, presented a paper at the 1993 SEt
' ire Engineering Symposium entitled, "The Current State of Certification & Licensing of

■re Engineers". This paper contained excerpts on professional licensing from three states:
*era^lyanJa,.West VlrglniaVand̂

riJ«rsey:Softvrantb^g^«s'iUcensI

^WATiON.foirUCENSINCENGlNEERSij

; j:*>:j::j jPenn^vanta;Statu^::?U^;saf^uBid life, hearth or property and to promote the general: jj:j
•ii:iiiii!mK£^"::jjjiiijjiiiijjjjiiii^
iiiliiil ^v«eart^v£rgKi£ar 3stia£Lae«|̂ iHil^?! *?*?̂ Bfû *r5̂ i 'M?^* If? j ' ^ f ^ t i^t^ p^f^f^^'yI*?* ji8 î ̂ *?~ •p̂ <>nr?5:H>l̂ !^l^^' P'K^*! ■I'lfliiiitlii
! : : l : : ! ! i : S * 8 S ^ * : J l i ^
iiiijiiiii f ^ J e i ^ S i a t ^ ^

£ i;;;H;HH;:'som*we'de^nlj^
V :!JH!!!ll;*»^^weroire:of thci ;i;fUz^s\:'^ tHiii:State: vwil r be' r̂otedte>d by identrrying'tbither^wic;."!:;
"■' thoM ihdHridiJals who are qualified and l^ally autrtoriied to practice sbftraredeslgnlnig&"

L̂ICENSING ENGINEERS in OTHER STATES ™
s j %
Members of the SQAS Work Group tried to determine Software Engineering/Development | g
licensing efforts in their respective states: California, Colorado, Ronda, Missouri, New Mexico,
Ohio, South Carolina, Tennessee, and Texas. No evidence was found to document licensing '*
'efforts In any of these states. §||

mmmm®jmm

iilnitoday's world where quality competition is a
^alityy and the need for highqualify software a

jjcenijlij concern of many organizations, certification
i®ewe$;as;a mar f r^
i:tHat;tHe:certifiedin

!:1?$::Q!̂ |nip|tibns;)iT!
ti^jiifiiratt^^

[?ny§sjtrjp ifature ofIII;;... t;;ll j | l

IllilllM^̂

ilBECOME CERTIFIED?

iccp-ij
:;Certfffcira^|ijmewa^ profession. And the prestigious CCP
iidi&gnatjpi&C^ KCP is recognized worldwide by
y«mpldyeiTii^:peer*asyandatiooW

!*!!;;:;::Tto:cCP:is;»e:sUrK^rd y * ^ That Is because 1CCP, the Institute for
L:p;:;p;c*rnfl<^6n:<tfito'mp^ Is acknowledged throughout the Information
jij;jijjiiand t e & i i ^ source of professional certification. Our
iiiii::Hi<i^[tio^nst}$n::d<ih^ of professional competence from those who
IIIIIIIIIIPSHSliSS^^
•i:::i:ii:$*i**i*£ipi!^n!!#^

::|CCT,.:lstteSt^ardlnp^
jjjrofei&a^eompu^^

^jijjjFCertfli^oiv^
:ii!i:::::>ndp^si^iM!^^!te
iiiiiiiirceftriea'.iwiin^

«j[j!i;j:lrt^gh'.eeonoiiuetlm(^

ijjjjjjjLcCdesilgn^

CERTJFieftTJQNiAS:A=;QONDlTJON[OEEMPLO^MENTill

E EquarEmplpy^iOpp^
; by thefeo£ira{;sjoyem^
j prOCeoUreS~;.;jjj;:::-:::;:::j;.;;™.|.'«;:™^

If procedures (suchas written tests) affect designated populatfon;subgrtwps,tl^the;;:;j;::jj;;:i;
employ«lmi^ h i w . w l i i ^ ^

m

ynth papej; arid pencil tes^'adVerseeffectsWill normally be asslimrt unless theiempfoyeriij
has evld-ence'tbitiwcoWary^
s u b g r o u p i p ^ s t t e ^ u s ^ in
populaHoSsub r̂oupŝ ljjIjjIJIjjjjIIJIjjIjjjlĵ

« An employer•h'aeiori'c*
^ skHls abcjjrtlffig jbB;W

1. Offers^stical evidence; usuaDy correlations between test scores and measures or:::;:;*jy;;
•tctualjoto^rfd'tTOnce'^
perfornuui^jljijl;:;:^ " A p:;!;; 11;:.. rJ:);:lj|III:![l;|:::il:l!:;5H|!i

2. Showti^'tine'c^eht'*tlw« cowssjiwlficjoti'sWIIs'wHlcH:areessentialtd-l-iilHI-^ii
the Job hi question:;

w®w fm

i

5

OVERVIEW OFiTHE ICCB; REQUIREMENTS:!

ASSOCIATE; COMPUTING; PROFESSIONAL!!!
I |£x^riei^~ll l l l l l l l l$^

prbgrarnfriihg lahguag^:

iIIIIIIIII*?Mn*!li$^^

yiJiliiy^re Examination:

2) Option of one of eight programming languages:
Ada, BASIC, C, COBOL, Fortran, Pascal, RPGII,
and RPG/400.

iCCP Codes: Candidates must subscribe to Code of Ethics,
Conduct and Good Practice.

IBS
I Ex^ff«icepliij;4$

::j::ii::::i::::i:i:::j:iitaeiitip^W

IIIIHillillHIIIIillliijsoifi^

[lllllllllllllllllllllllljBrjid^ed^
rllriHIIIIIIHlElilhEMie*?* '̂"^*^*^""1"1""'"""111 "::"""":-::::--: " : :•••:::—:"—:::-:.:::.::~::::::::::::::::::jjijjj[Jii

j Proof.of professionalism; Statements from professional co&eagues attesting to
experience and qualifications,

. ExamlnatloKjjjjjPass a three-part examination,
:;i:l!!::l:-lj Core Examination .i!:jjjjjjl;
ii::::!::i;2/3) Two Speciality Examinations: Management, Procedural/Programming, ! j :w: |

Systems Development, Business Infonnation Systems, Communications,!;: ™j;
!!!!!:!!!!!::!:!il!!!:,|0jn&.'*!^^
:j:ill:::;j:::::::!:r;|*5jl*tei^;rt

IC^'C<&X:ij;;jCandi^

XW:

OVERVIEW OF THE ASQC
REQUIREMENTS FOR

SOFTWARE QUALITY ENGINEER

8 years of professional expei^c£; A;'gfj^
years experience.fA;b^dcx;sd^r*^ yean;exp^ence:i!:[
An associate degree mayte courted iis2 y^s"«i^ienceiLA:fKHittcaT.s^6ii>i:i
certificate mtyte;eojintec^

; Proof of professionalism:

Jfcnibei^lp In appropriate;*oclety;6«v|ji||||jjj||H^

Registration as a Professional Software Engineeror,

Statements from two professional colleagues verifying that you are a qualified
practitioner of software quality engineering.

Examination: Pass an examination with seven specific body of knowledge areas in .
Software Quality Engineering.

ASQC Code: Successful candidates agree to abide by the ASQC Code of Ethics.

m m m m m ■j i

wm.
M«Xw*«A>, ttt. W l \ \ hi

|!iCCiRi!AS§Q.Ci[fttli COMPUTING PROFESSIONAL &

1CQ||;E^AMINATI0N
:ii(Ma^atoryTor Both Exams)

;IIIII§y5fems;Gbnc^
llllilD^^^ l̂î MiiMnlHIHIIIjlllllllllllHIII

Systems Development
Technology
Associated Disciplines

Examination Information1:

The examination cbhsisfsqf 66 questions and lasts 1 1/2 hours. Associate*
--■PiyJrWtiwP™ P 3 5 5 t n e examination with a ^
miriimurnscbre of ,^%i;j.Cierffl^;Computing Professional Candidates ^
iriQjsX:ijijEJs&WWia^Mm^dn'̂ ^W-mMmum score of 70%. -^

mmmmm^mm

ICCP ASSOCIATE COMPUTING PROFESSIONAL
LANGUAGE EXAMINATION STRUCTURE

Choose one language examination for ACP designation.

>»»M9vM^»»/Mww •AWS&W..W/.V tl-ttftttttyt ittttft t i t i

RPG/400

BASIC

COBAL

Examination Information m
m

The Core Examination consists of 110 questions. Each Language %$•
Examination consists of 66 questions. Each Exam lasts 1 1/2 hours. y
Candidates must pass each examination with a minimum score of 50% in &,
order to receive the ACP designation. j » B » ^ a A mm

ICCP CERTIFIED COMPUTING PROFESSIONAL
EXAMINATION STRUCTURE

(Choose two from following section for CCP designation)

<{ ■.

Management

Procedural Programming

Systems Development

Business Information Systems

Systems Security

Examination Information

Software Engineering

Communications

Office Information Systems

Systems Programming

Data Resource Management
m

Speciality examinations consists of 110 multiple choice questions each, ^
and each examination lasts 11/2 hours. Candidates must pass both the jgj
speciality examinations. • • S . f c i l l J J . J I i l E

Jvrf-yX&iA^

lASQC-iSOFTi^RElQUALITY ENGINEER

:|(JllllIIij|ljI||iG^eraijl^e^ V.
:j::::::iji!!j:::!:iandEthll»;^

Software Metrics,
Measurements and

|||{H|I|||1|I|||!||||||||||||I|I|||I||||!I||||||H|I||1|||!II1I|||111H Analytical Methods
iSiiiiiBiiii^^
l!!!!!!!!!!!!;!!!!jii8;ailiesGq^

$ipll[j!!!!jj!§s!*^
l l ! ! ! l l ! ! i i H l l i (f ^
lllllllllllli!!!^
!%iliiiJ;;|::j:Spfftv^;jWrep^

F 5 illlll;;llllll!!lj(i6l«5iiieilfibr^

ExaminationinformationiiilJIiiiiiilJiliJ;

• T!ll.?;Sbfttywe'QuaIif^;a

becerfified.-i

ilJNSTITUTElOE ELECTRICAL AND ELECTRONICS
i i i i i i^^

lRifciTessibn"!l!ii!::l!llli!li!lllili;l!!l!!i:HI:
ilillil:

lllllllllsJilllilReMmmend

j i j j j ipjjpj.Recomm^
^iilililiilijllilllliijiilliljliillilljlijy

" ^IlilllliiiliifljiliR'^mmeh'datiOT

' Jl!-!!!!!!i!!i!!!!!£î ™™?ii!!̂ ^

'>i;li|i:ll|!i!li!l!^iilllll|plll^

•sv*
sfAsf

■yy.™

IEEE Recommendation 1

Adopt standard set of definitions.

We recommend the adoption of a standard set of definitions. IEEE
Standard 610.12 isagood starting place [610.121990 IEEE Standard
Glossary Software engineering Terminology). Other standard glossaries
might be appropriate but in any event, these definitions should be £
carefully examined for appropriateness and scope, this task could be ■*%
entrusted to the Standards Activities Board of the Computer Society andg
the appropriate Standards Subcommittee^). _

IEEE Recommendation 2:
Define Required Body of Knowledge Recommended Practice

'We recommend the identification of a required body of knowledge and recommended practices
(in ̂ ectrfcal engineering, for example, electromagnetic theory Is parfof the body of knowledge
while the National Electrical Safety Code is a recommended practice.) The requlredbodyof
knowledge and recommended practices are not static because technology evolves and the
professions Is'should keep up wtth the field. This activity should be entrusted to a task force of
Industry experts: Industry should lead the effort because employers know what their software
engineers do well, poorly, or indifferently,

Adoption of new practices often requires cultural changes and these processes take years to
accomplish. Thus, the initial set of recommended practices ought to be modes and easily
achievable. The development and maintenance of the set of recommended practices should
be structured See a technical standard: adopted by consensus and subject to periodic
revision.

"We should net confuse organizational practices with individual practices. Organizational .
maturity Is already the subject of a healthy activity by Software Engineering Process Groups '
(SEPCs) and Software Process Improvement Networks (SPINS). Industry Is adopting %
standards to assess and improve organizational maturity (ISO 9000, SB CMM) and we should «
capttaflzeontheseo^velopmentsbutriotconfuse the issues: 2

%
Engaging the process Improvement groups might be unconventional but they provide
leverage. The SEPGsare almost exclusively attended by industry practitioners concerned
with organization software engineering practices and will have something to contribute to the
definition of recommended individual practices. l i l i l ^ l

<i

i;:;::;We'reTO'mrnerid;i6:sfedy^
a!r^yiatf^f^b^JEEE;;Aj^

iter'riDryrjiWerentOTS
...Jjliiiiljjiijiteffi

E" ^""ilJeJ^nsitM <tf tfi^ thingsH:|!:||l!iJ!!̂ :!
C^i:Hli!!!M?il:!!n?^

:!!!!|!!j(i<&fi.5)̂!;thi£
!!!!!!!!!£^iw:teQPPi!^

\U0W ij-sr

V *ff^tfA'tAVtAmA*A*t.. «V> *̂ "̂ * v.

:IEEE:Rec6mrnehdatibn:4:;

; Define Ediicatidriai Curricula!

i l l ! ! l-̂ ŷ !??! ̂ ^ * H p i ^ ™ ^ ^ ^ = l ^ j ^ r ^^?3i^4*H?!t?L i*?jf; *?Mrfi?*5*??^! **?*?̂ X^3f IM!™**^Jf s '̂ *?JH^^???:X^*JEII11 Mill I II
!!jyiiH:gradua&'(MS);;and

lllliisSiiii^M^
Ijjjjjiillfciijim^

SK%-:i::::::i

Trrere;is:a'debate;as;tp;y^etherS6
!CbmpiJito;S&re
.tfi&flefcrafefromtW
;^ucat rbn : n^i^ by'cbmi^te^
'acqujr^iri di jrfer^t^
for a fouhdatiori on sfette

8:l!!!!!i!!<i-̂ ftmente!!;iTh^
III jfiafsfiould betaiigfit arid ribf'nMeSsarily;6h^icn'dep^rn^
''t^H!i£ii:l;illllll;llll|!£
^^^^^^^^^^^^^^^^^^Wi^^Jka^^M

AAf:::::::

11

r%s*̂ Â w . tttjt * tt .

Licensing and Certification of Software Professionals

Background for Presentation

Certification Program

Licensing Programs

Why Become Certified?

• Certification as a Condition of Employment

• Certification Requirements

• Examination Structures

SEES Overview

%

* S f t l

HI!!
mmm

Institute for Certification of
Computer Professionals
200 E. Devon Ave, Suite 268
DesPlaInes.IL B0018-+503-
708-299-4227)

Institute of Electrical & Electronics
Engineers, inc.
345 East 47th Street
NewYork,JiY 10017-2394

PUBLISHED MATERIAL

Paper presented by Gary Ford, Software Engineering Institute (SE) Technical staff,
presentedat 1993 SB So fhwe&gmwmg Symposwm eno^^
of Ce^MtiOT&Uc^sIng'of ^

m
ill

http://DesPlaInes.IL

Operational Excellence (Six Sigma) Philosophy
Application to Software Quality Assurance

AlliedSignal Federal Manufacturing & Technologies/KC

. D&ACCK.TBDP00013.
CopyiigMMtdStiul he. 1997

^vlliedSlgnal
A E i o s r t c i

Ftdtral Manufacturing &
Ttchnologlts

Operational Excellence/Six Sigma
PRESENTATION OUTLINE

«Goal of Six Sigma

"'■Six Sigma Tools

""Manufacturing Vs. Administrative Processes

«~SQA Document Inspections

"■Map SQA Requirements Document

""Failure Mode Effects Analysis (FMEA) for Requirements Document

""Measuring the Right Response Variables

"•Questions?

^UiedSignal
A . F . K O S P A C Z

Fadn l Manufacturing S.
Tachnoioglts

0 1

Operational Excellence/Six Sigma
GOAL OF SIX SIGMA

Understand the relationship between the critical factors (process parameters)
and the response variables (process results), and then reduce the
variability about the target

;* I*«F<50
Knowing the T s lead to
identifying the 'y's, and
understanding of the 'x's which
control your system.

^IliedSIgnal
A £ K O S F A C E

Federal Manufacturing &
Tachnologlts

Operational Excellence/Six Sigma
GOAL OF SIX SIGMA

" (SQA software project) = [y (SQA recpiiremeata) +y (SQA. design) +y (SQAcode) + ...]

•J (SOArequbemtaats) I '——•——» '■vcuf—~cu>.)__i__'. ~ •**• " 1 _ _ — » • <V

+ x
(customer) (SWenftSW developers) (forma* system) (schedule)

](experience, education/training) (written, verbal)
. _ ,

Use tools appropriately and discriminaWy (what question are you
trying to answer)

Understand the process as it now exists BEFORE any improvements
are even suggested.

^IHedSIgna!
AF. « O I ? A C I

Federal Manufacturing &
Technologies

Operational Excellence/Six Sigma
SIX SIGMA TOOLS

"•Thought Process Map
-Baseline Existing Process

• Generate Detailed "As-is" Process Map
• Conduct Failure Mode and Effects Analysis
•Establish Metrics

-Target Areas For Improvement
-Implement and Monitor Results
—Maintain Gains

"■Process Map

"-Failure Mode Effects Analysis (FMEA)

"■Measurement System Evaluation

"■Design of Experiments (DOE)

"■Statistical Process Control (SPC)
IliedSignal
AE K O S F A C E

Federal Manufacturing &
Technologies

Operational Excellence/Six Sigma
MANUFACTURING Vs. ADMINISTRATIVE

r
Manufacturing Process - end result = feature or part (product)
achieved through machining or process equipment

r
Administrative Process - end result = formalized method of
performing a service (softer 'product")

r
Software - Product as result of human and equipment process

r
SQA - method of assuring the software producers (and management)
and customers/users that the proper level of quality was applied
to optimally meet requirements and functions.

^HfedSfgnal
A t l O l f A C I

Federal Manufacturing &
Technologies

3

Operational Excellence/Six Sigma
SQA - DOCUMENT INSPECTIONS

"■Requirements Document

Process Map | [-**] \-*^ [-**] (->- requirements document

""Design Document •

"•Code

"■Testing Document

""Acceptance Document

ftfP
m

■

^Al l i eC lS igna l Federal Manufacturing &
A t i o j u c i Technologies

Operational Excellence/Six Sigma
MAP SQA - REQUIREMENTS DOCUMENTp

1. PROCESS STEPS

Review
Concepts

for SW Project

Create
Preliminary
Requirements

Document

Generate
Requirements

Document

^IliedSignal
AF.KOSFACK

Federal Manufacturing &
Technologies

Operational Excellence/Six Sigma
MAP SQA - REQUIREMENTS DOCUMENT l£
2. IN-PROCESS PARAMETERS AND OUTPUTS

Process
Parameters
(Variable
Factors)

Outputs
(Results Or
Activity)

•CTjrtfemer/useis
-system requirements
-"How to" documents

(QurJity system)
-Aralyjts/Devdopm/SE

Review
Concepts

for SW Project

•cutcmettaeB
history
schedules
."How to" documents
-cqabQities/iltemitives
-AiuJysts/Devdop3i/SE

•cistcrnex/users
schedules
-"Hew to" documents-
Amlysts/Devdopas/SE

•Woidptocessng
Penan

•schedule
-management

Create
Preliminary

Requirements
Document

-Map of curat system
(analysis ofcurrent system)

-List of curat hardwire
-Draft list of new hardware
•list orfuncticRS used
-Reviewed list of user
requested enhsneements

-Prrtniiuuflytura?Aesou*cesc*3imitf
-Riskanalysis (graded approach)

-Drift ofrequiiangt*. dec
-fttlnmiwy analysis of
proposed system

•List of errors discovered
-Cost of non-conformance
-Action items and responsible

Generate
Requirements

Document

-Requirements Doc.
•Preliroinsy Testing
Doc

^HiedSignal
A l K O S F A C Z

Federal Manufacturing &
Technologies

Operational Excellence/Six Sigma
MAP SQA - REQUIREMENTS DOCUME
3. CLASSIFY IN-PROCESS PARAMETERS

Process
Parameters
(Variable
Factors)

Outputs
(Results Or
Activity)

N-euttomer/users
EC-system requirements
SOP-"How to" docunents

(Qurdiry system)
C-Am]ysts/Devdc*pCTs/SE

rV-customesnise-s
T-Mustay
N-scbeduies
SOP-"How to" documents
C- captbDit'eri/altemitives
C-Aialystr/Dwdopeis/SE

N-custcmet/users
N.schediles
SOP- "How to" documents
C-Ajalysts/Devdopers/SE

C-Wordproeesang

N-sehedule
ri^mBgemers

Review
Concepts

for SW Project

Create
Preliminary

Requirements
Document

•Mtp of euros system -Drift ofrequiremeits doc.
(analysis of curat system) -Prelimmyiaialysisor

■List orcisrert hardwire proposed system
■Draft list of new hardware
■List of functions used
■Reviewed list of user
reqirsfrd crhincnnents

•FrelimmKytimetaoorces estimate
-Risk analysis (gilded approach)

-List of errors discovered
-C^ofno-Tr-r-onfcnmnce
•Action items and rrsponsitJe

Generate
Requirements

Document

-Reqiiiemesrts Dec
•Prdjjijjjiji y Testing
Doe

Parameter Classifiers
N-Noise
C-Controllable
EC-Extemalry Controllable;
SOP-Std.Opr.Proc.

^IliedSIgnal
i r . i o i n c t

Federal Manufacturing &
Technologies

5

http://SOP-Std.Opr.Proc

Operational Excellence/Six Sigma EP^I
' FMEA FOR SQA REQUIREMENTS DOCUMENT

b * M « C«ftapU
tceXatMttn

F a a H n K a O

UmrAf Oirrarasgntaa
Uaf

D«fi«aM«Pr<*kDI

P v o j ' & T n c f
Uxatnc/roM

PwtaBMl Antt jaadDt

Lade «TlUqa ra ■ «
Piocas D s f a t m

T U I a t « Z (r « c t s

D«lii>iau>y/XHo

Dt) i y / i t c * / r«4e

ltt30UfC*t BBp id

SlaTfftLOtfr+lO

S
E
V

3

3

t

t

O D X
c r r

C H M C C M t n b T K
Lrretsvajmet* /

Eircrbj .nr .EBgr

P M T caatfiBtf easmuMotMO

Error •» JytUOi

Ctad«r«aa*latc'ScMn«o«

\H*x pnebcaf * y Sof tv i r *
E«t rJu i i (T* i / Davitepvj

S faqatrasslxftOTMv

4 >Kov lO* DKBBsOtf

2 UMlEFMnSat

■* 'How lo* Deeua«ati

A c d M i

DatsUf/Sitae
Kab&atMO

I 120

■i{

Flma s|o D .

^ I i i e d S i g n a l Federal Manufacturing &
A t i o s r A C i Technologies

Operational Excellence/Six Sigma
MEASURING THE RIGHT RESPONSES

"■Process Improvement Observable

"•Defect Prevention vs Defect Detection

"■Maintain the Gains

"Beneficial to Business
Competitive
Cost Effective (Long Term)
Improve Customer Satisfaction

^WedSfgnal
k E I O I ' A C t

Federal Manufacturing &
Technologies

http://Eircrbj.nr.EBgr

> '

m*

Operational Excellence/Six Sigma
QUESTIONS

?????

^sIHedSIgnal
A£ a o s F A c r

Federal Manufacturing &
Technologies

^ e a u A u r y

MUCt*

Wrapup and Awards

Best Tutorial Award
Best Presentation Award

