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ABSTRACT 

The software structure of the plasma control system in use on 
the DIII-D tokamak experiment is described. This system 
implements control functions through software executing in 
real time on one or more digital computers. The software is 
organized into a hierarchy that allows new control functions 
needed to support the DIII-D experimental program to be 
added easily without affecting previously implemented 
functions. This also allows the software to be portable in 
order to create control systems for other applications. The 
tokamak operator uses an X-windows based interface to 
specify the time evolution of a tokamak discharge. The 
interface provides a high level view for the operator that 
reduces the need for detailed knowledge of the control sys- 
tem operation. There is provision for an asynchronous 
change to an alternate discharge time evolution in response to 
an event that is detected in real time. Quality control is 
enhanced through off-line testing that can make use of 
software-based tokamak simulators. 

INTRODUCTION 

Active control of discharge parameters is playing an increas- 
ingly important role in present-day tokamak experiments and 
is expected to be a key design feature in future experiments 
such as TPX and ITER. For example, precise control of the 
discharge shape and position is required because of the effect 
on a wide range of parameters such as impurity influx 
through wall contact, coupling of auxiliary heating power, 
magnetohydrodynamic stability, confinement, edge localized 
mode (ELM) characteristics, and H-mode power threshold. 
Radiative divertor designs require precise control of the posi- 
tion of the X-point, the divertor strike points and/or the diver- 
tor radiation level. Advanced tokamak applications require 
control of the current density profile. 

This paper describes the software architecture of the dis- 
charge control system in use on the Dm-D tokamak experi- 
ment [ 1-41. This system implements control functions 
through software executing in real time on one or more digi- 
tal computers. Because control applications are implemented 
in software there is little restriction on the discharge parame- 
ters that can be controlled and the type of control algorithm 
that can be implemented. The flexibility to make the fre- 
quent control application changes required to support the 
DIII-D experimental program is provided by organizing the 
software so that new control functions can be added easily 
without affecting previously implemented functions. The 
tokamak operator also has flexibility in the specification of 
the time evolution of the tokamak discharge including the 
capability to provide for an asynchronous change to an alter- 
nate discharge time evolution in response to an event that is 

detected in real time. The operator uses an X-windows based 
interface that provides a high level view that reduces the need 
for detailed knowledge of the control system operation. 
Software quality control is enhanced through off-line testing 
that can make use of software-based tokamak simulators. 

MODEL FOR TElE SYSTEM OPERATION 

The task of the plasma control system is to send the com- 
mands to the various tokamak systems, or \.actuators" (e.g. 
magnetic field coil power supplies, gas valves, plasma heat- 
ing sources etc.), that are required to produce the discharge 
desired by the operator. Sometimes this involves simply 
providing to the actuators a predetermined sequence of con- 
trol commands but, more often, this involves performing 
some sort of feedback control. 

Feedback control is implemented by repeatedly executing a 
simple cycle through the entire discharge period. This cycle 
consists of these steps: (i) measurements are made of various 
tokamak diagnostic signals, (ii) the value of some quantity to 
be controlled is calculated from the diagnostic data, (iii) the 
calculated value is compared to a desired value and (iv) the 
required commands to the actuators to correct any difference 
between the actual and desired values are calculated and 
communicated to the actuators. The complexity of the 
calculations that are performed to execute one control cycle 
determines how rapidly the cycle can be executed and the 
frequency bandwidth of the commands sent to the actuators. 

The basic model for the control system software is that the 
device being controlled runs in pulses, with the capability for 
the pulse length to be essentially indefinite. The software 
synchronizes with the start of the tokamak pulse and provides 
the capability for the operator to specify the way in which the 
various control system parameters should evolve as a func- 
tion of time after the pulse begins. One or more computers 
are dedicated to executing the code that performs the control 
functions. During the tokamak pulse, these real time com- 
puters execute without operator intervention. The operator 
specifies, before the pulse, all of the data that is required to 
run the complete pulse. The amount and type of data 
required depend on the sophistication of the control algo- 
rithms. These data are loaded into the memory of the real 
time systems during pre-pulse preparation and are referenced 
by the control algorithms during the pulse. 

HIGHLEVEL OVERVIEW 

The control system is -organized with distinct tasks dis- 
tributed among multiple processes. Fig. 1 shows a block 
diagram of these processes and the communication paths 
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between them, There can be multiple real time computers, 
executing control applications in parallel. Each of the real 
time computers is paired with a process executing on a host 
computer that handles communication with the remainder of 
the system, communicating with the real time computer 
through shared memory. During a discharge, each of the real 
time computers runs a single program, consuming the entire 
computation bandwidth, that implements the feedback cycle. 
Apart from the real time code, the control system processes 
execute on a host computer. Communication between the 
processes is by message passing using the standard Berkeley 
socket mechanism provided by the UNIX operating system. 
Use of this communication method allows the system 
processes to be distributed among multiple computers if 
required. The host computers are not required to perform 
real time functions during the tokamak pulse. 

The “lockout server” provides synchronization with the 
tokamak discharge cycle. This server detects the moment 
prior to a new discharge after which no more changes in the 
discharge specifications can be made and the control system 
begins its preparation for the discharge. The lockout server 
coordinates the activities of the various processes during pre- 
pulse preparation, waits while the discharge executes, and 
coordinates the activities during post-pulse cleanup. 

The waveform server holds the database of specifications for 
the time evolution of the discharge. This database is divided 
into “raw” and “processed” data. The raw data are obtained 
through messages from the user interface and consist of spec- 
ifications in terms and units that are familiar to the operator. 
The processed data are computed by combining the raw data 
from the operator with any necessary additional precomputed 
data loaded from disk files, in a manner specified by the con- 
trol algorithm designer, to produce the data the real time 
computer requires to execute the discharge. This separation 
of the raw and processed data using a computation that can 
be unique to a particular control function allows details of the 
control implementation to be hidden, providing the operator 
with a more friendly interface. 

The functions of the waveform server are split into syn- 
chronous and asynchronous portions. Communication with 
the user interface is asynchronous. Whenever a request for a 
message exchange arrives from a user interface, this request 
is honored immediately. One copy of the raw data is updated 
during each exchange of messages. When an operator wishes 
to examine the current set of specifications for the discharge, 
the waveform server can always respond quickly by consult- 
ing this copy. A separate record of each message is placed 
on a “job queue.“‘ The messages in this queue are processed 
sequentially with any necessary work being done to recom- 
pute processed data that depends on the raw data that was 
altered. Because this computation could be intensive it is 
performed in the background without requiring the operator 
to wait for its completion during each exchange of messages. 

An X-windows application provides the operator with an 
interface to the control system. Using an X-terminal or 
workstation the operator has point-and-click access to all 
functions necessary to specify the discharge parameters. The 
operator is aware only of the “control panel” presented on the 

X-windows display which hides the details of the process 
structure shown in Fig. 1. There can be multiple operators, 
each executing a user interface process and each accessing 
the same database of specifications stored by the waveform 
server. Access to the servers is arbitrated by the socket 
mechanism, with multiple requests for message exchange 
being queued by the operating system. 

The control system provides a generic construct called a 
“waveform” that the operator uses to specify the time evolu- 
tion of a discharge parameter. For instance, the desired total 
plasma current as a function of time would be specified using 
a waveform. Typical control algorithms require the operator 
t o  change relatively few parameters from one discharge to 
another. So, most of the operator’s activity is in modifying a 
few waveforms for each algorithm, each of which communi- 
cates a single value versus time to the control system. A 
given algorithm may require the ability for thk operator to 
modify data structures that do not match the generic usage of 
a waveform. For this purpose, the algorithm designer can 
design data structures unique to the algorithm and provide 
acustom user interface window so that the operator can 
modify this algorithm-specific data. 

ORGANIZATION OF CONTROL APPLICATIONS 

The number of parameters of the tokamak discharge that can 
be under feedback control is large. In addition, the timc 
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evolution of the discharge parameters that is required to 
support an experiment can be quite complex. The operator 
needs a systematic way to choose among the large number of 
options for specifying the discharge parameters, and the 
control application designer and programmer must be able to 
coordinate their control functions with many other control 
applications. Several levels of structure are used to help 
make these jobs organized and manageable. 

The control application designer organizes the controlled 
parameters into “categories,” usually determining the group- 
ings based on the type of actuator used. For instance, for 
DID-D, discharge shape control is one category and the actu- 
ators for this are the power supplies for the poloidal field 
coils. These groupings provide an organization method to 
aid operator understanding of the control system and to use in 
storing control system data. 

The method used to control the discharge parameters in a 
given category is the “algorithm.” The choice of control 
algorithm determines the data required from the operator, the 
data provided to the real time computer and the computations 
performed in real time to perform the control function. For 
each control category the operator selects, from a list of 
available choices, a single algorithm to be in use at any given 
moment during a discharge. 

For each control category, the operator can specify any num- 
ber of “phases” of a discharge. A discharge phase is a seg- 
ment of time during the tokamak pulse during which a speci- 
fied control algorithm is in use and during which the 
discharge parameters controlled by that algorithm should 
evolve with time in a manner specified by the operator. 

The use of the discharge phase is illustrated in Fig. 2. The 
figure shows, as an example, three discharge phases for the 
category that controls the ohmic heating coil power supply. 
In phases #1 and #3 the algorithm chosen controls the power 
supply to produce a particular plasma current as a function 
of time (I,). In phase #2, the algorithm is designed to pro- 
duce a required loop voltage (hoop). The time evolutions of 
Zp and Vloop are programmed separately relative to time zero 
for the appropriate phase. Defining time relative to the start 
of the phase allows the segment of time in a discharge in 
which a given phase is in use to be easily relocatable. A 
phase can continue indefinitely because there is no ending 
point for the definition of the time evolution. 

For each category, the operator specifies a sequence of one or 
more phases to be active during the discharge. For instance, 
if several separate experiments are being conducted during a 
single discharge, the operator might create a phase for each 
experiment. There is a primary sequence of phases that starts 
at a time that is synchronous with the tokamak pulse. In the 
example of Fig. 2, phase #1 is chosen to start at t = 0 s during 
the discharge and phase #2 is selected to start at t = 2 s. One 
or more alternate sequences of discharge phases can also be 
included, any of which could become active asynchronously 
during a discharge in response to some event detected by a 
control algorithm. The operator would program the time evo- 
lution of discharge parameters in an alternate sequence of 
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Fig. 2. Illustration of the use of the discharge phase and 
phase sequence. 

phases to include the proper response to the event that was 
detected. For instance, in Fig. 2 an event was detected at 
t = 4 s that required the discharge to be ended gently. A 
switch is made to the alternate phase sequence in which 
phase #3 uses an algorithm that brings the plasma current 
slowly to zero. 

S O F I W ~  FOR THE REAL TIME COMPUTERS 

The code on the real time computers executes the feedback 
cycle to provide all of the tokamak control functions during a 
discharge. The operator’s choices of control algorithm 
determine the specific functions to be called and the input 
parameters provided for each discharge phase determine 
exactly how the feedback algorithms behave. 

A set of generic data structures on the real time computer 
provides the real time code with input data from the wave- 
form server and a place to store output data. It is also possi- 
ble to make use of data structures that are custom designed 
for a particular algorithm. The generic structures are vectors 
(one dimensional arrays), each element of which specifies a 
single, time varying parameter to the control algorithm or 
holds an output value computed by a control algorithm. The 
data structures on the real time computers can vary in size 
from one discharge to another with memory allocation 
performed for each discharge as required. A single central 



structure contains pointers to locate all other structures. To 
avoid software failures in real time resulting from lack of 
memory, all memory on the computer is allocated during the 
pre-pulse preparation phase. The values in the vectors that 
provide input parameters are fixed during a feedback cycle, 
but can change between cycles to provide the mechanism for 
input parameters that change as a time function. 

The “target” vector is the primary source of input values for 
the real time code that implements a control algorithm. Each 
element of this vector contains either a floating point value or 
an integer value that can vary as a function of time. 
Typically a target vector element is the desired value of a 
feedback controlled parameter or a switch or some other 
parameter used to control how the control algorithm behaves. 
An integer value in the target vector can also be a pointer to 
an algorithm-specific data structure. 

The functions to be executed in real time are specified in a 
flexible manner rather than being fixed at compile time. The 
“function“ vector contains a list of pointers to the functions 
that execute the control algorithms chosen by the operator. 
To execute one feedback cycle, each of the functions in this 
list is called once. If the operator chooses to change the algo- 
rithm as a function of time during the discharge, the content 
of the function vector will change in time. 

In order to provide a way to diagnose the performance of the 
control system software, the input buffer for the measured 
diagnostic values and the output vectors are allocated as 
arrays of vectors. The set of vectors in use during a given 
feedback cycle is fixed, but at the end of each cycle the 
pointers to the vectors in use can be changed to new, as yet 
unused vectors, leaving behind the values written on the pre- 
vious cycle. This produces snapshots of the complete set of 
input and output values, all from a single feedback cycle. 

APPLICATIO~ PROGRAMMING 

The control system can be completely configured for each 
unique installation by writing the appropriate software. The 
control system designer combines object code libraries con- 
taining the installation independent support facilities with 
installation specific code written in the C programming 
language to implement all control application functionality. 
Emphasis is placed on providing as much generic capability 
as possible as part of the support facilities in order to mini- 
mize the work required to implement a control application. 
The installation specific code is used to define the control 
categories, the control algorithms, the real time computer 
configuration and which categories and algorithms execute 
code on each of the real time computers. 

Each custom control system component is defined in a 
“master” file which is created to define each real time 
computer, each control category, and each control algorithm. 
The master file contains several sections of source code, each 
of which is automatically included in one or more of the 
system processes (waveform server, real time host process or 
real time code) when the code is compiled. Adding a new 
computer, category, or algorithm involves modifying only the 
master file for that function without disturbing the files asso- 
ciated with the remainder of the control system code. 

To add a control algorithm to the system, a master file is cre- 
ated that defines the way the algorithm uses elements of the 
real time data vectors, defines the waveforms that appear on 
the user interface for that algorithm, uses library routines to 
specify how the operator-provided raw data is converted to 
the processed data for the real time computer, defines the 
structure of any algorithm-specific data and includes the code 
to be executed in real time to implement the algorithm. 

TESTING USING THE SIMULATION SERVER 

Debugging control algorithm software during operation of 
the tokamak is expensive, risky for the tokamak hardware 
and inefficincy. Therefore, it is desireable to have a way to 
accomplish two primary debugging tasks in an off-Iine mode: 
(a) determining whether the control algorithm code imple- 
ments the algorithm correctly and (b) determining whether 
the control algorithm can properly control the reIevant toka- 
mak parameters. The simulation server is a separate process 
(Fig. 1) that emulates the tokamak systems to provide this 
off-line debugging capability. During each feedback cycle 
the real time computers receive the tokamak diagnostic data 
from the simulation server and return to the server the com- 
puted actuator commands. 

The simulation server is customizable to match the control 
algorithm under test. In the simplest case the server passes 
the data recorded from a previously executed discharge to the 
real time computers so that the algorithm computation results 
can be checked. A more complex server simulates the 
tokamak‘s response to actuator commands to test the 
complete feedback control functionality of the algorithm. 

SUMMARY 

We have described the software structure that provides the 
power and flexibility required for a discharge control system 
to support the rapidly evolving DIU-D tokamak experimental 
program. The separation of the basic software framework 
and the application-specific code allows the rapid implemen- 
tation of new control systems through modification of only 
the application code that impIements the required control 
algorithms. For instance, at DIII-D the same software and 
hardware technology have been used to implement the toka- 
mak discharge control system and a control system for the 
ICRF transmitters. There is limited dependency of the soft- 
ware on the control system’s hardware architecture allowing 
relatively rapid modification to take advantage of future 
advances in computing hardware. Experience gained with 
this system during operation of DIII-D advanced tokamak 
and radiative divertor experiments wilI result in a control sys- 
tem thoroughly tested on a operating tokamak that can be 
adopted directly by future experiments, reducing future 
development time and costs. 

REFERENCES 
[l] J.R. Ferron. Rev. Sci. Insrrum. 63, p. 5464,1992. 
[2] J.R. Ferron and EJ. Strait, Rev. Sci. Instrum. 63, p. 4799,1992. 
[3] J.R. Ferron, A.G. Kellman, E. McKee, T.H. Osbome, P. Petrach. T.S. 
Taylor. J. Wight, in Proc. of the 14th IEEE/NPS Symp. on Fusion 
Engineering, p. 761,1991. 
[4] G.L. Campbell, J.R. Ferron. E. McKee. A. Nerem. T. Smith, E.A. 
Lazarus, C.M. Greenfield. and R.I. Pinsker. in Proc. of the 17th Symp. on 
Fusion Technology, p. 1017,1993. 


