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Abstract O‘ST Q 
Graph partitioning is an important abstraction used in solving many scientific. 

computing problems. Unfortunately, the standard partitioning model does not 
incorporate considerations that are important in many settings. We address this by 
describing a generalized partitioning model which incorporates the notion of partition 
skew and is applicable to a variety- of problems. We then develop enhancements to 
several important partitioning algorithms necessary to solve the generalized partitioning 
problem. Finally we demonstrate the benefit of employing several of these generalized 
methods to static decomposition of parallel computing problems. 

PWRIBUfl@i\S OF THE DOCUR4ENI IS UNLIMITED 
1 Introduction ‘3  
Many combinatorial problems in sxentific computing can be conveniently phrased in terms 
of graphs. A gruph G = (V, E )  consists of a set of vertices V and a set of vertex pairs E 
commonly referred to as edges. We use eij to denote an edge between vertices i and j .  
Vertices and edges can have weights associated with them which we denote by wv(i) and 

Very often the solution of these combinatorial problems involves the partitioning of the . 
associated graph, i.e. the vertices of the graph must be grouped into comparably-sized sets 
such that the number (or weight) of edges crossing between sets is small. Although this 
problem is NP-complete [8], a number of heuristics have been developed and successfully 
applied to practical problems. However, in many applications the graph partitioning 
abstraction fails to capture the true problem. As with many discrete optimization problems, 
the model is often improved when some sort of penalty function is included. This introduces 
a bias or skew into the partition. In the next section we describe a simple generalization 
to the graph partitioning problem which allows for skew. The remainder of the paper 
describes enhancements to several important graph partitioning algorithms to address this 
generalized problem and demonstrates application of these methods. 

. 
w,(e;j) respectively. . ,  

‘This paper generalizes and condenses material which can be found in some of the references [12, 13,191. 
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2 Skewed Partitioning 
T- _. -8. Whep,partiZid@ng asgraph, let each vertex i have a desire to be in set k denoted by d k ( i ) .  

*' We now define' a skewed grapli partitioning problem in which we try to  minimize the cut 
edges and maximize the satisfied desires. Let s(i)  be the set to which vertex i is assigned. 
We want to find a mapping s which minimizes the following objective function. 

Several observations are in order. First, the standard graph partitioning metric is described 
by the first summation. This could be replaced by any desired metric on cut edges without 
altering the basic idea of skew. Second, the importance of satisfying the desires relative to 
that of minimizing edge cuts can be controlled by scaling the desire values. And third, for 
a particular vertex, only differences between desires are relevant. 

This simple extension to  the basic graph partitioning problem has applicability to a 
range of applications: 
0 Circuit Placement With Terminals. Graph partitioning is commonly applied to 
the problem of placing circuit elements on a chip so that total wire length is kept small. 
The basic idea is to divide the chip area in half, and then partition the graph (or 
hypergraph) describing the circuit, assigning each partition to half of the chip. With few 
edges crossing between the chip halves, most wires are between localized elements. The 
process is then repeated recursively. However, a chip 'generally contains some terminals, 
pins which connect electrically to the outside of the chip. Circuit elements connected to 
these terminals should be located near the pins to reduce wire length, but the standard 
graph partitioning model doesn't account for these considerations. The skewed model easily 
encodes this consideration by giving vertices a desire to be in the chip half which contains 
any neighboring pins. 
0 Static Decomposition for Parallel Computing. Graphs are commonly used to 
describe the structure of many scientific calculations. When performing such a calculation 
on a parallel computer, the workload must be divided among processors in such a 
way that each processor has similar total work, but the communication is kept small. 
This problem is commonly abstracted to  graph partitioning. However, within a parallel 
computer, communication between architecturally distant processors consumes more wires 
and generates more congestion than communication between neighboring processors. An 
optimal decomposition should take these effects into account. Unfortunately, the standard 
graph partitioning model is unable to do so. The skewed model can address this problem 
for approaches that recursively divide the graph and assign the pieces to portions of the 
parallel machine. Consider an intermediate stage in this process where a subset of the graph 
is being divided into pieces for subsets of processors. A vertex may have edges connecting 
it to vertices which are assigned to other portions of the machine. If so, the vertex can 
be given a desire to be assigned to a processor subset which is architecturally near the 
processors holding its neighbors. This basic idea was described 'by Kernighan and Dunlop 
for the circuit placement problem and given the name terminal propagation [4]. In the 
parallel computing context, this approach has been advocated by Pellegrini [15] and by 
the current authors [13]. It has been implemented in the Chaco 2.0 [lo] and Scotch [16] 
partitioning tools. 
0 Dynamic Decomposition W i t h  Reduced Data Movement. For many scientific 
computations, the work can not be accurately predicted in advance. For these problems, 

. 
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efficient use of a parallel machine requires that data and computational work be periodically 
migrated between processors. The determination of a new distribution can often be 
expressed in terms of graph partitioning. However, the migration of data can be quite 
expensive, so it is preferable to leave as much as possible in place. This preference can not 
be addressed by the standard graph partitioning model. But by giving each vertex a desire 
to stay in its current set, the skewed model can accommodate this consideration. 

3 
In 1970, Kernighan and Lin proposed a heuristic for partitioning graphs based upon greedy 
exchange of vertices to reduce the number of edges cut [14]. Their basic approach has been 
enhanced and improved through the years, most significantly by Fiduccia and Mattheyses 
who devised a linear time variant [5] .  This approach to partitioning is often referred to as 
KL/FM after these authors. 

The KL/FM algorithm is a technique for improving an initial, perhaps random, 
partition. The key notion is that of the gain of a vertex, the net reduction in cuts which 
would ensue if the vertex were moved to the other partition. The basic step is selecting and 
moving a vertex with the highest gain value. There are two details which add complexity 
and considerable power to this very simple idea. First, in order to keep sets from becoming 
unbalanced, only moves between equal sized sets or from the larger to the smaller are 
allowed. Second, the algorithm continues trying to  move vertices even if doing so makes the 
partition temporarily worse. The hope is that this reduction in quality will be compensated 
for by a larger improvement later on. This was the key insight of Kernighan and Lin’s paper 
and makes the approach superior to a simple greedy algorithm. 

The algorithm thus consists of two nested loops. In the inner loop, vertices whose 
movement would maximally improve the partition are selected, subject to set size 
constraints. Once a vertex is moved, the gain values of all its neighbors are updated. 
A particular vertex is allowed to move just once during each pass through the outer loop. 
The best partition encountered in this sequence of moves is recorded, and the outer loop 
resets the current partition to this best partition. 

In 1985 Kernighan and Dunlop devised an extension to the KL/FM approach to address 
the problem of terminals in circuit placement [4]. The basic idea is to add a special vertex 
to each partition which is not allowed to switch partitions. For each normal vertex, add 
an edge to the special vertices with weight equal to the desire to be in the corresponding 
partition. In this way, the external edge information is internalized in the connections to 
the special vertices. 

An equivalent, more elegant approach is possible when using a Fiduccia/Mat theyses 
implementation in which gain values are only computed once and are updated incrementally 
thereafter. The desires are simply included in the initial gain calculations while the rest 
of the code remains unchanged. The advantage of this approach is that the basic KL/FM 
loop need not be modified at all. 

The algorithm of Kernighan/Lin and Fiduccia/Matt heyses 

4 Multilevel Partitioning 
4.1 Standard Multilevel Methods 
The primary shortcoming of the KL/FM algorithm is that it enacts only local modifications 
to a partition. Although it is quite effective at  finding local minimums, its solution may be 
quite far from the global optimum. This is particularly true for large graphs. 

One possible remedy is to initialize KL/FM with a partition generated by another 
3 



algorithm, for example the spectral bisection method discussed in $5.  An alternate 
approach, suggested independently by several authors [l, 111 is to apply KL/FM on different 
scales. One way to think of this is as an algebraic multigrid technique in which KL/FM 
serves as the smoother. 

Such a multilevel algorithm consists of three phases. First, a sequence of successively 
smaller graphs is generated from the original graph. Next, the smallest graph in the 
sequence is partitioned using some technique. This partition is then propagated back 
through the sequence of intermediate graphs, with KL/FM refinement being applied to 
refine the partitions of the intermediate graphs. 

It is important that the small graphs represent their larger counterparts as accurately 
as possible. In the partitioning context, there are two properties we would like to preserve 
in the construction of the smaller graphs: the cost of a partition, and the set sizes so that 
a balanced partition of the small graph is also a balanced partition of the larger graph. 
These properties are preserved by the algorithm discussed here and in [ll]. 

The key mechanism in the construction of a small graph is an operation known as edge 
contraction. In this step, two vertices joined by an edge are merged, and the resulting 
vertex is given edges to the union of the neighbors of the two merged vertices. The new 
vertex is assigned a weight equal to the sum of the weights of its constituent vertices. Edge 
weights are not changed unless both merged vertices are adjacent to the same neighbor. In 
this case, the new edge that represents the two original edges is assigned a weight equal to 
the sum of the weights of the edges it replaces. So, for example, contracting one edge of 
a triangle with unit edges and vertex weights would yield a graph with a vertex.of weight 
one and a vertex of weight two, joined by an edge of weight two. 

The attractive feature of this contraction step is that it preserves cut and set sizes in a 
weighted sense. A partition of a small graph implies a partition of a larger graph since each 
vertex in the small graph is merely an amalgamation of vertices of the larger one. The total 
weight of small graph edges that are cut in the partition will be precisely equal to the total 
weight of the edges cut in the larger graph. Similarly, the total weight of vertices in each of 
the two small graph sets is exactly equal to the weight of the vertices in the corresponding 
partition of the large graph. 

To construct a small graph from a larger one we need to  contract a number of edges. 
Ideally, these edges will be well distributed throughout the large graph so the overall shape 
of the small graph will be similar to that of its larger counterpart. One way to  do this is 
to  select a maximal set of edges that share no vertices. Such a set is known as a maximal 
matching, and can be easily generated in linear time. 

4.2 Skewed Multilevel Partitioning 
The multilevel approach can be enhanced to include skew in a straightforward way. We 
are apply the skewed variant of KL/FM on the smaller graphs. The only question is how 
to compute desires for the vertices of the small graphs. Recall that a vertex of a small 
graph is a union of large graph vertices. The net desire of the union is simply the sum 
of the individual desires. Hence, when contracting an edge, the resulting vertex should be 
assigned a desire value which is the sum of the desires of the original vertices. 

5 Skewed Spectral Bisection 
An important class of partitioning algorithms known as spectral methods uses eigenvectors 
of a matrix associated with the graph to generate a partition. This surprising connection 



dates back to work in the early 70s by Fiedler [6, 71 and Donath and Hoffman [2, 31. 
A particular spectral method that has come to be known as spectral bisection gained 
widespread acceptance in the parallel computing community following the work of Pothen, 
Simon and Liou [17] and Simon [18]. In this section we generalize spectral bisection to 
incorporate skew. A more detailed presentation of this material can be found in [19, 121. 

One way to describe a partition is to  assign a value of +1 to aJl the vertices in one 
set and a value of -1 to all the vertices in the other. If we denote the value assigned to 
vertex i by z(i) ,  then'the simple function ( z ( i )  - ~ ( j ) ) ~ / 4  is equal to 1 if vertices i and 
j are in different partitions and 0 otherwise. This allows us to write the standard graph 
partitioning problem as 

1 
4 

Minimize f(z) = - C w,(e;j)(z(i) - ~ ( j ) ) ~  
eijEE 

Subject to 
(a) Cw, ( i ) z ( i )  fi: o 

a 
and (b) z( i )= rtl. 

Constraint (a) is an algebraic way of saying that each partition must have about half the 
total vertex weight. We do not specify it as a precise equality since it may not be possible 
to divide the vertices into two sets of precisely equal weight. 

We now need to enhance the objective.function to include skew. Letting p ( i )  = 
d+l(i) - d,l(i) be the net preference for vertex i to be in the set denoted by +1, the 
new problem we want to solve is 

(3) 
1 1 Minimize f(z) = - w,(e;j)(z(i) - ~ ( j ) ) ~  - - p(i)z(i) 

eijEE 2 icv 
Subject to 
(a) ~ w , ( i > z ( i )  M 0 and (b) z ( i )  = fl. 

icV 

We now make an approximation that makes this algebraic problem much easier to solve. 
Rather than insisting that all z's be exactly fl, we allow them to take on any value and 
consequently replace constraint (b) with a norm condition on the vector z of values z(i). 
Once we solve the resulting continuous problem, we can find the fl vector which is nearest 
to the continuous optimum, and use this to partition the graph. 

1. 1 T  Minimize f(z) = -z Lz - z p  z 

Subject to  
(a) w,z = 0 and (b) 2 z =n. 

(4) 4 

T T 

We now make a change of variables to  simplify the expression. First define s(i)  = 
d G  and t(i) = l / s ( i ) .  Let y = Diag(s)z, and let A = Diag(t)TLDiag(t). Since 
the z values are relaxations of fl, the appropriate normalization for the y vector is 
yTy = xi wv(i) ,  which we denote by 0,. Letting h = Diag(t)p and multiplying the objective 
function by 4, we have 

(5) Minimize f(y) = yTAy - 2hTy 
Subject to 
(a) s T y =  0 and 
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To solve (5) introduce Lagrange multipliers q and p, and look for stationary points of 
the function 

Setting the partial derivative of F with respect to q or ,u equal to zero yields the two 
constraint equations. Taking the derivatives with respect to the components of y, we 
obtain 

(6) ' F(Y, 37, P )  = YTAY - 2hTY + 7(STY) + P(Wv - YTY). 

(7) 2 A y - 2 h + q s - 2 ~ ~ = 0 .  
We can calculate 7 by left multiplying (7)'by sT. Since s is orthogonal to y and s is a 

zero eigenvector of A, we discover that q = 2sTh/wv. We now define 

which allows us to rewrite (7) as 

This extended eigenproblem must be solved subject to the constraints in (5). Although 
this problem generally has multiple solutions, Van Driessche and Roose have shown that 
the solution which minimizes the objection function is always the y vector associated with 
the smallest possible value for p [20]. Note that in the case that all net desires are zero, 
g becomes the zero vector and (9) reduces to the standard spectral bisection formulation. 
As with the standard spectral bisection approach, once a solution to (9) is computed, it is 
transformed back to a solution of (4), from which a'nearby discrete solution can be found. 

An efficient, Lanczos based procedure for solving the extended eigenproblem can be 
found in [9], [19] or [12], but is too lengthy to include here. 

(9) . Ay = PY +s- 

6 Results 
The algorithms described in the previous sections have been implemented in Chaco 2.0 [lo], 
and we report some experimental results here for the static partitioning problem. All 
the runs were performed a Sun Sparcstation 20 with a 50MHz clock and 64 Mbytes of 
RAM. We will describe results from four different algorithms: M L  and MLS the multilevel 
method from 54.1 with and without skew, and SFM and SSFM spectral bisection with 
and without skew followed by FM with and without skew. For the spectral algorithms 
we solved to residual tolerances of In the skewed case we Lanczos with selective 
orthogonalization modified to handle the extended eigenproblem in which the additional 
constant vector appears. In the non-skewed case we used a variant of Barnard and Simon's 
multilevel RQI/SYMMLQ algorithm. For the multilevel partitioner and the multilevel 
eigensolver, the smallest graph had at most 200 vertices. 

We monitored four metrics of partitioner quality. First was the number of edges cut, or 
cuts, which corresponds closely to the total communication volume in a parallel application. 
Second was hops in which we multiply each cut edge by the architectural distance between 
the two processors owning the endpoints. Third was messages which is the total number of 
messages required in a step of an iterative solver using the decomposition. The final metric 
was the time required to produce the decomposition. 

Our first example graph is barth5, a 2D finite element grid with triangular elements 
containing 15606 vertices, and 45878 edges' The results of partitioning and mapping this 
graph to a 6-dimensional hypercube are presented in Table 1. 

'This, and and other meshes, can be obtained via anonymous ftp to riacs.edu in the directory /pub/grids. 

http://riacs.edu


ML MLS SFM SSFM 
2844 3187 2959, 3530 
4832 3594 5052 3892 

TABLE 1 
Results of diflerent partitioning algorithms on the barthb mesh for a 6-dimensional hypercube. 

As expected, the skewed algorithms significantly improve the data locality as evidenced 
by the significant reduction in hops. The average distance a datum has to travel is reduced 
from 1.7 to 1.1 in both algorithms. This comes at the cost of a modest increase in 
communication volume as reflected by the increase in the cuts metric, as well as an increase 
in number of messages. The time required to perform the partitioning is slightly increased 
when skew is incorporated. 

Next, we partitioned the ocean mesh among the processors of a 10 x 20 mesh. This is a 
3D finite difference grid of the world’s oceans comprised of about 143K vertices and 410K 
edges. The results are presented in Table 2. Note that for this problem, we need to be able 
to bisect into two sets of unequal size. This is straightforward to do with the multilevel 
method, and a generalization to this case of spectral bisection with skew is described in [20]. 

1 ML MLS SFM SSFM I 
37847 45715 38365 52292 
103672 60210 103870 63163 

TABLE 2 
Results of different partitioning algorithms on the ocean mesh for a 10 x 20 grid. 

Again we observe that skew significantly improves locality, reducing the average number 
of wires traversed by a message from 2.7 to 1.3 in the multilevel algorithm, and from 
2.7 to l .2 in the spectral method. As before this locality is paid for by an increase in 
communication volume. However, unlike the previous problem the number of messages 
is significantly reduced by the skewed formulation. Since communication is local and 
meshes have many fewer processors in their neighborhood than hypercubes, this result 
isn’t surprising. 

7 Conclusions 
From a number of experiments like those reported above, we have drawn the following 
conclusions. 

0 Sophisticated partitioning algorithms can be successfully modified to incorporate the 
notion of skew. 

0 In the case of static partitioning for parallel computing, incorporation of skew 
significantly improves data locality. In particular, the skewed graph partitioning 

7 



approach generates decompositions which have significantly reduced communication 
congestion, and only modestly increased volume. 

0 For static partitioning, the skewed formulation can significantly reduce the number 
of messages on mesh topologies. 

0 The additional computational cost associated with incorporating skew in the multi- 
level and spectral partitioning algorithms is modest. 

0 As in the unskewed case, the skewed multilevel algorithm seems to produce better 
answers significantly faster than the skewed spectral algorithm. 
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