CANDIA REPORT

SAND 97-8245 • UC-406
1997052496
Unlimited Release
Printed March 1997

Modification of the Sandia National Laboratories/California Advanced Coordinate Measuring Machine for High Speed Scanning

J. M. Baldwin, R. D. Pilkey, R. M. Cassou, K. D. Summerhays, R. P. Henge

> Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.
> NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors or subcontractors.

This report has been reproduced from the best available copy.
Available to DOE and DOE contractors from:
Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge TN 37831
Prices available from (615) 576-8401, FTS 626-8401.
Available to the public from:
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Rd.
Springfield, VA 22161

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal Liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAMMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

MODIFICATION OF THE SANDIA NATIONAL LABORATORIES/CALIFORNIA ADVANCED COORDINATE MEASURING MACHINE FOR HIGH SPEED SCANNING

Jon M. Baldwin, Robert D. Pilkey
Integrated Manufacturing Systems
Sandia National Laboratories/California
Ronald M. Cassou, Kim D. Summerhays
University of San Francisco
San Francisco, California
Richard P. Henke
MicroVu
Windsor, California

Abstract

The Moore M48V high accuracy coordinate measuring machine (CMM), while mechanically capable of exact measurement of physical artifacts, is not, in its original configuration, well suited for rapid gathering of high density dimensional information. This report describes hardware and software modifications to the original control and data acquisition system that allow relatively high speed scanning of cylindrical features. We also estimate the accuracy of the individual point data on artifacts measured with this system and provide detailed descriptions of the hardware and software apparatus as an aid to others who may wish to apply the system to cylindrical or other simple geometries.

CONTENTS

Page
I. Introduction 7
II. Data Acquisition System Modification 8
Description of the Original M48V Control and Data Acquisition System 8
Modifications to Data Acquisition and Control Electronics 9
III. Probing System Modifications 11
Probe System Calibration 11
IV. Artifact Fixturing and Location 14
Description of Cylinder Artifact 14
Fixture Description 14
Fixture Calibration 15
V. Error Budget Calculations 19
Thermally-induced Errors 19
Errors in r 19
Errors due to spindle axis offset from feature axis 19
Error due to varying contact point of the probe tip 19
Error due to variation of effective probe offset from spindle axis 24
Positioning error of x - and y -axes 26
Uncertainty of indicator calibration 26
Error due to variation of the voltage divider ratio 26
Failure of the electronic indicator to act as a one-dimensional sensor 26
Uncertainty in the x - and y -axis reference locations 26
Uncertainty of the probe tip radius 27
Total error in r 27
Errors in θ 27
Positioning error of the spindle axis 27
Uncertainty in the zero position of the spindle axis 27
Total error in θ 27
Errors in z 28
Positioning error of the z-axis 28
Uncertainty in the z-axis reference location 28
Variation of artifact thickness 28
Total error in z 28
Summary 28
VI. References 30
Appendix A: Data Acquisition Program 31
Appendix B: Typical Motion Control Programs 39
SCANMAIN 40
POSINCYL 42
SCANCYL 42
Appendix C: Machine Drawing of the Cylinder Artifact 44

ILLUSTRATIONS

No. Page

1. Schematic diagram of the original M48V data acquisition and control system 8
2. Schematic diagram of the modified M48V data acquisition and control system 9
3. Electronic indicator mounted in the c-axis quill of the M48V 12
4. Internal cylindrical feature artifact 14
5. Artifact-positioning fixture and calibration hardware 15
6. Close-up view of artifact-positioning fixture 16
7. Fixture z-reference calibration 17
8. Error in r due to varying point of probe contact 20
9. Error in r due to varying point of probe contact; detail showing probe tip geometry 22
10. Scale of Figure 8 distorted to show geometry at the probe tip 23
11. Error due to spindle axis offset; $\mathrm{r}_{\text {ball }}=0$ 24
12. Cylinder artifact; top view 45
13. Cylinder artifact; bottom view 46
14. Cylinder artifact; side view 47
15. Cylinder artifact; section view 47
16. Cylinder artifact; detail A 48
17. Cylinder artifact; detail B 49
18. Cylinder artifact; detail C 50
TABLE
No.Page
C-1. List of full cylindrical features on the artifact 51

MODIFICATION OF THE SANDIA NATIONAL LABORATORIES/CALIFORNIA ADVANCED COORDINATE MEASURING MACHINE FOR HIGH SPEED SCANNING

I. Introduction

The installation and capabilities of the Moore M48V coordinate measuring machine (CMM) at Sandia National Laboratories, Livermore, California have been described in an earlier report [1]. As normally configured, the M48V is equipped with a 3D analog probe head with 3 axis position sensing capability and can perform three-dimensional measurements of artifacts up to $1220 \mathrm{~mm} \times$ $813 \mathrm{~mm} \times 508 \mathrm{~mm}$ ($48 \mathrm{in} \times 32 \mathrm{in} \times 20 \mathrm{in}$) in size with a typical volumetric uncertainty of $1.5 \mu \mathrm{~m}$ ($60 \mu \mathrm{in}$) over the measuring volume. Complete performance specifications are given in the above-referenced report. A major limitation of the M48V CMM as originally installed is a low maximum data acquisition rate, about one point per 10 seconds. The original system is thus unsuited for the rapid acquisition of high density dimensional information. Additionally, the standard probing system has a relatively narrow linear dynamic range, $\pm 0.050 \mathrm{~mm}$ (0.002 in), rendering impossible automated measurement of features with errors approaching that value.

Recent collaborative research, involving workers from Sandia National Laboratories, California, the University of San Francisco and Allied Signal/Federal Manufacturing \&Technology Division, has been directed at investigating efficient and accurate methods for sample pattern selection and data analysis in point-sample methods of dimensional metrology [2-4]. Key to the success of that work has been the acquisition of high density ($\approx 10^{3}$ to 10^{4} points/feature) data on series of nominally identical machined metal artifacts.

While the M48V is ideally suited to this work from the point of view of accuracy and resolution, the achievable data rate was obviously a prohibitive factor. Additionally, the linear dynamic range of the standard probing system is readily exceeded by many machined surfaces. This report describes modifications to the M48V probing system and data acquisition electronics which relieve these limitations for simple (cylindrical, planar) feature geometries. Following sections of this report describe: a) modifications to the original sensing and data acquisition systems, b) software for CMM control and data acquisition, c) fixturing and datum establishment for artifacts with internal cylindrical features and d) error budget calculations. We also present detailed information on data gathering and motion control programs as well as on the design of the artifact.

II. Data Acquisition System Modification

Description of the Original M48V Control and Data Acquisition Systems

These systems are described more completely in the earlier report [1]. The following brief description is provided to set the context for the current modifications.

The original control and data acquisition systems are shown schematically in Figure 1. In normal operation, machine control instruction files are created in the Hewlett Packard 330 Series computer and transmitted over a serial connection to the Allen Bradley Series 8200 CNC controller, which drives analog servo amplifiers and, in turn, the machine $x-, y-, z$ - and c-axis servo motors.

1. Motor Drive Signals
2. A Quad B Signals from Scales
3. Analog Signal from Scanning Probe
4. Combined Position Signal via IEEE488 Interface
5. RS-232 Link for CMM Control

Figure 1. Schematic diagram of the original M48V data acquisition and control system.

Machine position information is provided, for the linear axes, by vacuum-path laser interferometers. Spindle axis angular information is provided by a rotary encoder with a resolution of 10^{-5} revolution (0.0036 deg.). The axis position information is delivered, along with 3D probe deflection information, to an embedded processor which provides probe contact detection and position feedback to the Allen Bradley controller via a serial connection and part dimensional information to the Hewlett Packard computer through an IEEE-488 connection. It is a significant feature of the original design that absolute reference indications are not available for any of the machine axes. This limitation persists in the modified system and necessitates much of the calibration described in sections to follow.

Geometric data are processed and measurement reports generated with software executing on the Hewlett Packard computer. The maximum data rate capability of this system is approximately one point per 10 seconds, with the response characteristics of the Tridim probe, the maximum machine speed while probing and the processing power of the Hewlett Packard computer being the major limiting factors.

Modifications to Data Acquisition and Control Electronics

The modified data acquisition and control system is shown in Figure 2. All of the major data rate limiting elements of the original system have been replaced.

The original motor drives were retained, along with the Allen Bradley controller. Motion control programs were written in the Allen Bradley control language [5], either by direct keypad entry at the Allen Bradley control panel or with a text editor running on the 80386-based computer, in which case they were subsequently uploaded to the controller over the serial link.

1. Motor Drive Signals
2. A Quad B Signals from Scales
3. Digital Position from Scales
4. Analog Deflection from Federal Indicator
5. RS-232 Link
6. $+1-12$ Volt Digital Input on Second RS-232 Port Control Line

Figure 2. Schematic diagram of the modified M48V data acquisition and control system.

The original probing system was replaced by a Federal electronic indicator mounted in the rotary spindle. The analog output of the electronic indicator was divided by a thin film resistor divider to match the ranges available on the Hewlett Packard Model 3437A digital voltmeter. The voltage divider had a nominal total resistance of $20 \mathrm{~K} \Omega$ and was calibrated with a precision voltage source and a digital voltmeter having a resolution of $1: 10^{7}$ of full scale. Thermally-induced resistance fluctuations due to varying power dissipation were a matter for concern. Readings were taken at
applied voltages of one and five volts (nominally, currents of 0.05 and 0.25 ma), waiting in each case for the voltage reading at the divider tap to stabilize. Divider ratios of 0.400276 ± 0.000001 and 0.400273 ± 0.000002, respectively, were observed. The uncertainty in the divider ratio is thus seen to be on the order of $2: 10^{5}$, inclusive of thermal effects. The voltmeter digital output, corresponding to the radial deflection of the indicator, was transmitted over the IEEE-488 bus to the data collection computer.

Axis position data for the linear axes was transmitted from the laser interferometer to the data collection computer over the same IEEE-488 bus. In order to maximize data throughput the xand y-axis positions were read only once per commanded z-axis move and assumed to be constant throughout the move while the c-axis position was assumed to be equal to the commanded position. These measures are not believed to significantly affect the accuracy of the results in view of the observed accuracy of the CMM [1] and the small following errors consistently observed (1-2 μ in for the linear axes and 1-2 $\times 10^{-5}$ revolution for the c-axis). Scanning during data collection was solely along the z-axis. Under these conditions the maximum data acquisition rate was about $80(r, \theta)$ pairs/second. Data synchronization with the z-axis scan was achieved by using coolant on/off commands in the motion control program to toggle the solid state relay which, in turn, applied a $\pm 12 \mathrm{v}$ signal to one of the control lines of a second serial port.

Typical CMM motion control and data acquisition programs are presented in Appendix B of this report.

III. Probing System Modifications

The standard probing system used with the M48V is a Movomatic Tridim ${ }^{\text {TM }}$ 3-directional analog sensor with a display resolution in each axis of about $0.025 \mu \mathrm{~m}(1 \mu \mathrm{in})$. While capable of more than adequate accuracy for the present work, the mechanical response time of this probe and the electrical response of its associated data processing electronics constitute a major limiting element for the rate of data acquisition.

The simple shapes (planar, cylindrical) of interest in the present work, together with the CMM's rotating spindle (not normally used in conjunction with the Tridim probe) permit substitution of a single-axis electronic indicator. The indicator and mounting are shown in Figure 3. The indicator used in this work was a Federal Model A-D-4331 maximum reciprocal sensitivity of $10 \mu \mathrm{in} / \mathrm{v}$. In this work, it was used at a sensitivity of $200 \mu \mathrm{in} / \mathrm{v}$ giving a linear dynamic range of $\pm 0.001 \mathrm{in}$. While not capable of the dimensional performance of the standard probing system, this will be shown to be more than adequate for the present study.

A separate mechanical setup of the electronic indicator was required for each nominal hole size. The offset of the indicator, relative to the spindle axis of rotation, was adjusted to give an approximately zero indicator output while sweeping a ring gage of the same size as the nominal hole with the spindle coaxial to the ring gage. Generally then, all holes of a given nominal size were scanned in the same measurement run.

Probe System Calibration

It was necessary to calibrate four aspects of the modified probing system.
First, the spindle axis position of zero rotation must be coincident with the direction of one of the Cartesian machine axes. This was accomplished by rotating the spindle either manually or by move commands entered from the controller console with the indicator bearing against a flat surface (gage block) mounted parallel to one of the Cartesian planes and with the indicator analog meter at maximum sensitivity, until maximum deflection was observed. The spindle axis count was zeroed at that point.

Second, it was necessary to know the linear deflection sensitivity of the indicator. This was determined by moving the indicator through its full range against the same flat surface as used to determine the c-axis zero position and observing the digital voltmeter signal as a function of linear axis position. The laser interferometer indication was taken to be accurate in this step. The least squares computed slope of output voltage vs. position typically had a relative standard deviation of $1: 1000\left(\pm 2 \times 10^{-7} \mathrm{in} / \mathrm{V}\right)$.

Third, the radius of the spherical probe tip was measured with a laser micrometer to an estimated uncertainty of $\pm 15 \mu$ in.

Figure 3. Electronic indicator mounted in the c-axis quill of the M48V.

Finally, it was necessary to know the indicator sweep radius for an output of 0 V with the indicator suitably set for the nominal hole size of the current experiment. This was determined by sweeping a ring gage of a size equal to the nominal hole size. Generally, the ring gage diameter was known to $\pm 0.5 \mu \mathrm{~m}$. The spindle was first centered on the ring gage by looking for the point of constant deflection while manually sweeping the ring. Eight voltage readings were then taken at equal angular intervals on the gage and a least squares circle fitted to the data, thereby providing an estimate of the desired quantity. These measurements were taken with the indicator analog meter set for ± 0.001 in full scale, no voltage divider and reading the voltage with an Hewlett Packard 3455A high resolution voltmeter.

The variation in indicator reading as the ring gage is swept can be approximated as

$$
\Delta \mathrm{r}=\mathrm{r}_{\mathrm{RING}}-\mathrm{r}_{\mathrm{FED}}+\mathrm{A} \cos \theta+\mathrm{B} \sin \theta
$$

where $\mathrm{r}_{\mathrm{RNG}}$ is the radius of the ring gage, $\mathrm{r}_{\mathrm{FED}}$ is the sweep radius of the electronic indicator, θ is the angle of rotation of the spindle and $\mathrm{r}_{\text {FED }}, \mathrm{A}$ and B are parameters to be determined. If

$$
\mathrm{D}=\mathrm{r}_{\mathrm{RING}}-\mathrm{r}_{\mathrm{FED}}
$$

then

$$
\Delta \mathrm{r}=\mathrm{D}+\mathrm{A} \cos \theta+\mathrm{B} \sin \theta
$$

which we can fit, in the least squares sense, to the observed data to get an estimate of D and thereby of $\mathrm{r}_{\text {FED. }}$. The standard deviation of D by this method was typically $2 \mu \mathrm{in}$ giving a total uncertainty in $\mathrm{r}_{\text {FED }}$ of about $\pm 2.5 \mu \mathrm{in}$.

IV. Artifact Fixturing and Location

Description of Cylinder Artifact

The initial subject of this work was a series of 30 nominally identical artifacts intended to provide machining process characteristics data on internal cylindrical features. The artifact design is shown schematically in Figure 4. It contains 50 full internal cylindrical features, through, blind and counterbored, of various sizes and depths, and produced by a variety of machining techniques. All holes were started with a center drill operation, followed by drilling to near nominal size. Some of the holes were further finished by reaming, boring/reaming, plunge end milling, or peripheral milling. Full specifications of the artifact are given in Appendix C.

Figure 4. Internal cylindrical feature artifact.

Fixture Description

The artifact fixturing arrangement is shown in Figures 5 and 6. The bottom surface of each artifact was mechanically deburred against a granite surface plate prior to measurement. That surface was located against 3-0.0100 in gage blocks which were, in turn, fixed with epoxy cement to a set of 6 in precision parallels placed on the measuring machine table. Part alignment and $x-y$

Figure 5. Artifact-positioning fixture and calibration hardware.
location were provided by 3 cylindrical pins fixed in the t-slots of the parallels. Two of these pins were mechanically aligned with the measuring machine y-axis.

Fixture Calibration

Given the lack of an absolute machine reference, it was necessary to express the motion control program relative to a fixed location on the artifact and then to accurately establish the location of the artifact relative to the current machine scale zero points.

An x-y location in the machine's coordinate system was established by assuming the first artifact (serial \#002) to be typical of the entire production run. The lower 0.375 in dia reference hole was located in the machine's coordinate system by placing the artifact in the fixture, manually indicating its location with the electronic indicator and noting the x and y scale readings. These readings were recorded and entered as parameters of the motion control program (see Appendix B: Typical Motion Control Programs). Even though the pair of reference holes were specified as a machining datum they were not of particularly better form (roundness $\approx 0.0005 \mathrm{in}$) than the other cylindrical features and therefore constitute a significant source of error in measured feature locations.

Figure 6. Close-up view of artifact-positioning fixture.

Note that this operation must precede the mechanical adjustment and calibration of the probe described under Probe System Calibration.

A z-axis reference was computed as the machine coordinate system location of the top surface of artifact \#2 when in position in the fixture. A V-block with an included angle of approximately 90° was measured on a utility (0.0001 in resolution) coordinate measuring machine and found to have an included angle of $2 \theta=89.950 \pm 0.001^{\circ}$ and a distance from the bottom of the V-groove to the base of $d=0.4404 \pm 0.0002$ in (standard deviation). The block was then aligned with the machine x -axis and fixed to the top of the parallel. Refer to Figure 7. The spindle was rotated so that the indicator sensitive direction was parallel to the machine y-axis, the machine y location adjusted to null the indicator against one face of the V and the y - and z-axis positions noted. The spindle was then rotated 180° and the process repeated at the other face and the same xz location. Then if the probe tip radius is $r_{\text {ball }}$, the difference of the y-axis coordinates of the probe tip center locations is Δy, the half angle of the V-block is θ, the remaining quantities are as defined in Figure 7 and we take the symmetry plane of the V to be perpendicular to the base we can calculate the total width of the V at the center of the probe tip:

$$
\begin{gathered}
\mathrm{l}_{1}=\mathrm{r}_{\text {ball }} / \cos \theta_{1} \\
\mathrm{l}_{2}=\mathrm{r}_{\text {ball }} / \cos \theta_{2} \\
\mathrm{l}_{1}=\mathrm{l}_{2}=\mathrm{r}_{\text {ball }} / \cos \theta
\end{gathered}
$$

Figure 7. Fixture z-reference calibration.

Then if $\Delta y_{A B}$ is the indicated difference in y-axis position at the two null locations and $r_{F E D}$ is the sweep radius of the indicator as determined earlier

$$
\Delta \mathrm{y}=\Delta \mathrm{y}_{\mathrm{AB}}+2\left(\mathrm{r}_{\mathrm{FED}}-\mathrm{r}_{\mathrm{ball}}\right)
$$

and

$$
\begin{gathered}
\text { total width }=\mathrm{W}_{\mathrm{T}}=\mathrm{l}_{1}+\mathrm{l}_{2}+\Delta \mathrm{y} \\
\mathrm{~W}_{\mathrm{T}}=2 \mathrm{r} / \cos \theta+\Delta \mathrm{y}_{\mathrm{AB}}+2\left(\mathrm{r}_{\mathrm{FED}}-\mathrm{r}_{\text {ball }}\right)
\end{gathered}
$$

Again invoking the assumption that $\theta_{1}=\theta_{2}=\theta$ we have

$$
\mathrm{W}_{\mathrm{T}}=2 \mathrm{~h} \tan \theta
$$

By combining these last two expressions and rearranging,

$$
\mathrm{h}=\frac{1}{(2 \tan \theta)}\left[2 \mathrm{r}\left(\frac{1}{(\cos \theta)}-1\right)+\Delta \mathrm{y}_{\mathrm{AB}}+2 \mathrm{r}_{\mathrm{FED}}\right]
$$

Adding the measured distance, d , from the bottom of the V to the bottom of the block, we get for the z distance from the probe tip center to the bottom of the V-block:

$$
\mathrm{H}=\frac{1}{(2 \tan \theta)}\left[2 \mathrm{r}_{\text {ball }}\left(\frac{1}{\cos \theta}-1\right)+\Delta \mathrm{Y}_{\mathrm{AB}}+2 \mathrm{r}_{\mathrm{FED}}\right]+\mathrm{d}
$$

and the machine coordinate system z location of the top of an artifact is

$$
\mathrm{z}_{\text {ref }}=\mathrm{z}_{\text {ball }}-\mathrm{H}+\mathrm{h}_{\text {gage }}+\mathrm{z}_{\text {part }}
$$

where $z_{\text {ball }}$ is the machine coordinate z position of the center of the ball when probing the V-block, $h_{\text {gage }}$ is the height of the supporting gage blocks and $z_{p a r t}$ is the measured height of the artifact.

V. Error Budget Calculations

It is of interest to have an estimate of the error in each of the three coordinates defining the probe point of contact with the artifact. In general, there are several sources of error in each coordinate. In most instances, we are able to estimate the worst case error. Errors that can reasonably be judged out of hand to be insignificant will not be treated. All error estimates are thought to represent the total worst-case error bandwidth. The total error in each coordinate is obtained by combining as the rms sum all the significant error sources.

It is, furthermore, interesting to consider the effect of errors in the individual point coordinates on the accuracy of derived parameters. Ideally, the individual point errors could be propagated through subsequent fitting algorithms to yield estimates of the resultant errors in the defining parameters of the fitted shapes. Such consideration is beyond the scope of this report. We will limit our consideration to enumeration of the most influential error source(s) for each defining parameter of the fitted cylinder. Extension to other simple geometries is straightforward.

Thermally-induced errors

Thermal control of the measuring machine environment was described in the earlier report [1]. Room temperature control of $\pm 0.12{ }^{\circ} \mathrm{C}$ is generally achieved. The measured artifacts are fabricated from aluminum and are the system component most strongly influenced by temperature. Artifact temperature was monitored and generally was constant to better than $\pm 0.1^{\circ} \mathrm{C}$. Over the approximately 10 inch largest dimension of the artifact this would be represented by a length change of about $12 \mu \mathrm{in}$ or on the order of $1 / 10$ or less of that value over a single feature.

Errors in \mathbf{r}

Errors due to spindle axis offset from feature axis

Error due to varying contact point of the probe tip

This is the error caused by contacting the (possibly perfectly circular) feature surface with a probe of finite radius when the spindle axis is not coincident with the feature center. Refer to Figures 8 $-10 . \mathrm{C}$ is the center of the measured feature and C^{\prime} is the center of rotation of the spindle. r is the true feature radius, r^{\prime} the apparent feature radius and $\Delta \mathrm{r}$ the distance between C and C^{\prime}, with the angles α and ψ as shown in the figures. We first need to find $\psi(\alpha, r, \Delta r)$:

$$
(\Delta r)^{2}=r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \psi
$$

and

Figure 8. Error in r due varying point of probe contact.

$$
\mathrm{r}^{\prime 2}=\mathrm{r}^{2}+(\Delta \mathrm{r})^{2}-2 \mathrm{r} \Delta \mathrm{r} \cos \alpha
$$

Combining these expressions,

$$
(\Delta r)^{2}=\left[2 r^{2}+(\Delta r)^{2}-2 r \Delta r \cos \alpha\right]-2 r\left[r^{2}+(\Delta r)^{2}-2 r \Delta r \cos \alpha\right]^{1 / 2} \cos \psi
$$

and rearranging,

$$
\cos \psi=\left[1-\frac{\Delta r}{r} \cos \alpha\right]\left[1+\left(\frac{\Delta r}{r}\right)^{2}-2\left(\frac{\Delta r}{r}\right) \cos \alpha\right]^{-1 / 2}
$$

When ψ is a maximum we will have the maximum error due to not always contacting the same point on the probe tip. For maximum $\psi, \cos \psi$ will be a minimum so at that point we will have

$$
\frac{d(\cos \psi)}{d \alpha}=0
$$

or

$$
\begin{gathered}
\left(-\frac{\Delta r}{r}\right)(-\sin \alpha)\left[1+\left(\frac{\Delta r}{r}\right)^{2}-\frac{2 \Delta r}{r} \cos \alpha\right]^{-1 / 2}+\left[1-\frac{\Delta r}{r} \cos \alpha\right]\left(\frac{1}{2}\right) \\
{\left[1+\left(\frac{\Delta r}{r}\right)^{2}-\left(\frac{2 \Delta r}{r}\right) \cos \alpha\right]^{-3 / 2}\left(-\frac{2 \Delta r}{r}\right)(-\sin \alpha)=0}
\end{gathered}
$$

and by rearranging and simplifying we have the maximum error at

$$
\alpha=\cos ^{-1}\left(\frac{\Delta r}{r}\right)
$$

Substituting for α in the earlier expression for $\cos \psi$ we get for the value of $\cos \psi$ corresponding to the maximum error

$$
\cos \psi=\left[1-\frac{\Delta r}{r} \frac{\Delta r}{r}\right]\left[1+\left(\frac{\Delta r}{r}\right)^{2}-2 \frac{\Delta r}{r} \frac{\Delta r}{r}\right]^{-\frac{1}{2}}
$$

or

$$
\cos \psi=\left[1-\left(\frac{\Delta r}{r}\right)^{2}\right]^{\frac{1}{2}}
$$

Figure 9. Error in r due to varying probe contact; detail showing probe tip geometry.
Referring to Figure 9 we see that the error ϵ in r^{\prime} due to the probe center not lying on the normal to the measured surface is given by

$$
r_{\text {ball }} \cos \delta=r_{\text {ball }}-\epsilon
$$

or

$$
\epsilon=r_{\text {ball }}(1-\cos \delta)
$$

where $r_{\text {ball }}$ is the radius of the measuring probe and δ is the angle between the radius to the contact point and r^{\prime}.

Figure 10. Scale of Figure 8 distorted to show geometry at the probe tip.

Then it is easily seen from Figure 10, an exaggerated version of Figure 8, that $\delta=\psi$ and therefore

$$
\epsilon=r_{\text {ball }}(1-\cos \psi)
$$

and substituting the value of $\cos \psi$ corresponding to the maximum error

$$
\epsilon_{\max }=r_{\text {ball }}\left\{1-\left[1-\left(\frac{\Delta r}{r}\right)^{2}\right]^{\frac{1}{2}}\right\}
$$

Figure 11. Error due to spindle axis offset, $\mathbf{r}_{\text {ball }}=\mathbf{0}$.

Note that this error always has the effect of reducing the apparent radius r^{\prime}. The part-to-part variability from nominal of hole locations was about 3.3×10^{-4} in (standard deviation), independent of hole size and manufacturing technique. Substituting this value for Δr gives a worst case (95% C.I.) estimate for $\epsilon_{\max }$ of $1.6 \mu \mathrm{in}$.

Error due to variation of effective probe offset from spindle axis

Refer to Figure 11. C is the center of the measured feature and C^{\prime} is the center of rotation of the spindle. r is the true feature radius, r^{\prime} the apparent feature radius and Δr the distance between C and C^{\prime}, with the angles θ and δ as shown in the Figure. θ is the indicated angle of spindle rotation; angles are referenced to the 0° spindle axis location. Then

$$
\mathrm{r}^{2}=\left(\mathrm{r}^{\prime}\right)^{2}+(\Delta \mathrm{r})^{2}-2 \mathrm{r}^{\prime} \Delta \mathrm{r} \cos \alpha
$$

and with $\alpha=\pi-(\theta-\delta)=-\cos (\theta-\delta)$

$$
r=r^{\prime}\left[1+\left(\frac{\Delta r}{r^{\prime}}\right)^{2}+2 \frac{\Delta r}{r^{\prime}} \cos (\theta-\delta)\right]^{\frac{1}{2}}
$$

Then expanding as a power series and discarding terms greater than second order

$$
r \approx r^{\prime}\left[1+\frac{1}{2}\left(\frac{\Delta r}{r^{\prime}}\right)^{2}+\frac{\Delta r}{r^{\prime}} \cos (\theta-\delta)-\frac{1}{2}\left(\frac{\Delta r}{r^{\prime}}\right)^{2} \cos ^{2}(\theta-\delta)\right]
$$

Since $\cos (\theta-\delta)=\cos \theta \cos \delta+\sin \theta \sin \delta$ and letting

$$
\begin{aligned}
& A=\Delta r \cos \delta \\
& B=\Delta r \sin \delta
\end{aligned}
$$

be the projected x-and y-components of Δr in the spindle coordinate system we can rewrite this as

$$
r=r^{\prime}+A \cos \theta+B \sin \theta+\frac{1}{2} r^{\prime}\left(\frac{\Delta r}{r}\right)^{2} \sin ^{2}(\theta-\delta)
$$

or rearranging,

$$
r^{\prime} \approx r-A \cos \theta-B \sin \theta-\frac{1}{2} r^{\prime}\left(\frac{\Delta r}{r}\right)^{2} \sin ^{2}(\theta-\delta)
$$

and the error due to neglecting second order terms, i.e. to fitting

$$
r^{\prime}=r-A \cos \theta-B \sin \theta
$$

is

$$
\epsilon^{\circ}=-\frac{1}{2} r^{\prime}\left(\frac{\Delta r}{r^{\prime}}\right)^{2} \sin ^{2}(\theta-\delta)
$$

and since the maximum error occurs at $\theta-\delta=\pi / 2$ and since $r^{\prime} \approx r$

$$
\epsilon_{\max }^{\circ}=-\frac{\Delta r^{2}}{2 r}
$$

Note that while this error may be significant in artifact measurement, it will become small in probe offset calibration since the spindle and ring gage centers were adjusted to be coincident to the order of 10^{-5} in during ring gage calibration. Using the same range of values for $\Delta \mathrm{r}$ as previously we get for $\epsilon^{\circ}{ }_{\max }$ values (95% C.I.) of about 3μ in for the 0.125 in diameter holes to much less than 1μ in for 1 in diameter.

Positioning error of x - and y-axes

The positioning error is less than $10 \mu \mathrm{in}$ in each axis [1] leading to a worst-case radial error $\Delta \mathrm{r}_{\text {pos }}$ $\approx 14 \mu \mathrm{in}$.

Uncertainty of indicator calibration

The uncertainty of the indicator calibration, as standard deviation of the least-squares slope was typically $1: 1000$ or less equating, for a full range deflection of ± 0.001 in, to a 95% C.I. band for $\Delta r_{\text {ind }}$ of about $8 \mu \mathrm{in}$. See Probe System Calibration.

Error due to variation of the voltage divider ratio

The uncertainty in the divider ratio was earlier seen to be about $2: 10^{5}$. In the worst case of a full scale indicator deflection (0.001 in) this results in an uncertainty in the radius indication of $\Delta \mathrm{r}_{\mathrm{vd}} \approx$ $0.2 \mu \mathrm{in}$.

Failure of the electronic indicator to behave as a one-dimensional sensor

Although the electronic indicator is designed to respond only to deflection normal to its pivot axis, deflection orthogonal to the sensitive direction is known to produce an output signal which will be observed as an error in r. The maximum error from this source is on the order of $\Delta r_{2 D} \approx$ 10μ in [6]. This estimate was borne out by the observed difference in indicated deflections at the same angle on ring gages, approached from opposite directions. In actual use, the error from this source was probably even less since the angular direction of approach was the same for all measurements.

Uncertainty in the x - and y-axis reference locations

Reference location error in x and y must be considered in that the machine motion control program is expressed in machine coordinates, referred to the index hole (hole \#1) of artifact serial \#02. The location of this hole was determined by sweeping it with the electronic indicator and
adjusting the machine position to give a symmetrical indicator deflection. Error in the reference location will be reflected as a component of the machine quill axis to feature axis offset.

There are two components to reference location error: positioning repeatability of the artifact in the fixture and repeatability in determining the center of the index hole. The former is estimated to be on the order of $40 \mu \mathrm{in}$. The latter is governed primarily by the form error of the index hole, which was on the order of 0.0005 in , limiting the repeatability of the location to about $20 \mu \mathrm{in}$. Combining these components as the rms sum gives a total estimated error $\Delta \mathrm{r}_{\text {ref }}$ of $45 \mu \mathrm{in}$.

Uncertainty of the probe tip radius

The probe tip radius was measured with a laser micrometer to an estimated total uncertainty, $\Delta r_{\text {ball }}$ of $\pm 15 \mu \mathrm{in}$.

Total error in \mathbf{r}

For the smaller holes, the $\epsilon^{\circ}{ }_{\text {max }}$ term clearly dominates while for larger holes many terms contribute significantly. Combining the various components of uncertainty in r, as the rms sum, we have, in general:

$$
\Delta r_{\text {total }}=\left(\Delta \mathrm{r}_{\text {therm }}^{2}+\epsilon_{\max }^{2}+\epsilon_{\max }^{0}{ }^{2}+\Delta \mathrm{r}_{\mathrm{pos}}^{2}+\Delta \mathrm{r}_{\mathrm{ind}}^{2}+\Delta \mathrm{r}_{\mathrm{vd}}^{2}+\Delta \mathrm{r}_{2 \mathrm{D}}^{2}+\Delta \mathrm{r}_{\mathrm{ref}}^{2}+\Delta \mathrm{r}_{\mathrm{BALL}}^{2}\right)^{1 / 2}
$$

Substituting the appropriate worst case values we get a value of $\Delta \mathrm{r}_{\text {total }} \approx 50 \mu \mathrm{in}$.

Errors in $\boldsymbol{\theta}$

Positioning error of the spindle axis

The uncertainty in θ due to positioning error of the spindle axis, $\Delta \theta_{\text {pos }}$, is on the order of 0.2 minutes of arc [1].

Uncertainty in the zero position of the spindle axis

The minimum rotation of the spindle to produce an observable change of the indicator output, when the indictor was rotated against the gage block, was typically $\Delta \theta_{\text {ref }} \approx 25$ minutes of arc. See Probe System Calibration.

Total error in θ

The uncertainty in the spindle axis zero, or reference, location dominates giving $\Delta \theta_{\text {total }} \approx 25$ minutes.

Errors in z

Positioning error of the z-axis

The positioning error of the z-axis, $\Delta z_{\text {poss }}$, is less than 10μ in [1].

Uncertainty of the z-axis reference location

Recalling the results of the treatment of Fixture Calibration, we can assign the following uncertainties: $\Delta \theta=0.001$ degree, $\Delta \mathrm{r}_{\text {ball }}=15 \mu \mathrm{in}, \Delta\left(\Delta \mathrm{Y}_{\mathrm{AB}}\right)=14 \mu \mathrm{in}, \Delta \mathrm{r}_{\mathrm{FED}}=12 \mu \mathrm{in}$ and $\Delta \mathrm{d}=0.0004$ in resulting in an estimated $\Delta \mathrm{H}=0.00045$ in (the error in d is grossly dominant). Then with $\Delta \mathrm{z}_{\text {ball }}=10$ $\mu \mathrm{in}, \Delta \mathrm{h}_{\text {gage }}=20 \mu$ in and $\Delta \mathrm{z}_{\text {parr }}=0.0015$ inwe get $\Delta \mathrm{z}_{\text {ref }} \approx 0.002 \mathrm{in}$.

Variation of artifact thickness

This parameter deserves mention primarily to point out that, although the part-to-part variation is large, ± 0.0015 in (standard deviation) and so can through the motion control program affect the z locations at which data taking begins and ends, it does not enter into the calculation of the coordinate system in which the raw data are expressed.

Total error in z

The uncertainty in the z axis reference location clearly dominates, giving $\Delta \mathrm{z}_{\mathrm{total}} \approx 0.002$ in.

Summary

The error in r will be by far the predominant contributor to uncertainty in the derived geometric dimensioning and tolerancing parameters (size, form, location and orientation) for the current artifact, which consists of cylinders whose axes are essentially parallel to the CMM spindle axis. The errors in z and θ, while much larger, will influence these parameters relatively little. This will not necessarily be the case for other feature geometries and/or fixturing arrangements.

The uncertainty in the reference location is in all cases the largest single contributor to the uncertainty in any axis, so it is worthwhile to reduce this error term as much as possible. In general, the largest benefit will derive from a reduction in the z-axis reference uncertainty. It seems likely that all three linear axis references could be located more precisely by using a high quality cube, mounted with its faces parallel with the CMM planes of motion. The x and y references can be obtained by simply nulling the (properly oriented) indicator against the appropriate face of the cube. This should at least halve the $\Delta \mathrm{r}_{\mathrm{ref}}$ term. The z reference is a little more difficult the deal with since the indicator cannot be lowered against the top of the cube. (The indicator is already fully deflected in the free state.) It should be possible to null the indicator against a vertical face of the cube, then sweep the cube in z while recording the indicator deflection. A plot of indicator reading vs. z will have a straight segment of almost constant
deflection and a curved segment corresponding to contact of the probe ball with the edge of the cube. These segments can be extrapolated to a repeatable reference location. The achievable precision is uncertain but is certainly closer to tens of μ in than to the current figure of 0.002 in .

VIII. REFERENCES

[1] R. D. Pilkey and P. A. Klevgard, Advanced Coordinate Measuring Machine at Sandia National Laboratories/California, SAND93-8208, 1993, 32pp.
[2] K. D. Summerhays, R. P. Henke, R. M. Cassou, J. M. Baldwin and C. W. Brown, 1995, New Algorithms for the Evaluation of Discrete Point Measurement Data and for Sample Point Selection on Surfaces with Systematic Form Deviation, Proceedings of the 10 th Annual Meeting of the American Society for Precision Engineering, Austin, TX, 388-391.
[3] J. M. Baldwin, R. P. Henke, K. D. Summerhays, R. M. Cassou and C. W. Brown, 1996, Optimizing Discrete Point Sample Patterns and Measurement Data Analysis on Internal Cylindrical Surfaces with Systematic Form Deviations, Proceedings of the International Manufacturing Engineering Conference, Storrs, CT, 447-449.
[4] R. P. Henke, R. M. Cassou, K. D. Summerhays, J. M. Baldwin, and C. W. Brown, 1996, Methodologies for the Evaluation of Systematic Form Deviations for Inside-Diameter Cylindrical Features and Their Relationship to Process Variables, 11th Annual Meeting of the American Society for Precision Engineering, Monterey, CA, accepted for presentation.
[5] anon., 1983, Series 8200 CNC Programming Manual for Mill Applications, Publication 8200-5.2.3, Allen-Bradley Co., Highland Heights, Ohio.
[6] M. Majlak, personal communication, September 1995.

Appendix A: Data Acquisition Program

The following program, written in the HT BASIC language and running on a 386 PC under DOS was used to control the data acquisition. The program handshakes with the Allen Bradley motion control program via interrupts on the COM1 port. As shown in the Allen Bradley programs described in Appendix B, a control line on this port is toggled via coolant on/off commands which, in turn, drive a solid state relay. The listing is heavily commented and should be selfexplanatory.

10	OPTION BASE 1	! Filename: DITS_B
20	REAL A	
30	DIM Filename\$[40],Part_num\$[8],Hole_str\$[40],Hole\$(10)[8]	
40	INTEGER Counter,I,Sample,Sampsize(38),Num_holes,Hole	
50	COM @Gpib,@Zygo,@Voltmeter,REAL Tzr(38,500,2)	
60	Init_hpib	! Initialize the IEEE488 bus
70	Init_zygo	! Initialize the laser interferometer electronics
80	Init_voltmeter	$!$ Initialize the digital voltmeter
90	Init_coml	! Initialize the serial port
100	Num_holes=0	
110	LINPUT "Enter Hole Numbers Separated By Commas:",Hole_str\$	
	! Get a list of hole numbers to be measured	
120 Get_holes(Hole_str\$,Hole\$(*),Num_holes)		
! Parse the list		
130 New_pass: INPUT "Enter Part Number:",Part_num\$		
! Serial number of the current part		

140 FOR Hole=1 TO Num_holes
150 Filename\$="d:\ditslbw"\&Hole\$(Hole)\&Part_num\$\&"__.000"
! Build a filename based on hole \& part numbers

160 OUTPUT CRT;Filename\$
170 CREATE Filename\$,1
180 ASSIGN @F TO Filename\$
190 FOR Counter=1 TO 38
200 FOR Sample=1 TO SIZE(Tzr,2)
$210 \operatorname{Tzr}($ Counter,Sample, 1) $=0$.
220 NEXT Sample
230 NEXT Counter
240 Counter=-1
250 REPEAT
260 IF (Counter<0) THEN
270 Counter=0 ! This won't happen again
280 STATUS 9,11;I
290 ENABLE INTR 9;8
300 ON INTR 9 GOTO L10
$310 \mathrm{~L}: \quad$ GOTO L
320 L10: GOSUB Read_xyz
! Display it
! Create a DOS ASCII file
! Open a path to it
! Initialize z values to zero in the data array

330	ELSE	! These are the data acquisition passes
340	REPEAT	! We will do this 38 times
350	OFF INTR 9	! Disable interrupt branch
360	Counter=Counter+1	! Increment the scan counter
370	STATUS 9,11;I	! Read the modem status register; need to do this
		! here to ensure we won't get stale data

$$
730
$$

$\mathrm{A}=\mathrm{A}+(16777216 * \mathrm{NUM}(\mathrm{S} \$[4 ; 1]))$
$\mathrm{A}=\mathrm{A}^{*}(1.246046 \mathrm{E}-9)^{*} 100 /(2.54) \quad$! Decode and scale the reading
$750 \operatorname{Tzr}($ Counter,Sample+1,1)=A ! Store the z value in the data array
ENTER @Voltmeter;Tzr(Counter,Sample+1,2)
! Read the voltmeter and store r in the data array
770
Sample=Sample +1
790 R2: STATUS 9,11;I
800
810 SEND 7;UNL LISTEN 23,24
820 TRIGGER 7
830 OUTPUT @Zygo;"D1",END ! increment the sample count
! Loop until interrupt on coml
! Read the modem status register
! This code is needed to prevent the laser ! from getting locked up and from giving us ! old latched data because we interrupted it ! during a latch and read operation

840 ENTER @Zygo USING "-K";S\$

850 ENTER@Voltmeter;A
860 FOR I=1 TO 10
870 Sample=Sample +1
880 SEND 7;UNL LISTEN 23,24
890 TRIGGER 7
900 OUTPUT @Zygo;"D1",END
910 ENTER @Zygo USING "-K";S\$
$920 \mathrm{~A}=\mathrm{NUM}(\mathrm{S} \$[1 ; 1])+(256 . * \mathrm{NUM}(\mathrm{S} \$[2 ; 1]))+(65536 . * \mathrm{NUM}(\mathrm{S} \$[3 ; 1]))$
$930 \mathrm{~A}=\mathrm{A}+(16777216 * \mathrm{NUM}(\mathrm{S} \$[4 ; 1]))$
$940 \mathrm{~A}=\mathrm{A}^{*}(1.246046 \mathrm{E}-9)^{*} 100 /(2.54)$
$950 \mathrm{Tzr}($ Counter,Sample, 1)=A
960 ENTER @Voltmeter;Tzr(Counter,Sample,2)
970 NEXT I
980 Sampsize(Counter)=Sample ! Save the number of data points for this scan
990 OFF INTR 9 ! Disable the interrupt branch
1000 RETURN
1010 END
! End of the main program
1020 SUB Init_com1
1030 OPTION̄ BASE 1
1040 INTEGER I
1050 CONTROL 9,0;1 ! Reset the serial port (device 9)
1060 STATUS 9,11;I

1070 SUBEND

1080 SUB Init_hpib
1090 OPTION̄ BASE 1
1100 COM @Gpib,@Zygo,@Voltmeter,Tzr(*)
! Open a path to the IEEE488 bus
! Abort any operations in progress
! Reset to power up status; assert IFC, clear ! interrupts, set interface to be active controller
! Reset; DEC sent to IEEE488 card

1160 SUB Init_voltmeter
1170 OPTION BASE 1
1180 COM@Gpib,@Zygo,@Voltmeter,Tzr(*)
1190 ASSIGN@Voltmeter TO 724 ! Open a path to the voltmeter
1200 OUTPUT @Voltmeter;"R2" ! Set the resolution
1210 SUBEND
1220 SUB Init_zygo
1230 OPTION BASE 1
1240 COM@Gpib,@Zygo,@Voltmeter,Tzr(*)
1250 REAL A
1260 DIM Axes_status(3),Axesv(3),S\$[4]
1270 ASSIGN@Gpib TO 7 ! Open a path to the IEEE488 bus
1280 ASSIGN @Zygo TO 723 ! Open a path to the laser electronics (device 23)
1290 ASSIGN @Volt to 724; FORMAT OFF
! Open a path to the 3437 A voltmeter (device 24)
1300 RESET 723
! Reset the laser to powerup state
1310 CLEAR 723
$!$ Send SDC to the laser
1320 CONTROL 7,0;1
1330 OUTPUT @Zygo;CHR\$(3)
! Reset IEEE488 control register
! Send <CTRL-C> to initialize laser
1340 WAIT 1
1350 OUTPUT @Zygo;"g1" ! Set latch only mode
1360 WAIT 1
1370 OUTPUT @Zygo;"d4" !Binary mode output for laser
1380 WAIT 1
1390 OUTPUT @Zygo;"t3" ISend EOI on last character
1400 WAIT 1
1410 FOR I=1 TO 2
1420 B: SEND 7;UNL LISTEN 23,24 ! Unlisten all devices, make laser \& voltmeter ! listeners
TRIGGER 7
! Trigger all listeners
1440 OUTPUT @Zygo;"D1",END ! Latch the laser reading
1450 ENTER @Zygo USING "-K";S\$! Read the laser output
1460 A=NUM(S\$[1;1])+(256.*NUM(S\$[2;1]))+(65536.*NUM(S\$[3;1]))
$1470 \quad \mathrm{~A}=\mathrm{A}+(16777216 * \mathrm{NUM}(\mathrm{S} \$[4 ; 1]))$
$\mathrm{A}=\mathrm{A}^{*}(1.246046 \mathrm{E}-9)^{*} 100 /(2.54) \quad!$ Decode and scale the reading
1500 SUBEND

```
1940 Theta=+Inc
1 9 5 0 ~ J = 0
1960 FOR I=1 TO 37
1970 J=1
1980 S=Sampsize(I)
1990 Theta=Theta-Inc
2000 Ang$=VAL$(Theta)
2010 FOR J=1 TO S
2020 OUTPUT @F USING "2(K,X),K";Ang$,Tzr(I,J,1),Tzr(I,J,2)
2030 NEXT J
2 0 4 0 ~ N E X T ~ I ~
2 0 5 0 ~ S U B E N D
2060 SUB Get_holes(Hole_str$,Holes$(*),INTEGER Num_holes)
    ! This subprogram takes a comma-delimited string of hole numbers, returns a string array
    ! of the individual hole numbers and the hole count
2070 OPTION BASE 1
2080 INTEGER I,J
2090 DIM H$[40]
2100 H$=Hole_str$
2110 I=0
2120 WHILE (LEN(H$)>0)
2130 I=I+1
2140 J=POS(H$,",")
2150 IF (J=0) THEN
2160 Holes$(I)=H$
2170 H$=""
2180 ELSE
2190 Holes$(I)=H$[1,J-1]
2200 H$=H$[J+1]
2210 END IF
2 2 2 0 ~ E N D ~ W H I L E ~
2230 Num_holes=I
2 2 4 0 \text { SUBEND}
```

While it is possible to enter motion control programs through the Allen Bradley control panel, it is more efficient to create them with a text editor and upload them through the serial port of the controller. The following listing, also in HT BASIC, provides a simple means to perform the upload.

10 OPTION BASE 1

20 INTEGER I
! Program to upload motion control to the ! Allen Bradley serial port

30	DIM A\$[512],F\$[50]	
40	ASSIGN@C TO 9	! Open the serial port
50	INPUT "ENTER Path\Filename",F\$! Get the filename \& path to upload
60	ASSIGN@F TOF\$! Open the file
70	CONTROL 9,0;1	! Reset the serial port
80	CONTROL 9,3;9600	! 9600 baud
90	CONTROL 9,4;2	
100	CONTROL 9,100;1	! Enable XONXXOFF
110	ON ERROR GOTO L	! Detects EOF
130	FOR I=1 TO 2	$!$ Read \& send until EOF
140	ENTER @F USING "K";A\$	
150	OUTPUT CRT;A\$	
160	OUTPUT @C USING "-,K";A\$	
170	WAIT 4	
180	NEXT I	
190	LOOP	
200	ENTER @F USING "K";A\$	
210	OUTPUT CRT;A\$	
220	OUTPUT @C USING "-,K";A\$	
230	WAIT 6	
240	END LOOP	
	L: OUTPUT @C;CHR\$(4)	
260	ASSIGN@F TO *	! Close the file
270	END	

! Open the serial port
! Get the filename \& path to upload
! Open the file
! Reset the serial port
! 9600 baud
! Enable XONXOFF
! Detects EOF
! Read \& send until EOF
! Close the file

Appendix B: Typical Motion Control Programs

Following are listings of SCANMAIN, a typical measurement control main program for the Allen Bradley controller, and of POSINCYL and SCANCYL, the two macro programs that are called by any version of SCANMAIN to do the actual data acquisition. The listings show the program, in the Allen Bradley control language [5], and explanatory comments, which are delimited by /*...*/.

SCANMAIN

SCANMAIN is the main motion control program. It positions the CMM relative to the artifact, then repetitively calls subprograms POSINCYL to position the probe in relation to each feature and SCANCYL to scan the surface of the feature.

/*rewind stop character*/	
($\mathrm{AP}, \mathrm{PU}=22.482824, \mathrm{PV}=10.057850, \mathrm{PQ}=-.1$)	/*assign parameters, $\mathrm{PU}=$ machine X location
	of index hole, $\mathrm{PV}=$ machine Y location of index hole, $\mathrm{PQ}=$ offset in X so probe will clear wall of nominal hole (see notes)*/
$(\mathrm{AP}, \mathrm{PH}=2.827415, \mathrm{PD}=.1, \mathrm{PS}=.2)$	$/ *$ assign parameters, $\mathrm{PH}=$ machine Z location of top surface of part, $\mathrm{PD}=\mathrm{Z}$ distance to move in hole below surface of part when entering hole, $\mathrm{PS}=\mathrm{Z}$ clearance for traversing moves above part*/
($\mathrm{AP}, \mathrm{P} 4=.5, \mathrm{P} 5=80$)	/*assign parameters, $\mathrm{P} 4=$ delay time, P5=time to wait to write scan to disk, seconds*/
M09	$/ *$ coolant off; used to toggle com1 interrupt, end data taking*/
G90G70	/*absolute programming, move end points relative to CAR zero position, inch mode*/
C0	$/ *$ move C axis to 0 position*/
M07	/*mist coolant on; used to toggle com1 interrupt; start data taking*/
G04F,P4	/*dwell P4 seconds*/
M09	/*coolant off*/
(CM,POSINCYL, $\mathrm{PX}=2, \mathrm{PY}=1.7, \mathrm{PU}=\mathrm{PU}, \mathrm{PV}=\mathrm{PV}, \mathrm{PQ}=\mathrm{PQ}, \mathrm{PH}=\mathrm{PH}, \mathrm{PD}=\mathrm{PD}, \mathrm{PS}=\mathrm{PS}$) /* call macro to position probe in hole to be scanned, $\mathrm{PX}=\mathrm{X}$ location of hole, $\mathrm{PY}=\mathrm{Y}$ location of hole relative to index hole*/	
(CM,SCANCYL,PA=.5100)	/*call macro to scan hole, $\mathrm{PA}=\mathrm{Z}$ length of scan (see notes)*/
G04F,P5	/*dwell P5 seconds to store data*/
G90	/*absolute programming*/
C0	$/^{*}$ move C axis to 0 position*/
M07	/*mist coolant on*/
G04F,P4	/*dwell P4 seconds*/

M09	/*coolant off*
$(\mathrm{CM}, \mathrm{POSINCYL}, \mathrm{PX}=1.7, \mathrm{PY}=2, \mathrm{PU}=\mathrm{PU}, \mathrm{PV}=\mathrm{PV}, \mathrm{PQ}=\mathrm{PQ}, \mathrm{PH}=\mathrm{PH}, \mathrm{PD}=\mathrm{PD}, \mathrm{PS}=\mathrm{PS}) / *$ call macro to position for second hole*/	
(CM,SCANCYL,PA=.5100)	$1 /$ call macro to scan second hole*/
G04F,P5	/*dwell P5 seconds*/
G90	/*absolute programming*/
C0	/*move C axis to 0 position*/
M07	/*mist coolant on*/
G04F,P4	/*dwell P4 seconds*/
M09	/*coolant off*/
(CM,POSINCYL,PX=2,PY=2.3,PU $=\mathrm{PU}, \mathrm{PV}=\mathrm{PV}, \mathrm{PQ}=\mathrm{PQ}, \mathrm{PH}=\mathrm{PH}, \mathrm{PD}=\mathrm{PD}, \mathrm{PS}=\mathrm{PS}$) $/ *$ call macro to position for third hole*/	
(CM,SCANCYL,PA=.5100)	/*call macro to scan third hole*/
G04F,P5	/*dwell P5 seconds*/
G90	/*absolute programming*/
C0	/*move C axis to 0 position*/
M07	$1 *$ mist coolant on*/
G04F,P4	/*dwell P4 seconds*/
M09	/*coolant off*/
(CM,POSINCYL, $\mathrm{PX}=2.3, \mathrm{PY}=2, \mathrm{PU}=\mathrm{PU}, \mathrm{PV}=\mathrm{PV}, \mathrm{PQ}=\mathrm{PQ}, \mathrm{PH}=\mathrm{PH}, \mathrm{PD}=\mathrm{PD}, \mathrm{PS}=\mathrm{PS}$) $/ *$ call macro to position for fourth hole*/	
(CM,SCANCYL,PA=.5100)	/* call macro to scan fourth hole*/
G04F,P5	/*dwell P5 seconds*/
G90	/*absolute programming*/
C0	/*move C axis to 0 position*/
G01Z7	/*retract quill to $\mathrm{Z}=7$ inches*/
M30	$1 *$ end of program, rewind tape*/

Notes:

1) Example main motion control program for data acquisition on four features.
2) This assumes quill axis will be positioned on feature axis and indicator is set up for proper size hole.
3) Z length of scan is computed as follows:
a. For a through hole, $\mathrm{PA}=$ nominal depth +0.01 inch.
b. For a blind hole, $\mathrm{PA}=$ nominal depth - (ball radius + tolerance on depth +0.01 inch $)$
4) Dwell length, in seconds, to store data is $P 5=130$ * hole depth in inches.
5) See reference 5 for details of Allen Bradley programming language.

POSINCYL

This subprogram is called by SCANMAIN, once per feature, and positions the CMM relative to the feature.

```
%
(DM,POSINCYL)
G01Z,(PH+PS)
G01X,(PU+PX+PQ)
G01Y,(PV+PY)
G01Z,(PH-PD)
G01X,(PU+PX)
G01Z,(PH)
(EM)
```

/*rewind stop character*/
/*define macro named POSINCYL*/
/*move in Z , linear interpolation, to top of part(PH)

+ clearance(PS)*/
/*move in X to index hole location + feature
location + offset to keep probe from surface of
hole*/
/*move in Y to hole location + feature location*/
/*move in Z, PD into hole from top of part*/
$/^{*}$ move in X , to position probe against surface of
hole*/
$/^{*}$ move in Z , to position probe center in top plane of
part*/
/*end macro*/
/*rewind*/

SCANCYL

This subprogram is called by SCANMAIN, once per feature, and scans the feature.
\%
(DM,SCANCYL)
(AP,P2=0,P3=19,P4=.5)
G90

L1

M07
G01Z,-PA
M09
G04F,P4
C-. 02700
G04F,P4
M07
G01Z,PA
/*rewind stop character*/
/*define macro to scan a full cylinder*/
/*assign parameters, $\mathbf{P} 2=$ scan counter, initialized to $0, \mathrm{P} 3=$ number of bidirectional scans to be made, $\mathrm{P} 4=$ dwell time*/
$/ *$ incremental programming, move destinations are relative to current location*/
/*L-word for if-then destination*/
$/ *$ mist coolant on, toggle coml interrupt to start taking data*/
/*linear interpolation, move in Z to scan depth*/
$/^{*}$ coolant off; toggle coml interrupt to stop taking data*/
/*dwell P4 seconds*/
/*rotate C axis 0.027 revolution*/
/*dwell P4 seconds*/
/*mist coolant on*/
/*scan in Z back to top of part*/

M09	/*coolant off*/
G04F,P4	/*dwell P4 seconds*/
C-. 02700	/*rotate C axis 0.027 revolution*/
($\mathrm{AP}, \mathrm{P} 2=\mathrm{P} 2+1$)	/*increment P2*/
(IFT,P2,LT,P3,L1)	/*if $\mathrm{P} 2<\mathrm{P} 3$ goto L1 and scan again*/
(EM)	/*end macro*/
(EM)	
T	/*rewind*/

Appendix C: Machine Drawing of Cylinder Artifact

Figure 12. Cylinder artifact; top view.

Figure 13. Cylinder artifact; bottom view.

Figure 14. Cylinder artifact; side view.

Figure 15. Cylinder artifact; section view.

Figure 16. Cylinder artifact; detail A.

Figure 17. Cylinder artifact; detail B.

Figure 18. Cylinder artifact; detail C.

Table C-1. List of Full Cylindrical Features on the Artifact.

Hole \#*	X Dim.	Y Dim.	$\begin{gathered} \text { Dia. } \\ \pm 0.005 \end{gathered}$	Full Dia. Depth ± 0.020	Blind/ Through/ Counter	Mfg. Process**
1	0.000	-3.500	0.375	0.500	T	C/D
1A	0.000	-3.500	0.500	0.250	C	C/D/M
1B	0.000	-3.500	0.500	0.250	C	C/D/M
2	0.000	3.500	0.375	0.500	T	C/D
2 A	0.000	3.500	0.500	0.250	C	C/D/M
2B	0.000	3.500	0.500	0.250	C	C/D/M
3	-2.000	-3.250	0.0625	0.250	T	C/D
4	-2.000	-2.750	0.0625	0.250	T	C/D/R
5	-1.750	-3.000	0.0625	0.1875	B	C/D
6	-2.250	-3.000	0.0625	0.1875	B	C/D/R
7	-2.250	-1.500	0.125	0.375	B	C/D
8	-2.000	-1.250	0.125	0.375	B	C/D/R
9	-2.000	-1.750	0.125	0.375	B	C/D/B/R
10	1.400	-3.250	0.125	0.500	T	C/D
11	1.400	-2.750	0.125	0.500	T	C/D/R
12	1.900	-2.750	0.125	0.500	T	C/D/B/R
13	2.000	-1.800	0.250	0.500	T	C/D
14	1.700	-1.500	0.250	0.500	T	C/D/R
15	2.000	-1.200	0.250	0.500	T	C/D/B/R
16	2.300	-1.500	0.250	0.500	T	C/D/P
17	-2.300	-0.300	0.250	0.750	B	C/D
18	-2.300	0.300	0.250	0.750	B	C/D/R
19	-1.700	0.300	0.250	0.750	B	C/D/B/R

Table C-1 (cont). List of Full Cylindrical Features on the Artifact.

Hole \#*	X Dim.	Y Dim.	$\begin{gathered} \text { Dia. } \\ \pm \mathbf{0 . 0 0 5} \end{gathered}$	Full Dia. Depth ± 0.020	Blind/ Through/ Counter	Mfg. Process**
20	-1.700	-0.300	0.250	0.750	B	C/D/P
21	-2.400	1.500	0.3125	0.700	B	C/D
22	-2.000	1.900	0.3125	0.700	B	C/D/R
23	-1.600	1.500	0.3125	0.700	B	C/D/B/R
24	-2.000	1.200	0.3125	0.700	B	C/D/P
25	1.700	-0.300	0.375	1.000	T	C/D
26	1.700	0.300	0.375	1.000	T	C/D/R
27	2.300	0.300	0.375	1.000	T	C/D/B/R
28	2.300	-0.300	0.375	1.000	T	C/D/P
29	1.600	1.500	0.3125	0.750	T	C/D
30	2.000	1.900	0.3125	0.750	T	C/D/R
31	2.400	1.500	0.3125	0.750	T	C/D/B/R
32	2.000	1.100	0.3125	0.750	T	C/D/P
33	-2.000	2.750	0.375	0.700	B	C/D
34	-2.000	3.250	0.375	0.700	B	C/D/R
35	-1.400	3.250	0.375	0.700	B	C/D/B/R
36	-1.400	2.750	0.375	0.700	B	C/D/P
37	2.350	3.350	0.500	1.000	T	C/D
38	1.650	3.350	0.500	1.000	T	C/D/R
39	2.350	2.650	0.500	1.000	T	C/D/B/R
40	1.650	2.650	0.500	1.000	T	C/D/P
41	0.625	0.500	0.500	0.650	B	C/D
42	-0.625	0.500	0.500	0.650	B	C/D/R

Table C-1 (cont). List of Full Cylindrical Features on the Artifact.

Hole \#*	X Dim.	Y Dim.	Dia. $\mathbf{\pm 0 . 0 0 5}$	Full Dia. Depth ± 0.020	Blind/ Through/ Counter	Mfg. Process**
43	-0.625	-0.500	0.500	0.650	B	C/D/B/R
44	0.625	-0.500	0.500	0.650	B	$\mathrm{C} / \mathrm{D} / \mathrm{P}$
45	0.000	-2.250	1.000	1.000	T	C / D
46	0.000	2.000	1.000	1.000	T	$\mathrm{C} / \mathrm{D} / \mathrm{R}$

*Refer to hole numbers on drawing.
${ }^{* *} \mathrm{C}=$ center drill, $\mathrm{D}=$ drill, $\mathrm{R}=$ ream, $\mathrm{B}=$ bore, $\mathrm{P}=$ plunge end mill, $\mathrm{M}=$ mill

UNLIMITED RELEASE

INITIAL DISTRIBUTION

Ronald M. Cassou

Harney Science Center
University of San Francisco
2130 Fulton Street
San Francisco, California 94117-1080
Kim D. Summerhays
Harney Science Center, Room 409
University of San Francisco
2130 Fulton Street
San Francisco, California 94117-1080 (3)

Richard P. Henke
MicroVu
7909 Conde Lane
Windsor, California 95492
C. W. Brown
Allied Signal FM\&T
2000 E. 95 th St.
PO BOX 419159,D/458,2B27
Kansas City, Missouri 64141-3548

MS9001 T. O. Hunter, 8000
Attn: MS9005 J. B. Wright, 2200
MS9004 M. E. John, 8100
MS9054 W. J. McLean, 8300
MS9007 R. C. Wayne, 8400
MS9002 P. N. Smith, 8500
MS9405 T. M. Dyer, 8700
MS9141 P. Brewer, 8800
MS9003 D. L. Crawford, 8900
MS9133 J. M. Baldwin, 8220 (20)
MS9133 K. A. Hontz, 8220
MS9133 R. D. Pilkey, 8220 (10)
MS9420 L. A. West, 8200
Attn: MS9430 L. N. Tallerico, 8204
MS9404 B. E. Affeldt, 8210
MS9405 M. H. Rogers, 8220
MS9405 J. M. Hruby, 8230

	MS9430	A. J. West, 8240
	MS9133	J. A. Fordham, 8240-1
	MS9409	R. H. Stulen, 8250
	MS9107	V.C. Barr, 8250-1
MS9405	Manager, 8220	
MS0953	W.E. Alzheimer, 1500	
MS0665	L. J. Azevedo, 1541	
MS9021	Technical Communications Department, 8535, for OSTI (10)	
MS9021	Technical Communications Department, 8535/Technical Library, MS0899, 13414	
MS0899	Technical Library (4)	
MS9018	Central Technical Files, 8523-2 (3)	

