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Abstract 

We consider the problem of defining the fracture permeability tensor for each grid lock in a rock 
. mass fiom maps of natural fractures. For this purpose we implement a statistical model of cracked 

rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a 
volume average of the contribution fiom each crack in the population. In this model tectonic stress 
is implicitly coupled to fluid flow through an assumed relationship between crack aperture and 
n o d  stress across the crack. We have included the-followingenhancements to the basic model: 
(1) a realistic model of crack closure under stress has been added along with the provision to apply 
tectonic stresses to the fixture system in any orientation. The application of stress results in 
fiacture closure and consequently a reduction in permeability. (2) The fixture permeability can be 
superimposed onto an arbitrary anistropic matrix permeability. (3) The fracture surfaces are 
allowed to slide under the application of shear stress, causing fkctures to dilate and result in a 
permeability increase. Through an example we demonstrate that significant changes in 
permeability magnitudes and orientations are possible when tectonic stress is applied to a fixcture 
system. 

. 
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1 Introduction 

The state of the art in simulation of fluid flow in fractured reservoirs relies on the application of 
dual porosity numerical models. These models contain two separate (possibly anisotropic) overlap- 
ping porous media, one for a permeable matrix and one for fractures in an impermeable medium. 
Both media are coupled so that fluid can flow from one to the other. The properties of each of the 
two components can vary from grid block to grid block as is typical in a finite element analysis. 
The fractured medium is equivalent to an anisotropic continuum with the permeabiity defined as if 
there were three mutually orthogonal regular sets of infinitely long parallel-plate fractures, with a 
constant spacing and aperture. 

We have been considering the problem of defining approximate fracture permeability and elasti- 
city tensors for each grid block in a fractured reservoir from maps of natural fractures. As a practical 
first step, we have developed a computer version of the statistical model for cracked rock due to M. 
Oda and coworkers [see references in the following section]. Furthermore, we have modified Oda's 
standard model to include some important stress- and deformation-dependent processes. 

2 Oda'sModel 

In a series of papers, M. Oda and coworkers present a statistical approach to describing and 
modeling the elastic deformation and fluid flow properties of fractured rock [Oda, 1982; O h ,  1984; 
Oda, 1985; O h ,  1986; Oak, 1988; Oda et al., 1984, Oda et al., 1986; Oda et aL, 19871. In this 
approach, the elastic compliance and permeability properties are related to the fracture geometry 
through tensors. The tensors for each physical property are derived by taking a volume average of 
the expected effect of each fracture in the population. The volume average contains functions of 
the fracture orientation, length, and aperture, in such a way that long fractures or wide fractures 
contribute relatively more than their smaller cousins. In this model elasticity can be implicitly 
coupled to fluid flow through relationships between fracture aperture and normal stress across the 
fracture. 

Oda's model is practical at the expense of rigor. As mentioned below, there are some simplifying 
assumptions which reduce the generality of the results. However, the model is easy to implement 
and retains enough of the character of real fracture populations to be a significant improvement 
over assuming that fractures reside in three infinitely long orthogonal sets as conceptualized in dual 

' porosity reservoir models. A significant benefit is that the permeability tensors derived from this 
model can easily be translated into the proper inputs for the dual porosity models. 

2.1 Fabric Tensor 

Oda [1982] envisioned that a general geometric property of cracked rock, termed the 'fabric', 
determines many mechanical properties of geological materials. He developed a mathematical de- 
scription, a fabric tensor, which considers the following elements of crack geometry: 

Position and density of cracks. The position of a crack is identified by the coordinates of 
its centroid. The density of cracks p is identified as the number of crack centroids per unit 
volume. 

Shape and dimension of cracks. A crack is composed of two surfaces each of which has 
a unit normal vector n or (-n). The distance between the surfaces is termed the aperture t .  
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Cracks are assumed to have a simple shape, such as a circle in 3-D or arectangle in 2-D which 
occupies the same surface area as the real crack. The crack size is therefore specified by an 
equivalent diameter r. 

Orientation of cracks. A probability density function E(n, r, t) is used to describe the number 
of cracks with diameter in the range r, t+dr with aperture in the range t , t+dt whose unit 
vectors n are oriented within a small solid angle do. 

The fabric tensor was constructed by considering these features and averaging over all cracks in 
each arbitrary direction, yielding: 

The factor 7c/4 comes from an assumed circular geometry of each fracture in 3-D. The expression 
is slightly different for the case of rectangular-shaped fractures in 2-D. 

Oda [1982] shows that the first invariant of the crack tensor is related to crack density, and the 
second invariant of the deviatoric part of the crack tensor is a measure of anisotropy. Furthermore, 
Oda [1982] found that the crack tensor is empirically related to the uniaxial compressive strength 
and porosity of cracked materials. While the crack tensor properties by Oda [1982] suggest some 
relationship to the mechanical properties, it seems that this tie was not solidified until rederivation 
in a later series of papers. 

One of the primary simplifying assumptions in the derivation of the fabric tensor (and in the 
related derivations for the elastic compliance and permeability tensors introduced below) concerns 
the relative position of fractures. Fractures are assumed to have a random position in the network 
and all fractures qe  distributeduniformly throughout the network, as is often described by a Poisson 
point process. For example, the exact position of any one fracture (say a particularly long one) with 
respect to any other is not taken into account. Only the length, orientation, aperture, and stiffness 
of each fracture are retained in the calculation. Thus highly conductive clusters of fractures will 
not affect the Oda analysis, but may in reality have significant effects on fluid flow. Thus in Oda's 
model, fractures in the network can be arranged in an infinite number of different ways and still 
have the same mechanical and fluid flow properties. 

.2.2 Elastic Compliance 

Theoretical consideration of the elastic compliance of rock-like materials containing popula- 
tions of open penny-shaped cracks led Odu et al. [1984] to a new derivation of the same fabric 
tensor described above. This time, the fabric tensor was related explicitly to the elastic properties. 
Although consideration of the elastic compliance of open penny-shaped cracks is beyond the scope 
of this paper, it is worth noting that further empirical studies showed a relationship between aspects 
of the crack tensor and the anisotropy of acoustic wave velocities in laboratory specimens [Odu 
et ul., 19861. This result suggests the potential to develop an inverse method to derive important 
aspects of fracture geometry from geophysical methods. 

23 Fluid Permeability 

In subsequent work, Oda [ 19851 developed a tensor model for the fluid permeability of fractured 
rock. A new qsumption required for fluid flow in this derivation requires that the fractures are 
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comprised of smooth parallel plates with a constant separation or aperture t .  In this case fluid 
flow is described by the parallel plate model, where the volumetric flow rate is proportional to the 
aperture raised to the third power (t3). The permeability tensor kij  is found to be: 

where 

and &j is the Kronnecker delta function. Note the differences between the tensors f i j  and &j 

with respect to the r and t terms. In (2) and (3), the fluid permeability depends on the statistical 
distributions of lengths r, apertures t ,  orientations nj, and density p of fractures in a network. 

The issue of fracture interconnectivity arises in this derivation. In the cubic law for flow through 
a single fracture a premultiplying constant of 1/12 appears [e.g. Iwai, 19761. In Oda's derivation 
this premultiplyer is replaced by a variable h ranging between 0 and 1/12 to allow for imperfect 
interconnectivity of multiple frachires in a network. Oah [1986] argues that since elements of the 
fabric tensor describe fracture density and porosity, then 

h= A(&). (4) 

O h  [1986] demonstrates the following useful relationship through an empirical analysis: 

where the first invariant Fo of the fabric tensor &j can be calculated as: 

and 

A(F) = (34)4)) /Fo. (7) 

Here, = f;ii - F06i j /3  is the deviatoric part of f i j .  These relationships are discussed at length by 
Oah [1986] and Oda et al. [1987] and are illustrated in Figure 1 (reproduced from Figure 12 of Oda 
et af. [1987]). For our purposes we use the following approximation derived from this graph 

with h never exceeding the value 1/12 at large 6. 
In addition to his earlier analyses of open penny-shaped cracks, Oak [1986] discussed some 

new aspects of the coupling of stress and fluid flow behavior for large-scale rough-walled joints 
and fractures based on the empirical model of normal and shear stiffness by Barton and Choubey 
[1977]. Seeking a more physically-based model, we have replaced Oda's Iatter analysis of deform- 
able fractures with our own. We strive to quantitatively relate fracture closure under normal stress 
and fracture slip and dilation under shear stress to the roughness of the fracture surfaces. 
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Figure 1: Relationship between the interconnectivity parameter h and the first invariant of the fabric 
tensor Fo. Reproduced from Figure 12 of O h  et al. [1987]. 

3 Deformation-dependent Fracture Permeability 

3.1 Surface Roughness Effects 

Fractures are well known for their effects on the mechanical and transport properties of rock. 
Mechanical properties, such as bulk elastic constants and shear strength, are strongly affected by the 
presence of fractures [Goodman, 1976; Brown and Scholz, 19861. Fractures also control the fluid 
permeability of crystalline and tight sedimentary rock [Kranz et al., 1979; Brace, 19801. These 
effects arise from the fact that the surfaces composing a fracture are rough and mismatched at 
some scale. The shape, size, and number of contacts between the surfaces control the mechanical 
properties. The surfaces are propped apart by the contacting asperities, and the resulting space 
between the surfaces (or aperture) controls the transport properties. Surface roughness, therefore, 
becomes important to quanm for the rigorous study of many fracture properties. 

The parallel plate model for fluid flow can only be considered a qualitative description of flow 
through real fractures. Real fracture surfaces are not smooth parallel plates but are rough and con- 
tact each other at discrete points. Fluid will take a tortuous path when moving through a real 
fracture; thus deviations from the parallel plate model are expected. Taking the spatial variation of 
the aperture into consideration, laminar flow between rough surfaces has been studied theoretically, 
numerically, and experimentally [e.g., Walsh, 1981; Brown, 1987; Pyrak-Nolte et al., 1987; Pyrak- 
Nolte et al., 1988; Brown, 1989; Stesky, 1986; Zimmennan et al., 1992; Olsson and Brown, 19931. 
These studies confirm that surface roughness plays an important role and can lead to a significant 
departure from the parallel plate model. 
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In our current problem we assume that the parallel plate model applies. This isn't a serious 
over-simplification at this stage, since it is possible to make a first-order correction for the effects 
of surface roughness by considering the results of Brown [1987], Brown [1989], and Thompson and 
Brown [1991]. We do, however, take advantage of the the surface roughness to determine the stress 
and deformation dependence of the aperture and therefore the stress and deformation effects on fluid 
flow: 

3.2 Description of Surface Roughness 

Measurements and analysis of surface profiles of natural fractures have established that fracture 
surface topography can be represented in terms of fractal geometry [Brown and Scholz, 1985% 
Power et al., 1987; Power and Tullis, 1991; Power and Tullis, 1992; Brown, 19951. Topographic 
profiles are treated as spatial series and Fourier analysis (especially the power spectrum) is used to 
analyze their properties. The power spectrum is computed by breaking a time or spatial series, in 
this case the profile, into a sum of sinusoidal components: each with its own wavelength, amplitude, 
and phase. The squared amplitude of each component is referred to as its power and a plot of power 
versus wavenumber (27r / wavelength) is referred to as the power spectrum. The phase indicates 
the position of the first peak of each sinusoid relative to all others. The phase spectrum is a plot 
of the phase as a function of wavenumber. Phase spectra for rough surfaces are typically random, 
that is there is no consistent relation between phase and wavenumber. The power per unit frequency 
interval is known as the power spectral density. Excellent introductions to spectral analysis are given 
by Bendat and Piersol (1971) and B5th (1974). 

Linear profiles of fracture and joint surface profiles exhibit power spectral density functions of 
the form: 

G(k) = Ck-a, (9) 

indicating self-affine fractal geometry [Mandelbrot, 19831. Here, k is the wavenumber related to 
the wavelength h according to k = 27r/h. The exponent a depends on the the fractal dimension of 
a surface D as a = 7 - 20. The fractal dimension of a linear profile is simply Dp = D - 1. The 
fractal dimension describes the proportion of high frequency to low frequency roughness and is a 
measure of surface texture. For natural fracture surfaces, D falls in the range 2 5 D 5 3, with small 
values representing smoother surfaces. The constant C determines the standard deviation of the 
surface roughness about its mean plane at a particular reference profile-ien,@h. Additionally, the 
two surfaces comprising a fracture are often closely matched at long wavelengths and mismatched 
at small wavelengths, resulting in an aperture distribution whose spectrum has the form (9) at small 
wavelengths, but flattens out at long wavelengths [Brown andScholz, 1986; Power and Tullis, 1992; 
Brown, 19951. 

Brown [1995] presents values of surface roughness and fractal dimensions measured at a spe- 
cified profile length. We can use this information to derive the parameter C in (9). The variance in 
roughness of a surface c$ at a reference length k~ is derived from (9) by Brown [1995] as: 

$=[ G(k)dk=- 
21FlhI 

from which we obtain the following expression for C: 
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a- 1 

C=(a-l)a@ . 

3 3  Fracture Closure under Normal Stress 

A microscopic model of contact of rough surfaces based on the studies of Hertz [see limshenko 
and Goodier, 1970; Mindlin, 1949; Mindlin and Deresiewicz, 19531 has been shown to successfully 
describe the elastic properties of a single fracture including both normal and shear stiffness [Brown 
and Scholz, 1985% Brown and Scholz, 1986; Yoshioku and Scholz, 1989a; YoshiokQ and Scholz, 
1989bI. The surface contact model has a long history in engineering studies of fiction and wear 
and was first presented in its present form by Greenwood and Williamson [1966] and first applied 
to rock fractures by Walsh and Grosenbaugh [1979]. Variations of the model have been studied by 
others [e.g., Swan, 1981; Swan andzOngqi, 19853. 

For simplicity, we use the model of joint closure developed by Walsh and Grosenbaugh [1979]. 
In their model the fracture closure 6 depends on the standard deviation of the surface roughness 0, 
and the compressive normal stress S as: 

where A is a constant depending on various roughness measures [Brown and Scholz, 19861. The 
aperture used for fluid flow is the initial aperture to minus the closure due to normal stress, i.e. 

The surface roughness parameter Oe bears some further explanation. First of all there is a dis- 
tinction between the roughness of a surface cs, and the effective (composite) roughness of a fracture 
where two surfaces are in contact cs [Brown and Scholz, 1985a; Brown and Scholz, 1986; Olsson 
and Brown, 19931. The composite roughness is the negative of the aperture distribution, and its 
roughness CY is the important parameter for contact problems and fluid flow. When two mismatched 
surfaces with Gaussian topography are in contact, then cs x &CY,. Second, in the derivation of the 
closure law (12), contact only takes place at the upper tail of the probability distribution which de- 
scribes the composite surface topography. Walsh and Grosenbaugh [1979] assumed that this upper 
tail can be approximated by an exponential distribution. The parameter is the standard deviation 
of the best-fitting exponential distribution, which is different from the standard deviation cs of the 
surface roughness as a whole. Brown and Scholz [1985a] give some examples of how these two 
roughness measures differ, and Olsson and Brown [1993] discuss this distinction in more detail. In 
very approximate'terms, Brown andScholz [1985a] find that cse x p,/2 and A x csSF for the contact 
of two mismatched grit-blasted glass surfaces. 

t = to -6. 

3.4 Dilation Due To Shear Sliding 

The amount of dilation or aperture increase due to the over-riding of asperities as the fracture 
surfaces slide past one another in shear can be estimated from the roughness characteristics follow- 
ing Brown [1995]. This can then be used to estimate the increase in permeability of each fracture in 
Oda' s model. 

For the case of two identical isotropic fractal surfaces sliding past one another in shear, a math- 
ematical relation between aperture and offset can be found. Brown [1995] gives the variance of the 
aperture a2 as: 

12 



Parameter 
r 
0 
20 
C 
D 
P 
F 
A 
a e  

Description 
fracture lengh 
fracture orientation 
initial aperture 
scale parameter for dilation vs. slip 
fractal dimension 
coefficient of friction 
fraction of r to determine total slip 
Walsh closure model parameter 
Walsh closure model parameter 

Range Example Problem Value 
outcrop data: Figure 2 
outcrop data: Figure 2 
assumed f ( r ) :  Figure 3 
8.3 x 4 x 10-6-7 x 

2.1-2.6 2.41 
? 0.6 
0.01-0.001 0.001 
? t0/3 
? tO/6 

Table 1: Parameters for fracture network model. Values for the example problems were obtained as 
follows: The function describing initial aperture as a function of fracture length to = f ( r )  was chosen 
to be linear at small r and tapering to an asymptote of about to = 1OOOpm at large r (See Figure 
4). The scale factor C was calculated from equation (1 1) for the Austin Chalk sample “ORYX” 
described by Brown [1995]. The fractal dimension D for the same “ O R W  sample was used. 
A typical coefficient of friction for rock is p = 0.6 W.A. Olsson, personal communication]. A 
conservative value of the total slip parameter is F = 0.001 based on results of Cowie and SchoZz 
[1992]. Rough estimates of the Walsh closure model parameters were based on experimental data 
of Brown andScholz [1985a]. 

In this expression s is the shear offset, a is the scaling exponent from (9), I? is the standard gamma 
function, and C is the scale factor from (9) and (11). Since the aperture is approximately Gaussian 
with standard deviation a, then the mean aperture to be used for fluid flow estimates is approxim- 
ately t = 3a [Brown, 19951. 

3.5 Amount of Fracture Slip 

Frictional sliding occurs when the shear stress on the sliding plane reaches the frictional shear 
strength of the material. Once full sliding begins, the amount the of slip cannot be determined by 
the stress. Total slip is controlled by external parameters such as the boundary conditions or other 
restrictions on the displacement. Since we consider fractures to have finite size (e.g. diameter) then 
slip should be limited to some small fraction of the total fracture size. If slip becomes too large, 
then the stress concentrations at the fracture tips will cause the fracture to grow. Since modeling 
of quasi-static or dynamic crack growth is beyond the scope of this work, we assume that fractures 
remain fixed in size regardless of the stress. 

Empirical relationships have been found which show that the slip along finite-size f a d s  are 
proportional to the total fault length [Cowie (UICI Scholz, 19921. This proportionality constant is 
typically between 0.01 and 0.001. In our modeling we assume that if the shear stress exceeds the 
frictional strength, then the surfaces will always slip the maximum amount as prescribed by this 
linear relationship. 



4 Revised Model and Application 

We have developed an extended version of Oda's model for fluid permeability of fracture net- 
works taking into account the aforementioned stressdependent properties of rough fractures. We 
consider the effect on permeability of fracture closure under normal stress and frictional sliding and 
resultant dilation of fractures under shear stress. A 2dhensional version of this model has been 
coded in the Matlab programming language (see Appendices). The code performs the following 
basic steps: 

1. Input fracture orientations and lengths from data file. 

2. Input or choose the unstressed hydraulic aperture for each fracture. 

3. Input surface roughness parameters and maximum frictional slip for each fracture. 

4. Input the in situ stress tensor. 

5. Input the rock matrix permeability tensor. 

6. Compute shear stress and normal stress on each fracture by tensor transformations. 

7. Check whether the shear stress on each fracture is greater than the frictional shear strength. 
If so, slip the fracture surfaces the maximum amount allowed and compute a new aperture 
based on the slipdilation relationship (Equation (13)). 

8. Close each fracture due to normal stress across the fracture (Equation (12)). 

9. Compute fabric and permeability tensors from Oda's model (Equations (1x8)). 

10. Superimpose the matrix permeability onto the fracture permeability. 

The computer codes implementing these steps are given in the appendices. 

4.1 Example Application 

We illustrate the potential of this model for modeling fluid flow in fractured media through an 
example. It will be apparent that the stressdependent effects are pronounced and should not be 
ignored in reservoir modeling. 

A photograph of a large-scale fractured outcrop in the Frontier Formation, Wyoming was chosen 
for analysis from brenz  and Laubach [1994]. The photograph was scanned with a computer and 
cropped to a 350 x 350 pixel region representing an area of approximately 150 x 150 meters. The 
length and orientation of the major fractures visible in this region were then digitized for analysis 
(see Figure 2). The numerical values of the other parameters needed for the analysis of this fracture 
pattern are given in Table 1. An important, yet unknown, parameter is the aperture of each fracture. 
An arbitrary, but reasonable, choice was made that the aperture should increase in some proportion 
to the fracture length, but reach a maximum value for fractures greater than a certain size (see Figure 
3 for the distribution chosen). 

Taking this basic input data we have computed the tensors for various anisotropic stress states 
with slip either allowed or not. As a reference case, Figure 4 shows the fabric tensor (which is 
identical for all stress states) and the permeability tensor for zero tectonic stress. The numerous 
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fractures parallel to the 0" azimuth (Figure 2) dominate the initial fabric tensor and permeability. 
Figures 5-10 show cases of increasing stress anisotropy applied with the greatest principal stress 
oriented at azimuth of either 0" or 90". Frictional sliding causes extreme changes in the permeability 
tensor, including both magnitude changes and rotation of the principal axes. For this example, a 
stress anisotropy of 2 1  results in little, if any, frictional sliding (Figures 5 and 6). As the degree 
of stress anisotropy increases, the number of sliding fractures increases in kind resulting in marked 
permeability changes Figures 7-10). 

5 Summary and Conclusions 

We have considered the problem of defining the fracture permeability tensor for each grid block 
in a rock mass from maps of natural fractures. For this purpose we implemented the statistical 
model of cracked rock due to M. Oda [1985]. In the original model tectonic stress was implicitly 
coupled to fluid flow through an assumed relationship between crack aperture and normal stress 
across the crack. We have added the following significant enhancements to the basic model: (1) a 
realistic model of crack closure under stress has been added along with the provision to apply tec- 
tonic stresses to the fracture system in any orientation. The application of stress results in fracture 
closure and consequently a reduction in permeability. (2) The fracture permeability can be super- 
imposed onto an arbitrary anisotropic matrix permeability. (3) The fracture surfaces are allowed to 
slide under the application of shear stress, allowing fractures to dilate and result in a permeability 
increase. 

Warpinski et al. [1991] discuss the significant anisotropy of tectonic stresses and the large 
changes in stress magnitude which have occurred during the production from oil and gas reservoirs 
such as Ekofisk in the North Sea. Anisotropy in the principal stresses implies that significant shear 
stresses can exist on suitably oriented joints or faults. We have shown through an example that if 
slip along the joints is allowed under shear stress, then the shape and orientation of the permeability 
tensor can change dramatically (nearly 90" in some cases) from that predicted for nondeformable 
and non-slipping joints. Obviously then, accurate modeling of deformable fractured reservoirs will 
benefit from the analysis of the stressdependence of fracture permeability that this model provides. 
It is especially noted that the maximum permeability direction may not coincide with the direction 
of the maximum horizontal in situ principal stress. 

Many reservoir simulators utilize the permeability tensor calculated for a "sugar cube" fracture 
geometry comprised of three orthogonal sets of parallel-plate fractures [Reiss, 19801. The spacing 
and aperture of these three sets of fractures describes flow in the network. The model presented 
in this paper also describes flow through fracture networks as a tensor property. Our new tensor 
description can be cast in terms of effective sugar cube parameters. This allows the properties of 
complex deformable fracture networks to be readily modeled with existing reservoir simulators. 
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A Software 

All software is implemented in the command language of MATUB (version 4), a matrix-based 
data analysis program published by the Mathworks, Inc., Cochituate Place, 24 Prime Park Way, 
Natick MA 01760. 

A . l  oda2d.m 
function [Fdata,Kdatal = oda2d 
% function [Fdata,Kdatal = oda2d 

% 2-Dimensional Fabric and Permeability Tensors for fractured rock. 
% Data is read from a file containing a list of fracture orientations 
4 and trace lengths. Aperture is computed as a function of fracture trace 
% length. The matrix permeability is added to the fracture permeability 
% tensor to determine total permeability. 

% Written by Stephen R. Brown and Ronald L. Bruhn, 1995--1996. 

clc % Clear the screen and graph, and all variables. 
subplot 

set(O,'DefaultAxesFontSize',12) 
set(O,'DefaultTextFontSize',lO) 

% 2x2 kronecker delta function 
kronecker = diag(ones (2,l) 1 ; 

% Read the fracture data file, assign variables and proceed. 
filename = input('Enter data filename: ' , ' s ' ) ;  
€id = fopen(filename1; 
data = fscanf (fid, '%g', [2 inf]) ; 
theta = data(1,:); 
diam = data(2, : I  ; 
rose([theta,theta+l80]*pi/l80,50); 

% Enter the area of the rock face. 
area = input('Enter the area of the rock mass [1.03: ' ) ;  
if isempty (area) 

end 

c0 = input('1nput parameters relating aperture to length [0 0.001 1003: '1; 
if isempty(c0) I (length(c0) < 3) 

end 
co 
tO = cO(l)*ones(size(diam)) + c0(2)*tanh(diam/cO(3)); 

area = 1; 
- 

c0 = [0 0.001 1003; % default: 1000 microns max; approx 9OOum at 100 meters 

Q=input ('Plot aperture distributions? [yl : ' , ' s ' )  ; 
if isempty (Q) 

end 
Q='y'; 

if Q == 'y' 
subplot ( 12 1 ) 
plot (diam, tO*le6, '0' 1 
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xlabel('Fracture 
ylabel( 'Aperture 
axis ( square' 1 
subplot (122 
hist(tO*le6,50) 
xlabel( 'Aperture 
axis ( ' square' 
subplot 

end 

Length' 
(micron) ' 

(micron) ' ) 

% Set .up the stress tensor (SI. 
S = input( 'Maximum and minimum principal stresses: [O.O 0.03 : ' )  ; 
if isempty(S1 

s = [O 01; 
end 
if size(S) == [1,13 
s = [S SI; 

end 
S = diag(S); 

orient=input ( Input 
if isempty(orient1 
orient = 0.0; 

end 

orientation angle of S1 10-03: ' 1 ;  

orient = -orient*pi/lSO; 
aij = [cos(orient) sin(orient1 ;-sin(orient1 cos(orient)l ; 
s = (aij*S)*aij'; 
S 

% Enter the matrix permeability (This will be added to fracture permeability). 
Kmatrix = input('Maximum and minimum matrix permeabilities: [O-0 0.03: ' 1 ;  
if isempty (matrix) 
matrix = [O 03; 

end 
if size(-trix) == [1,13 

end 
Kmatrix = diag(Kmatrix1; 

Kmatrix = [Kmatrix Kmatrix]; 

orient=input ( ' Input orientation angle of m 1  [O. 03 : ' ; 
if isempty(orient) 
orient = 0.0; 

end 
orient = -orient*pi/l80; 
aij = [cos(orient) sin(orient) ;-sin(orient) cos(orient)l ; 
matrix = (ai j *matrix) *ai j ' ; 
Kmatrix 

% Note: we assume that the thickness ''I!' is 1.0 so that the 
% volume of the rock mass is area*l.O. 

% Compute the direction cosines of the pole to the fracture trace. 
for i = l:length(theta) 
pole = polvect (thetaci) 1 ; 
npl(i) = pole(1); 
np2(i) = pole(2); 

end 

A2 



% Compute the four components of the two dimensional fabric tensor. 
c(1,l) = sum(((diam .-2) .* npl .* npl))/area; 
c(1,2) = sum(((diam .-2) .* npl .* np2))/area; 
c(2,2) = sum(((diam .-2) .* np2 .* np2))/area; 
C(2'1) = c(1,2); 

% Find eigenvectors and eigenvalues of the fabric tensor. 
% Note: each column of 'vectors' is an eigenvector. 
[Eigenvectors,Eigenvaluesl = eig(c) ; 

% Compute the first invariant of the fabric tensor 
FO = trace(Eigenva1ues); 

% Compute the anisotropy index Af. 
Af = abs ( (Eigenvalues (1,l) - Eigenvalues (2'2 ) ) /trace (Eigenvalues) ) ; 
% plot the fabric tensor axes and scale to relative magnitude 
a = Eigenvalues(1,l); 
b = Eigenvalues(2,2); 
if (Eigenvalues(1,l) > Eigenvalues(2,2)) 
nl =' Eigenvectors(1,l); 
n2 = Eigenvectors(2,I); 
ml = Eigenvectors(l,2); 
m2 = Eigenvectors (2,2) ; 
F1 = Eigenvalues (1,1) ; 
F2 = Eigenvalues (2'2 ; 

end 
if (Eigenvalues(1,l) c Eigenvalues(2,2)) - nl = Eigenvectors (1,2) ; 
n2 = Eigenvectors (2'2) ; 
m l  = Eigenvectors (1,1) ; 
m2 = Eigenvectors(2,l); 
F1 = Eigenvalues(2,2); 
F2 = Eigenvalues(1,l) ; 

end 

Fdata = [Fl,phi,F2,FO,Af] ' ; 

% Compute the directional values of the fabric tensor. 
[af,rf] = dperm(c,Fl) ; 

% Plot line in direction of maximum principal axis. 
% Plot dashed line in direction of minimum principal axis. 
% Set line length to 0.1 if normalized length is less than 0.1 units. 
hf = [nl -n11; 
vf = In2 -n23; 
nhf = [ml -nul; 
nvf = [m2 -m2] ; 
r = F2/F1; 
if (r c 0.11, 
r = 0.1; 

end 

nhf = r .* nhf; 
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nvf = r .* nvf; 

subplot 
Q=input ('Which subplot for F-tensor [I211 : ' ; 
if isempty (Q) 

end 
subplot (Q) 

Q=121; 

polar (af , Fl*rf 1 
hold on 
plot(Fl*hf,Fl*vf,Fl*nhf,Fl*nvf,'--' 1 
hold off 
axis('square') 

% Give the graph a title 
title('2-D FABRIC TENSOR') 

% Compute the P-tensor and then the permeability tensor. 
% First allow joints to slip and dilate under shear stress, 
% then compute the aperture using Walshls joint closure law. 

query = input'('Al1ow slip on joints? [nl : ' , I s ' )  ; 
if isempty (query 
query = 'n*; 

end 
if query == Iy' 
slipstuff = input('1nput slip parameters [C D mu F] = [8.3e-6 2.41 0.6 0.0011: '1 ;  
if isempty (slipstuf f 1 

end 
C = slipstuff(1); 
D = slipstuff(2); 
mu = slipstuff(3); 
F = slipstuff(4); 

end 
for i = l:length(tO) 
1 = [npl(i) np2(i)l; 
if query == 'y' 
'[tl,mO] = slipopen(tO-(i) ,diam(i) ,l,S,C,D,mu,F) ; 
WB = Sqrt (mO) ; 
if isempty (wB) 

end 
if isempty(t1) 
tl = tO(i); 

end 

WB = tO(i)/3; 
tl = tO(i); 

slipstuff = [8.3e-6 2.41 0.6 0.0013; 

WB = tO(i)/3; 

else 

end 

end 
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disp ( [ 'Mean Aperture is ' , num2str (le6*mean ( t , microns ' I 

% Compute the fracture volume. 
fvol = sum((t .* dim)); 

% compute the four components of the two dimensional P-tensor. 
P(1,l) = sum(((t . -3)  .* (dim) .* npl .* npl))/area; 
P(1,2) = sum(((t . - 3 )  .* (dim) .* npl .* np2))/area; 
P(2,2) = sum(((t . -3 )  .* (dim) .* np2 .* np2))/area; 
P(2,l) = P(1,2); 

% Find the value of lambda based on regression of Oda's Lambda vs FO plot. 

lambda = lambfit (FO) ; 

% This is the computation of the permeability tensor. 
% Right Hand Side - 1st term is fracture perm., 2nd is matrix permeability 
KP = lambda* (trace (P) *kronecker - P) + kronecker*Kmatrix; 

% Find eigenvectors and eigenvalues of the permeability tensor. 
% Note: each column of 'vectors' is an eigenvectox. 
[Eigenvectors, Eigenvalues] = eig(KP) ; 

% Compute the mean permeability 
Xm = trace(Eigenva~ues)/2.0; 

% ____---__-----_--- plot the permeability Tensor ......................... 
% Plot the permeability tensor axes and scale to relative magnitude 
a = Eigenvalues(1,l); 
b = Eigenvalues (2,2 ) ; 
if (Eigenvalues(1,l) > Eigenvalues(2,2)) 
nl = Eigenvectors (1,1) ; 
n2 = Eigenvectors (2,1) ; 
ml = Eigenvectors(l,2); 
m2 = Eigenvectors (2,2) ; 
~1 = Eigenvalues ( 1,l) ; 
K2 = Eigenvalues (2,2) ; 

end 

if (Eigenvalues(1,l) c Eigenvalues(2,2)) 
nl = Eigenvectors(l,2); 
n2 = Eigenvectors (2,2 ; 
ml = Eigenvectors(1,l); 
m2 = Eigenvectors (2,l) ; 
K1 = Eigenvalues (2,2) ; 
K2 = Eigenvalues ( 1,1) ; 

end 

phi = getangle(nl,n2); 

Kdata = [Kl,phi,W,Xm,fvol] '; 

% compute the directional permeability and prepare to graph. 
[ak,rk] = dperm(KP,Kl); 

% Normalize principal tensor components, making maximum value equal to 1.0 
% Define axes, setup plot limits and define square plot. 



% Plot line of length 1.0 in direction of maximum principal axis. 
% Plot dashed line, normalized length in direction of minimum principal axis. 
% Set line length to 0.1 if normalized length is less than 0.1 units. 
h = [nl -n11; 
v = [n2 -1121; 
nh = [ m l  -d3; 
nv = [m2 -&I; 
r = K2/K1; 
if (1: < 0.11, r = 0.1; end 
nh = r .* nh; 
nv = r .* nv; 

subplot 
Q=input ('Which subplot for K-tensor 11221 : ' ; 
if isempty (Q) 

end 
subplot (Q) 

Q=122 ; 

polar(ak, Kl*rk) 
hold on 

hold off 
axis ( 'square' ) 

plot(Kl*h,Kl*v,K1*nh,Kl*nv,'--') 

% Give the graph a title 
title('PERMEABIL1TY TENSOR') 

[Eigenvectors, Eigenvalues] = eig (Kmatrix) ; 
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A 2  dperm.m 
function [an,rl = dperm(KP,Kl) 
% function [an,rl = dperm(KP,Kl) 

% Calculate permeability as a function of direction. 

% Written by Stephen R. Brown and Ronald L. Bruhn, 1995--1996. 

an = O:O.O1:(2*pi); 
r = (KP(1,l) .*(cos(an) .A2) + 2*KP(1,2) .*cos(an) .*sin(an) + ..- 

(KP(2,2) .*sin(an) .-2) )/Kl; 
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A 3  getanglam 
function phi = getangle(nl,n2) 
% function phi = getangle(nl,n2) 

% Converts direction cosines in x-y plane into angle in degrees 
% measured counterclockwise from '+' x-axis. 

% Written by Stephen R. Brown and Ronald L. Bruhn, 1995--1996. 

% Step #1: convert from lower to upper quadrants if needed. 
if (n2 c 0) 
nl = -nl; 
n2 = -n2; 
end 

% Step #2: compute the angle in degrees depending on NE or NW quadrant. 
if (nl >= 0 & n2 >= 0) 
phi = acos(n1) *180/pi; 
% NE quadrant 

end 
if (nl c 0 & n2 >= 0) 

phi = acos(n2)*180/pi + 90; 
% NW quadrant 

end 
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A.4 1ambfit.m 
function [lm] = lambfit(Fo) 
% function [lm] = lambfit(Fo) 

% Estimate value of lambda for 2-D permeability calculation. 
% note: coefficients of the equation were determined from graphs 
% in paper by Oda and Hatsuyama (1987 , J. Geoph. Res. ) . The maximum 
% value for lm is 1/12 or 0.08333. 

* % Written by Stephen R. Brown and Ronald L. Bruhn,  1995--1996. 

lm = 0.0210 + 0.0017*Fo; 
if lm > 0.0833 
lm = 0.0833; 

end 
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A 5  p0lvect.m 
function [PI = polvect (angle) 
function [PI = polvect (angle) 

Direction Cosine Function for Fracture Pole in 2 dimensions: 
xl is horizontal & ' + I  to right, x2 is '+* vertical upwards. 
This function converts the angle of a fracture trace to a 
direction cosine of a fracture pole (90 deg. to trace). 
The outputis a 1 row, 2 column vector named 'p'. 
'angle' is measured counter clockwise from xl axis. 
check to see which quadrant the angle is located in 
and write an error message if angle is greater than 180deg. 

Written by Stephen R. Brown and Ronald L. Bruhn,  1995--1996. 

if(ang1e > 180) 
problem = 'angle greater than 180 deg' 
return 
end 

if(ang1e c= 90) 
% pole is located in northwest quadrant 
%change angle to radians, modify signs for fracture pole 
alpha = angle*pi/l80; 
p(1) = -sin(alpha); 
p(2) = cos(a1pha) ; 

else 
% pole is located in southwest quadrant 
% modify for pole and change angle to radians. 
beta = (angle - 90)*pi/180; 
p(1) = -cos(beta); 
p(2) = -sin(beta); 

end 

, 
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A.6 slip0pen.m 
function [t ,mO] = slipopen (tO,diam, 1, stress, C,D,mu,F) 
% function [t ,mO] = slipopen (to, diam, 1, stress, C, D, mu, F) 

% Joint dilation under shear slip -- based on equation 10 of Brown, 
% "Simple mathematical model of a rough fracture., JGR, 100, 5941-5952, 
% 1995. 

% tO = fracture aperture before slip 
% d i m  = fracture length 
% 1 = direction cosines of fracture normal 
% stress = stress tensor on whole system of fractures 
% C = scaling factor for power spectrum of fracture roughness 
% D = fractal dimension of fracture roughness for SURFACE (243~3) 
% mu = coefficient of friction 
% F = fraction of total joint length that a joint slips when the shear 
% stress is high enough 
% mO = additional variance of aperture heights created by slip 

% The joint dilation is 3*sqrt(m0) = three times the standard deviation 
% 
% additional aperture created by slip 

of the NEW aperture = average NEW aperture -- NEW meaning the 

% Written by Stephen R. Brown and Ronald L. Bruhn, 1995--1996. 

alpha = 7-2*D; 

% transform stress to new axes parallel and perp to fracture 
aij = [1(1) 1(2);-1(2) 1(1)1; 
stress = (ai j*stress) *ai j ; 

% Compute the normal stress 
sn = stress(1,l) ; 

% compute the shear stress 
ss = abs(stress(l,2)); 

% Check for slip condition 
if ss >= mu*sn; 
slip = F*diam; 
denom = 2- (alpha-1) * (gamma( (alpha+l) /2) 1-2; 
mO = -C*(pi*slip^(alpha-l)*(l/cos(alpha*pi/2) ) )  / denom; 
t = tO + 3*sqrt(m0); 

end 



A .7 walshrm 
functi0n.t = walsh(tO,l,stress,A,B) 
% function t = walsh(tO,l,stress,A,B) 

% Estimate the aperture of a crack as a function of normal stress. 
% using Walsh's exponential closure law: delta = A + B*ln(sn) 

% Relationships of A, and B to joint roughness and elastic 
% properties are given by Brown and Scholz, "Closure of Rock Joints", 
% JGR, 91, 4939-4948, 1986. 

% A depends on E, nu, radius of curvature of asperities, ... 
% B is essentially the standard deviation of the aperture (actually 
% standard deviation of the best fitting exponential distribution of 
% the upper part of the aperture distribution. 

% Written by Stephen R. Brown and Ronald L. Bruhn, 1995--1996. 

% Compute the normal stress 
sn = 1 * (stress *18); 

% Walsh8s exponential closure law 
if sn < exp(-A/B) 
closure = 0; 

else 
closure = A + B*log(sn) ; 

end 
if closure > tO % make sure we don't pinch off completely 

end . 
closure = tO - 1.0e-6; 

% Aperture 
t = tO - closure; 
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