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A popular method for updating finite element models with modal 
test data utilizes optimization of the model based on design 
sensitivities. The attractive feature of this technique is that it 
allows some estimate and update of the physical parameters 
affecting the hardware dynamics. Two difficulties are knowing 
which physical parameters are important and which of those 
important parameters are in error. If this is known, the updating 
process is simply running through the mechanics of the 
optimization. Most models of real systems have a myriad of 
parameters. This paper discusses an implementation of a tool 
which uses the model and test data together to discover which 
parameters are most important and most in error. Some insight 
about the validity of the model form may also be obtained. 
Experience gained from applications to complex models will be 
shared. 
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Finite Element Model 
Matrix of sensitivities of frequencies to 
parameters 
Vector of predicted changes in parameters to 
update the model 
Vector of differences between test frequencies 
and model frequencies 
Weight matrix applied to frequency vector 
Weight matrix applied to reduce parameter 
changes 
Covariance matrix for parameters 
Number of frequencies 
Number of parameters 
Parameter Estimation for Structural 
Dynamics 
Statistically Significant Parameters 
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INTRODUCTION AND MOTIVATION 

The IMAC has as one of its major focus technologies the 
reconciliation of Finite Element Models (FEMs) with results from 
modal test data. Typically, the strongest element of the 
reconciliation is the attempt to match (or at least reconcile) the 
frequencies of the FEM with the modal test frequencies. One 
approach is to utilize the design sensitivities of particular physical 
parameters of the FEM to predict how much the parameters should 
be changed to enable the FEM to more closely match the test 
frequencies[l]. This approach is popular because it allows the 
analyst to develop physical insight to the hardware, which may be 
of significant value for future design changes, particularly at the 
prototype stage. The problem can be cast into a linear formulation 
to be solved with the least squares approach 

where S is the matrix of sensitivities of the frequencies to the 
parameters, AT is the vector of changes required to the parameters 
and AI is the vector of differences in the FEM and test 
frequencies. To get a unique solution, AP must be shorter than 

SAE = A? (1) 

A? so that the system of equations is overdetermined. (Also, S 
must be of full column rank). In a Bayesian formulation, the 
analyst can assign weights to the various frequencies and weights 
to the parameters. 

[S WfS+ Wp]AF = S W j - s  
T T 

Weights on the frequencies, Wf, increase the effort of the solution 
to reduce more highly weighted frequency errors, and weights on 
the parameters, W,, make the more highly weighted parameters 
resistant to change. These matrices are usually square and 
diagonal. A major point of the philosophy of the following 
approach is that we desire the model to tell us as much as possible 
about itself, so we do not include parameter weights, W,, in the 
analysis for this work. (Parameter weights are usually derived by 
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the analyst’s judgment and can significantly bias the outcome of 
the analysis. The analyst can apply judgment about the parameter 
weights after the parameter selection analysis is complete). We do 
allow frequency weights, since the analyst may be much more 
interested in the model matching certain frequencies than others. 
The basic starting equation for this work is then 

’ 

WfSAF = WfAj (3) 
which is still of the standard form ASI = 5; . For a well-conditioned 
least squares solution of A% = 5; , we like for vector b to be very 
long (corresponding to many frequencies being compared between 
the FEM and test) and for vector x to be comparatively short (Le. a 
relatively small number of parameters). Generally there is not a lot 
of control over how many frequencies are being compared, so we 
would like to solve for as few parameter changes as possible. 
There are a myriad of parameters in most complex finite element 
models, so this raises the question: Which parameters are both 
important and in error? If a parameter is not important, but in 
error, it makes little difference in the final solution. If a parameter 
is important, but not in error, then there is no need to change it in 
the FEM, and therefore no need to include it in the parameter 
change vector. So how can we determine which parameters in the 
FEM are both important to the solution and in error? With some 
assumptions, there is a way to approach this using statistics. 

THE STANDARD DEVIATION OF THE MEAN OF EACH 
PARAMETER 

First we make an assumption that will be evaluated later. Assume 
that the FEM is the best possible fit of the model form selected, so 
that any errors in Ai are because of random measurement errors or 
model form problems. Then a standard deviation (STD) can be 
calculated for the differences in frequencies. This STD can be 
related through equation (3) to give a STD of the mean of each 
parameter included in A F .  The math is shown here, but the 
important point is the relationship between the STD of the 
frequencies and the STD of the parameter means in equations (9) 
and (IO). Premultiplying equation (3) by STyields 

T T 
S W SAF=S W A?. f f (4) 

Solving for AF gives 
T -1 T 

A F = [ S  WfS] S W f E .  

Now postmultiply by AF T. 
T T - l T  T -1 T - T  

AFAP =[S WfS] S Wfs[[S WfS] S WfAf] (6) 

T T - l T  T -T 
AFAF =[S WfS] S WfssTWfTS[S WfS] (7) 
Take the expected value of (7), and assume the expected value of 

WfAfAf becomes the weighted STD of the frequency error 

vector times the identity matrix. The expected value of AFAF is 
then the estimated covariance matrix for the parameters. 

- -T 

T 

T - I T 2  T -T 
COVAF=[S WfS] S ofIWfTSIS WfS] (8) 
Because the bracketed matrices are symmetric (8) reduces to 

2 T -1 
COVAj.i=of[S WfS] . (9) 

The diagonals of the covariance matrix of AF are the variances of 
the parameters. Reference [2] provides another concise 
explanation of the derivation of the covariance matrix (without the 
weighting matrix). The STD of the of each parameter is just 
the square root of each variance divided by m where m is the 
number of rows in equation (2). So the estimated vector of STDs 
of the means of the parameters is 
omean(Ap) = sqrt(diag(C0VAii)i m )  
In equation (IO) the frequencies as a group are most sensitive to 
changes in the parameters with low STDs of the mean. From 
equation (9) it can be seen that in general the inverse of a Iarge 
sensitivity number will give a low variance and resulting STD. 
This does not give any information about which parameters may be 
in error. So how do we use this to determine which parameters are 
both important and in error in our FEM? 

(10) 
- 

DETERMINING THE IMPORTANT PARAMETERS USJNG 
THE STD OF THE PARAMETER MEAN AS A BASIS 

Now we calculate the actual changes in the parameters from 
equation (5). Remember that we made an assumption that the FEM 
was the best fit of the model to the data in order to calculate the 
STD of the parameters above. If this was a good assumption, we 
would expect that the change in the parameters from equation (5) 
would not deviate “very far” from the initial parameter values. 
How much is “very far” can be determined statistically using the 
results from equation (10). A typical value chosen to represent 
“very far” by statisticians is 2 STD of the mean of the parameters. 
If the FEM really was a best fit, then there should be about a 95% 
probability that equation (5)  would not yield any parameter 
changes that were more than 2 STD of the mean away from the 
initial value for each parameter. Therefore, if equation (5) predicts 
changes greater than 2 STD of the mean away from the parameter, 
the assumption that the FEM is a best fit is an erroneous 
assumption and such parameters should be changed. The relative 
importance of these parameters is calculated with a z-score, which 
is the value of each parameter change divided by that parameter’s 
STD of the mean. 

(1 1) 
So the z-score is just the number of STDs of the mean which 
equation (5 )  predicts the parameter should be adjusted. If the z- 
scores for all parameters are low, then the FEM is as good as it can 
reasonably be with the parameters chosen for the calculation in (5) 
and (10) above. If this is not acceptable to the analyst, then other 
parameters must be chosen which are more important, or the FEM 
model form must be changed to be more representative of reality. 
This is very important information. 

z = 410 mean (AP) 

At this point the analyst can make key decisions to answer the 
following questions. Should I continue with the model 
reconciliation utilizing some or all of these parameters? Should I 
go back and select other parameters because these do not appear to 
be important? Should I change the FEM form to make it more 
representative of reality? Answering these questions appropriately 
can save a lot of wasted effort on a poor model, or on FEM runs 
utilizing many unimportant or wrong parameters. The value of this 
type of analysis, sometimes called analysis of variance, is that with 



one number, the z-score, the analyst can see which parameters are 
both important and in error. 

An understandable explanation of the basic concepts explained 
above, sometimes called “tests of significance”, is given in 
reference [3]. A more thorough explanation of estimation of 
multiple parameters for engineers is provided by Benjamin and 
Cornell [4]. At previous IMACs, others have presented more 
complete work on analysis of variance [ 5 ]  and Bayesian estimation 
techniques to determine weighting matrices [6]. 

SYSTEMATIC IMPLEMENTATION 

At Sandia National Laboratories, a code with the acronym 
PESTDY (Parameter Estimation for STructural Dynamics) 
implements the Bayesian Estimation in a MATLAB-based set of 
routines. The systematic approach to determine the important 
parameters is implemented in a module called SSP (Statistically 
Significant Parameters) as follows. First equation (1) is normalized 
so that the Aji changes will be fractional changes required to be 
applied to each initial parameter value. The ATvalues are 
differences between the model and test frequencies divided by the 
initial model frequencies. Then sensitivity matrices, S, are 
calculated for every parameter that is uncertain and possibly 
important. Frequency weights, W ,  are set based on the analyst’s 
interest in certain frequencies. If there are no specifically important 
frequencies, the identity matrix is used. Then the analysis 
described above is run for one parameter, that is, equations (5) and 
(10) are solved where the parameter vector has a length of one. 
The results are saved and the analysis is run for the next parameter. 
This proceeds until all parameters have been analyzed. The 
parameter with the highest z-score is then declared the most 
important parameter and is used for the rest of the analysis. The 
same process is repeated for a parameter vector length of two 
utilizing the most important parameter in combination with every 
other parameter. Two z-scores are produced for every set of two 
parameters. The lower of the two z-scores is retained from every 
set. The set with the largest low z-score determines the second 
most important parameter, and this parameter is used for the rest of 
the analysis. This process is repeated with sets of three parameters 
and so on until the largest low z-score is below a user specified 
value, typically two. When the low z-scores get below this value, 
the model is telling the analyst that little additional improvement to 
the model can be obtained with additional parameters, i.e. all the 
important parameters have been identified. 

ADDITIONAL TOOLS HELPFUL FOR PARAMETER 
SELECTION 

In addition to the approach for calculating z-scores, a plot of the 
predicted final frequency STD is generated vs the number of 
parameters used in the analysis based on the z-score selection 
technique described above. In some instances it has been found 
that an obvious knee in the curve shows that the number of 
parameters could be limited to less than those selected using a 
criterion of a low z-score of two. Next, a calculation is made to 
determine which parameters have highly correlated effects with 
those that are chosen to be important from the z-score analyses. 

The correlation calculation from Branham [2] is given from 
calculations on the S matrix with only the two columns of interest. 

T -1 
b=[S SI (12) 

cor = c*b*c (14) 
The correlation coefficient is the off diagonal term of the cor 2x2 
matrix. All possible combinations of two parameters are analyzed. 
A list of other parameters with correlation coefficients above .8 
absolute value is printed with each important parameter from the z- 
score analyses. Parameters with high correlation values could 
produce results similar to the important parameters with which they 
are paired. Another way to state it is that two parameters with a 
correlation coefficient near 1 have frequency sensitivity vectors that 
are close to parallel. This is important, since experience has shown 
that sometimes parameters correlated with those chosen as 
important from the z-score analyses are actually the major cause of 
the model’s inaccuracies. The analyst then has the option of 
including these correlated parameters in the model reconciliation 
with (or in lieu of) the important parameters. A final tool that helps 
decide on the appropriate parameters is a plot of the sensitivities of 
all the important parameters. Sometimes this will lead to further 
culling. In the PESTDY code, at the end of the SSP module, the 
sensitivity matrix can be trimmed to the sensitivity vectors of the 
parameters that the analyst has decided are important. Then 
parameter weights may be applied and the Bayesian estimation 
completed. 

REQUIREMENTS AND LIMITATIONS OF THE 
APPROACH 

The basic requirement is to determine the sensitivity matrix of all 
possible important parameters. This can be performed fairly 
automatically in some codes such as MSCNASTRAN. In other 
codes a finite difference approach is required where there is a 
baseline eigenvalue run, and then a run for a small deviation of 
each parameter. This approach requires n+l eigenvalue solutions 
of the code where n is the number of parameters being considered. 
Of course, then the frequency differences between the test and 
initial FEM must be calculated. 

There are several important limitations of the approach. The 
foremost is that a poor FEM may not yield much information, 
particularly if an important physical phenomenon is not modeled at 
all. If this is the case, no important parameters may be evidenced 
in the analysis, or worse, a parameter that is not truly in error, but 
helps to change a frequency with large error, may be identified as 
important. This is where engineering judgment and other methods 
to validate parameters, such as simple measurements, are of value. 
Another limitation is the fact that the analyses cannot distinguish 
between errors in highly correlated parameters. If these parameters 
are parallel stiffnesses, a more basic measurement of each of the 
parallel stiffnesses may be required. If these parameters are not 
stiffnesses in parallel, sometimes mode shape information is 
valuable in determining where the major error lies. Finally, these 
analyses tend to focus on a relatively small number of Parameters. 
(This is a weakness as well as the major strength.) If there are truly 
many parameters with large errors, this approach focuses on the 



smallest number of parameters that can be adjusted to remedy the 
frequency differences. Therefore, one parameter may be correcting 
for more than its share of the error. 

ANALYTICAL EXAMPLE 

To demonstrate, let us consider a simple analytical example which 
is not even a structural dynamics problem, but will make it easy to 
illustrate the process. We arbitrarily declare that the response of 
some system is: 

y=l+x/2+sinx +cosx . (15) 

We measure the response accurately at 11 equally spaced points 
between x=O and 7. Figure 1 shows the x-y plot of this “measured 
data”. 
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Figure 1 - Accurately “Measured” System Response 

We have a model that we have generated to represent this system 
which is simply the polynomial series 

y=p *+p2x+p3x2+p4x3+p,x4 (16) 

where the least squares fit yields the parameters pl=1.97, p2=2.61, 
p3=-1.94, p4=.42 and p5=-.027. This fit of the model response is 
plotted along with the “measured” system response in figure 2. 
This comparison simply shows that it is possible with this model 
form to achieve a reasonable, though not perfect, fit to the 
measured data. 

actual=o 
model=x 
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Figure 2 - Best Fit Model Response Compared with “Measured” 

Response 

Now, let us consider the typical situation in which there is some 
uncertainty about the parameters. For sake of argument suppose 
that our initial estimate of parameter p2 is 10% high and parameter 
p4 is 10% low. Let us use the approach that has been described to 
determine which parameters should be most important to update in 
our system identification code, PESTDY. We assume that we have 
no advance knowledge of which parameters need to be updated. 
Figure 3 shows a plot of our initial model compared with the 
“measured” data. The comparison shows that the mode1 is 
significantly in error. 
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Figure 3 - Initial Model vs. “Measured” Data 
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The sensitivity of each y with respect to each parameter is 
generated. We run the PESTDY code to predict updated 
parameters. In the process the SSP module is run to determine 
which parameters are important to update. The results of the z- 
score analysis show that only one parameter survives with a z-score 
> 2, and that is ps with a z-score of 10.5. The SSP module has 
selected the wrong parameter! (Of course, we do not know this 



yet). However, that is not all the data provided by SSP. It also 
shows that p5 is highly correlated with p4 with a correlation 
coefficient of 993, This information shows that it could also be p4 
that is in error, or that it could be a combination of p4 and p5. That 
is all that the analysis can tell us. Let us say that we decided to 
ignore the correlation and proceed with the solution using only p5. 
PESTDY is run and the change for p5 is calculated as -23.1%. This 
change is put into the model and the new comparison is shown in 
figure 4. As a matter of fact, it turns out that updating ps by itself 
provides a better fit than updating p4 by itself, which is the reason 
that the SSP module selected p5 over p4. 

% Standard deviation of frequency vector vs # parameters 
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Figure 5 - STD of Predicted Frequencies with Addition of More 

Parameters Using Z-score Selection Criteria 
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Figure 4 - Comparison of First Iteration Of Updated Model 

Now we will proceed with the second iteration. Sensitivities are 
calculated again, and we execute the PESTDY code. This time the 
SSP module is run, and the new results show that three parameters 
survive the z-score > 2 requirement. These are p5, p4 and p2. So 
now SSP has selected the two parameters that should be changed, 
p4 and p2, in addition to the parameter that we wrongly modified in 
the first iteration, p5. In figure 5 the plot of the STD of the 
difference between the measured response and the model response 
is plotted vs the number of parameters included in the analysis 
based on the z-score approach. 

It can be seen that this plot confirms the z-score analysis, since 
with the addition of a fourth parameter the STD actually starts to 
increase. (This can happen because the variance of the responses is 
the total squared error/(m-n) where m is the number of responses 
and n is the number of parameters being evaluated. The total 
squared error may continue to decline with the addition of 
parameters, but at some point the denominator declines faster). 

Figure 6 shows the resulting model response after the parameters 
are updated the second time. After this update the parameters 
match the best fit parameters listed immediately after equation (16). 
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Figure 6 - Comparison of 2nd Iteration Of Updated Model 

This example demonstrates two important points. The first point is 
that as the model becomes more accurate, the z-score approach to 
parameter selection works better. This is partially because the 
linear estimates of parameter STD are more accurate near the point 
of best fit of the model to the measured data. The second point is 
that the method can make wrong decisions and select highly 



correlated parameters as most important. That is why the 
calculation of high correlations between the selected parameters 
and other parameters is valuable information for the analyst. 

Now let us pose one more hypothetical scenario using the same 
data for the “measured” response. Let us suppose that we 
developed only a cubic polynomial model this time, but we 
estimated the four parameters perfectly and got a least squares fit to 
the data. This comparison is shown in figure 7. 
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Figure 7 - Best Cubic Polynomial Fit to “Measured” Data 

At this point we do not “know” that we have the best fit that this 
model form can provide, so we run PESTDY to begin the model 
updating process, since some of the modeled responses are as high 
as 30% off. The execution of the SSP module yields no parameters 
with a z-score > 2. This shows that none of the considered 
parameters are worth the effort to adjust, because the model form 
does not have the capability to fit the data any better. If the analyst 
is not satisfied with the model, such information tells the analyst 
that the model form must be changed or that the parameters 
evaluated are not the important ones in the model. In this case the 
former is true, since all the parameters have been considered. 

In a real application, the analyst selects several uncertain 
parameters to evaluate from possibly tens or hundreds in a complex 
FEM. If the SSP module indicates that there are no important 
parameters, the analyst may need to go back and include some 
more that were missed the first time. At least the SSP module has 
stopped the model updating process before time is wasted on futile 
FEM updating runs. One might say that, for the examples shown 
here, it would be easier to simply solve for the least squares 
solution. This is true, but in real applications, there are usually 
more parameters to investigate than there are response frequencies. 
To get a unique solution, the number of parameters must be 
reduced to a number less than or equal to the number of 
frequencies, and this is part of the reason for the approach taken. 

EXPERIENCE FROM ACTUAL APPLICATIONS 

The author has experience utilizing the approach with four actual 
reconciliations of E M S  with modal test data. There were between 

5 and 16 modes utilized for each application. Some general 
experience from these can be provided. In some cases there were 
points in the updating process where the PESTDY predictions 
indicated that the chosen parameters did not have the capability to 
bring the model to a point of satisfactory accuracy, so efforts were 
made to go back and find other parameters to evaluate. This led to 
finding parameters that significantly improved the model. 

In another significant experience, the most important parameter 
selected by the z-score criterion was highly correlated with three 
other parameters. Through materials tests it was found that three of 
the four correlated parameters had large errors. Any method based 
on the design sensitivity approach prefers the more frequency 
sensitive parameters to less frequency sensitive correlated 
parameters. All parameters highly correlated with parameters 
surviving the z-score analysis should be considered in the model 
updating process. Where distinctions cannot be made, further 
testing to identify the correlated parameters should be performed. 

CONCLUSIONS 

Statistical tests of significance have been applied to FEM 
parameters used in the Bayesian estimation process for FEM 
reconciliation. The particular method has been designed to reduce 
a large number of possible parameters to a number that is less than 
the number of responses being matched to make the least squares 
solution as robust as possible. The goal is to determine the 
parameters that are both important and in error. This goal may not 
be met if: 1. the model form does not represent the physical 
phenomena; 2. the model response is far from the true system 
response; 3. some parameters are highly correlated to another 
important parameter. The parameter correlations are calculated to 
provide knowledge that the third hindrance to the goal may be an 
important issue. Other tools utilized to help in parameter selection 
are plots of STD of frequencies vs the number of parameters 
analyzed and plots of frequency sensitivity for statistically 
important parameters. 

REFERENCES 

[ 13 Collins, J., Hart, G., Hasselman, T., Kennedy, B., Statistical 
Identification of Structures, AIAA Vol. 12, N0.2, 1974. 

[2] Branham, Richard L., Jr., Scientific Data Analysis, An 
Introduction to Overdetemzined Systems, Springer Verlag, 
New York, pp. 93-95, 1990. 

[3 J Thomas, L. F., and Young, J.I., An Introduction to 
Educational Statistics: The Essential Elements, Third 
Edition, Ginn Press, Needham Heights, MA., 1993, Chapters 
4,10,11,12. 

[4] Benjamin, J.R., and Comell, C.A., Probability, Statistics, 
and Decisions for CiviZ Engineers, McGraw-Hill Book 
Company, New York, 1970, Chapter 4. 

[5] Montgomery, David E., and West, Robert L., Identification of 
Estimated Error Variance in Time Signal Coeficients of 
Laser Doppler Vibrometer Data, Proceedings of the 13th 
International Modal Analysis Conference, Nashville, TN, pp. 
728-734, February 1995. 

[6] Dascotte, E., Strobbe, J., Hua, H., Sensitivity-Based Model 
Updating Using Multiple Types of Simultaneous State 
Variables, Proceedings of the 13th International Modal 



Analysis Conference, Nashville, TN, pp. 1035-1040, February 
1995. 

DLSCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, m m -  
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 


