
GA-A22160

A FLEXIBLE
SOFTWARE ARCHITECTURE
FOR TOKAMAK DISCHARGE

CONTROL SYSTEMS

bY
J.R. FERRON, B. PENTAFLOR, M.L. WALKER,

J. MOLLER, and D. BUTNER

GENERAL ATOMICS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the bei$ available original
document.

G A-A22160

A FLEXIBLE
SOFTWARE ARCHITECTURE
FOR TOKAMAK DISCHARGE

CONTROL SYSTEMS

by
J.R. FERRON, B. PENTAFLOR, M.L. WALKER,

J. MOLLER,* and D. BUTNER*

This is a preprint of a paper presented at the 16th
IEEE/NPSS Symposium on Fusion Engineering, Sep-
tember 30-October 5,1995, Champaign, Illinois, and
to be printed in the Proceedings.

Work supported by
U.S. Department of Energy

Contracts DE-AC03-89ER51114
and W-7405-ENG-48

*Lawrence Livermore National Laboratory

GENERAL ATOMICS PROJECT 3466
OCTOBER 1996

GENEHL ATOMfCS

A Flexible Software Architecture for Tokamak Discharge Control Systems*

J.R. Ferron, B. Penaflor, M.L. Walker, J. Moller,aD. Butnera
General Atomics, San Diego, California 92186-9784

aLawrence Livermore National Laboratory

ABSTRACT

The software structure of the plasma control system in use on
the DIII-D tokamak experiment is described. This system
implements control functions through software executing in
real time on one or more digital computers. The software is
organized into a hierarchy that allows new control functions
needed to support the DIII-D experimental program to be
added easily without affecting previously implemented
functions. This also allows the software to be portable in
order to create control systems for other applications. The
tokamak operator uses an X-windows based interface to
specify the time evolution of a tokamak discharge. The
interface provides a high level view for the operator that
reduces the need for detailed knowledge of the control sys-
tem operation. There is provision for an asynchronous
change to an alternate discharge time evolution in response to
an event that is detected in real time. Quality control is
enhanced through off-line testing that can make use of
software-based tokamak simulators.

INTRODUCTION

Active control of discharge parameters is playing an increas-
ingly important role in present-day tokamak experiments and
is expected to be a key design feature in future experiments
such as TPX and ITER. For example, precise control of the
discharge shape and position is required because of the effect
on a wide range of parameters such as impurity influx
through wall contact, coupling of auxiliary heating power,
magnetohydrodynamic stability, confinement, edge localized
mode (ELM) characteristics, and H-mode power threshold.
Radiative divertor designs require precise control of the posi-
tion of the X-point, the divertor strike points and/or the diver-
tor radiation level. Advanced tokamak applications require
control of the current density profile.

This paper describes the software architecture of the dis-
charge control system in use on the Dm-D tokamak experi-
ment [1-41. This system implements control functions
through software executing in real time on one or more digi-
tal computers. Because control applications are implemented
in software there is little restriction on the discharge parame-
ters that can be controlled and the type of control algorithm
that can be implemented. The flexibility to make the fre-
quent control application changes required to support the
DIII-D experimental program is provided by organizing the
software so that new control functions can be added easily
without affecting previously implemented functions. The
tokamak operator also has flexibility in the specification of
the time evolution of the tokamak discharge including the
capability to provide for an asynchronous change to an alter-
nate discharge time evolution in response to an event that is

detected in real time. The operator uses an X-windows based
interface that provides a high level view that reduces the need
for detailed knowledge of the control system operation.
Software quality control is enhanced through off-line testing
that can make use of software-based tokamak simulators.

MODEL FOR TElE SYSTEM OPERATION

The task of the plasma control system is to send the com-
mands to the various tokamak systems, or \.actuators" (e.g.
magnetic field coil power supplies, gas valves, plasma heat-
ing sources etc.), that are required to produce the discharge
desired by the operator. Sometimes this involves simply
providing to the actuators a predetermined sequence of con-
trol commands but, more often, this involves performing
some sort of feedback control.

Feedback control is implemented by repeatedly executing a
simple cycle through the entire discharge period. This cycle
consists of these steps: (i) measurements are made of various
tokamak diagnostic signals, (ii) the value of some quantity to
be controlled is calculated from the diagnostic data, (iii) the
calculated value is compared to a desired value and (iv) the
required commands to the actuators to correct any difference
between the actual and desired values are calculated and
communicated to the actuators. The complexity of the
calculations that are performed to execute one control cycle
determines how rapidly the cycle can be executed and the
frequency bandwidth of the commands sent to the actuators.

The basic model for the control system software is that the
device being controlled runs in pulses, with the capability for
the pulse length to be essentially indefinite. The software
synchronizes with the start of the tokamak pulse and provides
the capability for the operator to specify the way in which the
various control system parameters should evolve as a func-
tion of time after the pulse begins. One or more computers
are dedicated to executing the code that performs the control
functions. During the tokamak pulse, these real time com-
puters execute without operator intervention. The operator
specifies, before the pulse, all of the data that is required to
run the complete pulse. The amount and type of data
required depend on the sophistication of the control algo-
rithms. These data are loaded into the memory of the real
time systems during pre-pulse preparation and are referenced
by the control algorithms during the pulse.

HIGHLEVEL OVERVIEW

The control system is -organized with distinct tasks dis-
tributed among multiple processes. Fig. 1 shows a block
diagram of these processes and the communication paths

*Work supported by the U.S. Department of Energy under Contract Nos. DE-AC03-89ER51114 and W-7405-ENG-48.

between them, There can be multiple real time computers,
executing control applications in parallel. Each of the real
time computers is paired with a process executing on a host
computer that handles communication with the remainder of
the system, communicating with the real time computer
through shared memory. During a discharge, each of the real
time computers runs a single program, consuming the entire
computation bandwidth, that implements the feedback cycle.
Apart from the real time code, the control system processes
execute on a host computer. Communication between the
processes is by message passing using the standard Berkeley
socket mechanism provided by the UNIX operating system.
Use of this communication method allows the system
processes to be distributed among multiple computers if
required. The host computers are not required to perform
real time functions during the tokamak pulse.

The “lockout server” provides synchronization with the
tokamak discharge cycle. This server detects the moment
prior to a new discharge after which no more changes in the
discharge specifications can be made and the control system
begins its preparation for the discharge. The lockout server
coordinates the activities of the various processes during pre-
pulse preparation, waits while the discharge executes, and
coordinates the activities during post-pulse cleanup.

The waveform server holds the database of specifications for
the time evolution of the discharge. This database is divided
into “raw” and “processed” data. The raw data are obtained
through messages from the user interface and consist of spec-
ifications in terms and units that are familiar to the operator.
The processed data are computed by combining the raw data
from the operator with any necessary additional precomputed
data loaded from disk files, in a manner specified by the con-
trol algorithm designer, to produce the data the real time
computer requires to execute the discharge. This separation
of the raw and processed data using a computation that can
be unique to a particular control function allows details of the
control implementation to be hidden, providing the operator
with a more friendly interface.

The functions of the waveform server are split into syn-
chronous and asynchronous portions. Communication with
the user interface is asynchronous. Whenever a request for a
message exchange arrives from a user interface, this request
is honored immediately. One copy of the raw data is updated
during each exchange of messages. When an operator wishes
to examine the current set of specifications for the discharge,
the waveform server can always respond quickly by consult-
ing this copy. A separate record of each message is placed
on a “job queue.“‘ The messages in this queue are processed
sequentially with any necessary work being done to recom-
pute processed data that depends on the raw data that was
altered. Because this computation could be intensive it is
performed in the background without requiring the operator
to wait for its completion during each exchange of messages.

An X-windows application provides the operator with an
interface to the control system. Using an X-terminal or
workstation the operator has point-and-click access to all
functions necessary to specify the discharge parameters. The
operator is aware only of the “control panel” presented on the

X-windows display which hides the details of the process
structure shown in Fig. 1. There can be multiple operators,
each executing a user interface process and each accessing
the same database of specifications stored by the waveform
server. Access to the servers is arbitrated by the socket
mechanism, with multiple requests for message exchange
being queued by the operating system.

The control system provides a generic construct called a
“waveform” that the operator uses to specify the time evolu-
tion of a discharge parameter. For instance, the desired total
plasma current as a function of time would be specified using
a waveform. Typical control algorithms require the operator
t o change relatively few parameters from one discharge to
another. So, most of the operator’s activity is in modifying a
few waveforms for each algorithm, each of which communi-
cates a single value versus time to the control system. A
given algorithm may require the ability for thk operator to
modify data structures that do not match the generic usage of
a waveform. For this purpose, the algorithm designer can
design data structures unique to the algorithm and provide
acustom user interface window so that the operator can
modify this algorithm-specific data.

ORGANIZATION OF CONTROL APPLICATIONS

The number of parameters of the tokamak discharge that can
be under feedback control is large. In addition, the timc

Interface Interface

I
I
I
I
I
I
I I
I
I
I
I Host
I Computers

I

I

I Process Process
I
I I
r -
I

I
I

I I
I I

Fig. 1. Block diagram of the computer processes in the control
system. The arrows represent communication paths.

Waveform
Server

mVME) - - VME 1- - - -I

Real Time - I I I I ,C@L~fP, I I - I I I I

evolution of the discharge parameters that is required to
support an experiment can be quite complex. The operator
needs a systematic way to choose among the large number of
options for specifying the discharge parameters, and the
control application designer and programmer must be able to
coordinate their control functions with many other control
applications. Several levels of structure are used to help
make these jobs organized and manageable.

The control application designer organizes the controlled
parameters into “categories,” usually determining the group-
ings based on the type of actuator used. For instance, for
DID-D, discharge shape control is one category and the actu-
ators for this are the power supplies for the poloidal field
coils. These groupings provide an organization method to
aid operator understanding of the control system and to use in
storing control system data.

The method used to control the discharge parameters in a
given category is the “algorithm.” The choice of control
algorithm determines the data required from the operator, the
data provided to the real time computer and the computations
performed in real time to perform the control function. For
each control category the operator selects, from a list of
available choices, a single algorithm to be in use at any given
moment during a discharge.

For each control category, the operator can specify any num-
ber of “phases” of a discharge. A discharge phase is a seg-
ment of time during the tokamak pulse during which a speci-
fied control algorithm is in use and during which the
discharge parameters controlled by that algorithm should
evolve with time in a manner specified by the operator.

The use of the discharge phase is illustrated in Fig. 2. The
figure shows, as an example, three discharge phases for the
category that controls the ohmic heating coil power supply.
In phases #1 and #3 the algorithm chosen controls the power
supply to produce a particular plasma current as a function
of time (I,). In phase #2, the algorithm is designed to pro-
duce a required loop voltage (hoop). The time evolutions of
Zp and Vloop are programmed separately relative to time zero
for the appropriate phase. Defining time relative to the start
of the phase allows the segment of time in a discharge in
which a given phase is in use to be easily relocatable. A
phase can continue indefinitely because there is no ending
point for the definition of the time evolution.

For each category, the operator specifies a sequence of one or
more phases to be active during the discharge. For instance,
if several separate experiments are being conducted during a
single discharge, the operator might create a phase for each
experiment. There is a primary sequence of phases that starts
at a time that is synchronous with the tokamak pulse. In the
example of Fig. 2, phase #1 is chosen to start at t = 0 s during
the discharge and phase #2 is selected to start at t = 2 s. One
or more alternate sequences of discharge phases can also be
included, any of which could become active asynchronously
during a discharge in response to some event detected by a
control algorithm. The operator would program the time evo-
lution of discharge parameters in an alternate sequence of

. * I“) Phase

Y
Phase1 , Phase2 ,

0 2 4 5
Time (s)

Primary Phase Sequence

Event

1 1 1

.t +
Alternate
Sequen> p

, 1

Fig. 2. Illustration of the use of the discharge phase and
phase sequence.

phases to include the proper response to the event that was
detected. For instance, in Fig. 2 an event was detected at
t = 4 s that required the discharge to be ended gently. A
switch is made to the alternate phase sequence in which
phase #3 uses an algorithm that brings the plasma current
slowly to zero.

S O F I W ~ FOR THE REAL TIME COMPUTERS

The code on the real time computers executes the feedback
cycle to provide all of the tokamak control functions during a
discharge. The operator’s choices of control algorithm
determine the specific functions to be called and the input
parameters provided for each discharge phase determine
exactly how the feedback algorithms behave.

A set of generic data structures on the real time computer
provides the real time code with input data from the wave-
form server and a place to store output data. It is also possi-
ble to make use of data structures that are custom designed
for a particular algorithm. The generic structures are vectors
(one dimensional arrays), each element of which specifies a
single, time varying parameter to the control algorithm or
holds an output value computed by a control algorithm. The
data structures on the real time computers can vary in size
from one discharge to another with memory allocation
performed for each discharge as required. A single central

structure contains pointers to locate all other structures. To
avoid software failures in real time resulting from lack of
memory, all memory on the computer is allocated during the
pre-pulse preparation phase. The values in the vectors that
provide input parameters are fixed during a feedback cycle,
but can change between cycles to provide the mechanism for
input parameters that change as a time function.

The “target” vector is the primary source of input values for
the real time code that implements a control algorithm. Each
element of this vector contains either a floating point value or
an integer value that can vary as a function of time.
Typically a target vector element is the desired value of a
feedback controlled parameter or a switch or some other
parameter used to control how the control algorithm behaves.
An integer value in the target vector can also be a pointer to
an algorithm-specific data structure.

The functions to be executed in real time are specified in a
flexible manner rather than being fixed at compile time. The
“function“ vector contains a list of pointers to the functions
that execute the control algorithms chosen by the operator.
To execute one feedback cycle, each of the functions in this
list is called once. If the operator chooses to change the algo-
rithm as a function of time during the discharge, the content
of the function vector will change in time.

In order to provide a way to diagnose the performance of the
control system software, the input buffer for the measured
diagnostic values and the output vectors are allocated as
arrays of vectors. The set of vectors in use during a given
feedback cycle is fixed, but at the end of each cycle the
pointers to the vectors in use can be changed to new, as yet
unused vectors, leaving behind the values written on the pre-
vious cycle. This produces snapshots of the complete set of
input and output values, all from a single feedback cycle.

APPLICATIO~ PROGRAMMING

The control system can be completely configured for each
unique installation by writing the appropriate software. The
control system designer combines object code libraries con-
taining the installation independent support facilities with
installation specific code written in the C programming
language to implement all control application functionality.
Emphasis is placed on providing as much generic capability
as possible as part of the support facilities in order to mini-
mize the work required to implement a control application.
The installation specific code is used to define the control
categories, the control algorithms, the real time computer
configuration and which categories and algorithms execute
code on each of the real time computers.

Each custom control system component is defined in a
“master” file which is created to define each real time
computer, each control category, and each control algorithm.
The master file contains several sections of source code, each
of which is automatically included in one or more of the
system processes (waveform server, real time host process or
real time code) when the code is compiled. Adding a new
computer, category, or algorithm involves modifying only the
master file for that function without disturbing the files asso-
ciated with the remainder of the control system code.

To add a control algorithm to the system, a master file is cre-
ated that defines the way the algorithm uses elements of the
real time data vectors, defines the waveforms that appear on
the user interface for that algorithm, uses library routines to
specify how the operator-provided raw data is converted to
the processed data for the real time computer, defines the
structure of any algorithm-specific data and includes the code
to be executed in real time to implement the algorithm.

TESTING USING THE SIMULATION SERVER

Debugging control algorithm software during operation of
the tokamak is expensive, risky for the tokamak hardware
and inefficincy. Therefore, it is desireable to have a way to
accomplish two primary debugging tasks in an off-Iine mode:
(a) determining whether the control algorithm code imple-
ments the algorithm correctly and (b) determining whether
the control algorithm can properly control the reIevant toka-
mak parameters. The simulation server is a separate process
(Fig. 1) that emulates the tokamak systems to provide this
off-line debugging capability. During each feedback cycle
the real time computers receive the tokamak diagnostic data
from the simulation server and return to the server the com-
puted actuator commands.

The simulation server is customizable to match the control
algorithm under test. In the simplest case the server passes
the data recorded from a previously executed discharge to the
real time computers so that the algorithm computation results
can be checked. A more complex server simulates the
tokamak‘s response to actuator commands to test the
complete feedback control functionality of the algorithm.

SUMMARY

We have described the software structure that provides the
power and flexibility required for a discharge control system
to support the rapidly evolving DIU-D tokamak experimental
program. The separation of the basic software framework
and the application-specific code allows the rapid implemen-
tation of new control systems through modification of only
the application code that impIements the required control
algorithms. For instance, at DIII-D the same software and
hardware technology have been used to implement the toka-
mak discharge control system and a control system for the
ICRF transmitters. There is limited dependency of the soft-
ware on the control system’s hardware architecture allowing
relatively rapid modification to take advantage of future
advances in computing hardware. Experience gained with
this system during operation of DIII-D advanced tokamak
and radiative divertor experiments wilI result in a control sys-
tem thoroughly tested on a operating tokamak that can be
adopted directly by future experiments, reducing future
development time and costs.

REFERENCES
[l] J.R. Ferron. Rev. Sci. Insrrum. 63, p. 5464,1992.
[2] J.R. Ferron and EJ. Strait, Rev. Sci. Instrum. 63, p. 4799,1992.
[3] J.R. Ferron, A.G. Kellman, E. McKee, T.H. Osbome, P. Petrach. T.S.
Taylor. J. Wight, in Proc. of the 14th IEEE/NPS Symp. on Fusion
Engineering, p. 761,1991.
[4] G.L. Campbell, J.R. Ferron. E. McKee. A. Nerem. T. Smith, E.A.
Lazarus, C.M. Greenfield. and R.I. Pinsker. in Proc. of the 17th Symp. on
Fusion Technology, p. 1017,1993.

