
GA-A22455

REAL TIME SOFTWARE FOR THE CONTROL AND
MONITORING OF DIII-D SYSTEM INTERLOCKS

by
JaDa BROESCH, BaGa PENAFLOR, RaMa COON, JaJa HARRIS,

and JaTa SCOVILLE

This is a preprint of a paper to be presented at the 19th Symposium
on Fusion Technology September 16-20,1996, Lisbon, Portugal and
to be published in The Proceedings.

Work supported by
the U m S a Department of Energy

under Contract NO. DE-AC03-89ER51114

DISTRIBUTION OF THIS DOCbJMM IS UNLIMEB

GA PROJECT 3466
OCTOBER 1996

GENE- ATOMIC5

DISCLAIMER

Portions of this document m y be illegible
in electronic image products. Images are
produced from the best available original
document.

Real Time Software for the Control and Monitoring of DIII-D System Interlocks*

J.D. Broesch, B.G. Penaflor, R.M. Coon, J.J. Harris, J.T. Scoville

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

This paper describes the real time, multi-tasking, multi-user software and communications of the E-Power
Supply System Integrated Controller (EPSSIC) for the DIII-D tokamak. EPSSIC performs the DII-D system
wide goho-go determination for the plasma sequencing. This paper discusses the data module handling, task
work load balancing, and communications requirements. Operational experience with the new EPSSIC and
recent improvements to this system are also described,

1. BACKGROUND

Diverse control and instrumentation require-
ments of tokamaks must include robust, reliable,
easily maintained, and expandable interlock and pro-
tection capability. Such systems must possess effi-
cient and flexible communications capability. These
systems are typically distributed through a variety of
high EMF environments. They must operate in both
cooperative and independent modes.

A variety of subsystems are used to meet these
requirements for DIII-D: Programmable Logic
Controllers (PLCs); high speed embedded
controllers; high performance VME based systems
using both real time and non-real time operating
systems, and main-frame computers.

EPSSIC’s function is to provide shot
sequencing, control of the main power switches, and
to act as a system wide safety interlock. EPSSIC
monitors all key DIII-D sub-systems. If a sub-
system abort is detected, EPSSIC generates a system
abort and safely shuts down power to the tokamak.

The EPSSIC portion of the control system
consists of a Vh4E based multi-processor system
employing both a PLC and a 68030 processor. The
high EMF environments and vibration found in the
E-Power Supply building dictated the use of non-
disk based operating systems. Additional
requirements included the need to communicate with
a variety of network based applications, implement
redundant hardware and software interlocks to
provide a very high degree of reliability, and to be
easily operated remotely by control room personnel .

2. OVERVIEW

Figure 1 shows a high level view of where
EPSSIC fits into the overall DIII-D organization.
One important category of inputs is the analog
voltage commands received from the Plasma
Control System (PCS) [l-31. The PCS commands
plasma position and configuration via these analog
voltage commands. EPSSIC routes these commands
to the appropriate controllers.

Figure 2 shows the details of the EPSSIC block
shown in Fig. 1.

There are three main functional areas of
EPSSIC: Logic Evaluation/Control;
Communications; and hardware interlocking. The
logic evaluation and control functions are principally
handled by the PLC. Communication, which in-
cludes the user interface to the control room, is han-
dled by the CPU. Commands to the high power
switches are generated by the PLC based upon in-
puts from the rest of the DIII-D subsystems. These
commands are validated by the hardware interlock
module before being passed on to the switches.
Should an error in the program occur that would
command the switches to fire at a potentially dan-
gerous point in the cycle or to assume invalid states,
the switches will instead be automatically placed in 3

a safe condition and a system abort is generated.
The real time control software is organized

around two key concepts. The first is an absolute
~~~~~ 

Work supported by U.S. Department of Energy under Contract No. DE-AC03-89ER51114. * 

1 



E-Power Supply Building 

Power E and F Coils 
Electronics on the vessel (Choppers, Switches 

etc.) 

Motor I Generator 

System Wide Status 
Optically Isolated 1 (Pumps, Access Control,Temperature, etc.) 

W EPSSIC I Ehlemet 

I 
I 
I 

ANNEX 1 

I Optically Isolated 
I atemet 

Hub - 
X-Temlnals 

Fig. 1. High level view showing EPSSIC. 

addressed memory module. This module is shared 
by the PLC and the 68030, and is the key 
communications path for inter-processor 
communications. The second is a relative memory 
addressed data module that resides in the 68030 
memory space. This second data module provides 
inter-process communications for the OS-9 based 
real time control, monitoring, and data 
communications tasks running on the 68030. 

The communications implementation is based 
on a standard Berkeley Software Distribution (BSD) 
Sockets interface, with appropriate modifications to 
support the disk-less operation. 

3. SOFTWARE ARCHITECTURE 

During operations, the data in the real time 
module is monitored in the control room and from 
other diagnostics sites. Further, our plan calls for 
both user monitoring of the data via simple telnet 
sessions and for automated monitoring of the real 
time data via the control computer. These considera- 
tions clearly dictated a multi-tasking environment. 

OS-9 possesses the standard IPC resources such 
as signals, pipes, etc. However, it also possesses a 
more powerful resource for real time data exchange: 
the data module. 

Physically, a data module is a contiguous block 
of memory that is allocated by the operating system. 
Logically, it consists of a header, a data area, and a 
cyclical redundancy check (CRC) based checksum. 
In most practical applications the CRC is ignored. 
The header consists of information used by the 
operating system. The data area is user defined. In 
their use data modules are similar to memory 
allocations using malloc. Data modules posses a user 
defined name that is available system wide. Once a 
data module has been created, a pointer to its data 
area can be obtained by making a system call using 
the data module name as a parameter. In effect, this 
area of random access memory (RAM) becomes a 
global memory resource, the pointer to which is 
globally available to all tasks. While the ability to 
pass memory objects is seen in other operating 
systems (for example, the Microsoft Windows 95 
ability to lock a memory object and pass a handle), 
the modular structure of OS-9 makes the use 



Crossover 

Abort, 

System 
Wide Status 

Future Expansion 
EhterneUFiberoptics 

VME Bus 

Power Supply 
Commands From 

the PCS 

r-1 Indicates Maintenance Items 
Indicates Custom Circuitry 

Fig. 2. Conceptual architecture for the updated EPPSIC. 

and management of data modules particularly easy 
to use for real time data interchange. 

The one disadvantage of this approach is due to 
the fact that pointers are used to access memory. No 
mechanism exists to strongly type check the 
variables among the various modules. It is the 
responsibility of the programmer, via the header file, 
to ensure variable coherency. 

Figure 3 shows the high level software 
architecture. Note that daemons (in this paper, a 
daemon is defined as a console-less process) are 
used to perform the data updating between the data 
modules, I/O ports, and the PLC memory-Since this 
data is principally viewed by humans during and 
shortly after a shot, it was determined that a 
relatively long latency in updating the data module 
from the I/O and the PLC memory was acceptable. 
As general rule, 100 ms latency is nearly 
undetectable to a human operator. Therefore, the 
daemons are invoked periodically at a 50 ms rate, 
and the user interface routine is updated at a 50 ms 
rate. The worst case latency is therefore 100 ms and 
is sufficiently fast that it presents no significant 
delay in operator actions. This period is also 
sufficiently long enough that the system is not 
heavily loaded. Daemon execution time is 

3 

approximately 2% of the overall CPU loading. The 
operator interface accounts for approximately 
another 10% of the processor bandwidth. This 
scheduling will be reviewed when the control 
computer interfaces are implemented; it is not 
anticipated, however, that a significant increase in 
the periodic execution rate will be required. 

The actual scheduling of the daemons is 
accomplished by using the signaling capabilities of 
OS-9. Each daemon is set to respond to a signal. The 
system is then programmed to generate the signals 
periodically. At the end of each invocation each 
daemon voluntarily sleeps. 

Due to the efficient inter-process 
communications, a number of users can be 
supported while ensuring a highly responsive user 
interface. The daemons have very little impact on 
the PLC ladder process accessing the YO ports. This 
is important because the low latency allowed 
between inputs and outputs for certain key control 
events. Theoretically, the number of users is only 
limited by the maximum number of processes that 
the OS-9 system can support. In practice, we find 
that 68030 CPU can support three user logins 
executing the user interface routine without 
suffering any noticeable degradation in performance. 

, 



As noted above, approximately 12% of the processor 
bandwidth is used for user interface and daemons. 
Current loading analysis indicates that 
approximately 25% of the available CPU’s cycles 
are being utilized. The other 13% appear to be 
system overhead, TCP/Il?, etc. Empirical testing has 
indicated that with up to approximately 50% 
bandwidth . utilization no deterioration in 
responsiveness is detected by the operators. 

Puts (= 
Systeminputs 0 

4. FUTURE WORK 

Digital vo 

Much of the remaining CPU capacity is targeted 
for implementing a shadow control algorithm. This 
algorithm will monitor the control functions of the 
PLC, and if it detects a failure in the PLC, step in 
and perform a controlled abort sequence. 

An additional design effort is to interface 
EPSSIC with the tokamak control computer via the 
TCP/IP protocol. This will allow the operators in the 
control room to view EPSSIC status from a common 

c== Data PLC 
Ladder Update 3 
Logic /L--J\ Daemon 

PLC 
I 

System Ot 

Real Time 
Data 

Module 

and uniform interface screen on the control 
computer. 

Memory 

5. CONCLUSIONS 

n J I  

The ability to monitor the various system status 
in the E-Power Supply from the control room has 
greatly improved the ability to diagnose system 
problems. This improved capability has meant less 
down time and a higher number of shots per 
operating cycle. 

REFERENCES 

1. G. Campbell, et al., “New DIU-D Tokamak 
Plasma Control System,” Proc. 17th Symp. on 
Fusion Tech., (1992). 

2. J.J. Harris, et al., “A Combined PLC and CPU 
Approach to Multiprocessor Control,” Proc. 
Symp. on Fusion Engineering (1995). 

3. B.G. Penaflor, et al., “A Structured Architecture 
for Advanced Plasma Control Experiments,” 
this conf. 

Logging 
Module Daemon 

Interface 
Routines 

Notes: Thin boxes indicate memory blocks 
Thick boxes indicate processes 
Dashed boxes indicate future additions 

Fig. 3. EPSSIC software architecture. 

4 


