
Idaho
National

Engineering
Laboratory

INEL/EXT-97-00004

February 1997

Automatic TLI Recognition System,
User’s Guide

G. I). Lassahn

L O C K H E E D M A R T I N *

INEL/EXT-97-00004

Automatic TLI Recognition System,
User’s Guide

G. D. Lassahn

HQ PROJECT MANAGER - Michael O’Connell
PROJECT NUMBER - ST474E

Published February 1997

Idaho National Engineering Laboratory
EG&G Idaho, Inc.

.Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy

Office of Arms Control
under DOE Idaho Field Office
Contract DE-AC07-76ID01570

MASTER

l#l WS7RtBUTtON OF THIS DOCUMENT IS UNL1MtTED

, . .

Portions of this document may be illegible
ixi electronic image pmd~e&. Images are
pmduced frpm the best smallable original
dOCUUlcnt

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty? express or implied, or assumes any legal iiabiii-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdased, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

This report describes how to use an automatic target
recognition system (version 14). In separate volumes are a general
description of the ATR system, Automatic TLI Recognition System,
General Description, and a programmer's manual, Automatic TLI
Recognition System, Programmer 's Guide.

ii

CONTENTS

.. ABSTRACT . 11

INTRODUCTION . 1

SOFTWAFECONCEPTS . 2
User-Accessible Variables . 2
Kernels and Excluded Edge Regions . 2
OverlapRows . 3
Image Compatibility . 9

PROGRAMS . 10
Mask Creation Program G . 10
Training Program F . 10
Surveillance Program E . 12
ATRl SCSI Software . 13

PROGRAMUSAGE . 14
Loading and Executing Programs . 14
Mask Creation Program G . 14
Training Program F . 16
Surveillance Program E . 18
ATRl ProgramTSCSI . 19

REFERENCES . 23

APPENDIX A: EXAMPLE 1 : Median Filter Testing . A- 1

APPENDIX B: EXAMPLE 2: Roads and Riverbanks . B-1

APPENDIX C: EXAMPLE 3: Buried Waste Location . C-1

APPENDIX D: EXAMPLE 4: Finding Airplanes . D-1

APPENDIX E: EXAMPLE 5 : Stack Shadows . E-1

APPENDIX F: USER COMMANDS . F-1

iii

Automatic TLI Recognition System,
User’s Guide

INTRODUCTION

This user’s manual is the second of three volumes describing an automatic target
recognition (ATR) system. This volume is intended to provide enough information and
instruction to allow individuals to use the ATR system for their own applications. It is assumed
here that the potential user has the first volume’ of this set, which contains basic descriptions and
some of the figures referred to in the appendices of this volume. The third volume2 is a
programmer’s manual for people who want to change the ATR software, not intended for people
who want to use the ATR system without changing it. The software described here is version
14 of programs E, F, and G, and version 7 of TSCSI.

1

SOFTWARE CONCEPTS

The user must be aware of a few basic concepts and limitations inherent in this ATR
system. These are described here.

User-Accessible Variables

Programs E, F, and G (described later) allow the user to define 32-bit integer and 32-bit
floating point scalar variables and arrays, print their values, and use them as parameters in feature
calculation commands. Some user-accessible variables are pre-defined and their values are
automatically set by certain operations. The pre-defined scalar variables are named $N, $NCOL,
$NROW, $SCENE, $MINI, $MAXI, $MINJ, $MAxT (integers), and $AVG, $SIG, $MAX,
$MIN, $A, $B, $AVGX, $AVGY, $SIGX, $SIGY, and $COXY (floating). The program DOES
distinguish between upper and lower case characters in variable names. The program sets
$SCENE equal to the current scene number, the first scene being number 1. $SCENE is 0 if the
program mode does not analyze individual scenes. The other pre-defined variables are set by the
program as specified in the individual command descriptions. The arithmetic operations defined
for these variables allow mixing of integer and floating types.

Kernels and Excluded Edge Regions

A common image analysis operation is convolution of the image with a small "kernel" or
"operator". A kernel is like a small image, in that it is a two-dimensional array of values, or
pixels. This convolution operation is defined by D,,, = Sm+i,n+j Kj, where D,,, is the row m,
column n pixel in the destination image, S,, is the m,n pixel in the source image, Kj is the i,j
pixel in the kernel, and the surn is over all values of i and j for which Kj is defined. (This is
not strictly a convolution calculation, which would require subtracting instead of adding to get
the indices of S.) Intuitively, this can be thought of as positioning the kernel so that its i=O,j=O
pixel coincides with the m,n pixel of S , summing the products of the S and K pixel values for
all the pixels in K, and assigning this sum value to the m,n pixel in D. Usually, the i=O,j=O pixel
is in the center of the kernel, but this is not always the case. In fact, the i=O,j=O pixel may not
even be part of the kernel. The kernel could be defined, for example, for -3&2 and lSjj14, so
that i=O,j=O is not part of the kernel's domain and there would be no i=O,j=O term in the sum.

This definition of convolution is not valid for edge pixels of the destination image D, for
values of m,n such that Sm+i,,+j is not defined for some of the i j values for which is defined.
We refer to these edge pixels of D, for which the kernel K would extend past the edge of the
source image S , as exchded edge pixels. These pixel values are not defined by the convolution
operation. For the example kernel domain just mentioned, the excluded edge region would
comprise the leftmost 3 columns of pixels (for i,,=-3 which is less than 0), the rightmost 2
columns (for L = 2 which is greater than 0), and the bottom 4 rows (for j-=4 which is greater
than 0; j is positive downward); no rows would be excluded at the top, because j ~ , = l is not less
than 0 so no part of the kernel will ever extend past the top of the source image. This concept
of excluded edge pixels is not limited to convolution calculations, of course. It is equally
applicable to any operation involving a kernel or a similarly-defined local region that must be
contained entirely within the source image to produce a well-defined result for the destination
image. Examples of operations in this ATR system which result in excluded edge regions are
convolution (CONVOLVE), median filtering (MEDlX, MED1 Y, MEDIAN), local sum of squares

2

(SSQ), quadratic polynomial fitting (QUADXY and QUADUV), and gradient calculations
(GRADT, XGRAD, YGRAD). Perhaps contrary to one's expectation, NTRPOO, NTRPO1 do not
produce excluded edge regions; these operations do not require that there be a source image pixel
for every kernel pixel.

Often, when an operation like convolution forms an image with undefined pixel values
at the edges, we would like to exclude those edge pixels from later operations. Some operations,
such as SCALE, allow the user to exclude these edge pixels by telling the operation which kernel
produced, or would have produced, the undefined edge region. Kernel 0 is always defined to
have a one-pixel domain, with imi,,=im=jmi,,=jmm=O, so that specifying kernel 0 in this context
implies that no pixels are excluded. It is permissible to define a kernel of the desired size solely
for the purpose of specifying an excluded edge region, without ever using the kernel for any other
purpose.

Overlap Rows

Parallel computing is accomplished in this system by dividing each image among several
nodes. Each node is a computer which has its own memory and can do computations on the data
in its own memory. In the simplest cases, the images could be distributed among the nodes in
any manner, as long as all the images are distributed in the same way. One approach is to treat
each row of pixels as one unit, and assign different rows to different nodes. This approach is
illustrated in the Table 1 example, for which each image comprises 19 rows (with some
unspecified number of columns) of pixels which are distributed among 5 slave nodes. This
simple approach serves very well for calculations such as adding two images, in which the
calculations for one pixel do not involve any neighboring pixel's values. However, for some
calculations, such as smoothing, convolution, and median filtering, the result for one pixel
requires input of values of neighboring pixels. For some of the pixels, the required neighboring
pixels will be in different nodes. This problem could be handled by having the nodes request the
necessary pixel values from other nodes as required. Or, as is done here, we could have each
node store the necessary neighboring pixel values in its own memory along with its "own" pixel
values. In this system, each node may store extra rows of pixels, which we call overlap rows,
in addition to its own "primary" rows. The values in these overlap rows do need to be updated
sometimes, by requesting current values from the node in which these rows are the primary rows.
However, this updating of overlap row values does not need to be done very frequently, and it
is more eficient to exchange a previously specified block of data (all the overlap rows) in one
operation than to exchange each neighboring pixel value as required in a separate operation.
Tables 2 and 3 illustrate how an image is distributed among several nodes with 1 and 2 overlap
rows respectively. In the Table 2 example, before doing an operation that required nearest
neighbor pixel values, node 2 should request the current values of the row 4 pixels from node
1 and the row 9 pixel values from node 3. The user causes this exchange of overlap row values
with the OVERLAP command.

Table 1: Normal Distribution of 19 Image Rows
among 5 Nodes with 0 Overlap Rows

NODE = 1 2 3 4

IMAGE
ROW:
0 X
1 X
2 X
3 X
4 X
5 X
6 X
7 X
8
9
10
I 1
12
13
14
15
16
17
18

X
X
X
X

5

X
X
X

An "x" in a row of this table indicates that the corresponding image row is in the node
whose number is above the x. Thus, image rows 0 through 3 are in node 1; rows 4 through 7
are in node 2; etc. The different nodes may have different numbers of image rows.

4

Table 2: Normal Distribution of 19 Image Rows
among 5 Nodes with 1 Overlap Row

NODE = 1 2 3 4

IMAGE
ROW
0 X
1 X
2 X
3 X
4 X
5 0
6
7
8
9
10
11
12
13
14
15
16
17
18

5

An "0" in the table indicates that the node has space for, and sometimes actually holds
data for, that image row which is referred to as an overlap row. Thus, node 1 has space for
image rows 0 through 5; it always holds the current values for rows 0 through 4, and it may or
may not hold the current values for row 5, the overlap row. In node 2, row 4 and row 9 are
overlap rows.

5

Table 3: Normal Distribution of 19 Image Rows
among 5 Nodes with 2 Overlap Rows

NODE = 1 2 3 4 5

IMAGE
ROW:

0 x rlo, slo
1 X
2 X
3 X o rlo
4 x shi 0
5 0 x SI0
6 o rhi X o rlo
7 x shi 0
8 0 x SI0
9 o rhi X

I O x shi
11 0
12 o rhi
13
14
15
16
17
18 nrow-I

o rlo
0
x SI0
X o rlo
x shi 0
0 x SI0
o rhi X

X
X
x shi, rhi

The slave node receives all primary and overlap rows, rows rlo through rhi, &om the
master when an image is loaded into memory. The slave node sends only its primary rows, rows
slo through shi, when an image is copied from memory to a disk file. nrow is the number of
rows in the whole image, 19 in this example.

6

Table 4: Alternate Distribution of 19 Image Rows
among 5 Nodes with 0 Overlap Rows

NODE = 1 2 3 4 5

IMAGE
ROW:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

X
X
X

X
X
X

X
X
X

The distributions of Tables 1,2, and 3 would be produced by the normal image definition
command DEFIMG, which tries to make the total (primary + overlap) number of rows the same
in all the nodes. This Table 4 distribution would not be produced by defimg, but could be
produced by the image definition copy command COPDEF with the Table 3 distribution in the
source image and with 0 overlap rows specified.

7

Table 5: Alternate Distribution of 19 Image Rows
among 5 Nodes with 2 Overlap Rows

NODE = 1

IMAGE
ROW:

0
1
2
3
4
5
6
7
8
9
10
I 1
12
13
14
15
16
17
18

2 3 4 5

This alternative to the Table 3 distribution optimizes calculation efficiency at the expense
of storage space efficiency. This configuration would not occur via a simple image definition
command in this system, but it could be created by an image definition copy command
(COPDEF) by starting with the Table 1 distribution and specifling an image definition copy with
2 overlap rows in the destination. Calculations with this distribution would typically take 4/5 as
long as the same calculations on the Table 3 distribution, because this Table 5 distribution has
a maximum of 4 primary rows in a node while the Table 3 distribution has a maximum of 5.
This distribution in effect occupies 8/7 as much memory as the Table 3 distribution.

8

Operations such as CONVOLVE require that the appropriate overlap rows be present and
that the pixels in these overlap rows are set to the correct current values. The number of overlap
rows must be enough to accommodate the kernel being used, so that the kernel never extends
beyond the overlap rows of any node when the i=O,j=O pixel of the kernel is in a primary row.
That is, the number of overlap rows should be at least as large as the larger of j,, or -jmh for the
kernel being used. The presence of overlap rows can be accomplished by specifying an
appropriate value for the number of overlap rows (usually called novl) when defining an image
using commands like DEFIMG and RESAMPLE. Ensuring that the overlap rows have the
correct values requires a little more care. Most operations (ADD, CONVOLVE, RESAMPLE,
and many others) do not set the values of the overlap rows. That is, when we add two images,
for example, the overlap rows of the destination image will not be set to the current, correct
values. The overlap row values are set only by the operations READIMAGE, READSCENE,
ZEROIMAGE, INSERT, EXTRACT, and OVERLAP. The user must be sure that one of these
six operations (normally OVERLAP) is done on each image requiring overlap rows, before the
operation that requires the overlap rows and after any previous operation that changes primary
rows without changing overlap rows.

Image Compatibility

For two images to be compatible for most image operations, such as adding two images
or smoothing an image, the two images must be the same size, having the same number of rows
and the same number of columns, and their primary rows (not their overlap rows) must be
distributed in the same way among the several nodes. The two images represented in Tables 1
and 5 are compatible, and the two in Tables 3 and 4 are compatible; all other image pairs from
Tables 1 through 5 are incompatible. We cannot add images 1 and 2, nor can we use image 2
as a destination for an addition operation that uses image 1 as one of the sources. In this system,
the user does not have much detailed control over how an image is distributed among the nodes.
However, the user can be sure that a new image that he defines is compatible with an already-
defined image by copying that image definition using the COPDEF command. In this copying
process, the number of overlap rows may be different (at the user’s discretion) without affecting
compatibility. Image 4 could be formed by copying the definition of image 3, or vice versa.
Generally, any two images that are the same size and were defined by the same command with
the same number of overlap rows and the same source image (if there is a source image), are
compatible for two-image operations.

9

PROGRAMS

Mask Creation Program G

Program G is used to create the 3-level mask used by the training process for each
training scene. A person who can select examples of targets and background regions uses
program G to load a scene image from each scene, mark examples of target or background or
both on each scene image, and save the resulting mask image for use by program F.

Training Program F

The training processes is implemented in program F. The training program F inputs the
training scene images and masks, calculates feature images according to an operator-supplied list
of instructions in the feature calculation (.fc) file, and finds the optimum values of coefficients
to be used with these features in the surveillance program E. There are three main parts of the
program F: feature calculation, sum calculation, and coefficient calculation.

Feature Calculation
Feature calculation typically starts with a single scene image and calculates several feature

images. This may involve arithmetic or logical operations on a pixel-by-pixel basis; convolution
in two dimensions with a template that is typically much smaller than the scene image;
morphological operations; local order sorting operations, such as are done in a median filter; local
co-occurrence matrix calculation; and others, limited only by the imagination of the operator.
Of course, a given computer program can implement only a finite number of operations. The
operations currently in this F program are listed in Appendix F.

The final step in the calculation of a single feature is writing the feature image to a disk
file. Of course, it would be much faster to store all the feature images in memory. However,
image storage requires a lot of memory, and this in-memory storage approach would require that
the number of features be limited according to the amount of memory available. To make the
program as general as possible and avoid unnecessary restrictions on the number of features, this
approach of writing the feature images to disk was adopted. Feature images are not written
automatically; the user must write each feature image, preferably with the WRITEFEAT
command. In some cases, it is not necessary to write a feature image to a disk. If the desired
feature image already exists in a disk file, the user can simply enter the name of that file into the
F program’s internal list of feature image files, using the FEATFIL command. If a feature is the
product of two previously defined features, the product feature image does not need to exist as
a disk file, and the user can simply enter a product code into the F program’s internal list of
feature image files, using the FEAT * command.

Because of the format in which the feature images are written, each feature image pixel
value must be between 0 and 255. This imposes a restriction, that the feature images must be
non-negative. The other restriction, requiring values less than 255, is easily handled by simply
using a SCALE command immediately before writing each feature image to disk. This scales
the image to the acceptable range and includes the scale factor in the disk file, so that when the
feature image is later read from the disk file it is automatically rescaled to the original values.

Along with the real feature images for each training scene, there must be a mask. This
mask must contain the Same information that is in the mask output by the mask creation program
G, and it must be of the same size as the feature images. If the feature images are the same size

10

as the scene images, the same file output by the mask creation program G will serve as the mask
for these feature images, and the FEATFIL command is useful for telling the F program to use
that file as the feature image mask. On the other hand, if the feature images are not the same
size as the scene images, a new mask of the correct size must be created for the feature images.
This can normally be done very easily by simply resampling the scene mask that was output by
the mask creation program G, using RESAMPLE or UNDERSAMPLE, and writing the resampled
image using WRITEFEAT. The mask for the feature images must always be the first feature
image (number 0), whether it is written using WRITEFEAT or referenced using FEATFIL. The
mask should not be scaled (using SCALE) before it is written.

Sums Calculation
This ATR training process in the F program assumes (with some justification) that the

distributions of result image pixel values are approximately Gaussian, both for the target pixels
and for the background pixels. One result of this is that the error minimization process requires
sums of pixel values from every product of two feature images. It would be more convenient
to calculate these products and sums if all the feature images could be in memory at one time,
but this would limit the number of features depending on memory availability. The approach
used here is to read one row of pixels from every feature image into memory, and calculate the
products and accumulate the sums from that row before replacing it with the next row from all
feature images. This means that the program must repeatedly access a series of disk files, which
is somewhat time consuming, but this seems to be the best alternative.

Program F automatically accumulates the sums after calculating and writing the feature
images for each scene. (F also zeroes the sums before the first scene.) After the sums are
accumulated, the feature images are no longer needed. One result of this is that successive
training scenes can all use the same names for feature image disk files without conflict, unless
the user for his own reasons wants to preserve all the feature images for the several training
scenes. The sums are all that is required to complete the training procedure. In addition to being
used in the last part of the F program, the sums are written to a disk file to save the effort of re-
accumulating them if they are needed in later runs of F.

Coefficient Calculation
After the sums are calculated for a given set of training data, program F calculates the

optimum values of the coefficients for the full set of features and for certain feature subsets. It
will often happen that a substantially smaller subset will give error rates that are essentially the
same as the error rate for the full original feature set. It is important to know this, because
efficiency of the surveillance process (the analysis of images in the field) is greater for smaller
feature sets. Therefore, the F program is arranged to look for the best feature subsets. For each
case, F calculates the optimal coefficient value for each included feature, and F also calculates
the importance of keeping each feature included in that case. Then, a new case is formed by
deleting the least important feature from the old set. The results for each case are written to the
F output file. This process of forming successively smaller subsets by deleting one feature at a
time does, in effect, yield a graph of total error rate versus number of features, like the example
in Figure 1. The user can then see how many features he must include in the surveillance process
to attain the desired error rate, and he can judge the trade-off between increased error rate and
increased number of features.

11

w 0.3 I I 1 I I I I I

+ - +
+

E W 0.2 1

i n
c3
W
I-
I

3
g 0.1
W

-I a c

+ +
++++++ ' .

I 1 I I I I I

10 20 30 40
P 0.0 I

0
NUMBER OF FEATURES

Figure 1: Example of total (weighted sum) error rate versus
number of features. The optimization calculation tried several
times, with slightly different resulting error rates, for some numbers
of features; this is apparent from the double points plotted for 36
and 37 features.

For each case, the optimum coefficient values are determined by minimizing the total error
rate. Program F does this minimization by using a linear approximation of the non-linear
equations. This is an iterative, successive approximation procedure, and it requires a first guess
for the coefficient values. A first guess can be obtained from a simple linear least squares fitting
process; or, in the F program, a first guess can sometimes be obtained from the results of a
previously calculated case which includes most of the same features as the present case. As is
usually the case in this type of calculation, it is possible that the process will not find the desired
absolute minimum in the error rate, but will converge to a substantially different relative
minimum point. Sometimes this is evidenced by a smaller subset of included features giving a
smaller error rate than a larger, previously calculated feature set. When this occurs, program F
uses the coefficient values from the smaller subset, smaller error rate case as a first guess and
restarts with the full original set of features included. This procedure sometimes leads to the
discovery of optimal points with error rate minima that are substantially smaller than those
associated with the first-indicated optimal point for a given number of featues.

12

Surveillance Program E

The surveillance program E is used in the field to analyze a set of scene images (no mask)
and report on whether there is a target present in the scene. Program E inputs scene images and
normally creates a result image. Program E does not need to be used in the trainable mode; it
can be used as a general purpose, script-driven image manipulation program.

For the trainable mode, the feature calculation file for program E must have built into it
the values of the coefficients determined by a previous run of the training program F. The
program E feature calculation file must specify calculation of the required feature images as they
were calculated for the F program, and it must multiply each of these feature images by the
appropriate coefficient from the F program output. All of these feature images must then be
added to produce a result image. Usually, the constant feature image, f=O, must also be added
to the result image. This is done by adding to the result image a constant, equal to the feature
number 0 coefficient from the F program output. If the value of any pixel in the result image
is greater than the Q value supplied by the training program F, that pixel is interpreted as an
indication of the presence of a target. The result image can be written to a disk file with the Q
value embedded in the file so that the image can be displayed later with obvious indications of
any targets that may be present. For output and display purposes, the result image should be
clipped, so that there are no values greater than 255 or less than 0.

ATRl SCSI Software

The ATRl system has a SCSI bus that is interfaced directly to the transputer network, not
to the host computer. One result of this is that the SCSI devices (disk drive and tape drive) are
not controlled by the host DOS operating system. Separate file handling software is used for the
SCSI devices. The SCSI disk may be used by programs E and F and G very much as if it were
a DOS disk with the device name SCSIDISK: (instead of a usual DOS disk name like A: or C:).

A separate program, TSCSI, was written to allow more specific access to the SCSI
devices. This program allows such operations as copying files to and from the SCSI devices,
reading the disk directory, deleting files, extracting TAR files, and certain diagnostic operations.

13

For ATRl and ATR

PROGRAM USAGE

Loading and Executing Programs

program E is loaded and executed in a s,igle step by typing "run
E", with the obvious analogs for programs F, G, and TSCSI. For ATR3, the program must be
loaded with a script such as "load4e" and then executed by typing the name of the MASTER
program on the host, such as "em", for program E for example. The ATR3 program can be
executed repeatedly after one load operation, as long as there are no error conditions that cause
loss of synchronization of message transmission among the nodes.

Mask Creation Program G

Program G accepts two types of keyboard input: word commands, with parameters, while
not in the image display mode; and, single-key-stroke commands, while in the image display
mode. The word commands include most of those listed in Appendix F, as well as a few special
commands listed here.

Word Commands

DEFIMG ncol nrow
This tells the program the size of the images you will be using. ncol is the number of

columns, the width of the image in pixels, and mow is the number of rows, the height of the
image in pixels. This command should usually be used before any other command, and this
command must be used again if you change from working with one size to a different size of
image. To use this command, type "defimg", followed by a space, followed by the numerical
value of mol, followed by a space, followed by the numerical value of nrow, followed by the
Enter or Carriage Return key. The word "defimg" may be in upper case or lower case.

INS fdename row0 col0 ncols header bpp
This tells the program to get a scene image from a disk file. This command uses the same

subroutine as the READIMAGE comrnand of the E and F programs, but the parameters are
(obviously) listed in different orders for the INS command and the READIMAGE command.
For the INS command, if the last 5 or fewer parameters are missing from the command line, the
values used in the previous INS command are used again here. Therefore, if you are working
with a series of images of the same format, you can give values for the parameters row0, col0,
ncols, header, and bpp for the first image input and not bother repeating these parameter values
on later image input commands. If "." is given instead of a file name, the previous input file
name is used again. If "+'' is given instead of a file name, the previous input file name is
incremented and then used here. After the scene image is input, the program automatically enters
the image display mode.

INM filename row0 col0 ncols header bpp

command are like those of the INS command.
This tells the program to get a mask image. The parameters and operation of this INM

14

MARK

background (region 1) and unspecified (region 0, default) regions on the scene image.

OUTS filename

"." and "+" codes can be used to repeat the previous scene image output file name.

OUTM filename

"+I' codes can be used to repeat the previous mask output file name.

CLR

This initiates the image display mode that allows marking target (region 2) and

This copies the scene image fiom memory to the disk file filename, with a header. The

This copies the mask from memory to the disk file filename, with a header. The "." and

This destroys any stored image definition information.

STOP
This stops execution of the mask creation program G.

Single-Key-Stroke Commands

cursor keys
The cursor keys are used either with or without the shift key to move the cursor in steps

of 25 pixels or 1 pixel, in the obvious manner. The numeric keypad cursor keys should be used.

9 (comma)
The comma is a command to either start drawing a polygon at the cursor location or, if

a polygon is already started, to continue the polygon with a line from the last-specified vertex
to the cursor location.

. (period)
The period is a command to complete the polygon by drawing a line fiom the last-

specified vertex to the first-specified vertex. This command does not move the cursor. You will
then be asked to designate the type of region inside the polygon, 2 or 1 or 0. If you hit any other
key, the mask will not be changed.

- (minus or dash)
The present polygon, which may be only partly complete, will be discarded.

; (semicolon)

the ashes of a discarded polygon.
The image and any existing polygon will be re-drawn. This may be desirable to remove

! (exclamation point)
This is a command to leave the image display mode; it should be used when you have

marked all the regions you want marked. The program will query you for a name for a mask
output file; you may enter "nul" if you do not want the mask written to a disk file. The file
name codes "." and "+" may be used here. This file output function is the same as that

15

accomplished with the "OUTM" command.

Training Program F

This training program F is controlled by a set of user-created ASCII files that contain
instructions and data for the training processes. These files are described in the following
paragraphs. The file name extensions used in these discussions are not required; they are used
here to help clarify the descriptions.

Command File (extension .e&)

command file must contain the following information:
When program F executes, it asks the operator for the name of a command file. The

line 1: an integer to set the operating mode. This value is not used in F, but it must be

line 2: the name of a scene list file (.SI) (input).
line 3: the name of a feature calculation file (.fc) (input).
line 4: the name of a sums file (.sum) (output).
line 5 : the name of a result file (.out) (output).
line 6: W,, the relative weight for type 1 errors, a value between 0.0 and 1.0.

present in this file.

If an input file is not needed, or if an output file is not desired, the dummy file name "NUL" may
be used on the appropriate line in this command file. F always requires a real scene list file (.SI).
A feature calculation file (.fc) is not always needed, as indicated later. The operator always has
the option of suppressing the generation of output files (.sum or .out) by using "NUL" as the file
name.

Scene List File (.sQ
The program F gets the name of this scene list file fiom line 2 of the command (.cmd)

file. In the most obvious mode of operation, this scene list file gives the number of training
scenes, the number of images per scene, and the names of files containing the masks and images:

number of scenes, an integer greater than 0.
number of images per scene (not including mask).

line 1:
line 2:
following lines, one set per scene:

line a:
line b:
following lines:

file name for the mask for this scene.
file name for the first image for this scene.

file names for other images for this scene.
A feature command file (.fc) is required in this mode of operation.

In the second mode of operation, program F reads feature images rather than scene
images, and a feature command file (.fc) is not required. This mode is indicated by representing
the number of scenes by a negative number in this scene list file (.SI):

line 1:
line 2:
following lines, one set per scene:

negative of the number of scenes, integer less than 0.
number of feature images per scene.

line a:
line b:
following lines:

file name for feature mask for this scene.
file name for first feature image for this scene.

In the third mode of operation, program F does not use any images. Instead, F simply
reads the sums that were calculated in a previous run of F. This mode is indicated by a value

file names for other feature images for this scene.

16

of 0 for the number of scenes in this scene list file (.sl):
line 1:
line 2:

following lines: values of sums.

the integer value 0.
the number of features (not including the feature mask or the unit feature
in which all pixels have the value 1).

The sums output file (.sum) created by earlier runs of F can be used as the scene list input file
(.sl) for this mode; it contains the correct information in the correct format. In this mode, a
feature calculation file (.fc) is not required.

Feature Calculation File (. fc)
Program F gets the name of this feature calculation file from line 3 of the command

(.cmd) file. This feature calculation file contains a list of instructions which cause the generation
of feature images from scene images. Each instruction in this feature calculation file comprises
one line containing a key word command which indicates the operation to be done, followed by
values for whatever parameters the command requires, in free format. Appendix F lists the
currently available commands. A remark can be added to the line, after all the parameter values
are given. Such a remark must start with a semicolon ";". A remark can also appear on a line
by itself, starting with either a semicolon or with the command " E M .

Program F executes this sequence of instructions from this feature calculation file once
for each scene, if the number of scenes given on line 1 of the scene list file (.SI) is greater than
0; otherwise, this feature calculation file is not used, and the dummy file name "NUL" may be
used on line 3 of the command file (.cmd).

Sums File (.sum)
Program F generates a s w s file (.sum) with the file name specified on line 4 of the

command file (.cmd). The sums file is a set of numeric data that summarizes all the relevant
information from the feature images and is used to calculate the optimal values of the coefficients
to be used in the surveillance program E. The sums file would not normally be used except for
one purpose: to execute F with the same set of features used in the F run that generated the sums
file but with a different value for the error weight W, or with some variant of the F program.
In such a repeated F run situation, it is much faster to simply read the sums file than to read all
the scene images, calculate the feature images, and calculate the sums. As mentioned previously,
the output sums file (.sum) from one run of program F can be used as the input scene list file
(.sl) in later runs of F. The operator can suppress the generation of the sums file (.sum) by using
"NUL" as the name of the sums file in line 4 of the command file (.cmd).

Result File (.out)
The essential results of program F are written to a result file. The data that is written for

each set of features is: the number of features, the error rates (type 1, type 2, and weighted sum),
the value of the coefficient Q, the values of the coefficients C , and the importance for each
feature in the set. The values of the coefficients are used by program E. The weighted sum error
is a simple estimate of this case's uncertainty in target identification. It is an estimate of the
fraction of training scene pixels that were incorrectly classified by program F during the training
process. This result file normally includes results for several cases with different numbers of
features. It may include several cases with the same number of features but with the included
features being different in the different cases. It may even include two or more cases with
exactly the same features but with different results, which different results may obtain from

17

different first guesses at the coefficient values in calculating each case. (It is possible that the
program may find different local minima instead of the desired absolute minimum in its search
for the minimum error conditions for each case.) The operator must peruse the result file and
decide which, if any, of the cases represented are best or acceptable for use with the E program.
The operator can suppress the generation of the result file (.out) by using "NUL" as the name
of the result file in line 5 of the command file (.cmd).

Surveillance Program E

Program E uses ASCII files similar to those used by F:

Command File (.cmd)

command file must contain the following information:
When program E executes, it asks the operator for the name of a command file. The

line 1: an integer to set the operating mode. This value is not used in E, but it
must be present in this file.

line 2: the name of a scene list file (.sl) (input).
line 3: the name of a feature calculation file (.fc) (input).
line 4: the name of an output file (.out) (output). Use "NUL" for this version of

E.
E always requires both a scene list file (A) and a feature calculation file (.fc). The current
version of the software does not write to the output file (.out); "NUL" should be given in line
4 of this command file (.cmd).

Scene List File (.sz)
The program E gets the name of this scene list file from line 2 of the command (.cmd)

file. This scene list file gives the number of scenes to be analyzed, the number of images per
scene, and the names of files containing the images:

line 1:
line 2:
following lines, one set per scene:

number of scenes, an integer greater than 0.
number of images per scene.

line a:
line b:
following lines:

file name for result image to be output for this scene.
file name for the first image for this scene.

file names for other images for this scene.

Feature Calculation File (. fc)
Program E always requires a feature calculation file, the name of which is specified in line

3 of the command file (.cmd). The feature calculation files for E are similar to those used for
F, although the details of the content will be a little different. The E feature calculation file must
contain instructions to read the scene images, calculate the required feature images, use the
coefficients obtained from program F to multiply the feature images, add the feature images to
create a result image, and display or write the result image. This feature calculation file is used
once for each scene analyzed by E.

18

ATRl Program TSCSI

The program TSCSI allows manipulation of the disk drive and the tape drive on the SCSI
bus, which cannot be accessed via the host computer's DOS file handling system. This program
is executed by typing "run TSCSI". It accepts commands from the keyboard. These commands
can be typed in upper case or lower case. In the following descriptions, the parameter id is the
SCSI device identification number, which in this system is 1 for the disk drive or 2 for the tape
drive. If the SCSI system detects an error condition, an error message appears on the host
computer monitor. The commands are as follows:

COPY srcfile dstfile
This is a general copy command, copying from file srcfile to file dstfie. Both file names

must include a SCSI device name: SCSIDISK:, SCSITAPE:, or SCSIHOST:. To copy from a
SCSI disk file to a host file on disk drive C, for example, the command is of the form

COPY SCSIDISK:\spath\sfile.ext SCSIHOST:C:\cpath\cfile.ext
or perhaps

COPY SCSIDISK:sfile.ext SCSIHOST:cfile.ext
if the files are in the current directories. The SCSI host device name SCSIHOST: must
immediately precede the normal DOS device&path&file&extension string for host files. This
COPY command cannot be used to copy from a host file to a host file.

TART TARfile
TART prints on the user's console monitor a directory of the files in a TAR. TARfile

is the name of the file containing the TAR, which name must include the SCSI device name.
TARfile cannot reside on the host.

TARX T m i l e listfile
TARX extracts files from the TAR in the file TARfile. TARfiie and listfile should both

include the name of the SCSI device. Either TARfUe or listfile, but not both, may be on the
host. The file listfile contains a list of pairs of file names, tarname-space-dstname, one pair on
each line. The first of each pair, tarname, is the name of a file in the TAR, and the second of
each pair, dstname, is the name of the destination file to which the TAR file should be extracted.
The destination file names should include a SCSI device name. No destination file can be on the
host. The program scans through TARfiie in the forward direction only, never backing up, until
it finds the next TAR file in the list, which it then extracts to the indicated destination file. If
"+" is given as the name of a TAR file, the next TAR file encountered is used. If * I' is given
as the name of a TAR file, all the remaining TAR files are extracted to destination files with the
same names as the TAR files; in this case, the destination file name should also be * I) , preceded
by the SCSI device name (for example, "SCSIDISK: * "). The list in listfile should be terminated
with a blank line. listfiie can be "SCSIHOST:", in which case tarname-dstname pairs are typed
in to the keyboard.

COPT2D filename
Copy one file from the SCSI tape drive to SCSI disk file filename. The program will

ask for the number of records and the record length. The tape should be positioned at the
beginning of the source file before this command is issued. filename should NOT include the
device name SCSIDISK:.

19

COPD2H SCSIdiskfile hostfile

SCSIdiskfile and hostfile should NOT include SCSI device names.
Copy file SCSIdiskfile from the SCSI disk to the host file hostfile. The file names

COPH2D hostfile SCSIdiskfile

SCSIdiskfile and hostfile should NOT include SCSI device names.
Copy the host file hostfiie to the SCSI disk file SCSIdiskfiIe. The file names

DIR [fdename]
This command displays a SCSI disk directory. The filename parameter is optional. If

filename is absent, the current directory is displayed. If filename is present and comprises only
a path (no base file name), the directory specified in that path is displayed. Wild characters are
not allowed in paths. If filename includes a file name, in addition to or instead of a path, only
those directory entries with names that match fdename are displayed. In this case, filename may
contain the two wild characters "?'t and " * 'I in the base name and its extension. The "?I' in
filename is construed as matching any single character in a directory file name. The I' * It is
construed as matching any substring without delimiters in the directory file name. A delimiter
is any of ":" (colon), "\'I (backslash), or "." (period). When the * " appears in fdename,
characters in the directory file name are skipped until (1) a delimiter is encountered; (2) the end
of the directory file name is encountered; or (3) the character following the * 'I in fdename is
encountered in the directory file name.

File names are NOT case sensitive. File names may have as many as 8 characters in the
base name plus 3 characters in the extension. The SCSI device name SCSIDISK: should NOT
be included in filename.

DEL filename
This deletes fiom the SCSI disk all files with names matching fdename. This command

uses the same wild character conventions that are used in the DIR command. An empty
subdirectory can be deleted with the DEL command by appending a "\" at the end of the
subdirectory name. Wild characters are not allowed in paths. The SCSI device name SCSIDISK:
should NOT be included in filename.

REN oldname newname
E N changes the name of the existing SCSI disk file oldname to newname. Wild

character constructions are permitted; any wild character in oldname must be matched by the
same character in newname. This REN command may be used to change subdirectory names
as well as standard file names, using the "\I' character at the end of the subdirectory name. The
SCSI device name SCSIDISK: should NOT be included in either oldname or newname.

CD pathname

should NOT be included as part of pathname.
CD changes the current directory for the SCSI disk. The SCSI device name SCSIDISK:

INIT id
Initiallize device id. For the disk, this command will DELETE ALL DATA and initiallize

the directory and the file allocation table. For the tape drive, this command merely rewinds the
tape and resets some internal program pointers.

20

BUSRESET
SCSI BUS RESET command.

READY id
SCSI DEVICE READY command to device id.

REWIND id
SCSI REWIND command to device id.

REQSENSE id

host monitor in hexadecimal format.
SCSI REQUEST SENSE command to device id. Device response data appears on the

INQUIRY id

in hexadecimal format.
SCSI INQUIRY command to device id. Device response data appears on the host monitor

MODESENSE id

monitor in hexadecimal format.
SCSI MODE SENSE command to device id. Device response data appears on the host

CAPACITY id
SCSI READ CAPACITY command to device id. Device response data appears on the

host monitor with capacity values in hexadecimal format.

LOCATE id N

This command should not be used for the disk.
For the tape, this is the SCSI LOCATE command, which positions the tape at block N.

SPACE id N kode
Skip over N logical blocks if kode = 0, or skip over N

filemarks of kode = 1, or skip to the end of data if kode = 3. This is for the tape drive only.
SCSI SPACE command.

WFILMARK id N
SCSI WRITE FILE MARK command. Write N file marks. This is for the tape drive

only.

READPOS id

the host monitor with data values in hexadecimal.
SCSI READ POSITION command for device id. Device response data is displayed on

SETBL id bl

for the disk drive. This command may be necessary before reading a tape.
Sets the logical block length equal to bl bytes for the tape drive. This should not be used

READ id N
For the disk, this reads logical block N and prints the contents (5 12 bytes) on the host

21

monitor in hexadecimal format. This command should not be used for the tape drive.

TWRIT id
Writes 9 files to device id, for testing and diagnostic purposes.

TREAD id
Reads the 9 files written by TWRIT, for testing and diagnostic purposes.

STOP
Stops execution of TSCSI.

22

REFERENCES

1.
00003, February 1997.

G. D. Lassahn, Automatic TLI Recognition System, General Description, INELLEXT-97-

2.
00005, February 1997.

G. D. Lassahn, Azitomatic TLI Recopition System, Programmer's Guide, INELEXT-97-

23

APPENDIX A

EXAMPLE 1: Median Filter Testing

EXAMPLE 1: Median Filter Testing

This sample application is presented primarily for the benefit of the prospective ATR
system user, to illustrate the use of the system. In this example, we use only one training scene,
and we have only one image per scene. The features used are based on one-dimensional median
filtering. More specifically, the difference between the result of median filtering with a window
of N pixels and with a window of N+2 pixels is used as the meaningful feature. The goal in this
application is to find medium-sized lettering and reject large lettering, small lettering, and other
kinds of texture.

This example was written for ATRl, and it includes references to the SCSI disk that is
available only on ATRl. This example, and any other application of the ATR software, should
run equally well on any of the hardware systems if the file names are adjusted to make sense on
the system being used.

The training scene image is in file \IMG\DEM04.IMG on the PC system disk. This
image, color coded to indicate the target and background regions specified by the user with
program G, is shown in Figure A1 (in Reference 1, Appendix A). The region selection
information is in the mask file UMG\M4D.IMG, created by program G. The regions designated
as targets for the training program include only the medium-sized lettering, in the top left and
the bottom right comers of the scene. The regions designated as background include the larger
lettering, in the top right comer and at the left edge; some of the small lettering, at the bottom
of the scene; and, a large amount of the picture engraving. Note that it is not necessary to mark
all of the small lettering, for example, as backgrow& if some of it is marked as background and
none of it is marked as target, that should be sufficient. Similarly, it is not necessary to mark
every target that may appear in the training scenes. All that is required is that a representative
set of examples of targets and of background be marked in the training scenes.

The F command file (.cmd) is fmedflh.cmd, which contains:

1 mode value is not used
fmedf 1. sl
fmedflh.fc
fmedflh.sum
fmedflh.out
0.5

The scene list file (.SI) is finedfl.sl:

1 = number of scenes
1 = number of images per scene
\img\m4d. img
\img\demol.img

The feature calculation file (.fc) is fmedflh.fc:

REM USE TYPE 1 MEDIAN FILTERS. fmedflh.fc
REM Detect positive & negative peaks separately.
REM Use square of peak amplitude also.
REM Use a median filter in the perpendicular direction
REM to reduce noise.

defimg 1 512 480 0 ; define image 1, 512x480, no overlap rows.
copdef 3 1 6 ; define image 3 like image 1 but with 6 overlap r o w s .
copdef 4 1 6 ; images 3, 4, and 5 are distributed the same as image

A- 1

copdef 5 1 6 ; 1 and are compatible for multi-image operations.

REM Generate the MASK feature image, feature image 0,
REM
readscene 1 ; read from the file listed first in the .sl file.
undersample 2 1 0 2.0 2.0 0 ; decimate by 2 in each direction.
writefeat SCSIDISK:\FI\MASK.FI 2 ; write MASK feature image (number 0)

from the scene mask image:

; to SCSI disk file (ATR1 only)

REM Read the single scene image:
readscene 1 ; read from next file listed in .sl file.

REM run length measurements in y (vertical) direction:
copy 3 1 ; copy image 1 to image 3.
REM for run length = 1:
overlap 3 ; share overlap values among nodes.
medly 4 3 3 ; image 4 = image 3 median filtered, 1-D, 3 pixels.
sub 5 3 4 ; image 5 = raw - median filtered.
medlx 3 5 3 ; eliminate 1-pixel wide noise.
REM negative peaks with y-direction run length = 1:
mulcon 3 3 -1.0 ; multiply by -1.
maxcon 5 3 0.0 ; remove negative values.
smthx 5 5 2.0 4 ; smooth in x direction.
smthy 5 5 4.0 4 ; smooth in y direction.
resample 2 5 0 0 0 0 ; decimate, to already-defined image 2.
scale 2 2 ; scale in preparation for writing.
writefeat SCSIDISK:\FI\YIN.FI 2 ; write next feature image (number 1)
REM for run length = 2:
overlap 4 ; do more filtering on once-filtered image:
medly 3 4 5 ; 5-pixel window median filter.
sub 5 4 3 ; difference, 3-pix - 5-pix filtered.
medlx 4 5 3 ; noise reduction.
REM negative peaks:
mulcon 4 4 -1.0
maxcon 5 4 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0
scale 2 2
writefeat SCSIDISK:\FI\YZN.FI 2
REM for run length = 3:
overlap 3
medly 4 3 7 ; 7-pixel window.
s u b 5 3 4
medlx 3 5 3
mulcon 3 3 -1.0
maxcon 5 3 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0
scale 2 2
writefeat SCSIDISK:\FI\Y3N.F1 2

REM for run length in x (i, horizontal) direction:
copy 3 1
medlx 4 3 3
s u b 5 3 4
overlap 5
medly 3 5 3
mulcon 3 3 -1.0
maxcon 5 3 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0
scale 2 2

A- 2

writefeat SCSIDISK:\FI\XIN.FI 2
medlx 3 4 5
s u b 5 4 3
overlap 5
medly 4 5 3
mulcon 4 4 -1.0
maxcon 5 4 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0
scale 2 2
writefeat SCSIDISK:\FI\X2N.F1 2
medlx 4 3 7
s u b 5 3 4
overlap 5
medly 3 5 3
mulcon 3 3 -1.0
maxcon 5 3 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0
scale 2 2
writefeat SCSIDISK:\FI\X3N.FI 2 ; write feature

REM new feature images = products of old ones:
feat* 1 4 ; product of features 1 and 4.
feat* 2 5
feat* 3 6
feat* 1 5
feat* 2 6
feat* 2 4
feat* 3 5

image number 6

STOP

This feature calculation file contains instructions that first create a mask which is the same
size as the feature images and store the mask as if it were the first (number 0) feature image.
The later instructions define 13 feature images, 6 of which are stored on the SCSI disk as image
files and 7 of which are defined as products of the others and are not actually stored as files.

The training program F uses these input files and generates files finedflh.sum and
finedflh.out, as specified in the command file. The result output file finedflh.out includes
optimal coefficient values for each of several sets of included features, and an uncertainty
estimate (estimated total error rate) for each set. The graph in Figure A2 summarizes these
results. The result output file finedflh.out is long, and is listed in part here:

for 14 active features: 0.175471
0.175471 = 0.500 * 0.056746 + 0.500 * 0.294196

96.413246 = Q = target criterion.

f c [fl import.
0 6.905470e+01 0.07501 SCSIDISK:\FI\MASK.FI
1 -1.230949e+01 -0.00922 SCSIDSSK:\FI\Y~N.FI

3 -6.544309e+00 -0.00922 SCSIDISK:\FI\Y3N.FI
4 2.173096e+01 -0.00570 SCSIDISK:\FI\X~N.FI
5 9.023728e+00 0.02863 SCSIDISK:\FI\X2N.F1
6 -1.139377e+Ol 0.06507 SCSIDISK:\FI\X3N.FI
7 9.544310e+00 -0.00920 !*001004
8 1.365871e+00 -0.00704 !*002005
9 -2.541479e+00 -0.00860 !*003006
10 2.975932e+00 -0.00922 !*001005
11 2.677683e+00 -0.00935 !*002006

2 6.688059e+00 -0.01022 SCSIDISK:\FI\Y2N.FI

A- 3

12 1.240894e+01 -0.00472 !*002004
13 7.573971e+00 -0.00738 !*003005

ABNORMAT.J ERROR DECREASE:
for 13 active features: 0.165250
0.165250 = 0.500 * 0.032445 + 0.500 * 0.298054

91.966316 = Q = target criterion.

0 6.297519e+01 SCSIDISK:\FI\MASK.FI
1 -3.901356e+00 SCSIDISK:\FI\Y~N.FI

4 2.314094e+01 SCSIDISK:\FI\X~N.FI
5 6.831545e+00 SCSIDISK:\FI\X2N.F1

7 -1.702130e+00 !*001004
8 5.421373e+00 !*002005
9 -4.044115e+00 !*003006
10 -1.274309e+00 !*001005
11 7.129105e-01 !*002006
12 2.498617e+01 !*002004
13 7.000552e+00 !*003005

f c [fl

3 -2.926445e+00 SCSIDISK:\FI\Y3N.F1

6 -8.239699e+00 SCSIDISK:\FI\X3N.F1

RESTART :

for 14 active features: 0.164748
0.164748 = 0.500 * 0.027901 + 0.500 * 0.301596

90.807426 = Q = target criterion.

f crfl
0 6.165407e+01
1 -1.997215e+00
2 -1.405803e+00
3 -2.365844e+00
4 2.329933e+01
5 5.318080e+00
6 -6.925702e+00
7 -5.237159e+00
8 7.290884e+00
9 -3.500515e+00

10 -1.582983e+00
11 -9.228410e-01
12 2.825508e+01
13 6.175331e+00

import.
0.08525 SCSIDISK:\FI\MASK.FI
0.00045 SCSIDISK:\FI\YlN.FI
0.00040 SCSIDISK:\FI\Y2N.FI
0.00035 SCSIDISK:\FI\Y3N.F1

0.01103 SCSIDISK:\FI\XZN.FI
0.04903 SCSIDISK:\FI\X3N.F1
0.00026 !*001004
0.02268 !*002005
0.00060 !*003006
-0.00007 !*001005
-0.00001 !*002006
0.04749 !*002004
0.00115 !*003005

0.02221 SCSIDISK:\FI\X~N.FI

F I L E TEXT IS MISSING HERE

for 6 active features: 0.170221
0.170221 = 0.500 * 0.033679 + 0.500 * 0.306763

93.000191 = Q = target criterion.

f C[fl import.
o 6.063261e+01 0.07979 SCSIDISK:\FI\MASK.FI

4 4.440161e+01 0.06733 SCSIDISK:\FI\XIN.FI
6 -7.864605e+00 0.05273 SCSIDISK:\FI\X3N.F1

9 -2.005543e+00 0.00027 !*003006

1 -3.885988e+00 0.00298 SCSIDISK:\FI\YlN.FI

8 1.664656e+01 0.08818 !*002005

for 5 active features: 0.170490
0.170490 = 0.500 * 0.034567 + 0.500 * 0.306414

93.142075 = Q = target criterion.

A- 4

f C[fl import.
0 6.006615e+01 0.07953 SCSIDISK:\FI\MASK.FI
1 -3.642586e+00 0.00286 SCSIDISK:\FI\YlN.FI
4 4.433332e+01 0.06753 SCSIDISK:\FI\XlN.FI
6 -8.006670e+00 0.05427 SCSIDISK:\FI\X3N.FI
8 1.626991e+01 0.05714 !*002005

for 4 active features: 0.173354
0.173354 = 0.500 * 0.035825 + 0.500 * 0.310883

93.122307 = Q = target criterion.

f CEfI import.
0 5.473910e+01 0.07667 SCSIDISK:\FI\MASK.FI
4 4.621682e+01 0.06988 SCSIDISK:\FI\XlN.FI
6 -7.831959e+00 0.05222 SCSIDISK:\FI\X3N.FI
8 1.643995e+01 0.05579 !*002005

for 3 active features: 0.225576
0.225576 = 0.500 * 0.159022 + 0.500 * 0.292130

86.924637 = Q = target criterion.

f C[fl import.
o 4.786732e+01 0.02599 SCSIDISK:\FI\MASK.FI
4 4.702850e+01 -0.02771 SCSIDISK:\FI\XlN.FI
8 1.672868e+Ol 0.08130 !*002005

for 2 active features: 0.197867
0.197867 = 0.500 0.033910 + 0.500 * 0.361824

98.398445 = Q = target criterion.

f C[fl import.
0 5.563923e+01 9.99990 SCSIDISK:\FI\MASK.FI
8 2.536514e+01 9.99990 !*002005

there are no acceptable smaller feature subsets.

At this point, a new coefficient calculation is done for a different value of the type 1 error
weight, 0.90. The command file (.cmd) is finedflh2.cmd:

1 mode value is not used
fmedflh.sum
m
NOI,
fmedf lh2. out
0.9

This command file gives the name of the sum file output by the previous F calculation, in place
of a scene list file. The result of this is that this F calculation does not access any image files
and does not calculate any feature images, thereby saving a lot of time. This F calculation
merely uses the sums from a previous calculation and does a new optimization for the new value
of the type 1 error weight. This F calculation outputs its results to file finedflh2.out, which is
listed in part here:

for 14 active features: 0.039632
0.039632 = 0.900 * 0.002812 + 0.100 0.371013
106.356369 = Q = target criterion.

f c [fl import.
0 6.240343e+01 0.01038 SCSIDISK:\FI\MASK.FI

A- 5

1 -4.529906e+00 -0.00146 SCSIDISK:\FI\YlN.FI

3 -4.813251e+00 -0.00154 SCSIDISK:\FI\Y3N.F1
4 2.167990e+01 0.00541 SCSIDISK:\FI\XlN.FI
5 6.383419e+00 0.00403 SCSIDISK:\FI\X2N.F1
6 -7.766041e+00 -0.00092 SCSIDISK:\FI\X3N.F1
7 2.323600e+00 -0.00143 !*001004
8 3.679545e+00 -0.00058 !*002005
9 -2.296764e+00 -0.00144 !*003006

10 -9.088939e-01 -0.00158 !*001005
11 -1.956589e+00 -0.00133 !*002006
12 2.865775e+01 0.01126 !*002004
13 7.252297e+00 0.00331 !*003005

2 2.635504e+00 -0.00144 SCSIDISK:\FI\Y2N.FI

FILE TEXT IS MISSING HERE

for 6 active features: 0.038530
0.038530 = 0.900 * 0.001673 + 0.100 * 0.370237
100.068092 = Q = target criterion.

f CEfI import.
o 6.154808e+01 0.01147 SCSIDISK:\FI\MASK.FI
2 -5.170771e+00 0.00154 SCSIDISK:\FI\Y2N.F1
6 -3.419756e-01 0.00004 SCSIDISK:\FI\X3N.FI
8 1.368567e+01 0.01216 !*002005
11 -8.860680e+00 0.00167 !*002006
12 4.439417e+01 0.01622 !*002004

for 5 active features: 0.038571
0.038571 = 0.900 * 0.001691 + 0.100 * 0.370489
100.089783 = Q = target criterion.

f C [f l import.
o 6.126400e+01 0.01143 SCSIDISK:\FI\MASK.FI
2 -5.171503e+00 0.00150 SCSIDISK:\FI\Y2N.FI
8 1.372271e+01 0.01019 !*002005
11 -8.929868e+00 0.00195 !*002006
12 4.443060e+01 0.01425 !*002004

for 4 active features: 0.040074
0.040074 = 0.900 * 0.001952 + 0.100 * 0.383173
103.289093 = Q = target criterion.

f CIfI import.
0 5.779496e+01 0.00993 SCSIDISK:\FI\MASK.FI
8 1.293844e+01 0.01008 !*002005
11 -9.245314e+00 0.00216 !*002006
12 4.276791e+01 0.01099 !*002004

for 3 active features: 0.042236
0.042236 = 0.900 * 0.002378 + 0.100 * 0.400960
108.795937 = Q = target criterion.

f C[fI import.
0 5.654004e+01 0.00779 SCSIDISK:\FI\MASK.FI
8 1.004776e+01 0.00780 !*002005
12 3.924446e+01 0.00362 !*002004

fo r 2 active features: 0.045858
0.045858 = 0.900 * 0.003053 + 0.100 * 0.431104
115.866432 = Q = target criterion.

A- 6

f C[fI import.
o 5.563923e+Ol 9.99990 SCSIDISK:\FI\MASK.FI
8 2.536514e+01 9.99990 !*002005

there are no acceptable smaller feature subsets.

Figure A2 shows the error rate versus number of features for both of the two F m s . The
error rate values above 0.15 are for the first run, and the values below 0.05 are for the second
run.

CT
0
CT
w 0.

0.30 I I 1 I I I I I 1 I I I I I

F 0.20 -

0 -

+

+
+

+ + + + + + + . + +

+ + + + + + + + + + + + *

I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0.00 1

NUMBER OF FEATURES

Figure A2: Total (weighted sum) error rate versus number of
features for two program F optimization calculations.

In this example, the coefficients chosen for use in the surveillance process are those for
5 features in the second F calculation. The E command file (.cmd) is emedflh.cmd:

1 = mode. this parameter is not used in E.
emedflh.sl
emedflh.fc
m

This E command file specifies "NUL" for the output file. The current version of E does not use
an output file, but an output file name should still be specified.

The E scene list file (.SI) is emedflhsl:

A- I

4 = number of scenes
1 = number of images per scene
\ri\demol.ri
\img\demol.img
+
+
+
+
+
+

This scene list file gives "demol" as the base file name for both the output result image file and
the input scene image file for the first scene. For the next 3 scenes, these file names are
incremented, so that the base file names for the next 3 scenes are "demo2", "demo3", and
"demo4".

The E feature calculation file (.fc) is emedflh.fc:

REM USE TYPE 1 MEDIAN FILTERS. fmedflh.fc
REM Detect positive & negative peaks separately.
REM Use square of peak amplitude also.
REM Use a median filter in the perpendicular direction
REM to reduce noise.

defimg 1 512 480 0 ; define image 1, 512x480, no overlap rows.
copdef 3 1 6 ; define image 3 like image 1 but with 6 overlap rows.
copdef 4 1 6 ; images 3, 4, and 5 are distributed the same as image
copdef 5 1 6 ; 1 and are compatible for multi-image operations.
undersample 7 1 0 2.0 2.0 0 ; half-size result image.
copdef 6 7 0
copdef 2 7 0

zeroimage 7 ; initiallize result image.

REM 0 6.126400e+01 0.01143 SCSIDISK:\FI\MASK.FI
addcon 7 7 61.264 ; feature 0, additive constant.

REM Read the single scene image:
readscene 1 ; read from next file listed in .sl file.
resample 2 1 0 0 0 0 ; image 2 = decimated scene image 1.
disp . 2 50 128 0.0 ; display decimated scene image; why not?

REM run length measurements in y (vertical) direction:
copy 3 1 ; copy image 1 to image 3.
REM for run length = 1:
overlap 3 ; share overlap values among nodes.
medly 4 3 3 ; image 4 = image 3 median filtered, 1-D, 3 pixels.
REM for run length = 2:
overlap 4 ; do more filtering on once-filtered image:
medly 3 4 5 ; 5-pixel window median filter.
sub 5 4 3 ; difference, 3-pix - 5-pix filtered.
medlx 4 5 3 ; noise reduction.
REM negative peaks:
mulcon 4 4 -1.0
maxcon 5 4 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 6 5 0 0 0 0 ; image 6 = feature 2.

mulcon 2 6 -5.171503 ; image 2 = feature 2 * coefficient.
add 7 7 2 ; accumulate to result image, image 7.

REM for run length in x (i, horizontal) direction:
copy 3 1

REM 2 -5.171503e+00 0.OOl:O SCSIDISK:\FI\YZN.FI

A- 8

medlx 4 3 3
s u b 5 3 4
overlap 5
medly 3 5 3
mulcon 3 3 -1.0
maxcon 5 3 0.0
smthx 5 5 2.0 4
smthy 5 5 . 4.0 4
resample 2 5 0 0 0 0 ; image 2 = feature 4.
mu1 2 2 6 ; image 2 = feature 4 * feature 2 = feature 12.
REM 12 4.443060e+01 0.01425 !*002004
mulcon 2 2 44.4306 ; image 2 = feature 12 * coefficient.
add 7 7 2

medlx 3 4 5
s u b 5 4 3
overlap 5
medly 4 5 3
mulcon 4 4 -1.0
rnaxcon 5 4 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0 ; feature 5 .
mu1 2 2 6 ; feature 8 = feature 5 * feature 2.
R E M 8 1.372271e+01 0.01019 ! * 0 0 2 0 0 5
mulcon 2 2 13.72271 ; feature 8 * coefficient.
add 7 7 2

medlx 4 3 7
s u b 5 3 4
overlap 5
medly 3 5 3
mulcon 3 3 -1.0
maxcon 5 3 0.0
smthx 5 5 2.0 4
smthy 5 5 4.0 4
resample 2 5 0 0 0 0 ; feature 6.
mu1 2 2 6 ; feature 11 = feature 6 * feature 2.

mulcon 2 2 -8.929868 ; feature 11 coefficient.
add 7 7 2

REM 11 -8.929868e+00 0.00195 !*002006

REM Eliminate false positives from median filter edge effects:
defkern 1 -3 3 -3 3
zeroimage 2
copyedges 7 2 1 ; copy zeroed edges from image 2 to image 7.

maxcon 7 7 0.0 ; remove values e 0.
mincon 7 7 2 5 5 . 0 ; remove values > 255.
R E M 100.089783 = Q = target criterion.
writeresult 7 1 100.089783 ; write result image.
disp . 7 5 0 768 100.089783 ; display result image.

STOP

This E feature calculation file is used for each of the four scenes specified in the scene list file.
It includes the values of the coefficients from the F result output file for 5 features.

This E calculation generates four result images. These result images are smaller than the
scene images, having half as many pixels in each direction. This of course implies half the
spatial resolution in each direction, but result images usually do not require much spatial
resolution so time and disk space can be saved by using the lower resolution for result images.
The four result images are shown in Figures A3 - A6, along with their corresponding scene

A- 9

images decimated to the same size as the result images. (The combination of decimation and
reproduction for this report greatly degrades the quality of these scene images.) In the result
images, the bright, green to pale green to white, regions indicate targets; the dark, red to black,
regions indicate background. The lighter regions are stronger indications of target. Figure A6
shows that the ATR system did correctly designate the medium-sized lettering as target, and it
did correctly reject the larger letters as background. The results are mixed for the small letters
at the bottom center of the scene, some being correctly rejected as background and some being
incorrectly identified as targets. A few other regions in the DEMO4 scene, as well as a few
small regions in the other scenes, are incorrectly identified as targets by this ATR system. These
incorrect identifications simply mean that this ATR system, with the particular features which
were chosen for this application, cannot distinguish between medium-sized lettering and whatever
is shown in the scene images at those regions incorrectly identified as targets. Presumably, the
operator could choose a better set of features and reduce the incidence of errors in this ATR
application. Note, however, that this relatively small set of relatively simple features did quite
well: there are essentially no type 1 errors (incorrect designation of targets as background), and
there are not many type 2 errors (incorrect designation of background as target). The absence
of type 1 errors is largely due to the large value (0.9) chosen for the type 1 error weight in the
F optimization calculation.

A-10

APPENDIX B

EXAMPLE 2: Roads and Riverbanks

EXAMPLE 2: Roads and Riverbanks

This simple example illustrates fusion of image data, as well as some aspects of using the
software. We have two images of the same scene, one visible light and one infrared image.
(These images are part of a set supplied by Karen Steinmaus of Battelle, Pacific Northwest
Laboratories, one of the participants in the Department of Energy’s Airborne Multisensor Pod
System project.) The visible light image (Figure B 1) shows roads quite clearly, but it also shows
riverbanks and it is difficult to distinguish between the two features in this image. The infiared
image (Figure B2) does not show the roads very well, but it clearly indicates where the river is.
The two images together should allow us to find roads and reject riverbanks. Note, however, that
this cannot be done by looking for roads in each of the two images separately and then simply
adding or averaging the two results; a more sophisticated approach to image data fusion, such as
that used in this ATR system, is required.

For this illustration, we do a very simple analysis using only 4 features. For the first
feature, we do a convolution of the visible light image with a 13x13 pixel kernel in which the
pixel values are proportional to X2 with the mean subtracted out, clip the result to keep only
negative values, and take the absolute value. This convolution kernel is in file
c:\imanal\opr\pnlopr\pnlxx. opr :

22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.

22. 11. 2. -5. -10. -13. -14. -13. -10. -5. 2. 11. 22.
22.. 11. 2. -5. -10. -13. -14. -13. -10. - 5 . 2. 11. 22.

This first feature indicates the presence of both vertical roads and vertical riverbanks.
For the third feature, we do a convolution of the infrared image with a 13x1 3 pixel kernel

in which the pixel values are proportional to X, and square the result. This kernel is in file
c:\imanal\opr\pnlopr\pnlx.opr :

-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. - 3 . -2. -1. 0. 1. 2. 3 . 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0 . 1. 2. 3. 4. 5. 6.
-6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6.

This third feature is insensitive to roads, but shows vertical riverbanks very well.
The second and fourth features are analagous to the first and third, using kernels with

dependence on the Y coordinate instead of the X coordinate to detect roads and riverbanks that

B- 1

m horizontally in the images instead of vertically.
Figures B1 and B2 both show the operator-selected target (green) and background (red)

regions. Note that these regions do not need to be marked on both of the scene images
separately; it is sufficient to use either one of the scene images with the program G to mark the
target and background regions.

The F program command file is

0 unused mode code
fpnll . sl
fpnl2. fc
fpnl2. sum
fpnl2. out
0.5

and the scene list file (fpnll.sl) is

1 scene
2 images per scene
SCSIDISK:PNLmsk03.img
SCSIDISK:PNLlsOl.img
SCSIDISK:PNL6sOl.img

and the feature calculation file (fPnl2.f~) is

echo PNLOl test
defimg 1 512 512 6; image 1 has 512 rows, 512 columns, 6 overlap
defkern 1 -6 6 -6 6; operator (kernel) 1 is 13x13 pixels.
copdef 3 1 0; image 3 is the same size as image 1, zero overlap.
zeroimage 3

featfil ; use scene mask as feature mask.

readscene 1; image 1 is first scene image.
readkernel c:\imanal\opr\pnlopr\PNLxx.opr 1; read convolution operator (kernel).
convolve 3 1 1; image 3 = image 1 convolved with kernel 1.
mincon 3 3 0.0; keep only negative results, set positive to zero.
abs 3 3; absolute value.
scale 3 3 1; prepare image 3 for output as a feature image.
writefeat D:teml.img 3; output to disk, put file name in internal list.

readkernel c:\imanal\opr\pnlopr\PNLyy.opr 1; new kernel, same old scene image.
convolve 3 1 1
mincon 3 3 0.0
abs 3 3
scale 3 3 1
writefeat + 3; automatically select feature image file name:
readscene 1; new scene image.
readkernel c:\imanal\opr\pnlopr\PNLx.opr 1; new kernel.
convolve 3 1 1
mu1 3 3 3; multiply result by itself.
scale 3 3 1
writefeat + 3
readkernel c:\imanal\opr\pnlopr\PNLy.opr 1
convolve 3 1 1
mu1 3 3 3
scale 3 3 1
writefeat + 3

B-2

STOP

The part of the F program output file that is used for the E program is

for 5 active features: 0.168050
0.168050 = 0.500 * 0.023600 + 0.500 * 0.312500

90.007324 = Q = target criterion.

f C[fl import.
0 5.957882e+01 0.08195 scsidisk:PNLmsk03.img
1 2.562973e-03 0.02468 D:teml.img
2 1.270594e-02 0.12367 D:tema.img
3 -7.132083e-08 0.01399 D:tem3.img
4 -1.236135e-07 0.00208 D:tem4.img

The surveillance program E command file is

1 mode value is not used
epnl2. sl
epnl2. f c
NUL

and the scene list file (epnl2.sl) is

4 four scenes
2 two images per scene
\ri\epnlza.ri
SCSIDISK:PNLtapel\imagela
SCSIDISK:PNLtapel\image6a

+1
+2
+
4-1
+2
+
+1
+2

+

This scene list file specifies 4 scenes, with the names of corresponding files for each scene being
the previous file names incremented.

The E feature calculation file (epnl2.f~) is

echo PNLOl test

sdefF32 Q COEFO COEFl COEF2 COEF3 COEFQ; feature coefficients:
REM The following 6 lines are copied from the F output file
REM and modified to define coefficient values:
seq Q 90.007324 = Q = target criterion.
seq COEFO 5.957882e+01 0.08195 scsidisk:PNLmsk03.img
seq COEFl 2.562973e-03 0.02468 D:teml.img
seq COEF2 1.270594e-02 0.12367 D:temZ.img
seq COEF3 -7.132083e-08 0.01399 D:tem3.img
seq COEF4 -1.236135e-07 0.00208 D:temB.img

sdefI32 PNLXX PNLyy PNLx PNLy; kernel numbers:
seq PNLxx 1
seq PNLyy 2
seq PNLx 3
seq PNLy 4
defkern PNLxx -6 6 -6 6
defkern PNLyy -6 6 -6 6
defkern PNLx -6 6 -6 6

B-3

defkern PNLy -6 6 -6 6
readkernel c:\imanal\opr\pnlopr\PNLxx.opr Pmxx
readkernel c:\imanal\opr\pnlopr\PNLyy.opr PNLyy
readkernel c:\imanal\opr\pnlopr\PNLx.opr PNLx
readkernel c:\imanal\opr\pnlopr\P%y.opr Pmy

sdefI32 SRCl SRCZ RESULT SKR1; image numbers:
seq SRCl 1; first scene image.
seq SRC2 2; second scene image.
seq RESULT 3; result image.
seq SKRl 4; scratch image.
defimg SRCl 512 512 6
copdef SRC2 SRCl 6
copdef RESULT SRCl 0
copdef SKRl SRCl 0

readscene SRCl
readscene SRCZ
zeroimage RESULT
zeroimage SKRl

convolve SKRl SRCl PNLxx; convolve scene image with kernel.
mincon SKRl SKRl 0.0
abs SKRl SKRl
mulcon SKRl SKRl COEF1; feature 1.
add RESULT RESULT SKR1; accumulate feature*coefficient to result.

convolve SKRl SRC2 PNLx
mu1 SKRl SKRl SKRl
mulcon SKRl SKRl COEF3; feature 3.
add RESULT RESULT SKRl

convolve SKRl SRCl PNLyy
mincon SKRl SKRl 0.0
abs SKRl SKRl
mulcon SKRl SKRl COEF2; feature 2.
add RESULT RESULT SKRl

convolve SKRl SRC2 Pmy
mu1 SKRl SKRl SKRl
mulcon SKRl SKRl COEF4; feature 4.
add RESULT RESULT SKRl

addcon RESULT RESULT COEFO; additive constant, feature 0.

maxcon RESULT RESULT 0.0; limit result pixel values, > 0
mincon RESULT RESULT 254.0; and e 255.
zeroimage SKR1; zero edge rows and coLumns in result;
copyedges RESULT SKRl PNLx; they don't mean anything.
writeresult RESULT 1 Q; write with header type 1.
disp . RESULT 0 0 Q; display result, label = filename:

STOP

This feature calculation file uses some user-defined variables to make the file more readable and
to make it easier to change the values of the coefficients from the F program.

The result image for one of the scenes, the same scene which was used as the training
scene, is shown in Figure B3. In this result image, the white is the strongest indication of roads,
darker green is a weaker indication of roads, black is the strongest indication of background (non-
road), and lighter red is a weaker indication of background. This result does distinguish clearly
between road and riverbank, thus satisfying the goal for this illustration: the two images analyzed
jointly give a clear indication of a result that is not obvious in either image separately. This

B-4

result indicates horizontal roads more strongly than vertical roads; this is because the horizontal
roads appear narrower in these images, and the convolution calculations used here are more
sensitive to narrower features. This result also indicates as roads some regions that are neither
road nor riverbank; this is not surprising, since no significant effort was made to exclude
miscellaneous clutter Erom being identified as target in this very simple example.

B- 5

APPENDIX C

EXAMPLE 3: Buried Waste Location

I

EXAMPLE 3: Buried Waste Location

This example illustrates a more intensive use of user-defined scalar variables; some image
manipulation methods; and, the use of a completely naive but still quite effective analysis method
in which the ATR system's capabilities replace operator understanding of the data. The primary
purpose of this study was to assess the utility of this ATR system in buried waste recovery
operations.

Data
In this application, as many as 7 sensors acquired different types of data. This data is not

image data in the traditional sense. Rather, each "image" is merely a set of values measured at
a two-dimensional array of points on the surface of the ground. Sensor S1A is the vertical
component of the earth's magnetic field, and S1B is the gradient (derivative with respect to
vertical position) of the vertical component of the magnetic field. S2A, S3A, S4A, and S5A are
measurements of the electrical conductivity of the soil, like eddy current measurements, taken
with different combinations of field orientation and phase shift. S6A is a volatile chemical
sensor. Most scenes include measurements from the first six sensors. Because data from the
seventh sensor S6A was available for only 3 of the 35 scenes, and for one of these three scenes
no other .sensor data was available, this seventh sensor data was not used in this brief study.

The different
experiments represent data recorded over five different areas with different buried objects. The
five rectangles on the left of Figure C1 indicate the approximate sizes and locations of buried
objects in the five experiments, as seen from above. (North is to the left.) In these sketches, the
solid objects are magnetic, and the objects drawn with outlines only are, at least mostly, not
magnetic. In E2, for example, there are a magnetic barrel (object 7) and a wooden box (object
6). Objects 9 and 10 in E3 are two boxes, one above the other, with some magnetic material in
the top box. The top box was removed between L3 and L4 (to be described later). Similarly,
object 20 (a vertical barrel) in E5 was removed between L2 and L3, and object 27 (a vertical
steel pipe) in E6 was removed between L2 and L3.

For each experiment, there are several different levels or vertical positions of the sensors.
The number of different levels is not the same for all experiments. The several levels are
referred to as LO, L1, LO is the highest level, and the sensors are 6 inches lower for each
successive level. In some cases, layers of soil were removed between successive measurement
levels. In these analyses, any one level of any one experiment is treated as a separate scene.
Different scenes are expected to give different results for any measurement, because they contain
different objects or because the objects are at different distances from the sensors. There are a
total of 34 usable scenes in this data set.

The scene images in this data have 43 columns (43 x values, spaced 3 inches apart) and
25 rows (25 y values, spaced 6 inches apart). Some of the data sets did not have this many rows
or columns, and some were missing a few data points from what was expected to be a regularly-
spaced array. In all of these cases, the missing data points were filled in using a linear
interpolation or extrapolation procedure, NTRPO1, so that each scene image used in this study
had a full 43x25=1075 data points. The interpolation was done separately and is not included
in the feature calculation files listed here.

There were 5 experiments, referred to as El , E2, E3, E5, and E6.

Analyses
Perhaps the simplest analysis we can use with this ATR system for a set of data with 6

c-1

sensors is a linear combination of the 6 raw data images (augmented with the "constant" e 0
image which is always included for mathematical completeness). This simple linear analysis was
tried with the buried waste data. The training was done with 4 scenes: E2L7, E5L2, E5L5, and
E6L5. The masks used were M2A, M5A, M5B, and M6A, shown in Figure C1. In this figure,
the red (actually more brown) areas of the masks are designated as background, the green areas
are target, and the black areas are not used in the training process. These masks mark barrels as
targets and other regions as background; that is, this analysis is a search for barrels. The results
of this training process were used to analyze 30 scenes from experiments E2, E3, E5, and E6;
experiment El was not included in this analysis because this analysis uses 6 sensors and only 4
sensors were used in experiment El. The results are indicated in Figure C3. In this figure, as
in any of the result images, lighter regions are stronger indications of targets, and darker regions
are stronger indications of background. Green and white (that is, very light green) indicate what
the ATR system classifies as targets. Red and brown and black (dark red) indicate what the ATR
system classifies as background. Figure C3 shows that this analysis did correctly identify the
barrel (object 7) as a target in E2 when the sensors were close to the barrel, levels L6-L8. It also
incorrectly identified a box (object 6) as a target in these same scenes. It similarly identified
barrels (objects 17 and 20) and misidentified other objects in other scenes. We must conclude
that this simple linear analysis is very poor at distinguishing between barrels and other objects.

The next obvious level of complication in analysis is to add quadratic terms to the linear
analysis, adding 21 product terms to the linear and constant terms in the previous analysis. This
was tried using the same training set described for the linear case, with the result shown in Figure
C4. This quadratic analysis is better than the linear analysis at distinguishing barrels from
background, but it is still not as good as one would like.

We list here some files associated with this quadratic analysis. The F command file is
f4i. cmd:

0 this mode code is not used by F8
f4g.sl
f4i.f~
f4i. sum
f4i.out
0.5
look for barrels

The F scene list file is f4g.d:

4 scenes
6 images per scene
\img\bwidl\m2a.big
\img\bwidl\e217slb.img
\img\bwidl\e217sla.img
\img\bwidl\e217~2a.img
\img\bwidl\e217~3a.img
\img\bwidl\e217~4a.img
\img\bwidl\e217sSa.img
\img\bwidl\m5a.big
\img\bwidl\e512slb.img
\img\bwidl\e512sla.img
\img\bwidl\e512~2a.img
\img\bwidl\e512~3a.img
\img\bwidl\e512~4a.img
\img\bwidl\e512~5a.img
\img\bwidl\rnsb.big
\img\bwidl\e515slb.img
\img\bwidl\e515sla.img

c-2

The F feature calculation file is f4i.f~:

; look for barrels.
; use all quadratic combination of measured values, min subtracted.

;minimum sensor readings:
sdefF32 SlMIN S2MIN S3MIN S4MIN S5MIN S6MIN S7MIN

seq SlMIN -300000. -270801.
seq S2MIN 0.0 6472.7
seq S3MIN -300. -201.8

seq S5MIN -1000. -807.1

seq S7MIN -30. -21.9

seq S4MIN -10. -9.

seq S6MIN -80. -57 *

sdefI32 NCOL NROW NOVL ; scene image size
seq NCOL 43
seq NROW 25
seq NOVL 2

seq BIGMASK 1
seq MASK 2
seq SI1 1
seq SI2 2
seq SI3 3
seq SI4 4
seq SI5 5
seq SI6 6
seq SKRl 7

sdefI32 BIGMASK MASK SI1 SI2 SI3 SI4 SI5 SI6 SKRl ; image numbers

; input, resample (resize), and output mask:
readscene BIGMASK
resample MASK BIGMASK 0 NCOL NROW 0
writefeat d:MASK.img MASK ; feature image 0 = mask
defimg BIGMASK 0 0 0 ; un-define image
defimg MASK 0 0 0

; input all scene images, reading and using scale factors:
readscene SI1
;since image SI1 is not previously defined, and no header code is
;given in this READSCENE command, the read operation sets the
;values of the user-accessible variables $A and $B. Use these
;values to restore the original numeric data values:
subcon SI1 SI1 $A
divcon SI1 SI1 $B
;subtract minimum value, make all readings positive:
subcon SI1 SI1 SlMIN
readscene SI2
subcon SI2 SI2 $A
divcon SI2 SI2 $B
subcon SI2 SI2 S2MIN
readscene SI3
subcon SI3 SI3 $A

divcon SI3 SI3 $B
subcon SI3 SI3 S3MIN
readscene SI4
subcon SI4 SI4 $A
divcon SI4 SI4 $B
subcon SI4 SI4 S4MLN
readscene SI5
subcon SI5 S I 5 $A
divcon SI5 SI5 $B
subcon SI5 SI5 S5MIN
readscene SI6
subcon SI6 SI6 $A
divcon SI6 SI6 $B
subcon SI6 SI6 S6MIN

;define a scratch image compatible with the scene images:
copdef SKRl SI1 NOVL

; use absolute magnitude as a feature:
scale SKRl SI1
stats SJXRl
writefeat d:RAWl.img SKRl ; feature image 1, = scene image 1
scale SKRl SI2
writefeat + SKRl ; feature image 2
scale SKRl SI3
writefeat i SKRl
scale SKRl SI4
writef eat + SKRl
scale SKRl S I 5
writefeat + SKRl
scale SKRl SI6
writefeat + SKRl
;that is all the linear features.
;now do quadratic features, products of linear:

feat* 1 1
feat* 2 2
feat* 3 3
feat* 4 4
feat* 5 5
feat* 6 6
feat* 1 2
feat* 1 3
feat* 1 4
feat* 1 5
feat* 1 6
feat* 2 3
feat* 2 4
feat* 2 5
feat* 2 6
feat* 3 4
feat* 3 5
feat* 3 6
feat* 4 5
feat* 4 6
feat* 5 6

stop

The E command file is e4i.cmd:

0
e4h. sl
e4i.f~

c-4

NUL
look for barrels

The E scene list file is e4h.sl, for which we list only the first 16 of 212 lines, representing the
first 2 of 30 scenes:

30 scenes
6 images per scene
\ri\e210.img
\img\bwidl\e210slb.img
\img\bwidl\e210sla.img
\img\bwidl\e210~2a.img
\img\bwidl\e210~3a.img
\img\bwidl\e210~4a.img
\img\bwidl\e210~5a.img
\ri\e2ll.img
\img\bwidl\e2llslb.img
\img\bwidl\e2llsla.img
\img\bwidl\e2lls2a.img
\img\bwidl\e2lls3a.img
\img\bwidl\e2lls4a.img
\img\bwidl\e2lls5a.img

F I L E TEXT I S MISSING HERE

The E feature calculation file is e4i.fc:

; look for barrels.
; use all linear & quadratic combinations of
; measurement - minimum.

echo-of f

;coefficients from the F program:
sdefF32 Q COEFO COEFl COEF2 COEF3 COEF4 COEF5 COEF6
sdefF32 COEF7 COEF8 COEF9 COEFlO COEFll COEFl2
sdefF32 COEFl3 COEFl4 COEF15 COEF16 COEF17 COEFl8
sdefF32 COEF19 COEF2O COEF21 COEF22 COEF23 COEF24
sdefF32 COEF25 COEF26 COEF27

seq Q 96.469131 = Q = tarqet criterion.
se6 COEFO 1.451913e+03
seq COEFl 4.511122e-04
seq COEF2 -2.152343e-02
seq COEF3 -8.356287e-01
seq COEF4 -6.656775e+00
seq COEF5 -7.544662e-01
seq COEF6 -8.950671e+00
seq COEF7 -2.263084e-09
seq COEF8 -2.028773e-08
seq COEF9 5.670000e-06
seq COEFlO -5.817067e-02
seq COEFll 1.921685e-04
seq COEFl2 -4.608979e-03
seq COEF13 1.234254e-09
seq COEF14 -2.278859e-06
seq COEF15 3.241597e-05
seq COEF16 6.679167e-07
seq COEF17 7.707375e-06
seq COEF18 1.938664e-05
seq COEF19 5.569089e-05
seq COEF2O 3.303353e-06
seq COEF2l 1.574620e-04
seq COEF22 1.766409e-03

0,21729 d:MASK. img
0.15536 d:RAWl.img
0.20731 d:RAW2.img
0.23020 d:RAW3.img
0.18433 d:RAW4.img
0.40221 d:FUiWS.img
0.25411 d:RAW6.img
0.04445 !*001001
0.12799 !*002002
0.00007 !*003003
0.22490 !*004004
0.08690 !*005005
0.16511 !*006006
0.00172 !*001002
0.21065 !*001003
0.24932 !*001004
0.13909 !*001005
0.20176 !*001006
0.23094 !*002003

0.22565 !*002005

0.23673 !*003004

0.32228 !*002004

0.20425 !*002006

c- 5

seq COEF23 2.299110e-04 0.17680 !*003005
seq COEF24 1.658469e-03 0.20599 !*003006
seq COEF25 -2.399434e-04 0.00106 !*004005
seq COEF26 -1.575718e-02 0.17891 !*004006
seq COEF27 -1.076411e-03 0.26856 !*005006

REM The preceding lines are easily installed in this file
REM by extracting lines from the F output file and editing
REM them to put in the characters "seq COEF".

; measurement value extrema:
sdefF32 SlMIN S2MIN S3MIN S4MIN S5MIN S6MIN S7MIN

seq SlMIN -300000. -270801.
seq S2MIN 0.0 6472.7
seq S3MIN -300. -201.8

seq SSMIN -1000. -807.1

seq S7MIN -30. -21.9

seq S4MIN -10. -9.

seq S6MIN -80. -57.

sdefI32 NCOL NROW NOVL ; scene image size
seq NCOL 43
seq NROW 25
seq NOVL 2

seq RESULT 8 ; result image
seq BIGl 9
seq BIG2 10

seq SI1 1
seq SI2 2
seq SI3 3
seq SI4 4
seq SI5 5
seq SI6 6
seq SKRI 7

; input all scene images, reading and using scale factors:
readscene SI1
subcon SI1 SI1 $A
divcon SI1 SI1 $B
subcon SI1 SI1 SlMIN
readscene SI2
subcon SI2 SI2 $A
divcon SI2 SI2 $B
subcon SI2 SI2 S2MIN
readscene SI3
subcon SI3 SI3 $A
divcon SI3 SI3 $B
subcon SI3 SI3 S3MIN
readscene SI4
subcon SI4 SI4 $A
divcon SI4 SI4 $B
subcon SI4 SI4 S4MIN
readscene SI5
subcon SI5 SI5 $A
divcon SI5 SI5 $B
subcon SI5 SI5 S5MIN
readscene SI6
subcon SI6 SI6 $A
divcon SI6 SI6 $B
subcon SI6 SI6 S6MIN

sdefI32 RESULT BIGl BIG2 ; image numbers

sdefI32 SI1 SI2 SI3 SI4 SI5 SI6 SKRl ; more image numbers

copdef RESULT SI1 0
copdef SKRl SI1 NOVL

; use constant feature, feature 0:

C-6

zeroimage RESULT
addcon RESULT RESULT COEFO

; use absolute magnitude as a feature:
mulcon SKRl SI1 COEFl
add RESULT RESULT SKRl
mulcon SKRl SI2 COEF2
add RESULT RESULT SKRl
mulcon SKRl SI3 COEF3
add RESULT RESULT SKRl
mulcon SKRl SI4 COEF4
add RESULT RESULT SKRl
mulcon SKRl SI5 COEF5
add RESULT RESULT SKRl
mulcon SKRl SI6 COEF6
add RESULT RESULT SKRl
;use quadratic features:
mu1 SKRl SI1 SI1
mulcon SKRl SKRl COEF7
add RESULT RESULT SKRl
mu1 SKRl SI2 SI2
mulcon SKRl SKRl COEF8
add RESULT RESULT SKRl
mu1 SKRl SI3 SI3
mulcon SKRl SKRl COEF9
add RESULT RESULT SKRl
mu1 SKRl SI4 SI4
mulcon SKRl SKRl COEFlO
add RESULT RESULT SKRl
mu1 SKRl SI5 SI5
mulcon SKRl SKRl COEFll
add RESULT RESULT SKRl
mu1 SKRl SI6 SI6
mulcon SKRl SKRl COEF12
add RESULT FtESULT SKRl
mu1 SKRl SI1 SI2
mulcon SKRl SKRl COEF13
add RESULT RESULT SKRl
mu1 SKRl SI1 SI3
mulcon SKRl SKRl COEF14
add RESULT RESULT SKRl
mu1 SKRl SI1 SI4
mulcon SKRl SKRl COEFl5
add RESULT RESULT SKRl
mu1 SKR1 SI1 SI5
mulcon SKRl SKRl COEF16
add RESULT RESULT SKRl
mu1 SKRl SI1 SI6
mulcon SKRl SKRl COEF17
add RESULT RESULT SKRl
mu1 SKRl SI2 SI3
mulcon SKRl SKRl COEF18
add RESULT RESULT SKRl
mu1 SKRl SI2 SI4
mulcon SKRl SKRl COEF19
add RESULT RESULT SKRl
mu1 SKRl SI2 SI5
mulcon SKRl SKRl COEFZO
add RESULT RESULT SKRl
mu1 SKRl SI2 SI6
mulcon SKRl SKRl COEF21
add RESULT RESULT SKRl
mu1 SKRl SI3 SI4
mulcon SKRl SKRl COEF22
add RESULT RESULT SKRl
mu1 SKRl SI3 SI5

c- 7

mulcon SKRl SKRl COEF23
add RESULT RESULT SKRl
mu1 SKRl SI3 SI6
mulcon SKRl SKRl COEF24
add RESULT RESULT SKRL
mu1 SKRl SI4 SI5
mulcon SKRl SKRl COEF25
add RESULT RESULT SKRl
mu1 SKRl SI4 SI6
mulcon SKRl SKRl COEF26
add RESULT RESULT SKRL
mu1 SKRl SI5 SI6
mulcon SKRl SKRl COEF27
add RESULT RESULT SKRl

mincon RESULT RESULT 255.0
maxcon RESULT RESULT 0.0

writeresult RESULT 1 Q

STOP

; display result:
resample BIGl RESULT 0 100 100 0
disp . BIGl 50 50 Q
copdef BIG2 BIGl 0
resample BIG2 SI1 0 100 100 0
scale BIG2 BIG2
e cho-on
dispres . BIG2 50 200 Q BIGl
stop

Running E with these files generates 30 result images. These can be combined into one
composite image for display, as in the figures printed here, with the following E program
commands:
Program E command file:

0
e4i2. sl
e4i2. f c
NUL
look for barrels

Program E scene list file:

1 scene
30 images
\ri\com4i2.img
\ri\EZLO.IMG 1587 02-24-94 3:47p
\ri\E2Ll.IMG 1587 02-24-94 3:47p

FILE TEXT IS MISSING HERE

This scene list file was conveniently constructed by editing a directory listing. The file size and
date information, being separated from the file name by white space, is ignored by the ATR
program.

Program E feature command file:

C- 8

; collect and compose results from e4i.
echo-of f
sdefI32 LEVELS EXPS
seq LEVELS 9
seq EXPS 4

seq NCOLO 43 ; size of raw result image
seq NROWO 25
seq NCOLl 43 ; size of displayed result image
seq NROWl 50

seq ROWO 0
seq COLO 0
seq INN 1 ; image number, raw result image
seq BIGl 11 ; image number, displayed result image
seq BIG3 13 ; image number, composite image

sdefI32 INN BIGl BIG3
sdefI32 NCOLO NROWO NCOLl NROWl

sdefI32 ROWO COLO DELROW DELCOL ROW COL ; screen coordinates etc.

sdefF32 Q

; defimg INN NCOLO NROWO 0
; defimg BIGl NCOLl NROWl 0
sadd DELCOL NCOLl 3 ; allow 3 columns
sadd DELROW NROWl 6 ; and 6 rows between images
smul COL DELCOL LEVELS
smul ROW DELROW EXPS
defimg BIG3 COL ROW 0
zeroimage BIG3
addcon BIG3 BIG3 255.1 ; white background

; row 1, experiment 2, 9 levels:
seq ROW ROWO
seq COL COLO

readscene INN
seq Q SA ; get Q value

resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

readscene INN
resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

readscene INN
resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

readscene INN
resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

readscene INN
resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

c- 9

readscene INN
resample BIGl INN 0 NCOLl NROWl 0
compoz BIG3 ROW COL BIGl
sadd COL COL DELCOL

readscene INN

resample B I G l INN 0 NCOLl NROWl 0
compoz B I G 3 ROW COL B I G l
sadd COL COL DELCOL

readscene INN
resample B I G l INN 0 NCOLl NROWl 0
compoz B I G 3 ROW COL B I G l
sadd COL COL DELCOL

readscene INN
resample B I G l INN 0 NCOLl NROWl 0
compoz B I G 3 ROW COL B I G l
sadd COL COL DELCOL

; r o w 2, experiment 3, 8 levels:
sadd ROW ROW DELROW
seq COL COLO

readscene INN
resample B I G l INN 0 NCOLl NROWl 0
compoz B I G 3 ROW COL B I G l
sadd COL COL DELCOL

FILE TEXT IS MISSING HERE

writeresult B I G 3 1 Q ; write composite image

disp . B I G 3 100 100 q ; display composite image

stop

The same quadratic analysis procedure was used to try to find boxes instead of barrels.
In this analysis, the training process used two training scenes, E5L5 with mask M5C and E2L7
with mask W B . These masks select only boxes without ferrous metal contents as targets. The
results of this analysis for 30 scenes are shown in Figure C5. This analysis was repeated using
only the first training scene, with results shown in Figure C6. Obviously, the results of this type
of analysis can depend significantly on the choice of training data. In both of these two analyses,
boxes (objects 6, 9, 10, 21, 22, 23, and 24) were correctly identified as targets, and a few other
objects were incorrectly identified as targets, with the single-braining-scene result a little better
than the two-braining-scene result. This result is reasonably good.

The files needed for doing this quadratic analysis for boxes are almost the same as those
used for the quadratic analysis for barrels. Only the F scene list file and the coefficient values
are different.

An interesting aspect of these linear and quadratic analyses is that they require no
understanding of the measurements, except for a knowledge of the minimum numerical values
for each of the 6 measurement types.

In an effort to more accurately identie barrels, we tried a more sophisticated analysis that
made use of some understanding of the measurement processes. In this analysis, we made an
effort to find peaks in the magnetic field and its gradient, and to discriminate on the basis of the
widths of the peaks, on the assumption that barrels should cause peaks of a certain width in
magnetic field measurements. This analysis used only sensors SIB and SlA; the other sensor
data was ignored. The training process used the same training scenes as were used for the
quadratic function search for barrels. The results of this analysis are shown in Figure C7. Note

c-10

that experiment 1 is included, since this analysis does not require the sensors that are not included
in experiment 1. This analysis was repeated with a different set of training data, using scenes
E2L8, E5L2, E5L5, and E6L6 with the same masks as before. This gave slightly better results,
shown in Figure C8. These results generally show the barrels as targets, which is good. They
also show other ferromagnetic objects as targets, which we had hoped to avoid. However, it is
not surprising that we are not able to distinguish well between barrels and other magnetic objects,
since the peak width which we tried as the distinguishing feature is not really unique to barrels.
Surprisingly, this analysis also shows as targets some presumed non-magnetic objects, such as a
box (object 6) in E2. This is interpreted as a fairly strong indication that these boxes do in fact
include some ferromagnetic material. Listings of some files relevant to this analysis follow:

F program feature command file:

; look for barrels.
; try finding peaks and their widths.

sdefF32 SlZERO SZZERO
seq SlZERO -1000.
seq S2ZERO 51000.

sdefI32 NCOL NROW NOVL
seq NCOL 43
seq NROW 25
seq NOVL 2

seq BIGMASK 1
seq MASK 2
seq SKRl 2
seq SCENE 3

seq C1 4
seq CU 5
seq CUU 6
seq WIDTH 7
seq I~EIGHT 1

sdefI32 BIGMASK MASK SCENE SKR1

sdefI32 C1 CU CUU WIDTH WEIGHT

defkern WEIGHT -2 2 -2 2
readkernel \imanal\opr\opr2la\mask.opr WEIGHT

; input, resample (resize), and output mask:
readscene BIGMASK
resample MASK BIGMASK 0 NCOL NROW 0
writefeat d:MASK.img MASK ; feature 0
defimg BIGMASK 0 0
defimg MASK 0 0 0

defimg SCENE 0 0 0
readscene SCENE
subcon SCENE SCENE
divcon SCENE SCENE
subcon SCENE SCENE

copdef SKRl SCENE
copdef C1 SCENE
copdef CU SCENE
copdef C W SCENE
copdef WIDTH SCENE

copy SKRl SCENE
overlap SKRl

~

0

SA
SB
SlZERO

NOVL
0
0
0
0

c-11

qyaduv SKRl WEIGHT C1 CU 0 CUU 0 0 ; quadratic function fit
maxcon SKRl C1 0.0
overlap SKRl
median C1 SKRl WEIGHT 3 3 ; positive z only
copy SKRl cu
overlap SKRl
median CU SKRl WEIGHT 3 3 ; smoothed linear coefficient
mulcon SKRl C W -1.0
overlap SKRl
median cucl SKRl WEIGHT 3 3
maxcon CW CW 0.0 ; dome
mu1 WIDTH CU CU
div WIDTH WIDTH C1
div WIDTH WIDTH CUU
addcon WIDTH WIDTH 4.0
mu1 WIDTH WIDTH C1
div WIDTH WIDTH C W
rephi SKRl WIDTH 1.0e5 0.0
overlap SKRl
median WIDTH SKRl WEIGHT 0 4
sqrt WIDTH WIDTH

scale C W CUU
writefeat d:DOMEl.img CUU
scale WIDTH WIDTH
writefeat d:WIDTHl.img WIDTH
feat* 2 2
feat* 1 2
feat* 1 3

defimg SCENE 0 0 0
readscene SCENE
subcon SCENE SCENE $A
divcon SCENE SCENE $B
subcon SCENE SCENE S2ZERO
copy SKRl SCENE
overlap SKRl
quaduv SKRl WEIGHT C1 CU 0 CW 0 0 ; quadratic function fit
maxcon SKRl C1 0.0
overlap SKRl
median C1 SKRl WEIGHT 3 3 ; positive z only
copy SKRl cu
overlap SKRl
median CU SKRl WEIGHT 3 3 ; smoothed linear coefficient
mulcon SKRl CUCT -1.0
overlap SKRl
median CW SKRl WEIGHT 3 3
maxcon CuU C u U 0.0 ; dome
mu1 WIDTH CU CU
div WIDTH WIDTH C1
div WIDTH WIDTH C W
addcon WIDTH WIDTH 4.0
mu1 WIDTH WIDTH C1
div WIDTH WIDTH C W
rephi SKRl WIDTH 1.0e5 0.0
overlap SKRl
median WIDTH SKRl WEIGHT 0 4
sqrt WIDTH WIDTH

scale C W C W
writefeat d:DOMEa.irng CUU
scale WIDTH WIDTH
writefeat d:WIDTHa.img WIDTH
feat+ 7 7
feat* 6 7

c-12

feat* 6 3

;skip over unused scene images:
;(this is very inefficient, not recommended!)
;(change the scene list file, you lazy toad!)
readscene SCENE
readscene SCENE
readscene SCENE
readscene SCENE

stop

E program feature command file:

; look for barrels.
; find peaks and their widths.

echo-of f

sdefF32 Q COEFO COEFl COEF2 COEF3 COEF4 COEF5 COEF6
sdefF32 COEF7 COEF8 COEF9 COEFlO

seq Q 95.624916 = Q = target criterion.
seq COEFO 5.861998e+01 0.19509 d:MASK.img
seq COEFl -5.521925e-02 0.19809 d:DOMEl.img
seq COEF2 6.935584e+00 0.24768 d:WIDTHl.img
seq COEF3 -1.539143e-01 0.00885 !*002002
seq COEF4 1.111876e-02 0.34271 !*001002
seq COEF5 -3.884335e-04 0.07713 !*001003
seq COEF6 1.896816e-01 0.33799 d:DOME2.img
seq COEF7 5.446849e+00 0.24136 d:WIDTH2.img
seq COEF8 -1.921345e-01 0.05092 !*007007
seq COEF9 -6.553839e-03 0.00110 !*006007
seq COEFlO -2.992128e-03 0.07640 !*006003

sdefF32 SlZERO SZZERO
seq SlZERO -1000.
seq S2ZERO 51000.

sdefI32 NCOL NROW NOVL
seq NCOL 43
seq NROW 25

sdefI32 SCENE SKRl
seq SKRl 2
seq SCENE 3

seq C1 4
seq CU 5
seq CUU 6
seq WIDTH 7
seq WEIGHT 1

seq RESULT 8
seq BIGl 9
seq BIG2 10

seq NOVL 2

sdefI32 C1 CU C W WIDTH WEIGHT

sdefI32 RESULT BIGl BIG2

defkern WEIGHT -2 2 -2 2
readkernel \imanal\opr\opr2la\mask.opr WEIGHT

defimg SCENE 0 0 0
readscene SCENE
subcon SCENE SCENE $A
divcon SCENE SCENE $B
subcon SCENE SCENE SlZERO

C- 13

copdef SKRl SCENE NOVL
copdef C1 SCENE 0
copdef CU SCENE 0
copdef CW SCENE 0
copdef WIDTH SCENE 0
copdef RESULT SCENE 0
zeroimage RESULT
; use constant feature:
addcon RESULT RESULT COEFO

copy SKRl SCENE
overlap SKRl
quaduv SKRl WEIGHT C1 CU 0 CTJTJ 0 0 ; quadratic function fit
maxcon SKRl C1 0.0
overlap SKRl
median C1 SKRl WEIGHT 3 3 ; positive z only
copy SKRl cu
overlap SKRl
median CU SKRl WEIGHT 3 3 ; smoothed linear coefficient
mulcon SKRl CUU -1.0
overlap SKRl
median CUU SKRl WEIGHT 3 3
maxcon CUU C W 0.0 ; dome
mu1 WIDTH CU CU
div WIDTH WIDTH C1
div WIDTH WIDTH CUU
addcon WIDTH WIDTH 4.0
mu1 WIDTH WIDTH C1
div WIDTH WIDTH CUU
rephi SKR1 WIDTH 1.0e5 0.0
overlap SKRl
median WIDTH SKRl WEIGHT 0 4
sqrt WIDTH WIDTH ; width
mulcon SKRl CW COEFl ; dome
add RESULT RESULT SKRl
mulcon SKRl WIDTH COEF2 ; width
add RESULT RESULT SKRl
mu1 SKRl SKRl SKRl
mulcon SKRl SKRl COEF3 ; widthiwidth
add RESULT RESULT SKRl
mu1 SKRl SKRl CUlJ
mulcon SKRl SKEU COEF5 ; dome*width*width
add RESULT RESULT SKRl
mu1 SKRl CW WIDTH
mulcon SKRl SKRl COEF4 ; dome*width
add RESULT RESULT SKRl

defimg SCENE 0 0 0
readscene SCENE
subcon SCENE SCENE $A
divcon SCENE SCENE $B
subcon SCENE SCENE SZZERO
copy SKRl SCENE
overlap SKRl
quaduv SKRl WEIGHT C1 CU 0 CW 0 0 ; quadratic function fit
maxcon SKRl C1 0.0
overlap SKRl
median C1 SKRl WEIGHT 3 3 ; positive z only
copy SKRl cu
overlap SKRl
median CU SKRl WEIGHT 3 3 ; smoothed linear coefficient
mulcon SKRl CUU -1.0
overlap SKRl
median CUU SKRl WEIGHT 3 3
maxcon CTJTJ C W 0.0 ; dome
mu1 WIDTH CU CU

C-14

div WIDTH WIDTH C1
div WIDTH WIDTH C W
addcon WIDTH WIDTH 4.0
mu1 WIDTH WIDTH C1
div WIDTH WIDTH C W
rephi SKRl WIDTH 1.0e5 0.0
overlap SKRl
median WIDTH SKRl WEIGHT 0 4
sqrt WIDTH WIDTH ; width
mulcon SKRl CW COEF6 ; dome
add RESULT RESULT SKRl
mulcon SKRl WIDTH COEF7 ; width
add RESULT RESULT SKRl
mu1 SKRl SKRl SKRl
mulcon SKRl SKRl COEFB ; width*width
add RESULT RESULT SKRl
mu1 SKRl SKRl C W
mulcon SKRl SKRl COEFlO ; dome*width*width
add RESULT RESULT SKRl
mu1 SKRl C W WIDTH
mulcon SKRl SKRl COEF9 ; dome*width
add RESULT RESULT SKRl

readscene SCENE
readscene SCENE
readscene SCENE
readscene SCENE

mincon RESULT RESULT 255.0
maxcon RESULT RESULT 0.0

writeresult RESULT 1 Q

STOP

; display result:
resample BIGl RESULT 0 100 100 0
disp . BIGl SO 50 Q
STOP

copdef BIG2 BIGl 0
resample BIG2 SI1 0 100 100 0
scale BIG2 BIG2
echo-on
dispres . BIG2 50 200 Q BIGl
stop

Kernel file \imand\opr\opr2 1 a\mask.opr :

0.00000 1.0 1.0 1.0 0.00000
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 ' 1.0 1.0 1.0
0.00000 1.0 1.0 1.0 0.00000

C-15

APPENDIX D

EXAMPLE 4: Finding Airplanes

EXAMPLE 4: Finding AirpIanes

This example indicates some techniques for using the ATR system, and it includes an

We start with a fairly simple training procedure. The feature calculation file is flb.fc:
instance of a feature being classified as unimportant.

; Find airplanes.

ECHO flb.fc

sdefI32 NOVL
seq NOVL 7
sdefI32 RAW SMOOTH RUFF CROSS TEMP ; image numbers

seq SMOOTH 2
seq RUFF 3
seq CROSS 4
seq TEMP 5
defimg RAW 512 512 NOVL ; raw scene image
copdef SMOOTH RAW ; smoothed
copdef RUFF RAW NOVL ; smoothed - raw
copdef CROSS RAW ; crosses
copdef TEMP R A W ; scratch

seq RAW 1

sdefI32 KERNEL1 ITEM
seq KERNELl 1
ssub ITEM 0 NOVL
defkern KERNELl ITEM NOVL ITEM NOVL

featfil ; use scene mask for feature mask

readscene RAW 1 0 0 0

sdefF32 SIGl
seq SIGl 7.0 ; smoothing width, pass 1
smthx SMOOTH RAW SIGl 5 0
smthy SMOOTH SMOOTH S I G l 5 0
writefeat SCSIDISK:EX3\SMOOTHED SMOOTH ; already close enough to scaled

sub RUFF SMOOTH RAW
maxcon RUFF RUFF 0.0 ; keep only dark spots of raw image
scale TEMP RUFF 0
writefeat SCSIDISK:EX3\RTJFF TEMP

feat+ 1 2

readkernel C:\imanal\opr\scopr\c4t15.opr ~ R N E L I
convolve TEMP RUFF KERNELl
mu1 CROSS TEMP TEMP
readkernel C:\imanal\opr\scopr\s4tl5.opr KERNEL1
convolve TEMP RUFF KERNELl
mu1 TEMP TEMP TEMP
add CROSS CROSS TEMP
scale TEMP CROSS KERNELl
writefeat SCSIDISK:EX3\SC4 TEMP ; 4*theta, crosses

STOP

This calculates and uses as features a smoothed scene image (SMOOTH), a feature image that
indicates how much darker a small local region is than the smoothed image (RUFF), their
product, and the indicator of cross patterns in the RUFF image (SC4). The calculation of the first

D - 1

three feature images is quite obvious, but the last may bear a little explanation. The two kernels
c4tl5.opr and s4tl5.opr are both zero in the centers and in the corners,, being non-zero only in
a circular annular region that is intended to overlap the wings and nose and tail of an airplane
image but not the center of the airplane. The non-zero elements of the kernels are proportional
to the cosine and sine respectively of four times the angle fkom the x axis. Thus, when
convolved with an image, the cosine kernel will indicate the presence of four-lobed patterns with
the lobes aligned with the x and y axes, and the sine kernel will indicate those rotated by 45
degrees, and the sutn of the squares will indicate the square of the magnitude of the four-lobed
pattern independent of its orientation. That is, this procedure fmds cross-shaped patterns. It is,
of course, also sensitive to certain other patterns, including straight lines.

The relevant part of the training program output file flb.out is:

RESTART :

for 5 active features: 0.008626
0.008626 = 0.980 * 0.001352 + 0.020 * 0.365078
Q = 118.414795 = target criterion.

f C[fl import.
0 6.563824e+01 0.00158 c:\imanal\cims\ex3\maskd.img
1 -3.993893e-02 0.00006 SCSIDISK:EX3\SMOOTHED
2 -3.119725e+00 0.00650 SCSIDISK:EX3\RUFF
3 3.075633e-02 0.14078 !*001002
4 1.127659e-03 0.00001 SCSIDISK:EX3\SC4

The significant quantity here is the very low value, 0.00001, for the importance of the crosses
feature. This indicates that it would not make any difference if this feature were not included.
The SMOOTHED feature also has a low importance. However, we cannot conclude from this
information alone that it is safe to remove both the SC4 and the SMOOTHED features; removing
either one might greatly increase the importance of the other. In this example, the importance
of the SMOOTHED feature after the SC4 feature is deleted is indicated by the next part of the
output file:

for 4 active features: 0.008633
0.008633 = 0.980 * 0.001353 + 0.020 * 0.365364
Q = 118.561653 = target criterion.

f C[fl import.
0 6.650915e+01 0.00158 c:\imanal\cims\ex3\maskd.img
1 -4.337708e-02 0.00007 SCSIDISK:EX3\SMOOTHED
2 -3.185944e+00 0.00554 SCSIDISK:EX3\RTJFF
3 3.145166e-02 0.07333 !*001002

This indicates that the SMOOTHED feature is still not important, even after the removal of the
SC4 feature, so the SMOOTHED feature could be removed without significantly affecting the
accuracy of the target recognition process.

Imposing stringent size constraints on the non-zero areas of the RUFF image that are
candidates for targets is not a trivial procedure. The process used here is to treat local regions
of the RUFF image as if the intensity versus x and y were actually an un-normalized probability
density function (distribution), and to use the two principal moments of each peak in the
distribution as indicators of the width of the peak. Experimentation gives the values of the
maximum and minimum acceptable widths. Implementation of this procedure is shown in the
listing of the surveillance feature calculation file elb.fc:

D-2

ECHO elb.fc

sdefF32 Q COEFO COEFl COEF2 COEF3 COEF4 COEF5 COEF6 COEF7 COEF8
seq COEFO 0.0
seq COEFl 0.0
seq COEF2 0.0
seq COEF3 0.0
seq COEF4 0.0
seq COEF5 0.0
seq COEF6 0.0
seq COEF7 0.0
seq COEFB 0.0
seq Q 118.561653 = target criterion.
seq COEFO 6.650915e+01 0.00158 c:\imanal\cims\ex3\maskd.img
seq COEFl -4.337708e-02 0.00007 SCSIDISK:EX3\SMOOTHED
seq COEF2 -3.185944e+00 0.00554 SCSIDISK:EX3\RUFF
seq COEF3 3.145166e-02 0.07333 !+001002

sdefI32 NOVL

defimg 1 512 512 NOVL
copdef 2 1 0
copdef 3 1 NOVL
copdef 4 1 0
copdef 5 1 0
copdef 6 1 0
copdef 7 1 0
copdef 8 1 NOVL
copdef 9 1 NOVL

sdefI32 KERNEL1 TEMP
seq KERNEL1 1
ssub TEMP 0 NOVL
defkern KERNEL1 TEMP NOVL TEMP NOVL

seq NOVL 7

sdefI32 RESULT
seq RESULT 9
zeroimage RESULT
addcon RESULT RESULT COEFO
seq TEMP 8

sdef132 RAW ; raw scene image
seq RAW 1
readscene RAW 1 0 0 0
disp RAW-SCENE RAW 0 767 0.0

sdefF32 SIG
seq SIG 7.0 ; smoothing width, pass 1
sdefI32 SMOOTH ; smoothed scene image
seq SMOOTH 2
smthx SMOOTH RAW SIG 5 0
smthy SMOOTH SMOOTH SIG 5 0
mulcon TEMP SMOOTH COEFl
add RESULT RESULT TEMP

sdefI32 RUFF ; rough part, smoothed-raw
seq RUFF 3
sub RUFF SMOOTH RAW
maxcon RUFF RUFF 0.0 ; keep only dark spots of raw image
mulcon TEMP RUFF COEF2
add RESULT RESULT TEMP

mu1 TEMP SMOOTH RUFF
mulcon TEMP TEMP COEF3
add RESULT RESULT TEMP

D-3

mu1 TEMP RUFF RUFF
mulcon TEMP TEMP COEF4
add RESULT RESULT TEMP

mu1 TEMP SMOOTH SMOOTH
mulcon TEMP TEMP COEF5
add RESULT RESULT TEMP

readkernel C:\imanal\opr\scopr\c4t~5.opr KERNEL^
convolve TEMP RUFF KERNEL1
mu1 CROSS TEMP TEMP
readkernel C:\imanal\opr\scopr\s4t~5.opr KERNELI
convolve TEMP RUFF KERNEL1
mu1 TEMP TEMP TEMP
add CROSS CROSS TEMP
mulcon TEMP CROSS COEFG
add RESULT RESULT TEMP

maxcon RESULT RESULT 0.0
mincon RESULT RESULT 255.0
;writeresult RESULT 1 Q
disp RESULT,NO-MOMUV-MASK
dispres RESULT,NO_MOMUV_MASK FLAW 512 255 Q RESULT

RESULT 0 255 Q

;Calculate peak width limit mask:

readkernel ~:\imanal\opr\scopr\avgi5.opr KJXNEIJ

sdefI32 MOMTJ MOMV MOMUU MOMW ; moments of PDF
seq MOW 7
seq MOMV 6
seq MOMUU 5
seq MOMW 4
overlap RUFF
momuv RUFF KERNEL1 0 MOMU MOMV MOMLN MOMW
; convert from second moment about 0 to variance:
seq TEMP 8
mu1 TEMP MOMU MOMTJ
Sub MOMUU MOMOU TEMP
mu1 TEMP MOMV MOMV
sub MOMW M O W TEMP

sdefF32 MAXMANDIST ; maximum Manhattan distance to centroid
seq MAXMANDIST 1.0
REM MAXMANDIST should be at least 0.9
sdefI32 MANDIST ; Manhattan distance to centroid of PDF
seq MANDIST 8
abs MOMU MOMU
abs MOW MOMV
max MANDIST MOMU MOMV ; not really Manhattan distance
rephi MANDIST MANDIST MAXMANDIST -1.0
rephi MANDIST MANDIST 0.01 1.0
replo MANDIST MANDIST 0.5 0.0
mu1 MOMUU MOMCN MANDIST
mu1 MOMW MOMW MANDIST

sdefF32 MAXMOMOU ; maximum allowable W moment
sdiv MAXMOMLN NOVL 2.1 ; max sigma c= NOVL / sqrt(3)
REM Trials indicate that this number should be c= 2.1 for NOVL = 7.
smul MAxMoMuu MAxMoMulT MAXMOMUU
rephi MOMUU MOMUU MAXMOMW 0.0

sdefF32 MINMOMUU ; minimum UU moment
smul MINMOMUU 2.7 2.7

D-4

REM Trials indicate that this number should be >= 2.7 .
replo MOMOU MOMW MINMOMOU 0.0

sdefI32 RATIO ; MOMW/MOMTJU
seq RATIO MOMW
div RATIO M O M MOMW
rephi RATIO RATIO 2.00 0.0 ; eliminate division by 0 effects

sdef F32 MINRATIO
seq MINRATIO 0.4
replo RATIO RATIO MINRATIO 0.0
rephi RATIO RATIO 0.01 1.0
; image RATIO is a mask, values either 1.0 or 0.0 .
; broaden non-zero mask regions:
Copy TEMP RATIO
overlap TEMP
convolve FLAT10 TEMP KERNEL1
rephi RATIO RATIO 0.0001 1.0

; apply mask:
mu1 RESULT RESULT RATIO
; image RESULT is a standard type 1 result image.

; delete too-small target indications:
seq SIG 5.0
replo TEMP RESULT Q 0.0
rephi TEMP TEMP 1.0 255.0 ; binary, 0 or 255.
smthx TEMP TEMP SIG 5
smthy TEMP TEMP SIG 5
replo TEMP TEMP 45.0 0.0
rephi TEMP TEMP 1.0 1.0
mu1 RESULT RESULT TEMP

; Image RESULT is standard type 1 result file.
;writeresult RESULT 1 Q
disp RESULT\MOMW-MASK RESULT 0 767 Q

dispres . RAW 512 767 Q RESULT

; Standard type 2 result file sequence:
; draw loops around targets:
sdef I32 RESULT2
seq RESULT2 3
seq SIG 5.0 ; minimum loop radius [pixels]
replo RESULT2 RESULT Q 0.0
rephi RESULT2 RESULT2 1.0 255.0 ; binary, 0 or 255.
smthx RESULT2 RESULT2 SIG 5
smthy RESULT2 RESULT2 SIG 5
smul SIG SIG SIG
sdiv SIG 24.61575 SIG
zeroimage TEMP
overlap RESULT2 ; RESULT2 should have at least 1 overlap row!
contour TEMP RESULT2 SIG 255.0 ; loops 1 pixel wide.
defkern KERNELl -1 1 -1 1
readkernel c:\imanal\cims\med3i.opr KERNEL1 ; kernel is 3x3, all pixels are 1
overlap TEMP ; TEMP should have at least 1 overlap row!
convolve RESULT2 TEMP KERNEL1
rephi RESULT2 RESULT2 1.0 255.0 ; binary, 3-pix-wide loops.
sub RESULT2 RESULT2 TEMP ; binary, double 1-pix-wide loops.
;writeimage LOOPS.img RESULT2 1
;disp + RESULT2 0 767 0.0
sub TEMP RAW TEMP

D-5

maxcon TEMP TEMP 0.0 ; scene with black 1-pix-wide loops.
mincon TEMP TEMP 254.0
max RESULT2 RESULT2 TEMP ; scene with white-black-white loops.
writeresult RESULT2 1 Q
disp . RESULT2 512 767 254.0 ; standard type 2 result display.
STOP

This feature calculation file includes a lot of diagnostic and experimental stuf f that would be
removed fiom a real production feature calculation file, and it shows a method for drawing circles
around targets to make them very noticable to a human analyst.

APPENDIX E

EXAMPLE 5: Stack Shadows

4

EXAMPLE 5: Stack Shadows

This example is more complicated than the previous one. It illustrates a technique for
dividing large images into blocks small enough to be analyzed; it uses a two-step search
algorithm, with the first step using no training process; and it includes an example of a script
subroutine.

For program E, the surveillance process, the .cmd file is ess8b.cmd:

0
ess8b. sl
ess8b. f c
NUL
analyze big Daedalus images for stack shadows.
ess8b is an updated version of ess8.

The scene list file is ess8b.sl:

13 valid Daedalus scenes
1 row-banded image per scene (3 bands each)

+
E:\AMPS04\WPPSS\D2303.raw

E:\AMPS04\WPPSS\D2304.raw
+
E:\AMPS04\WPPSS\D2305.raw

E:\AMPS04\WPPSS\D2306.raw

E:\AMPS04\WPPSS\D2605.raw

E:\AMPS04\WPPSS\D2606.raw

E:\AMPS04\WPPSS\D2607.raw

E:\AMPSO4\WPPSS\D2608.raw

E:\AMPS04\WPPSS\D2609.raw
+
E:\AMPS04\WPPSS\D261O.raw
+
E:\AMPS04\WPPSS\D261l.raw

E:\AMPS04\WPPSS\D2612.raw

E:\AMPS04\WPPSS\D2613.raw

+

+

+
+
+
+
+

+
+

WPPSS

WPPSS

ALE.

ALE

TRA

TRA

CPP

CPP

RWMC

Middle Butte

Moonshiner

TRA

TRA

This scene list file lists 13 scene image files. Each file contains a 3-band multispectral image,
or 3 different wavelength images of the same scene. Each file comprises too much data to be
loaded into the available memory and analyzed in one step; each file must be broken into
overlapping blocks for analysis. A method for doing this is shown in the feature calculation
command file is ess8b.f~:

echo-of f
;ess8b. f c
; this is ess8.f~ modified for new readkernel format, and with other changes.
; find stack shadows.
; reject very narrow shadows.
; use average angle for each pixel in a line.
; use XLINOl and PMOMUV.

E- 1

prints $SCENE ; give the user a hint of the program’s progress

sdefF32 Q COEFO COEFl COEF2 COEF3 COEF4 COEF5 COEF6 COEF7
seq COEFO 0.0 ; additive constant
seq COEFl 0.0 ; SMOOTH (smoothed RAWa)
seq COEF2 0.0 ; SHADOW
seq COEF3 0.0 ; LINES
seq COEF4 0.0 ; RAWb
seq COEF5 0.0 ; RAWc
seq COEF6 0.0 ; 3*2
seq COEF7 0.0 ; 3*1

; MINWID=2.0, MAXWID=4.0, MINLEN=50.0 .
; extend peak pixels in direction of shadows in F.
;RESTART :
;for 8 active features: 0.001133
; 0.001133 = 0.500 * 0.000324 + 0.500 * 0.001942
seq Q 75.831810 = target criterion.
seq COEFO 1.336207e+02 0.24887 SCSIDISK:\fi\modmsk.fi
seq COEFl -2.810382e-01 0.17412 SCSIDISK:\fi\smooth.fi
seq COEF2 2.113311e+00 0.18280 SCSIDISK:\fi\shadow.fi
seq COEF3 1.148430e-04 0.00000 SCSIDISK:\fi\bright.fi
seq COEF4 9.275218e-01 0.23917 SCSIDISK:\MSS04\CTl\fd2613b2.img
seq COEF5 -1.327113e+00 0.42992 SCSIDISK:\MSSO4\CTl\fd2613c2.img
seq COEF6 -6.112969e-06 0.00003 !*003002
seq COEF7 -6.394235e-07 -0.00000 !*003001

sdefF32 MINWID ; minimum width of a stack shadow [pixels]
seq MINWID 2.0
sdefF32 MAXWID ; maximum width of a stack shadow [pixels]
seq MAXWID 5.0
sdefF32 MINLEN ; minimum length of a stack shadow [pixels]
seq MINLEN 40.0

sdefF32 NOMA ; nominal angle of stack shadow [radians]
; set the nominal shadow angle for each scene:
; for later AMPS missions, the image file headers will contain
; time, date, position, and heading data that will allow direct
; calculation of shadow angles.
if $SCENE == 1 seq NOMA -1.34 ; 2303, WPPSS
if $SCENE == 2 seq NOMA -1.20 ; 2304, WPPSS
if $SCENE == 3 seq NOMA 1.093 ; 2305, ALE
if $SCENE == 4 seq NOMA 1.151 ; 2306, ALE
if $SCENE == 5 seq NOMA 1.00 ; 2605, TRA
if $SCENE == 6 seq NOMA 0.96 ; 2606, TRA
if $SCENE == 7 seq NOMA 1.085 ; 2607, CPP
if $SCENE == 8 seq NOMA 1.15 ; 2608, CPP
if $SCENE == 9 seq NOMA -0.39 ; 2609, RWMC, approx
if $SCENE == 10 seq NOMA 0.0 ; 2610, Middle Butte, default
if $SCENE == 11 seq NOMA 0.0 ; 2611, Moonshiner, default
if $SCENE == 12 seq NOMA 1.33 ; 2612, TRA
if $SCENE == 13 seq NOMA 1.35 ; 2613, TRA
if $SCENE == 14 seq NOMA -1.34 ; 2303, WPPSS, same as scene 1
if $SCENE == 15 seq NOMA -1.20 ; 2304, WPPSS
if $SCENE == 16 seq NOMA 1.093 ; 2305, ALE
if $SCENE == 17 seq NOMA 1.151 ; 2306, ALE
sdefF32 MINA MAXA
ssub MINA NOMA 0.15 ; minimum angle
sadd MAXA NOMA 0.15 ; maximum angle
; the angle range is quite wide, to allow for variations due to
; uncorrected s-bend distortions. A proper search would correct
; the s-bend distortion and use a smaller angle range.

for

; define and read kernels:
sdefI32 L, L4, L12, L32, L52, L76, L120
sdefI32 K, K9, K21, K37, K69, K97, K137, KMAX, KMIN, KLAST

E-2

seq K 0
seq L 0
sadd L K 1
seq L12 L
defkern L12 -1 2 -1 2
readkernel kernels\Ll2.opr L12
sadd K L 1
seq K21 K
defkern K21 -2 2 -2 2
readkernel kemels\K2l.opr K21
sadd L K 1
seq L32 L
defkern L32 -2 3 -2 3
readkernel kernels\L32.opr L32
sadd K L 1
seq K37 K
defkern K37 -3 3 -3 3
readkernel kernels\K37.opr K37
sadd L K 1
seq L52 L
defkern L52 -3 4 - 3 4
readkernel kernels\L52.opr L52
sadd K L 1
seq K69 K
defkern K69 -4 4 -4 4
readkernel kernels\K69.opr K69
sadd L K 1
seq L76 L
defkern L76 -4 5 -4 5
readkernel kernels\L76.opr L76
sadd K L 1
seq K97 K
defkern K97 -5 5 -5 5
readkernel kernels\K97.opr K97
sadd L K 1
seq L120 L
defkern L120 -5 6 -5 6
readkernel kernels\Ll2O.opr L120
sadd K L 1
seq K137 K
defkern K137 -6 6 -6 6
readkernel kemels\K137.opr K137
smax KLAST K L
sadd K KLAST 1
seq K9 K
defkern K9 -1 1 -1 1
readkernel kernels\Kg.opr K9

; define images:
; NROW is the number of rows in a memory image, the number of rows in one
; block of an image. NROW is smaller than the number of rows in a file image.
; We load NROW r o w s , one block, of an image into memory and analyze it,
; then load and analyze the next, sligtly overlapping, block, etc.
; NCOL is the number of columns in a memory image and in a file image.
sdefI32 MOW NCOL
seq NROW 800 ; I choose this small enough to make everthing fit in my memory
seq NCOL 714 ; standard width for Daedalus images

; image numbers:
sdefI32 SKRl SKR2
sdefI32 RAWa RAWb RAWc RESULT SMOOTH SHADOW LINES AVGANG
sdefI32 BRIGHT TANGLE ANGLE
sdefI32 MOM0 AVGU AVGV LENGTH WIDTH MASK RESULT2
; #1
seq RAWa 1 ; raw scene image, first Daedalus band
defimg RAWa NCOL N'ROW 6

E-3

; #2
seq RAWb 2 ; raw scene image, second Daedalus band
copdef RAWb RAWa 1
seq RESULT RAWb ; result image
seq RESULT2 RESULT
; #3
seq RAWc 3 ; raw scene image, third Daedalus band
copdef RAWc RAWa 1
seq SMOOTH RAWc
; #4
seq SKRl 4
copdef SKRl RAWa 6
seq AVGU SKRl ; peak displacement
; #5
seq SKR2 5
copdef sKR2 RAWa 1
seq AVGV SKR2 ; peak displacement
; #6
seq SHADOW 6 ; all shadows
copdef SHADOW RAWa 1
; #7
seq LINES 7 ; sum of brightnesses of lines
copdef LINES RAWa 1
; #8
seq AVGANG 8 ; weighted average angle of line
copdef AVGANG RAWa 1
seq MOM0 AVGANG ; sum of pixels in peak

seq BRIGHT 9 ; line brightness
copdef BRIGHT RAWa 1
seq LENGTH BRIGHT ; peak length

seq TANGLE 10 ; tangent of line angle
copdef TANGLE RAWa 6
seq ANGLE TANGLE ; line angle
seq MASK TANGLE
; #11
seq WIDTH 11
copdef WIDTH mWa 1 ; peak width

sdefF32 SIGMA MINL MAXW F1
sdefI32 OPSIZ SKIP I1 I2

; #9

; #lO

; RGB screen display positions:
; this assumes that the screen is larger than one image.
sdefI32 DROWl41 DCOL141 ; ignore element 0, use 1, 2, & 3 for 3 bands
disp ; get screen size into $MAXI and $MAXJ
ssub I1 $MAXI NCOL ; screen size - image size
ssub I2 $MAXJ NROW ; screen size - image size
ssub I2 I2 $MINJ ; - caption size
ssub I2 I2 5 I - a few extra
sdiv I1 I1 2 ; 2 = 3 - 1, 3 = number of images to be displayed overlapping
sdiv I2 I2 2
seq DROW[lI 0 ; top of screen
sadd DROW[2] DROW[ll I2 ; a little lower
sadd DROW[3] DROW[21 I2 ; a little more lower
seq DCOL111 0 ; left edge of screen
sadd DCOL[2I DCOLClI I1
sadd DCOL [31 DCOL E21 I1

; set up to read 3 row-interleaved images from one file:
bandr 3
bandr 1 RAWa -1 NCOL 1
bandr 2 RAWb -1 NCOL 1
bandr 3 RAWc -1 NCOL 1

E-4

seq SKIP 0 ; number of file image row for the first row of this block

label SUBSCENE ; start each block, each "subscene", here

zeroimage RAWa
if SKIP == 0 echo-on ; tell operator we are starting a new image
; notation: "#RAWa start" means image number RAWa is beginning to be used here,
; "#RAWb end" means image number RAWb is no longer needed after this, etc.
readscene -1 5 -1 NROW SKIP ; #RAWa start, #RAWb start, #RAWc start
; since the scene list (.sl) file lists only one image per scene,
; repeated uses of the READSCENE command keep accessing the same file.
stats RAWa
echo-of f
prints SKIP ; tell operator we are starting a new block
if $MAX == 0.0 if $MIN == 0.0 jump SCENEND ; test for end of file
if $SCENE > 13 mulcon RAWa RAWa 2.0
mincon RAWa RAWa 255.0
disp . RAWc DROW[RAWc] DCOL[RAWcl 0.0 ; because of their values,
disp . RAWb DROW[RAWb] DCOL[RAWb] 0.0 ; the scene image numbers
disp . RAWa DROW[RAWal DCOL[RAWal 0.0 ; can be used as indexes here

mulcon RESULT RAWb COEF4 ; #RESULT start, #RAWb end
mulcon SKR2 RAWc COEF5 ; #RAWc end
add RESULT RESULT SKR2
; logically, this RESULT is not needed until later and may not be needed at all,
; but it is more efficient to construct it here.

; delete too-narrow shadows (noise):
sadd I1 MINWID MINWID ; maximum kernel diameter
seq K 0
label LOOP2
sadd K K 1
if K > KLAST abort
sadd OPSIZ K 3 ; kernel diameter
; kernels were chosen to make diameter = 3 + kernel number.
if OPSIZ c 11 jump LOOP2 ; (done with 11)
copy SKRl RAWa
overlap SKRl
median SMOOTH SKRl K ; smoothed scene image, #SMOOTH start

; find shadows:
sadd F1 MAXWID MAXWID
sadd F1 F1 1.0 ; minimum kernel diameter
seq K 0
label LOOPl
sadd K K 1
if K > KLAST abort
sadd OPSIZ K 3 ; kernel diameter
if OPSIZ c F1 jump LOOPl ; (done with Fl)
copy SKRl SMOOTH
overlap SKRl
median SKR2 SKRl K
sub SHADOW SKR2 SKRl ; #SHADOW start
maxcon SHADOW SHADOW 0.0 ; shadows are > 0, bright spots = 0

; find line segments, which may be shorter than MINLEN:
seq KMAX K69
copy SKRl SHADOW
zeroimage LINES ; #LINES start
zeroimage AVGANG ; #AVGANG start
seq K 0
label LOOPK
sadd K K 1
sadd OPSIZ K 3
sadd MINL OPSIZ -1.0 ; min length of acceptable line
sadd MAXW OPSIZ -4.0 ; max width of acceptable line

E-5

if MAXW c MINWID jump LOOPK
;;;prints K
;;;ssub I1 OPSIZ 1
;;;overlap SKRl
;;;median SKRZ SKRl K 0 I1
;;;copy SKRl SKRZ
overlap SKRl
linOl BRIGHT TANGLE SKRl K MINL MAXW ; #BRIGHT start, #TANGLE start
ready
;;;prints MINL MAXW
;select lines with correct angle:
atan ANGLE TANGLE ; #ANGLE start, #TANGLE end temp
if MINA > -1.57 branch 4
rephi SKRZ ANGLE 0.0 3 . 1 4
maxcon SKR2 SKRZ 0.0
sub ANGLE ANGLE SKRZ
if MAXA e 1.57 branch 4
replo SKR2 ANGLE 0.0 -3.14
mincon S m 2 SKR2 0.0
sub ANGLE ANGLE SKRZ
rephi SKRZ ANGLE MAXA 99.0
replo SKRZ SKR2 MINA 99.0
replo SKR2 SKR2 9.0 1.0
rephi SKR2 SKR2 8.0 0.0
mu1 BRIGHT BRIGHT SKRZ
add LINES LINES BRIGHT
mu1 ANGLE ANGLE BRIGHT ; #BRIGHT end
add AVGANG AVGANG ANGLE ; #ANGLE end temp
if K c KMAX jump LOOPK

; extend line segments, maybe concatenate (fill in gaps):
div ANGLE AVGANG LINES ; average angle for each line pixel
tan TANGLE ANGLE ; #ANGLE temp, #TANGLE start temp
copy SKRl LINES
overlap SKRl
overlap TANGLE
xlinOl LINES SKRl TANGLE K9 ; extend lines
; #TANGLE end temp

; modify extended lines to more uniform brightness:
stats LINES
if $MAX e= 0.0 jump SUBDONE
smul F1 $MAX 9.0
rephi SKR2 LINES 0.0 F1
add LINES LINES SKR2
sadd F1 F1 $MAX
sdiv F1 2 5 4 . 0 F1
mulcon LINES LINES F1

; characterize each extended (concatenated) line:
overlap LINES
pmomuv LINES MOM0 AVGU AVGV LENGTH WIDTH TANGLE 2 5 5 . 0 .
; #MOM0 start, #LENGTH start, #WIDTH start, #TANGLE start temp
; #AVGU start, #AVGU end, #AVGV start, #AVGV end
mulcon LENGTH LENGTH 12.0
sqrt LENGTH LENGTH
mulcon WIDTH WIDTH 1 2 . 0
sqrt WIDTH WIDTH
atan ANGLE TANGLE ; #ANGLE start temp, #TANGLE end
; discriminate:
zeroimage SKRl ; peak acceptance mask
addcon SKRl SKRl 1.0 ; tentatively accept everything
replo SKR2 LENGTH MINLEN 0.0 ; #LENGTH end
rephi SKR2 SKR2 0.0 2 5 4 . 0
min SKRl SKRl SKRZ ; reject too short
rephi SKRZ WIDTH 3.0 0.0 ; #WIDTH end

E-6

rephi SKR2 SKR2 0.0 254.0
min SKRl SKRl SKR2 ; reject too wide
if MINA > -1.57 branch 4
rephi SKRZ ANGLE 0.0 3.14
maxcon SKR2 SKR2 0.0
sub ANGLE ANGLE SKRZ
if MAXA e 1.57 branch 4
replo SKRZ ANGLE 0.0 -3.14
mincon SKR2 SKR2 0.0
sub ANGLE ANGLE SKRZ
rephi SKRZ ANGLE MAXA 99.0 ; #ANGLE end
replo SKRZ SKRZ MINA 99.0
replo SKR2 SKR2 9.0 1.0
rephi SKR2 SKR2 8.0 0.0
min MASK SKRl SKRZ ; reject wrong angle, #MASK start
; MASK is 1 for accept, 0 for reject.
stats MASK
if $MAX c= 0.0 jump SUBDONE
; if there are no correct length/width/angle line shadows,
; go on to the next block;
; otherwise, do multispectral analysis of this block:

mulcon SKRZ SMOOTH COEFl
add RESULT RESULT SKR2
mu1 SKR2 MOMO SMOOTH ; #SMOOTH end
mulcon SKRZ SKR2 COEF7
add RESULT RESULT SKRZ
mulcon SKRZ SHADOW COEF2
add RESULT RESULT SKRZ
mu1 SKR2 MOMO SHADOW ; #SHADOW end
mulcon SKRZ SKR2 COEF6
add RESULT RESULT SKRZ
mulcon SKR2 MOMO COEF3 ; #MOM0 end
add RESULT RESULT SKRZ

addcon RESULT RESULT COEFO

mu1 RESULT RESULT MASK ; #MASK end
; RESULT image is done.

stats RESULT
if $MAX e Q jump SUBDONE

maxcon RESULT RESULT 0.0
mincon RESULT RESULT 255.0
;scale SKR2 RESULT
;smul F1 Q $B
;prints Q $B F1
;disp RESULT SCALED SKR2 000 000 F1
;dispres RESBT-CODED-RAWa RAWa 000 000 Q RESULT

gosub DRAW-LOOPS RAWa RESULT ; #RAWa end, #RESULT end

label SUBDONE
sadd SKIP SKIP NROW ; tentative first row of next block
ssub SKIP SKIP MINLEN ; back up a little, allow some overlap of blocks
ssub SKIP SKIP 20 ; allow a little more overlap
jump SUBSCENE ; do next block in this file

label SCENEND ; go here when the whole file (whole scene) is done

STOP ; logical end of script

subdef DRAW-LOOPS I32 SIMG I32 RIMG
; Standard type 2 result file sequence;

E- 7

; draw loops around targets:
; SIMG is the scene image number.
; RIMG is the result image number.
; Q is assumed to be defined externally as type F32,
; the standard target/background pixel value criterion.
; I1 and I2 are assumed to be defined externally as type I32 scratch.
; F1 is assumed to be defined externally as type F32 scratch.
; K9 is assumed to be a type I32 variable that is the number of the
; 9-pixel kernel, all pixels = 1.0, already loaded into memory.
seq F1 15.0 ; sigma, approx. minimum loop radius [pixels]
newimg I1 ; get a not-yet-used image number
copdef I1 RIMG 1
newimg 12
copdef I2 RIMG 1
zeroimage I2
replo I1 RIMG Q 0.0
rephi I1 I1 1.0 255.0 ; binary, 0 or 255.
smthx I1 I1 FI 5
smthy I1 I1 F1 5
smul F1 F1 F1 ; sigma*sigma
sdiv F1 24.61575 F1 ; 255/2/pi/sigma/sigma*exp(-l/2)
overlap I1
contour I2 I1 F1 255.0 ; contour at distance=sigma
overlap 12
convolve I1 I2 K9
rephi I1 I1 1.0 255.0 ; binary, 3-pix-wide loops.
sub I1 I1 I2 ; binary, double 1-pix-wide loops.
sub I2 SIMG I2
maxcon I2 I2 0.0 ; scene with black 1-pix-wide loops.
mincon I2 I2 253.0
max I1 I1 I2 ; scene with white-black-white loops.
echo-on
writeresult I1 1 Q
echo-of f
disp . I1 20 20 254.0 ; standard type 2 result display.
;dispres . I1 20 20 Q RIMG ; display as type 1 scene\result.
defimg I2 0 0 0 ; destroy image number 12, de-allocate memory.
defimg I1 0 0 0
return ; logical end of subroutine DRAW-LOOPS

END ; absolute end of script

; MINWID=2.0, MAXWID=4.0, MINLEN=50.0 .
; Two alternative sets of coefficients, from same F run:
; This set works:
;for 8 active features: 0.000001

seq Q 73.598640 = target criterion.
seq COEFO 1.240973e+02 0.02390 SCSIDISK:\fi\modmsk.fi
seq COEFl -8.669008e-02 0.00001 SCSIDISK:\fi\smooth.fi
seq COEF2 2.326697e+00 0.19999 SCSIDISK:\fi\shadow.fi
seq COEF3 1.533059e-03 0.02813 SCSIDISK:\fi\bright.fi
seq COEF4 1.835334e-02 0.00000 SCSIDISK:\MSS04\CTl\fd2613b2.img
seq COEF5 -4.768633e-01 0.00502 SCSIDISK:\MSSO4\CTl\fd2613c2.img
seq COEF6 -1.585815e-05 0.00003 !*003002
seq COEF7 -2.098707e-05 0.02049 !*003001

; This set does not work; it indicates no targets: WHY???
;for 8 active features: 0.000001

seq Q 86.156410 = target criterion.
seq COEFO 5.119688e+01 0.08687 SCSIDISK:\fi\modmsk.fi
seq COEFl 6.255224e-01 0.00014 SCSIDISK:\fi\smooth.fi
seq COEF2 2.943419e+00 0.31271 SCSIDISK:\fi\shadow.fi

; 0.000001 = 0 . 5 0 0 * 0.000000 + 0.500 * 0.000002

; 0.000001 = 0.500 * 0.000000 + 0.500 * 0.000001

E-8

seq COEF3 2.846793e-03 0.21013 SCSIDISK:\fi\bright.fi
seq COEF4 7.534531e-01 0.23986 SCSIDISK:\MSSO4\CTl\fd2613b2.img
seq COEF5 -1.077132e+00 0.33333 SCSIDISK:\MSS04\CTl\fd2613c2.img
seq COEF6 -3.600505e-05 0.00007 !*003002
seq COEF7 -3.447299e-05 0.24040 !*003001

; MINWID=2.0, MAXWID=4.0, MINLEN=50.0 .
; extend peak pixels in direction of shadows in F.
;for 8 active features: 0.001391
; 0.001391 = 0.500 * 0.000495 + 0.500 * 0.002286
seq Q 78.206581 = target criterion.
seq COEFO 1.369082e+02 0.24861 SCSIDISK:\fi\modmsk.fi
seq COEFl -2.388816e-01 0.19052 SCSIDISK:\fi\smooth.fi
seq COEF2 2.014497e+00 0.18546 SCSIDISK:\fi\shadow.fi
seq COEF3 6.643848e-04 -0.00015 SCSIDISK:\fi\bright.fi
seq COEF4 9.107037e-01 0.24868 SCSIDISK:\MSSO4\CTl\fd2613b2.img
seq COEF5 -1.355251e+00 0.44652 SCSIDISK:\MSS04\CT1\fd2613~2.irng
seq COEF6 -6.830224e-06 -0.00010 !*003002
seq COEF7 -8.674217e-06 -0.00021 !*003001

; MINWID=2.0, MAXWID=4.0, MINLEN=50.0 .
; extend peak pixels in direction of shadows in F.
;RESTART :
;for 8 active features: 0.001133
; 0.001133 = 0.500 * 0.000324 + 0.500 * 0.001942
seq Q 75.831810 = target criterion.
seq COEFO 1.336207e+02 0.24887 SCSIDISK:\fi\modmsk.fi
seq COEFl -2.810382e-01 0.17412 SCSIDISK:\fi\smooth.Ei
seq COEF2 2.113311e+00 0.18280 SCSIDISK:\fi\shadow.fi
seq COEF3 1.148430e-04 0.00000 SCSIDISK:\fi\bright.fi
seq COEF4 9.275218e-01 0.23917 SCSIDISK:\MSS04\CTl\fd2613b2.img
seq COEF5 -1.327113e+00 0.42992 SCSIDISK:\MSS04\CTl\fd2613c2.img
seq COEF6 -6.112969e-06 0.00003 !*003002
seq COEF7 -6.394235e-07 -0.00000 !*003001

As usual, the entire .fc file is executed once for each scene, with a scene in this case being one
image file. The .fc file contains a loop which is executed once for each block of a scene, starting
at the “label SUBSCENE” command and ending at the “jump SUBSCENE” command. Each
block comprises NROW rows; the user-defined variable NROW is set small enough to allow the
entire process for one block to be executed in the available memory. Each block starts with row
SKIP of the scene image file, with the value of SKIP being incremented from one block to the
next. Before a block is read into memory, every pixel in the memory image is set to zero. If
none of the pixels is changed from its zero value by the read process, the script assumes that the
end of the file has been passed and the scene is finished. A result image for a block is written
to a file only if a target is found in the block. All the result image files for all the scenes have
names in one single sequence, because of the use of “+” for the result image file names in the
.sl file. The operator will not know from the result image file names which result image file
came from which scene image file, but this information is available from the data printed on the
operator’s screen while the script is being executed.

The first part of the analysis for each block looks for shadows of the correct geometry.
This does not use the result of any training process or any of the COEFn values; it uses only
user-chosen values for acceptable shadow sizes and values for shadow angles which can be
calculated from image header data such as date, time, location, and heading of the aircraft
carrying the imaging system (in this example, the angle values are put into the .fc file explicitly).
If the fnst part of the analysis finds acceptable shadows, then the second part of the analysis,
using multispectral data, is done for that block. This second step does use the Q and COEFn

E- 9

values obtained from a training process.
The multispectral analysis is done for only one pixel for each acceptable shadow. This

means that the multispectral training process must also be done using only one -- the correct one
-- pixel for each acceptable shadow. This is accomplished by having the training process .fc file
include the same shadow geometry discrimination step as that included in the surveillance process
.fc file listed above, and using only the one selected pixel for each acceptable shadow. The
training process .fc file is:
echo-of f
; fss7b. fc
; find stack shadows.
; reject very narrow shadows.
; use average angle for each pixel in a line.
; use XLINOl and PMOMUV.

sdefF32 MINWID ; minimum width of a stack shadow [pixels]
seq MINWID 2.0
sdefF32 MAXWID ; maximum width of a stack shadow [pixels]
seq MAXWID 5.0
sdefF32 MINLEN ; minimum length of a stack shadow [pixels]
seq MINLEN 40.0
; MINWID=3.0, MAXWID=4.0, MINLEN=50.0 does not work.

sdefF32 NOMA ; nominal angle of stack shadow [radians]
;if $SCENE == 1 seq NOMA 1.00 ; 2605
;if $SCENE == 2 seq NOMA 0.96 ; 2606
;if $SCENE == 3 seq NOMA 1.085 ; 2607
;if $SCENE == 4 seq NOMA 1.15 ; 2608
;if $SCENE == 5 seq NOMA -0.39 ; 2609, approx
;if $SCENE == 6 seq NOMA 0.0 ; 2610, default
;if $SCENE == 7 seq NOMA 0.0 ; 2611, default
;if $SCENE == 8 seq NOMA 1.33 ; 2612
;if $SCENE == 9 seq NOMA 1.35 ; 2613
prints $SCENE
if $SCENE == 1 seq NOMA 1.00 ; 2605
if $SCENE == 2 seq NOMA 0.96 ; 2606
if $SCENE == 3 seq NOMA 0.96 ; 2606
if $SCENE == 4 seq NOMA 1.33 ; 2612
if $SCENE == 5 seq NOMA 1.35 ; 2613
if $SCENE == 6 seq NOMA 1.35 ; 2613
sdefF32 MINA MAXA
ssub MINA NOMA 0.15 ; minimum angle
sadd MAXA NOMA 0.15 ; maximum angle

; define and read kernels:
sdefI32 L, L4, L12, L32, L52, L76, L120
sdefI32 K, K9, K21, K37, K69, K97, K137, KMAX, KMIN
seq K 0
seq L 0
sadd L K 1
seq L12 L
defkern L12 -1 2 -1 2
readkernel kernels\Ll2.opr L12
sadd K L 1
seq K21 K
defkern K21 -2 2 -2 2
readkernel kernels\K2l.opr K21
sadd L K 1
seq L32 L
defkern L32 -2 3 -2 3
readkernel kernels\L32.opr L32
sadd K L 1
seq K37 K

E-10

defkern K37 -3 3 -3 3
readkernel kernels\K37.opr K37
sadd L K 1
seq L52 L
defkern L52 -3 4 - 3 4
readkernel kernels\L52.opr L52
sadd K L 1
seq K69 K
defkern K69 -4 4 -4 4
readkernel kernels\K69.opr K69
sadd L K 1
seq L76 L
defkern L76 -4 5 -4 5
readkernel kernels\L76.opr L76
sadd K L 1
seq K97 K
defkern K97 -5 5 -5 5
readkernel kernels\K97.opr K97
sadd L K 1
seq L120 L
defkern L120 -5 6 -5 6
readkernel kernels\Ll20.opr L120
sadd K L 1
seq K137 K
defkern K137 -6 6 -6 6
readkernel kernels\K137.opr K137
smax KMAX K L
sadd K KMAX 1
seq K9 K
defkern K9 -1 1 -1 1
readkernel kernels\Kg.opr K9

; define images:
sdefI32 RAW SKRl SKR2 DISP LINES BRIGHT TANGLE ANGLE RESULT SHADOW
sdefI32 AVGANG MOMO AVGU AVGV LENGTH WIDTH MASK SMOOTH
seq RAW 1 ; raw scene image
defimg RAW 500 500 6
seq SKRl 5
copdef SKRl RAW 6
seq AVGU SKRl ; peak displacement
seq SKR2 6
copdef SKR2 RAW 1
seq AVGV SKR2 ; peak displacement
seq DISP 7 ; display image
copdef DISP RAW 1
seq WIDTH DISP ; peak width
seq LINES 8 ; sum of brightnesses of lines
copdef LINES RAW 1
seq BRIGHT 9 ; line brightness
copdef BRIGHT RAW 1
seq LENGTH BRIGHT ; peak length
seq TANGLE 10 ; tangent of line angle
copdef TANGLE RAW 6
seq ANGLE TANGLE ; line angle
seq SHADOW 11 ; all shadows
copdef SHADOW RAW 1
seq RESULT 12
copdef RESULT RAW 1
seq AVGANG 13 ; weighted average angle of line
copdef AVGANG RAW 1
seq MOMO AVGANG ; sum of pixels in peak
seq MASK 14 ; training mask
copdef MASK RAW 0
seq SMOOTH RAW ; Fonly
;seq SMOOTH 15 ; smoothed scene, Eonly
;copdef SMOOTH RAW 1 ; Eonly

E- 11

sdefF32 SIGMA MINL MAXW FTEM
sdefI32 OPSIZ ITEM

readscene MASK ; Fonly
;zeroimage RESULT ; result image, Eonly
;addcon RESULT RESULT COEFO ; Eonly

readscene RAW ; raw scene image #1
disp . RAW 100 100 0.0
; delete too-narrow shadows (noise):
sadd ITEM MINWID MINWID ; maximum kernel diameter
seq K 0
label LOOP2
sadd K K 1
if K > KMAX abort
sadd OPSIZ K 3 ; kernel diameter
if OPSIZ c ITEM jump LOOP2 ; (done with ITEM)
copy SKRl RAW
overlap SKRl
median SMOOTH SKRl K ; smoothed scene image
disp NOISE - REMOVED SMOOTH 100 600 0.0
; find shadows:
sadd FTEM MAXWID MAXWID
sadd FTEM FTEM 1.0 ; minimum kernel diameter
seq K 0
label LOOPl
sadd K K 1
if K > KMAX abort
sadd OPSIZ K 3 ; kernel diameter
if OPSIZ c FTEM jump LOOPl ; (done with FTEM)
copy SKRl SMOOTH
overlap SKRl
median SHADOW SKRl K
sub SHADOW SHADOW SKRl
maxcon SHADOW SHADOW 0.0 ; shadows are > 0, bright spots = 0
scale DISP SHADOW
disp SHADOWS-SCALED DISP 100 600 0.0
rephi DISP DISP 0.0 254.0
disp SHADOWS-PEGGED DISP 100 600 0.0

; find line segments, which may be shorter than MINLEN:
seq KMAX K69
copy SKRl SHADOW
zeroimage LINES
zeroimage AVGANG
seq K 0
label LOOPK
sadd K K 1
sadd OPSIZ K 3
sadd MINL OPSIZ -1.0 ; min length of acceptable line
sadd MAXW OPSIZ -4.0 ; max width of acceptable line
if MAXW c MINWID jump LOOPK
prints K
;;;SSub ITEM OPSIZ 1
; ; ;overlap SKRl
;;;median SKR2 SKRl K 0 ITEM
;;;copy SKRl sKR2
overlap SKFU
linOl BRIGHT TANGLE SKRl K MINL MAXW
ready
prints MINL MAXW
;disp LINE BRIGHT 100 600 0.0
;zeroimage DISP
;scale DISP BRIGHT K

E-12

;disp LINE-SCALED DISP 100 600 0.0
rephi DISP BRIGHT 0.0 255 .0
disp LINE-PEGGED DISP 100 600 0.0
;select lines with correct angle:
atan ANGLE TANGLE
if MINA > - 1 . 5 7 branch 4
rephi SKR2 ANGLE 0.0 3 .14
maxcon SKRZ SKRZ 0.0
sub ANGLE ANGLE SKRZ
if MAXA c 1 . 5 7 branch 4
replo SKR2 ANGLE 0.0 -3 .14
mincon SKRZ SKR2 0.0
sub ANGLE ANGLE SKR2
rephi SKR2 ANGLE MAXA 99.0
replo SKR2 SKRZ MINA 99.0
replo SKR2 SKRZ 9.0 1.0
rephi SKR2 SKRZ 8.0 0 . 0
mu1 BRIGHT BRIGHT SKR2
scale DISP BRIGHT K
;disp SELECTED-LINE-SCALED DISP 100 600 0.0
rephi DISP DISP 0.0 254 .0
disp SELECTED-LINE-PEGGED DISP 100 600 0.0
add LINES LINES BRIGHT
mu1 ANGLE ANGLE BRIGHT
add AVGANG AVGANG ANGLE
if K c KMAX jump LOOPK

;zeroimage SKR2
;copyedges LINES SKR2 KMAX ; redundant ? desirable ?
;scale DISP LINES KMAX
scale DISP LINES
;disp SELECTED-LINES-SCALED DISP 100 600 0.0
rephi DISP DISP 0.0 254 .0
disp SELECTED-LINES-PEGGED DISP 100 600 0.0

; extend line segments, maybe concatenate (fill in gaps):
div ANGLE AVGANG LINES ; average angle for each line pixel
tan TANGLE ANGLE
copy SKRl LINES
overlap SKRl
overlap TANGLE
;xlinOl LINES SKRl TANGLE K69 ; extend lines by 4 pixels on each end
;xlinOl LINES SKRl TANGLE K21 ; extend lines by 2 pixels on each end
xlinOl LINES SKRl TANGLE K9 ; extend lines by 2 pixels on each end
scale DISP LINES
disp XLINES-SCALED DISP 100 600 0.0
rephi DISP DISP 0.0 254 .0
disp XLINES-PEGGED DISP 100 600 0.0

; modify extended lines to more uniform brightness:
stats LINES
smul FTEM $MAX 9.0
rephi DISP LINES 0.0 FTEM
add LINES LINES DISP
sadd FTEM FTEM $MAX
sdiv FTEM 2 5 4 . 0 FTEM
mulcon LINES LINES FTEM
disp MODIFIED-XLINES LINES 100 600 0.0

; characterize each extended (concatenated) line:
overlap LINES
pmomuv LINES MOM0 AVGU AVGV LENGTH WIDTH TANGLE 255 .0
mulcon LENGTH LENGTH 1 2 . 0
sqrt LENGTH LENGTH
mulcon WIDTH WIDTH 1 2 . 0
sqrt WIDTH WIDTH

E-13

atan ANGLE TANGLE
; discriminate:
zeroimage SKRl ; peak acceptance mask
addcon SKRl SKRl 1.0 ; tentatively accept everything
replo SKR2 LENGTH MINLEN 0.0
rephi SKR2 SKRZ 0.0 254 .0
min SKRl SKRl SKRZ ; reject too short
rephi SKRl WIDTH 3.0 0.0
rephi SKR2 SKR2 0.0 254.0
min SKRl SKRl SKRZ ; reject too wide
if MINA > -1.57 branch 4
rephi SKRZ ANGLE 0.0 3 . 1 4
maxcon SKR2 SKRZ 0.0
sub ANGLE ANGLE SKR2
if MAXA c 1.57 branch 4
replo SKR2 ANGLE 0.0 - 3 . 1 4
mincon SKR2 SKR2 0.0
sub ANGLE ANGLE SKRZ
rephi SKR2 ANGLE MAXA 99.0
replo SKRZ SKR2 MINA 99.0
replo SKRZ SKRZ 9.0 1 . 0
rephi SKR2 SKR2 8.0 0 . 0
min SKRl SKRl SKR2 ; reject wrong angle
; SKRl is a mask, 1 for accept, 0 for reject.

; extend mask in shadow direction:
copy ANGLE SKRl
mulcon ANGLE ANGLE NOMA
tan TANGLE ANGLE
overlap SKRl
overlap TANGLE
xlinOl SKRZ SKRl TANGLE K69 ; extend lines by 4 pixels on each end
rephi SKRl SKR2 0.0 1 . 0
mulcon DISP SKRl 254.0
disp MASK-MULTIPLIER DISP 1 0 0 600 0.0

mu1 MASK MASK SKRl ; Fonly, modify training mask
writefeat SCSIDISK:\fi\modmsk.fi MASK ; feature 0, mask, Fonly
;copy MASK SKRl ; Eonly
writefeat SCSlDISK:\fi\smooth.fi SMOOTH ; feature 1, smoothed scene #1, Fonly
;mulcon SKR2 SMOOTH COEFl ; Eonly
;add RESULT RESULT SKR2 ; Eonly
scale DISP SHADOW ; Fonly
writefeat SCSIDISK:\fi\shadow.fi DISP ; feature 2 , shadow contrast, Fonly
;mulcon SKRZ SHADOW COEF2 ; Eonly
;add RESULT RESULT SKR2 ; Eonly
scale DISP MOMO ; Fonly
writefeat SCSIDISK:\fi\bright.fi DISP ; 3, line intensity (sort of), Fonly
;mulcon SKRZ MOMO COEF3 ; Eonly
;add RESULT RESULT SKRZ ; Eonly

featfil ; Fonly; use next scene image as next feature image
;readscene SKRl ; Eonly
;mulcon SKR2 SKRl COEFB ; Eonly
;add RESULT RESULT SKR2 ; Eonly
featfil ; Fonly
;readscene SKRl ; Eonly
;mulcon SKR2 SKRl COEF5 ; Eonly
;add RESULT RESULT SKR2 ; Eonly

feat* 3 2 ; FOnly
;mu1 SKRZ MOMO SHADOW ; Eonly
;mulcon SKR2 SKR2 COEF6 ; Eonly
;add RESULT RESULT SKR2 ; Eonly
feat* 3 1 ; Fonly
;mu1 SKR2 MOMO SMOOTH ; Eonly

E- 14

;mulcon SKR2 SKR2 COEF7 ; Eonly
;add RESULT RESULT SKR2 ; Eonly

stop ; Fonly
end ; Fonly

mu1 RESULT RESULT MASK

maxcon RESULT RESULT 0.0
mincon RESULT RESULT 255.0
scale DISP RESULT
smul FTEM Q $B
prints Q $B FTEM
disp RESULT-SCALED DISP 100 600 FTEM
jump LABEL1
set_= DISP FTEM $B
if $SCENE == 1 writeimage \ri\temlOl.ri DISP 1
if $SCENE == 2 writeimage \ri\temlOa.ri DISP 1
if $SCENE == 3 writeimage \ri\teml03.ri DISP 1
if $SCENE == 4 writeimage \ri\teml04.ri DISP 1
if $SCENE == 5 writeimage \ri\teml05.ri DISP 1
if $SCENE == 6 writeimage \ri\teml06.ri DISP 1
label LABEL1

dispres RESULT-CODED-RAW RAW 100 600 Q RESULT

; Standard type 2 result file sequence;
; draw loops around targets:
sdef I32 RESULT2
seq RESULT2 RESULT ; RESULT2 could be different from RESULT.
seq SIGMA 5.0 ; minimum loop radius [pixels]
seq SIGMA 15.0 ; minimum loop radius [pixels]
replo RESULT2 RESULT Q 0.0
rephi RESULT2 RESULT2 1.0 255.0 ; binary, 0 or 255.
smthx RESULT2 RESULT2 SIGMA. 5
smthy RESULT2 RESULT2 SIGMA 5
smul SIGMA SIGMA SIGMA ; sigma*sigma
sdiv SIGMA 24.61575 SIGMA ; 255/2/pi/sigma/sigma*e~(-l/2)
zeroimage SKRl
overlap RESULT2 ; RESULT2 should have at least 1 overlap row!
contour SKRl RESULT2 SIGMA 255.0 ; contour at distance=sigma
overlap SKRl ; SKRl should have at least 1 overlap row!
convolve RESULT2 SKRl K9
rephi RESULT2 RESULT2 1.0 255.0 ; binary, 3-pix-wide loops.
sub RESULT2 RESULT2 SKRl ; binary, double 1-pix-wide loops.
;writeimage LO0PS.img RESULT2 1
;disp . RESULT2 0 767 0.0
sub SKRl RAW SKRl
maxcon SKRl SKRl 0.0 ; scene with black 1-pix-wide loops.
mincon SKRl SKRl 253.0
max RESULT2 RESULT2 SKRl ; scene with white-black-white loops.
writeresult RESULT2 1 Q
echo-on
disp . RESULT2 100 600 254.0 ; standard type 2 result display.
;dispres . RESULT2 512 767 Q RESULT ; display as type 1 scene\result.
; this does not work if RESULT2 == RESULT.

STOP
END

The training process uses 6 training scenes, which are small images extracted fiom the large
images listed previously for the surveillance process. The .sl file for the training process is:

6 scenes

E-15

3 images per scene
SCSIDISK:\MSSQ4\SS1\fd2605rn8.img
SCSIDISK:\MSS04\CTl\fd2605a.img
SCSIDISK:\MSS04\CTl\fd2605b.img
SCSIDISK:\MSSO4\CT1\fd2605c.img
SCSIDISK:\MSS04\SSl\fd2606m8.img
SCSIDISK:\MSS04\CTl\fd2606a.img
SCSIDISK:\MSS04\CTl\fd2606b.img
SCSIDISK:\MSS04\CTl\fd2606c.img
SCSIDISK:\MSS04\SSl\fd2606m9.img
sCsIDIsK:\MSS04\CT1\fd2606a2.img
sCSIDISK:\MSS04\CT1\fd2606b2.img
SCSIDISK:\MSS04\CTl\fd2606c2.img
SCSIDISK:\MSS04\SSl\fd2612m8.img
SCSIDISK:\MSS04\CTl\fd2612a.img
SCSIDISK:\MSSO4\CTl\fd2612b.img
SCSIDISK:\MSS04\CT1\fd2612c.img
SCSIDISK:\MSS04\SSl\fd2613m8.img
SCSIDISK:\MSSO4\CTl\fd2613al.img
SCSIDISK:\MSSO4\CTl\fd2613bl.img
SCSIDISK:\MSS04\CT1\fd2613cl.img
SCSIDISK:\MSS04\CTl\fd2613m4.img
SCSIDISK:\MSS04\CTl\fd2613a2.img
SCSIDISK:\MSS04\CTl\fd2613b2.img
SCSIDISK:\MSS04\CTl\fd2613c2.img

This .sl file specifies one mask and three scene images (which were originally the three bands
of a multispectral image) for each of the 6 training scenes. The masks were marked with the
whole stack shadow being designated as target area; the .fc script file contains commands that
modify the masks so that only the one correct pixel is actually used for each training target.

E-16

APPENDIX F

USER COMMANDS

USER COMMANDS

The first section of this appendix lists several categories of commands and the names of
all the commands in each category. The second section lists all the commands in alphabetical
order and gives an explanation of the use of each command.

CONTROL OF PROGRAM
REM, ECHO-ON, ECHO-OFF, ECHO, ECHOTIME, READY
LABEL, JUMP, BRANCH, IF, PAUSE, STOP, END
GOSUB, SUBDEF, RETURN

DEFIMNG IMAGES AND KERNELS (OPERATORS)
DEFIMG, DEFKERN, COPDEF, CLEAR, SET-AE3
also READIMAGE, READSCENE, RESAMPLE, UNDERSAMPLE, NEWIMG

READING IMAGES AND KERNELS FROM FILES
READIMAGE, READSCENE, READKERNEL, BANDR, SETHFA, PHEAD; also INCFIL
INM, INS

BASIC IMAGE OPERATIONS
ZEROIMAGE, SETPIX, N"00, NTRPOl, COPY, COPYEDGES, OVERLAP, RESAMPLE,
UNDERSAMPLE, INSERT, EXTRACT, REMAP, REGISTER

ARITHMETIC OPERATIONS ON IMAGES
ADD, SUB, MUL, DIV, ABS, MAX, MIN, SETCON, ADDCON, SUBCON, MULCON,
DIVCON, MAXCON, MINCON, REPLO, REPHI, SQRT, TAN, ATAN, ATAN2, LOG, EXP
All the images in these operations must be already defined, all the same size, and all distributed
the same way arnong the daisies. The images need not be different; dst can be the same as src
or src2, etc. const is a single floating point value. These operations do not use or set the values
of overlap rows.

CONVOLUTION and related operations
CONVOLVE, SSQ

GRADIENTS
GRADT, XGRAD, YGRAD, GRADCON; also XY2RT

FILTERING IMAGES
SMTHX, SMTHY, MEDIAN, MEDlX, MEDlY, SMTHXS, SMTHYS

F- 1

MISCELLANEOUS IMAGE OPERATIONS
LINOl, LIN02, XLINO1, NLINO1, EDJ02
MODMSK
QUADXY, QUADW
SEGLAB
NJCON, GRADCON
MOMUV
PEAKl, PLNKl, PMRG1, PACC1, PMOMXY1, PMOMUVl, PMOMXY, PMOMUV
XIMG, YIMG

GEOMETRIC CORRECTIONS
SBEND

DISPLAYING IMAGES
VGA, DISP, DISPRES; also SCALE, CONTOUR

IMAGE INFORMATION
GETPIX, STATS, SUMPIX, HIST2, PDFXYZ, PDFXYl; SET-AB, DEFIMG

FEATURE IMAGES
WRITEFEAT, FEATFIL, FEAT * ; also SCALE

WRITING IMAGES TO FILES
WRITEIMAGE, WRITEFEAT, WRITERESULT; also INCFIL, SCALE
OUTM, OUTS

SCALAR ARITHMETIC
PRINTS, SDEFI32, SDEFF32, SEQ, SADD, SSUB, SMUL, SDIV, SABS, SMIN, SMAX,
SSQRT, STAN, SATAN, SATAN2, SLOG, SEXP

The user can define variables, either 32-bit integers or 32-bit floating, set their values,
print their values, and use them as parameters in commands. In particular, the destination
parameter for each of the above-listed scalar arithmetic operations (except PRINTS) must be a
scalar variable. Some scalar variables are pre-defined and their values are automatically set by
certain operations. The pre-defined scalar variables are named $N, $NCOL, $NROW, $SCENE,
$MINI, $MAXI, $MINJ, $MAXJ (integers), and $AVG, $SIG, $MAX, $MIN, $A, $B, $AVGX,
$AVGY, $SIGX, $SIGY, and $COXY (floating). The program DOES distinguish between upper
and lower case characters in variable names. The arithmetic operations for scalar variables allow
free mixing of integer and floating types.

STRING (FILE NAME) MANIPULATION
SEQ, SADD, INCFIL, PRINTS

The user can manipulate certain file names that are stored in the program. These are
$FSIA[], an array of scene image file names; $FFIA[], an array of feature image file names; and
$FN, the result image file name. The user cannot define his own file name or string variables,
but he can use these permanently-defined string variables with the understanding that the program
automatically uses these variables for reading and writing scene images, feature images, and result
images..

F-2

The command names themselves are NOT case sensitive; the command names can be
typed in upper case, lower case, or any mixture of cases. The user-accessible and user-defined
variable names ARE case-sensitive. Command parameters may be separated by cornmas or
spaces or both.

F- 3

ABS dst, src
Set image dst = absolute value of image src.

ADD dst, srcl, src2
Set image dst = image srcl + image src2.

ADDCON dst, src, const
Set image dst = image src + const.

ATAN dst, src

image src pixel. Angles will be in radians, in the interval (-7r/2,7r/2).
Set each image dst pixel equal to the inverse tangent of the value of the corresponding

ATAN2 dst, srcy, srcx
The common inverse tangent function with two arguments, corresponding to the opposite

and adjacent sides of a right triangle. Set each image dst pixel equal to the inverse tangent value
(the angle), with the opposite side value from image srcy and the adjacent side value from image
srcx. Angles will be in radians, in the interval (-7~~7~3.

BANDR nbands
BANDR band, img [, byt0 [, ncol [, bpp I]]
BANDR (no parameters)

This BANDR command is used to prepare for reading row-interleaved images from a file
with the READIMAGE -1 command.

In its first form, with only one parameter, the BANDR command sets the number of bands
to nbands.

In its second form, with more than one parameter, BANDR sets parameters for band (or
sub-image) number band (band = 1, 2, ... nbands), as follows. img is the number of the
memory image to receive band band, or if the img value is zero, band band is not used. byt0
is the number of bytes fiom the beginning of the image file composite row to the beginning of
band band. ncol is the number of columns (pixels, not necessarily bytes) to be read for band
band. ncol should normally not be greater than the number of pixels that are actually in each
row of the image file. bpp is the number of bytes per pixel (see the READIMAGE command)
for band band. If the value -1 is given for byt0, mol, or bpp, for any band, the READIMAGE
-1 command will attempt to determine the correct values for these parameters from the file
header. If values are not specified for the last 1, 2, or 3 parameters in this BANDR command,
their values stored in the program are not changed. Initial values for all these 3 parameters are -
1; initial img values are 0.

With no parameters, the BANDR command prints the current values for all bands for
which non-default parameters have been specified.

For any number of parameters, BANDR sets the user-accessible variable $N equal to the
number of bands.

BRANCH n
Jump to the .fc file line which is n lines removed Erom the line containing this BRANCH

statement. n may be positive or negative. n=O is an error condition, since this would establish
an infinite loop of repeatedly branching to the current line. Although n=l is not an error, a

F- 4

BRANCH command with n=l is superfluous. It causes a jump to the following line, which
would be the normal sequence even if the BRANCH statement were absent. (BRANCH does not
exist in program G.)

CLEAR (no parameters)

variables, and free the memory allocated for these things.
Clear the tables that hold information about images, operators, and user-defined scalar

CONTOUR dst, src, sval, dval
This operation draws one contour curve in destination image dst, representing a curve of

constant intensity in source image src. If a pixel in src has intensity at least as great as the
floating point value sval, and at least one of its four nearest neighbors has intensity less than sval,
then the corresponding pixel in dst is set equal to the floating point value dval. Otherwise, dst
pixel values are left unchanged. src should have at least 1 overlap row. dst does not need to
be the same size as src.

CONVOLVE dst, src, opr
Set image dst equal to the convolution of image src with operator (kernel) opr. That is,

set each dst pixel equal to the sum of (src * opr), summed over the domain of the operator opr
with the operator's "center" pixel positioned on the src pixel that corresponds to the dst pixel.
The pixels of image dst in the excluded edge region, which is defined by the. domain of the
operator opr, are set to zero. src should have enough overlap rows to accommodate operator
opr; the overlap rows must be present and have valid values. Correct values can be put into the
overlap rows with the OVERLAP command. The number of overlap rows should be at least as
large as the larger of the absolute value of jmax or the absolute value of jmin for operator opr.
opr must be greater than 0. dst and src should be different images. The image dst does not
need to be the same size as the image src, but the two images do need to bxe distributed among
the daisies in a manner compatible with the RESAMPLE algorithms. If there is question about
compatibility, it may be helpful to have extra overlap rows for image src.

Note that this is not strictly a proper convolution calculation, which would require
reversing the signs of the two indexes in the operator.

COPDEF dst, src [, novl]
Define space for previously undefined image dst so that it is compatible with the

previously defined image src. That is, the total sizes are the same for the two images, and their
primary rows are distributed the same way among the several daisies, so that the two images are
compatible for 2- or 3-image operations. The new image dst will have novl overlap rows
regardless of how many overlap rows the old image src had. If a value is not given for novl,
image dst will be created with the same number of overlap rows as image src. COPDEF does
not set any pixel values. COPDEF sets $A and $B to 0.0 and 1.0 for dst.

COPY dst, src
Copy image src to image dst. Both images must be already defined and of the same size.

COPYEDGES dst, src, opr
Copy the values of the pixels at the edges of image src to the corresponding pixels of

image dst. The edge pixels are specified by the domain of the operator opr. That is, if a certain

F-5

pixel of image src can be used as the center pixel of the operator opr without the domain of the
operator opr extending off the image src, then that certain pixel is NOT an edge pixel and it will
not be copied. This same definition of edge regions in terms of an operator is used in many of
the operations described later in this report. opr should be greater than 0 for this operation, since
it would not make sense to copy an edge region which contains no pixels. Images dst and src
should be the same size.

DEFIMG img, ncol, nrow [, novl]
DEFIMG img
DEFIMG (no parameters)

The first form of DEFIMG, with 3 or 4 parameters, reserves memory in each daisy to
hold part of image img. novl is the number of overlap rows. If no value is given for novl, the
value 0 is used. The full image comprises ncol columns by nrow rows. If either ncol or nrow
is 0, the image img is un-defined; its memory space is deallocated and any image data is lost.

You do not have control over which part of the image is held by which daisy. Two
images of the same size may be distributed differently among the several daisies, if the two
images do not have the same number of overlap rows or if they were created by different
processes; such image pairs are not compatible for most multiple-image operations. If two (or
more) images are defined by this DEFIMG command with the same values of all 3 parameters
ncol, nrow, and novl, they will be compatible for two-image operations. See the COPDEF
command.

DEFIMG does not set pixel values. DEFIMG sets the scale factors A and B for image
img to 0.0 and 1.0.

The second form of DEFIMG, with only one parameter, sets the user-accessible variables
$NCOL, $NROW, and $N to the number of columns, number of rows, and number of overlap
rows in image img. If the echo is on, these values are printed on the screen.

The third form of DEFIMG, with no parameters, lists on the screen the image number,
number of rows, number of columns, and number of overlap rows for all defined images.

DEFKERN opr, imin, imax, jmin, jmax
DEFKERN opr
DEFKERN (no parameters)

The first form of DEFKERN, with 5 parameters, reserves memory in each daisy to hold
all of the convolution operator (or kernel) opr. The parameters imin, imax, jmin, jmax define
the domain of this operator, in the horizontal (positive to the right) and the vertical (positive
downward) directions respectively, relative to the "center" pixel. The "center" pixel does not
need to be in the center, or even in the two-dimensional domain specified by imin, imax, jmin,
jmax. The "center" pixel is merely the pixel with operator domain coordinates i=O and j=O,
which is often, but not necessarily, in the center of the domain. opr must be greater than 0.
Operator 0 is always automatically defined with imin, imax, jmin, jmax all equal to zero; this
is useful as a dummy operator with a one-pixel domain. Using operator 0 to specify an excluded
edge region implies that none of the image is excluded.

The second form of DEFKERN, with only one parameter, sets the user-accessible
variables $MINI, $MAXI, $MINJ, and $MAXJ equal to the corresponding values for operator
opr. If the echo is on, these values are printed on the screen.

The third form of DEFKERN, with no parameters, lists on the screen all the defined
kernels and their domain limits.

F-6

F- 7

DISP caption, img [, row0 [, c010 [, Q I]]
DISP (no parameters)

The first form, with parameters, displays image img on the high-resolution RGB monitor.
The top left corner of the image will appear at row0,colO in the screen display. Red will be used
for pixels with value less than Q, green for pixels with value greater than Q. If a value is not
given for Q, the value 0.0 is used. If values are not given for row0 and col0, values 0 and 0 are
used. Pixel values should be between 0.0 and 255.0 (see SCALE). The character string caption
will be printed below the image on the screen. caption should not contain any embedded spaces.
If a ".'I is the first character of the string given as the caption, then the last-used file name will
be used as the caption. If the echo is on, the image will remain on the screen, and the program
will stop execution, until the operator hits a key on the keyboard. The A T E system uses the
environment variable QT9. ATW uses the environment variable DISPLAY, and assumes that
the window manager program mwm is running in the background.

The second form, with no parameters, sets 4 user-accessible variables to the sizes (in
pixels) of the window and of the characters printed in the captions, for the high-resolution RGB
monitor: $MAXI = window width, $MAXJ = window height, $MINI = character width, and
$MINJ = character height.

DISPRES caption, img, rowO, col0, Q, res
This is like DISP, except that the pixels are colored red or green according to whether the

corresponding pixel in the image res (normally, but not necessarily, a result image) has a value
less than Q. This allows an input image to be displayed with color coding based on a result
image.

DIV dst, srcl, src2
Set image dst = image srcl / image src2.

DIVCON dst, src, const
Set image dst = image src / const.

ECHO (no parameters except a remark)
Echo this input line back to the screen if the echo is on.

ECHO-ON (no parameters)
Turn on the echo, so that commands are printed on the operator's screen as they are

executed, along with certain related information including warnings of possible errors. The
default condition is echo on.

ECHO-OFF (no parameters)
Turn off the echo.

ECHOTIME (no parameters except a remark)

parameter. This is useful for timing studies and diagnostics.
Echo the time and this input line to the screen, regardless of the setting of the echo

EDJ02 bright, tangle, src, skr, opr, length, width, avg, g
Find edges. This EDJ02 uses XGRAD followed by LIN02 and Y O followed by

LIN02 to find sharp gradients in the image src. Image bright is set to the magnitude of the
gradient, and image tangle is set to the tangent of the angle between the gradient direction and
the x-axis. The opr, length, width, and avg parameters are those used in LIN02. g is a gradient
threshold; gradient amplitudes less than g are set to zero and ignored. skr is the number of an
image than can be used for scratch space. Either skr must be 0, in which case the EDJ02
function will define, use, and destroy a scratch image; or, image skr must be previously defined
with enough overlap rows to accomodate kernel opr, in which case the contents of image skr will
be undefined after this EDJO2 operation. EDJ02 requires one overlap row for image src. All
four images should be different, all of the same size. bright pixels in the excluded edge region
defined by the domain of opr are set to zero.

END (no parameters)
Indicate the end of the feature calculation script in the .fc file, and also stop the feature

calculation process for the current scene. The END differs from the STOP command in that a
BRANCH or JUMP or GOSUB command can cause the program to skip over a STOP command
and execute later commands, but the program will never skip over an END command and will
never read any of the .fc file after the first END command. Each script in a .fc file should
contain at least one STOP or END command, and it might contain more than one STOP
command. END should not be used as part of an IF command.

EXP dst, src

corresponding image src pixel.
Set each image dst pixel equal to the exponential (inverse natural logarithm) of the

EXTRACT dst, src, row, col
Copy all of image dst from the region of image src with top left corner at row row,

column col. If the requested region does not lie entirely within image src, part of the destination
image dst is left unchanged. dst and src should be different images. This operation does set the
overlap rows in dst.

FEATFIL [-11
FOR PROGRAM F ONLY. FEATFIL reads a file name from the scene list file (.sl) and

enters that file name into the internal list of feature image file names (in the user-accessible string
array $FFIA[]), without actually reading or writing any image file. The "+" and "." file name
constructs in the scene list file (.sl) have the same effect for the FEATFIL command as for the
READSCENE command. This command is useful in the F program when the feature images are
the same size as the scene images, in which case the program can use the same file for both
feature and scene masks and does not need to write a separate file for the feature mask. Note
that the feature mask file name should always be the first name in the list of feature image
names.

If the -1 parameter is given, the file name used by FEATFIL is not stored as the last-used
feature image file name. Thus, the next call to WRITEFEAT with a reference to the previous
scene image file name ("+" for the file name) does not use the file name referenced in this call
to FEATFIL but uses the previously stored scene image file name.

FEAT * srcl, src2
FOR PROGRAM F ONLY. The program F maintains an internal list of feature images

F- 8

that have been defined (in the user-accessible array of strings $FFIA[]), and this list is used
during the calculation of the sums in F. Feature images are defined by a WRITEFEAT, a
FEATFIL, or a FEAT * command. The first feature image, number 0, must always be the
feature mask. The first ftrealtt feature image is number 1; This operation FEAT * puts a special
code into the list of defined feature images. The code directs the sums calculation subroutine to
use an additional feature image that is not actually stored in a file; this additional feature image
is the product (pixel-by-pixel multiplication) of the two previously defined feature images
numbered srcl and src2. (srcl and src2 may be the same.) This allows the use of a feature
image that is the product of two other feature images, without taking the time to write and read
a file for this image. This FEAT * command should not be used until both of the feature images
srcl and src2 are defined.

GETPIX img, row, coi [, var]
Get the value of the pixel at row row, column col, in image img, and put the value in the

user-accessible variable $AVG. If the name of an F32 or I32 variable is given for the parameter
var, the pixel value is also assigned to var. Note that pixel values are F32 values, and if var is
an I32 variable, the value assigned to var will have the fractional part truncated.

GOSUB subname [, ...I
Execute the "subroutine" named subname that is in the .fc file. See the SUBDEF

command. The GOSUB command must have as its first parameter the name of the subroutine
to be executed. It should usually have additional parameters to match the parameters specified
in the subroutine definition, in the SUBDEF command. This software does not check for
matching parameter number or type. If the GOSUB command specifies more parameters than
the SUBDEF command, the extra parameters are ignored. Depending on the nature of the
Subroutine, it may be acceptable for the GOSUB command to have fewer parameters than the
SUBDEF command specifies.

If a subroutine parameter is a scalar (not an array), the value of the scalar in the GOSUB
command is copied to the corresponding variable in the SUBDEF command. If the subroutine
changes the value of its variable, that change is NOT made in the corresponding GOSUB
parameter value (unless the GOSUB parameter and the SUBDEF parameter are the same
variable). If a subroutine parameter is a whole array (not just one element of an array), the
address of the GOSUB parameter array is copied to the corresponding SUBDEF parameter, so
that both array variables are references to the same array of values in memory. Thus, if the
subroutine changes the value of an element of an array parameter, that change is actually made
in the GOSUB array element. To specify a whole array as a GOSUB parameter, give the name
of the array with no index in brackets. That is, the parameter XXX[3] specifies one element
(element number 3, the fourth element) of the array XXX, but the parameter XXX specifies the
whole array XXX.

GRADCON dstb, dsta, srcb, srca
Concentrate (or sharpen) the peaks in a vector field, in the direction of the vector. This

is intended to concentrate a gradient vector field, such as is obtained from operation GRADT or
from the combination of X G W , YGRAD, and XY2RT. Image srcb contains the source vector
magnitude, image srca contains the tangent of the angle between the vector and the x axis, and
images dstb and dsta will contain the corresponding quantities for the concentrated vector field.
GRADCON assumes that the single rows and columns of pixels at the edges of the source images

F- 9

are all zero, and it sets these edge pixels to zero in dstb. This operation uses one overlap row
for each of the source images. All the images should be of the same size. The destination
images need not be distinct from the source images or from each other. (It does not make sense
for the two source images to be the same.) If the two destination images dstb and dsta are the
same, the destination image will contain the concentrated vector magnitudes. This operation can
be repeated to obtain more sharpening, but the OVERLAP operation should be done before each
GRADCON operation. This operation is not perfect, but is quite good. There is sometimes some
concentration in the wrong direction, which gets worse with repeated application of GRADCON.

GRADT dstr, dstt, src
Set image dstr equal to the magnitude of the gradient, and image dstt equal to the tangent

of the angle between the gradient direction and the x (horizontal) axis, for the gradient of the
intensity in image src. This operation uses one overlap row for src. The destination images need
not be different. If the two destination images dstr and dstt are the same, the destination image
will contain the gradient magnitudes and the gradient direction values will not be written to any
image. The top and bottom rows, and the left and right columns, of dstr are set to zero. Both
dstr and dstt should be different from src, and all three images should be of the same size.

HIST2 src, xcl, nbin, vmin, vmax
Calculate the histogram of intensity values for image src. Operator xcl defines an

excluded edge region; xcl may be 0. The histogram will have nbin bins representing the pixel
values from vmin to vmax, plus two more bins, for valus less than vmin (in bin 0) and for
values greater than or equal to vmax (in bin nbin+l). This operation sets the user-accessible
variables $N = number of pixels in the histogram range, $AVG = average value of those pixels,
and $SIG,= standard deviation of those pixel values. These statistics are calculated from the
histogram, not directly from the image.

IF vl, op, v2, command
Evaluate the logical statement v l op v2 and, if the statement is true, execute command.

v l and v2 are scalars, either constants or user-defined scalar variables. op is any of the 6
relational operators "=" (equals), "!=" (does not equal), "<" (is less than), ">'I (is greater than),
"<=" (is less than or equal to), and ">=" (is greater than or equal to). command may be any of
the valid commands listed in this appendix, except END. The entire IF command, including
command, must be on a single line in the .fc file.

INCFIL filename [, nleft [, nright I]
This command increments the file name filename. Only those characters in the base part

(not the path or the extension) are incremented. Only the characters from the nleft'th through
the nright'th before the extension (or before the end of the file name) are incremented. If nleft
or nright is not supplied, the default values allow all the characters in the file name base to be
incremented.

"Incrementing a file name" means that we treat the base file name, exclusive of the path
and extension, as if it were a kind of string of digits representing a number, and we increase it
by one. For example, if we do not give values for nleft or nright, C:FILElS.IMG increments
to C:FILE16,IMG; NAME29 to NAME30; FILE9 to FILFO; TESTA to TESTB; F7Z to F8A;
XZZ to YAA; TT99 to TUOO; etc. The path and extension are never changed. Alphabetic
characters always increment to other alphabetic characters, and numerals to other numerals. For

F- 10

nleft=2 and nright=2, TT99 increments to TT09; for nleft=3 and nright=2, TT99 increments to
TU09.

INM filename [, header [, ncols [, nrow [, row0 [, colO [, bpp I]]]]]
FOR PROGRAM G ONLY. This command first invokes the READIMAGE operation

for image 2, which is the mask image in the mask-generating process. If image 1 is not a
compatible scene image, this command defines image 1 to be compatible with image 2 and sets
all of its pixels to 0. Finally, this command invokes the MARK command.

INS filename [, header [, ncols [, nrow [, row0 [, colO [, bpp]]]]]]
FOR PROGRAM G ONLY. This command first invokes the READIMAGE operation

for image 1, which is the scene image in the mask-generating process. If image 2 is not a
compatible mask image, this command defmes image 2 to be compatible with image 1 and sets
all of its pixels to 0. Finally, this command invokes the MARK command.

INSERT dst, row, col, src
This command copies image src into image dst, with the top left pixel of image src going

into dst pixel (row, col). This operation copies only that part of src that will fit into the
specified area of dst. src and dst should be different images. This operation does set the overlap
rows in dst.

JUMP label
Jump to the line numbered label in the .fc file. label is normally the parameter in a

LABEL statement somewhere in the .fc file, in which case this JUMP command causes a jump
to the line containing that LABEL command. label can also be any constant or user-defined
variable whose value is a line number. (JUMP does not exist in program G.)

LABEL label
Set the value of the user-defined variable label equal to the line number of the line

containing this LABEL command. If label is not already defined, this LABEL command will
define it as a type I32 variable. The intent is that the variable label will be used with the JUMP
command and for no other purpose, but label is actually simply another user-defined type I32
variable and it can be manipulated just as any other user-defined variable. Of course, if the value
of label is changed after it is set by the LABEL command, later JUMP label commands may
produce undesired results. (LABEL does not exist in program G.)

LINOl bright, tangle, src, opr, length, width
Find lines in image src. Set each pixel in image bright equal to the brightness of the line

(if any) passing through the corresponding pixel in image src, and set the corresponding pixel
in image tangle equal to the tangent of the angle between the line and the x (horizontal) axis.
LINOl will not find lines with negative brightness. bright, tangle, and src should all be the
same size, and bright and tangle should be different from src. If bright and tangle are the same
image, the image will be set equal to the brightness values and the angle information will not be
stored in any image. Operator opr contains weights for the local region which is analyzed for
the presence of a line. length is the minimum acceptable line length parameter, and width is the
maximum acceptable line width parameter. length and width are measured in pixels, but they
are floating point values and fractional parts are meaningful. This operation uses overlap rows

F-11

for image src; it does NOT set any overlap row values in either of the destination images bright
or tangle. bright pixels in the excluded edge region defined by the domain of opr are set to
zero.

The LINOl algorithm is designed to find bright lines on a zero-intensity background, with
no negative pixel values. One procedure that is usually reasonable is to subtract a smoothed
version of the source image fiom the raw source image, and then use the MAXCON operation
to remove negative pixel values, before using LINO 1. Dark lines can, of course, be found by
negating an image before starting so that the dark lines appear bright. This algorithm treats the
src * opr intensity versus position data as a bivariate probability density function, fmds the
principal axes, and compares the standard deviations in the principal directions with
length/sqrt(12) and width/sqrt(12) to determine whether the distribution is "long" and "narrow"
enough to be construed as a line. (For a line of uniform intensity, the standard deviations of the
distribution are equal to lengWsqrt(l2) and width/sqrt(l2).) In other words, this algorithm looks
at the peak in the scr * opr values, regarded as a function of the two position coordinates x and
y, and checks to see whether this peak is long and narrow enough to be considered a line. Lines
that do not pass through the "central" pixel of the local region defined by opr are rejected.

Note that positive x is to the right, positive y is downward, and positive angles are
clockwise from the positive x axis.

LIN02 bright, tangle, src, opr, length, width, avg
This is a line-fmding operation like LINOl , except that LIN02 rejects lines if the absolute

value of the average intensity in the local region is less than avg. LIN02 can find lines with
negative brightness.

LOG dst, src

pixel.
Set each image dst pixel equal to the natural logarithm of the corresponding image src

MARK (no parameters)
FOR PROGRAM G ONLY. Create or modifl the 3-level mask to accompany the scene

in image 1. The mask with its accompanying scene image (or images) is used in the training
program F. This mask creation process is described in the user7s manual.

MAX dst, srcl, src2

or the corresponding image src2 pixel.
Set each image dst pixel equal to the maximum of the corresponding image srcl pixel

MAXCON dst, src, const

the floating point value const.
Set each image dst pixel equal to the maximum of the corresponding image src pixel or

MEDIAN dst, src, opr [, Nlo [, Nhi I]
Do an order sort filter, in which the output (filtered) value is neither the largest nor the

smallest of the values in the local region of the source image. This is a non-linear filter that
removes local minima with domains of Nlo or fewer pixels, and local maxima with domains of
Nhi or fewer pixels. For each pixel in image dst, MEDIAN finds the corresponding pixel in
image src and aligns thereon the center pixel of operator opr. For each non-zero element of opr,

F-12

the corresponding src pixel is put into a list of pixel values. The list is sorted according to value.
The dst pixel value is set equal to the corresponding src pixel value, unless this value is smaller
than the (Nlo+l)th smallest value or larger than the (Nhi+l)th largest value in the list, in which
case the limiting list value is used for the dst pixel value. Thus, if Nlo is 1 and Nhi is 2, for
example, the dst pixel value cannot be the smallest or the largest or the second largest value in
the operator domain of src pixels. The operator values are not used except to specify which
source pixels are in the local neighborhood, which is that part of the operator domain for which
the operator values are not zero. src should have enough overlap rows to accommodate opr.
Nlo and Nhi should normally be greater than 0, and less than half of the number of non-zero
operator elements. If either Nlo or Nhi is -1, that -1 value is replaced by half (integer division
by 2) of the number of non-zero elements in the operator. If Nlo is missing from the command,
-1 is used for the missing value. If Nhi is missing from the command line, the value of Nlo is
used for the missing value. If the operator has an odd number of non-zero elements, and N is
half of that number (integer division by 2), this MEDIAN operation is a standard median filter.
Pixels in the excluded edge region of dst are set to zero. dst and src should be different images,
and they may be different sizes.

Note that if Nlo is 0 and Nhi is one less than the number of non-zero elements in the
operator, this MEDIAN operation gives the minimum of the pixel values in the local region; this
and the similar Nhi=O, Nlo=N-1 are convenient ways to get a local minimum or maximum. The
code implements these two special cases more efficiently than the general case of MEDIAN.

MEDlX dst, src, N [, xcl]
Set image dst equal to image src median filtered with a window of N pixels in the x

(horizontal) direction by 1 pixel in the y (vertical) direction. The domain of the operator xcl
defines an excluded edge region, in which dst pixel values are left unchanged and src pixels are
not used. If xc1 is not given, 0 is used for its value. dst and src should be different images of
the same size. N should be an odd integer.

MEDlY dst, src, N [, xcl]

1)/2 overlap rows in src.
Same as MEDlX, except this filter is in the y direction. This y-direction filter uses (N-

MIN dst, srcl, src2

the corresponding image src2 pixel.
Set each image dst pixel equal to the minimum of the corresponding image srcl pixel or

MINCON dst, src, const

the floating point value const.
Set each image dst pixel equal to the minimum of the corresponding image src pixel or

MODMSK new, old, res, xcl, region, Q
Set image new equal to a mask obtained by modifying the mask in image old. Image res

is a result image from a previous program E calculation. If region is 2, then any pixel with
value 2 in old is changed to 0 in new if the res pixel value is less than Q. If region is 1, then
any pixel with value 1 in old is changed to 0 in new if the res pixel value is greater than Q. If
region is 3, both operations are done. Other pixels are simply copied from old to new. Thus,
the designated target (2) and background (1) regions in the mask are shrunk so that they do not

F-13

extend beyond the target and background regions indicated in the result image res. This
hopefully makes the mask more efficient without damaging its intended target and background
designations. Operator xcl defines an excluded edge region in which new pixels are left
unchanged. All three images should be the same size, and new may be the same image as either
old or res.

MOMUV src, opr, dstl [, dstu [, dstv [, dstuu [, dstvv [, dsta I]]]]
MOMUV treats the intensity values in the local region as if they were an un-normalized

probability density function (PDF), and calculates the second and lower moments of the PDF
about the "center" pixel of the local region (not about the mean). MOMUV does a coordinate
rotation to maximize the second moment in the U direction. If the PDF indicates no preferred
direction, the U axis is along the X axis (horizontal, positive to the right). The angle between
the U axis and the X axis is always between -90 and +90 degrees. Image src is the source
image, and kernel opr defmes the local region and the weights for the pixels in the local region.
Images dstl, dstu, dstv, dstuu, dstw and dsta are destination images for the weighted average
intensity, the moments U, V, W, and VV (the UV moment is always 0), and the tangent of the
angle from the X axis to the U axis. If the value 0 is used for any of the destination image
numbers, the corresponding quantity is not written to any image. If an image number is not
supplied for dstu ..., the value 0 is used for the missing image numbers. The X coordinate is
positive to the right, and the Y coordinate is positive downward, and the origin is at the center
pixel of the local region. src must have enough overlap rows to accommodate opr. The images
must all be the same size. src should normally be different from all the destination images. The
excluded edge pixels in each dst are set to zero.

MUL dst, srcl, src2
Set image dst = image srcl * image src2.

MULCON dst, src, const
Set image dst = image src * const.

NEWIMG [(I32 scalar variable)]
Set $N equal to the number of a not-yet-defined image. If all images are already defined,

set $N equal to -1. If the name of an integer scalar variable is given as a parameter for this
NEWIMG command, the variable's value is set equal to the $N value.

NLINO1 dst, bright, tangle, opr
Count how many line extensions pass through each pixel. This operation is similar to

XLINO1. But, whereas =IN01 yeilds the sum of the intensities of all the line segments whose
extensions would pass through the central pixel, NLINO1 is an attempt to count the number of
line segments whose extensions would pass through the central pixel, independent of the line
segment intensities. NLINO1 does not work very well. The weights in the operator opr should
sum to 1.0 along any one ray from the center pixel.

NTRPOO dst, src, opr
NTRPOO does an interpolation, replacing pixels that have value 0.0 in the source image

src with new values in the destination image dst. The new value is the weighted average of all
the non-zero-value pixels in the local region, with the weights contained in the kernel opr. src

F- 14

should include enough overlap rows to accommodate opr. dst and src should be the same size.
dst should usually be different from src.

NTRPO1 dst, src, opr
NTRPO1 does an interpolation, replacing pixels that have value 0.0 in the source image

src with new values in the destination image dst. The new value is determined by a weighted
least squares fit with a linear function of position to all the non-zero-value pixels in the local
region, with the weights contained in the kernel opr. src should include enough overlap rows
to accommodate opr. dst and src should be the same size. dst should usually be different from
src.

OUTM filename [, header]
Write the mask (image number 2) to file filename,

optionally specifying the image file format with the parameter header which defaults to format
1. This is the same as the WRITEIMAGE command for image 2.

FOR PROGRAM G ONLY.

OUTS fdename {, header]
FOR PROGRAM G ONLY. Write the scene image (image number 1) to file fdename,

optionally specifying the image file format with the parameter header which defaults to format
1. This is the same as the WRITEIMAGE command for image 1.

OVERLAP img
Set currently correct values in the overlap rows of image img. That is, each daisy obtains

(from other daisies) the correct, current values of the pixels in its own overlap rows. This should
be done before operations like CONVOLVE (convolution calculation) or MEDlY (median filter
in the y direction) which use the overlap rows. The overlap rows are automatically assigned the
correct values when an image is read from a file (commands READIMAGE and READSCENE).
The overlap rows are NOT assigned the correct values for most other operations.

PACCl src, suml, sumx, sumy, sumxx, sumyy, sumxy
This command calculates sums for each src image peak previously defined by PEAK1 and

either PLNKl or PMRG1, which sums can be used to calculate the moments of each peak as if
the peak were an un-normalized distribution function. On input, suml should be the same as
peak output by PLNKl or PMRGl, sumx should be accx, and sumy should be accy. This
command treats each peak in src as a probability density function (unnormalized), calculates sums
for each peak, and assigns the sum values to the destination image pixels corresponding to the
accumulator pixel in peak (hence the term "accumulator"). suml is set equal to the sum of the
src pixel values in the peak. sumx and sumy are set equal to the sums of the distances (in
pixels) from the accumulator pixel to the other pixels in the peak, multiplied by the src pixel
value. sumxx, sumyy, and sumxy are set equal to the sums of the products of the distances,
multiplied by src. The sums appear in the accumulator pixels only; the donor pixels are set to
zero (except for src, which is unchanged). These images should all be the same size, and they
should all be distinct. No overlap rows are needed for this operation (although some of the
images need an overlap row for the preceding operations).

PAUSE (no parameters)
The PAUSE command causes the program to wait until any key on the keyboard is struck.

F-15

PDFXYZ img [, xcl [, vmin, vmax I]
Treat the entire image img as a probability density function in two dimensions, and

calculate certain moments. xcl is the number of a kernel that defines an excluded edge region.
If only one parameter (img) is given for this PDFXYZ command, xcl is assumed to be 0, which
implies that no edge region is excluded. Only the pixels with values between vmin and vmax
are included in this calculation. If fewer than 4 parameters are given with this PDFXYZ
command, all pixels (except those in the excluded edge region) are included regardless of their
values. This command sets $AVGX = average i value, $SIGX = standard deviation in the i
direction, $MINI = minimum i value, and $MAXI = maximum i value, and it sets the analogous
user-accessible variables for the j or y direction. i or x increases from left to right, j or y
increases from top to bottom, and i=O, j=O is the top left pixel. This command also sets $COXY
= covariance of i and j, and $N = number of pixels included in the sums.

PDFXYl img, xcl, vmin, vmax
This PDFXY 1 command is similar to the PDFXYZ command, except that this PDFXY 1

command uses 1.0 instead of the pixel value for the weight (the probability density h c t i o n
value) when calculating the weighted sums. This PDFXY 1 command requires all 4 parameters.

PEAKl src, peak [, accx, accy 1
This command finds peaks in image src. It compares each pixel in src with its 8 nearest

neighbors. If the src pixel value is less than any of its neighbors, or if it is equal to a neighbor
with a lower address (lower row number or same row and lower column number), the src pixel
is declared not a peak and the corresponding pixel in peak is set to zero. Otherwise, the src
pixel is considered a peak, and its value is assigned to the corresponding pixel in peak. This is
intended to work with src images that have only non-negative pixel values. If values are given
for parameters accx and accy, images accx and accy are set to zero for non-peak pixels, and they
are set to 0.5+i and O S + j for peak pixels, where i and j are the peak pixel coordinates. The
images accx and accy are set as an aid in the use of the PLNKl command following this PEAK1
command. All the images should be distinct, and all should be the same size. src should have
at least 1 overlap row. (The other images need overlap rows for later operations such as
PLNKl.)

PHEAD filename [, header [, length I]
Read and print the header from the image file filename. header is an integer code

specifying the type of header (see READIMAGE). If the value -1 is given for header, or if no
value is given for header, the program will attempt to determine the header type by itself. If the
value 0 is given for header, the program simply prints the first length bytes of the file in
hexadecimal and ASCII. The parameter length is not used, and need not be supplied, unless
header is 0. If any of the row-interleave parameters that are set and displayed with the BANDR
command is - 1 , the PHEAD command will attempt to set that parameter to the value appropriate
to the file filename or, preferentially, to the value implied by any pre-defined image listed by
BANDR.

PLNKl src, peak, accx, accy
This command associates each non-zero pixel in image src with a nearby intensity peak.

The PEAKl command should be used to set the values in peak, accx, and accy, before this
PLNKl command is used. All four images should be the same size, all four should be distinct,

F-16

and each of the four should have at least one overlap row.
For a peak in image src, we will speak of an accumulator pixel and (usually) several

donor pixels. The accumulator for a peak is the pixel with the greatest intensity in src in that
peak; a donor is any pixel in that peak other than the accumulator (and with a src value greater
than 0). The result of this PLNKl operation is that each donor pixel in a peak is associated with
the accumulator for that peak, by being assigned the accumulator pixel's values in images peak,
accx, and accy. That is, for each donor pixel, the values of accx - 1/2 and accy - 1/2 are the
coordinates of that donor's accumulator pixel, and the value of peak is the value of that donor's
accumulator pixel in src. Each donor pixel is associated with the same peak as its nearest (of
8) neighbor pixel with the largest value in src. (This neighbor pixel value, is larger than the
donor's own value, or the "donor" is actually an accumulator.) If there is a tie for highest value
nearest neighbor, the lower address neighbor is favored. This PLNKl is intended for src images
with non-negative pixel values. src pixels with value zero are not assigned to any peak. Unlike
most operations, PLNKl automatically sets the values in the overlap rows of flag, accx, and accy
before those images are used, so you don't have to. You do have to set the (at least one) overlap
rows in src, although usually the src overlap rows will be set before PEAK1 is used and they
will still be set when PLNKl is used.

PMOMUV src, mom0, avgu, avgv, varuu, varvv, tang, maxsag

PMOMXY 1 with rotated coordinates.
PMOMUV is like PMOMXY with rotated coordinates, just as PMOMUV1 is like

PMOMUV1 mom0, avgu, avgv, varuu, varw, tang
This command is like PMOMXYI, in that it converts the sums fiom PACC1 into

moments. However, this function works in a u-v coordinate system which is rotated relative to
the x-y coordinate system, so that the largest second moment of the peak is along the u axis. In
this coordinate system, the second cross moment varuv is always zero. Instead of this moment,
PMOMUV outputs the tangent of the angle from the x axis to the u axis, in the array tang. If
the peak has no preferred direction, the u axis is chosen along the x axis. On input, momO
should be the same as sum1 output by PACCl , avgu should be sumx, avgv should be sumy,
varuu should be sumxx, varw should be sumyy, and tang should be sumxy. These images
should all be the same size, and they should all be distinct. No overlap rows are needed for this
operation (although some of the images need an overlap row for the preceding operations).

PMOMXY src, mom0, avgx, avgy, varxx, varyy, varxy, maxsag
This PMOMXY h c t i o n is simply a single command incorporating PEAK1, PLNK1,

PMRG1, and PMOMXY 1. This command treats each peak in image src as an un-normalized
distribution function (probability density function), and calculates the moments of each peak.
Two or more peaks connected by a path not lower than maxsag lower than the higher peak are
treated as one peak. PMOMXY assigns the moment values to the destination image pixels
corresponding to the maximum-value pixel in src, for each peak. momO is set equal to the sum
of the src pixel values in the peak. avgx and avgy are set equal to the distance in pixels from
the maximum-value pixel to the centroid of the peak. varxx, varyy, and varxy are set equal to
the second moments (the variances and the covariance) about the centroid. These several moment
values are put into the destination image pixels corresponding to the peak maximum pixel in src;
the other destination pixels are set to zero. These images should all be the same size, and they
should all be distinct, and they should all have at least one overlap row. Use the OVERLAP src

F-17

command or some equivalent command before PMOMXY; OVERLAP is not necessary for the
other images (PMOMXY does the other required overlap operations automatically).

PMOMXY 1 mom0, avgx, avgy, varxx, varyy, varxy
This command converts the sums from PACC1 into moments. On input, momO should

be the same as suml output by PACC1, avgx should be sumx, avgy should be sumy, varxx
should be sumxx, varyy should be sumyy, and varxy should be sumxy. This command treats
each peak in PACCl’s src as a probability density function (unnormalized), calculates the
moments for each peak, and assigns the moment values to the destination image pixels
corresponding to the peak pixel in flag. momO is left unchanged, equal to suml, the sum of the
src pixel values in the peak. avgx and avgy are set equal to the distance in pixels from the
accumulator (peak) pixel to the centroid of the peak. varxx, varyy, and varxy are set equal to
the second moments (the variances and the covariance) about the centroid. These images should
all be the same size, and they should all be distinct. No overlap rows are needed for this
operation (although some of the images need an overlap row for the preceding operations).

PMRGl src, peak, accx, accy, sumxx, sumyy, sumxy, maxsag
This command merges peaks that are connected by a path in src such that the lowest pixel

value along that path is not lower than the higher peak value minus the (floating point) value
maxsag and the lowest pixel is also greater than 0. That is, all the pixels in two or more merged
peaks are assigned to the same accumulator. The images src, peak, accx, and accy should be
set by a prior call to the command PLNKl, and these four images will have the same meanings
(although perhaps different values) after PMRGl as after PLNK1. The images sumxx, sumyy,
and sumxy are used for scratch by PMRGl . All seven images should have at least one overlap
row, all should be the same size, and all should be distinct. It is not necessary for you to set the
values of these overlap rows except for image src which is probably already set from the prior
operations PLNKl and PEAKl.

PRINTS [src ...I

parameters are listed, all scalar variables are printed.
Print the values of any scalar variables or file name variables listed as parameters. If no

QUADUV src, opr, dstl [, dstu [, dstv [, dstuu [, dstvv [, dsta I]]]]
Like QUADXY, QUADW fits the local region with a quadratic function. QUADW

then does a coordinate rotation from the x-y to the u-v coordinates, with the u-axis chosen in the
direction that maximizes the second derivative with respect to u. Image src is the source image,
and kernel opr contains the weights for the pixels in the local region. Images dstl, dstu, dstv,
dstuu, and dstvv are destination images for the coefficients of the 1, u, v, uu, and w terms in
the fitted polynomial. (The uv term is always zero.) Image dsta is the destination for the
tangent of the angle between the x axis and the u axis. If the value 0 is used for any of the
destination image numbers, the corresponding quantity is not written to any image.

QUADXY src, opr, dstl [, dstx [, dsty [, dstxx [, dstyy [, dstxy I]]]]
QUADXY does a weighted least squares fit of a quadratic function of position to the

pixels in a local region of the source image, and writes the 6 polynomial coefficients to the 6
destination images dstl, dstx, dsty, dstxx, dstyy, and dstxy. If the image number supplied for
any destination image is 0, the corresponding quantity is not written to any image. If an image

F-18

number is not supplied for dstx ..., the value 0 is used for the missing image numbers. The x
coordinate is positive to the right, and the y coordinate is positive downward, and the origin is
at the center pixel of the local region. Image src is the source image. Kernel opr defines the
local region and contains the weights. src must have enough overlap rows to accommodate opr.
The images must all be the same size. src should normally be different from all the destination
images. The excluded edge pixels in each dst are set to zero.

READIMAGE filename, img [, header [, ncols [, nrow [, row0 [, col0 [, bpp I]]]]]
(see also the following READIMAGE filename, -1 ... command)

Read all or part of an image from file filename into memory image img.
The values of header indicate the type of header on the image file, as follows:
header meaning

0 no header
1 Data Translation 512-byte header
2 Perceptron 1 1-byte header
3
4
5 Daedalus 2048-byte header
6 CAS1 1024-byte header
7 AMPS synthetic aperture radar
8
9 HFA(El2DAS)

Microsoft OS2 bit map file header (questionable)
Microsoft Windows version 3, 8 bits per pixel

LAN 8-bit or 16-bit, or GIs (ERDAS)

If a value more negative than -1 is given for header, the file is assumed to have an unknown
header of length -header bytes, and the bytes per pixel value defaults to 1 if not otherwise
specified.

ncols is the number of columns in the file image. nrow is the number of rows of pixels
to be read. The memory image img may be smaller than the file image in filename; the memory
image is taken from that region of the file image with top left corner at row row0 and column
col0. Thus, for the common case in which the file image is the same size as the memory image,
row0 and col0 should be set to 0. bpp is the number of bytes per pixel. Acceptable values are
1 ; 2, implying the less significant byte of each pair is first in the file; and -2, implying two bytes
per pixel with the more significant byte first. img must be greater than 0.

Unlike most operations, READIMAGE does set the values of the pixels in the overlap
rows of image img. If the file image does not have enough rows to fill the memory image, the
unfilled memory image rows are left with the same values they had before.

The fdename and irng parameters must always be supplied with this command. If either
of row0 or col0 is not supplied, it is assumed to be 0. If any of header, ncols, nrow, or bpp
is not specified, the value -1 is assumed. If any of these 4 parameters has the value -1, the
program attempts to determine a correct or reasonable value for the parameter from the file
header, from the sizes of already-defined destination images, and from the BANDR parameters.
This attempt may require the assumption of equal sizes for a file image and the corresponding
memory image. Similarly, the READIMAGE command will attempt to change BANDR
parameters from the value -1 to the value implied by any pre-defined images listed by BANDR
(first choice) or to the value appropriate to the file filename (second choice).

The image may be already defined, using DEFIMG, COPDEF, RESAMPLE, or a previous
READIMAGE or READSCENE. If image img is not already defined, the program will attempt
to define image img with ncols columns and nrow rows, with 0 overlap rows.

F-19

If the header is type 1, the program will attempt to read the values of the scale factors A
and B from the header in the image file, and set the image table A and B values and the pre-
defined scalar $A and $B values accordingly. Otherwise, these will be set to 0.0 and 1.0.

READIMAGE filename, -1 [, header [, bpr [, nrow [, row0]]]]
(see also the previous READIMAGE filename, img ... command)

This form of the READIMAGE command, with "-1" given instead of an image number,
assumes that the file contains several images with interleaved rows. That is, the file contains the
first row of the first image, the first row of the second image, ..., the first row of the Nth image,
the second row of the first image, the second row of the second image, ..., perhaps with
additional bytes interpsersed and perhaps with a file header. This command reads the several
images from the file in one operation. Other than the following comments, this READIMAGE -
1 command has the same features as the standard READIMAGE command.

The information about each image or band is assumed to be already specified with the
BANDR command. If any of the images specified in the BANDR command are not already
defined when this READIMAGE -1 command is issued, this command will attempt to define
those images. If nrow is given as -1 and the several images do not have the same number of
rows, this READIMAGE -1 command will read only enough rows to fill the smallest destination
image. bpr is the number of bytes in each composite row of the image file, including any row
headers and any bands that are not of interest in this particular read operation. If bpr is given
as -1, the program will attempt to determine the correct value from the file header.

READKERNEL filename, opr
Read a local convolution operator (or kernel) fiom file filename into operator buffer

number opr. The program assumes that the operator buffer has already been defined (operation
DEFKERN) and that the buffer and the file are compatible. opr must be greater than 0. The
file is assumed to contain ASCII characters, with the several values separated by spaces, commas,
or end-of-line characters.

READSCENE img [, header [, ncols [, nrow [, rowO [, col0 [, bpp I]]]]]
READSCENE -1 [, header [, bpr [, nrow [, rowO I]]]
READSCENE (no parameters)

READSCENE with parameters reads an image from the file whose name is in the scene
image list file (.sl). This READSCENE is like READIMAGE, except that for READSCENE the
file name is not given in the feature command file (.fc) but is given instead in the scene list file
(.sl).

The scene list file (.sl) contains a block of image file names for each scene. For program
E, the first file name in each block is the name of the result file to be written, and the following
file names in the block are real scene image file names numbered 1, 2, ... For program F, there
is no result image written, and the block of file names in the scene list file does not start with
a result image file name. Instead, for program F, the file names in a block are all treated as
scene image file names, and they are numbered 0, 1,2, ... It is often convenient to use the mask
image file name for the first scene image file name, so that the mask will be "scene image"
number 0 and the "real" scene images will be numbered 1, 2, ... Note that the first feature file
written for each scene by program F must be the mask feature file, so it is handy if the first scene
image file read is the scene mask image file.

The READSCENE command accesses the scene list file (.SI) and reads the next file name

.

F-20

in the block of image file names for the current scene. This file is then used as the source file
for reading an image, as with the READIMAGE command. The file name is also stored in
memory, in the user-accessible string variable $FSIA[n] where n is the number of the scene
image. Thus, if N is the number of images per scene as specified in the scene list file (.sl),
$FSIA[l] through $FSIAm] will be used to hold copies of the scene image file names in
memory, and $FSIA[O] will hold the result image file name for program E or the zeroth scene
image (usually the mask) file name for program F. (The other members of the $FSIA array can
be used for other purposes without conflict.)

If the READSCENE is used again after the last file name for the current scene in the
scene list file (.sl) has been read, the program does not attempt to read another file name but
simply uses the file name stored in $FSIA[l]. Repeated uses of READSCENE simply keep
cycling through the set of scene image file names that were given for the current scene in the
scene list file (.sl), $FSIA[l] through $FSIA[N], excluding $FSIA[O].

If, instead of a file name, the entry in the scene list (.sl) file is a "+" followed by an
integer value n, then the previously used file name for the n-th scene image, $FSIA[n], is
incremented and used as the present file name. (See the INCFIL command for an explanation
of incrementing a file name.) If a "+" is given without an integer value, the value of n is
assumed to be the same as the number of the present scene image. For example, assume that this
is the feature command file's third call to READSCENE (we are getting scene image 3), and that
we are processing the fifth scene (this is the fifth use of the feature command file in this
execution of the program). This call will use the third scene image file name in the fifth block
of file names in the scene list file (.sl). If the file name is "+", the file name used for the image
3 (the current scene image number) in scene 4 (the previous scene number) will be incremented
and then used here. If the file name is "+2", the file name to be incremented and used here will
be the one for image 2 of scene 5, which is the last image 2 file name specified. If the file name
is "+4", the file name to be incremented and used here will be the one for image 4 of scene 4,
since the file for image 4 of scene 5 has not yet been specified.

A "." has an effect similar to a 'I+", except that the old file name is not incremented before
being used.

Each time the READSCENE command is used after the scene list file (.sl) is ended, the
effect is the same as if "+" were read from the scene list file.

The READSCENE command with no parameters reads the next scene image file name
from the scene list (.sl) file, increments n, and stores the file name in the user-accessible variable
$FSIA[n], where n is the number of the current scene image, without reading any image. The
specified file is not accessed at all; it does not even need to exist. This command is a way to get
a file name into the program's memory without actually reading the file.

(READSCENE does not exist in program G.)

READY (no parameters)
Query all slaves, including the SCSI and video interfaces, and wait for each to respond.

This READY command causes the system to wait until all nodes have finished their tasks, which
is useful for timing measurements and for debugging.

Usually, the fact that a slave responds to this or any other input indicates that the slave
has f ~ s h e d previous tasks. However, if the slave is doing an operation that requires
communication with other nodes, this READY query may cause an error condition in the slave
program. Correctly written master node subroutines will prevent this query or any other
communication from being sent to a slave while the slave is in such a vulnerable situation; the

F-21

master node subroutine should not allow the input of any user command until all the slave nodes
are no longer vulnerable.

REGISTER hhh, ggg, fff, fsl, gsl, gs2, gs3, gs4, bux, buy, bul, bvx, bvy, bvl [, dux [, duy

REGISTER hhh, ggg, fff, fsl, gsl, gs2, gs3, gs4, B [,D]
Register two images. That is, remap image ggg into image hhh so that the features in

image hhh are optimally aligned with the corresponding features in image fff. Images ggg and
fff are not changed by this REGISTER operation. Images fff and hhh must be the same size and
must be compatible for arithmetic operations (they must be distributed the same way among the
nodes); image ggg may be different in size. fsl, gsl, gs2, gs3, and gs4 are images that can be
used as scratch space by this REGISTER operation. If 0 is given as the number for any of these
scratch images, the program will find its own scratch space in place of that image (if sufficient
memory is available). If a valid image number is given for any of these scratch images, then that
image must be already defined. fsl must be compatible with fff, and gsl, gs2, gs3, and gs4 must
be compatible with ggg. All of the images must be distinct; none of the images needs any
overlap rows. bux, buy, bul, bvx, bvy, and bvl are first guesses at the optimal mapping
coefficients, as described for the REMAP operation using hhh for dst and using ggg for src.
dux, duy, dul, dvx, dvy, and dvl are the allowable ranges of variation of the mapping
coefficients; that is, the final value of bux, for example, will not be allowed outside the range
from bux-dux to bux+dux. If any of the range limits is not given, the value -1 will be used in
its place. If a negative value is given (or assumed by default) for any of the range limits, the
program will choose its own limit value. The fmal optimized values of bux, buy, bul, bvx, bvy,
and bvl are returned in the user-accessible variables $AVGX, $AVGY, $AVG, $SIGX, $SIGY,
and $SIG. The value of [1-con] is returned in $COXY, where corr is the cross-correlation of
the two images hhh and fff, with only the remapped ggg part of hhh and fff used if hhh is not
completely covered by the remapped ggg. Possible corr values range from -1 to 1, so
$COXY=[l-corr] values range from 0 (perfect correlation) to 2.

In the alternative second form of this REGISTER command, the b coefficients and the
optional d values are contained in user-defined F32 arrays B and D.

1, dul 1, dvx [, dvy [, dvl 111111

REM (no parameters except a remark)
no action.

REMAP dst, src, bux, buy, bul, bvx, bvy, bvl
REMAP dst, src, B

transformation is
Copy pixel values from image src to different pixels in image dst. The pixel location

(src col)
(src row)

= bux * (dst col) + buy * (dst row) + bul
= bvx * (dst col) + bvy * (dst row) + bvl

where the coefficients are given as floating point values. If the corresponding src pixel does not
exist, the dst pixel is left with the value it had before this operation. The overlap rows in dst
are undefined after this operation. The six b coefficients can be contained in a user-defined F32
may B, as indicated in the second form of this REMAP command.

REPHI dst, src, const, rep
Set image dst pixel equal to the corresponding image src if that src pixel value is no

F-22

greater than const; otherwise, set the dst pixel value to the floating point value rep. (Values
equal to const are not changed.)

REPLO dst, src, const, rep
Set image dst pixel equal to the corresponding image src if that src pixel value is greater

than const; otherwise, set the dst pixel value to the floating point value rep. (Values equal to
const are changed to rep.)

RESAMPLE dst, src, XCI, ncol, nrow, novl
Resample image src and put the result into image dst. The operator xc1 defines an

excluded edge region of image src; xcl may be 0. There is no excluded edge in dst. If image
dst is not yet defined, it will be defined with ncol columns, nrow rows, and novl overlap rows,
and its scale factors A and B will be set to 0.0 and 1.0. Note that images defined by this
RESAMPLE operation may be distributed among the daisies differently than images of the same
size defrned by other processes. If image dst was previously defined, it is assumed to have been
defined with the correct size and with the correct parts allocated to each daisy, and the values
supplied for ncol, nrow, and novl are ignored. The values of the overlap row pixels in dst are
NOT set by this RESAMPLE operation. The resampling is done by the simplest nearest-pixel
method, with no interpolation or smoothing. If image src has fewer rows than image dst and
image src has overlap rows, the overlap rows will probably be used in the RESAMPLE
procedure, so their values (if not already current) should be updated with the OVERLAP
command before this RESAMPLE command is used. src overlap rows may also be used if the
src and dst images are not distributed exactly correctly among the slave nodes, as might happen
if one of the images is defined by a process other than a RESAMPLE of the other image.

RETURN (no parameters)
This command is the logical end of a subroutine. It causes the software to leave the

subroutine and go to the command immediately following the GOSUB command that invoked
the subroutine.

RIJCON dst, src, opr
This is an imperfect operation that tries to concentrate ridges. A weighted least squares

fit is used to fit a quadratic polynomial to the local region in the source image src, with kernel
opr containing the weights and specifying the local region. If the fitted polynomial describes a
ridge, the ridge is smoothed along its length and concentrated in the direction perpendicular to
its length, in the destination image dst. dst should be different from src, and they should be the
same size. src should include enough overlap rows to accommodate opr. The excluded edge
pixels in dst are set to zero.

SABS dst, src
Set scalar variable dst = absolute value of src.

F- 23

SADD dst, srcl, src2
Set scalar variable dst = srcl + src2. Or, concatenate two strings, which may be either

file name variables or literal strings, and put the concatenated string in the file name variable dst.

SATAN dst, src
Set scalar variable dst = arctangent of src, in radians fiom -pi/2 to pV2.

SATAN2 dst, srcl, src2
Set scalar variable dst = arctangent of srcl / src2, in radians fiom -pi to pi.

SBEND dst [, src [, colO [, addcol [, maxang]]]]
This SBEND operation does the s-bend geometric correction, which is necessary for some

"whisk-broom" imaging systems in which one row of an image is acquired one pixel at a time,
by sweeping a single pixel detector across the field of view, as opposed to the "push-broom"
systems in which one row of an image is acquired all at the same time by a row of detectors.
For image src, the pixels within each row (or the columns in the image) are assumed to represent
samples that are uniformly spaced in terms of the angle to the side of the camera center line.
Image dst will have pixels that represent samples that are uniformly spaced in terms of the
distance fiom the camera center line on a flat scene plane or a flat film plane. src and dst must
be the same size, and they may be the same image. If a value is not given for src, it is assumed
to be the same as dst. colO is the (floating point) number of the image column corresponding
to the camera center line, where angle = 0. colO is the same for src and dst, and the src colO
pixels are mapped directly to dst col0. maxang is usually the maximum angle included in the
camera's field of view, corresponding to pixels at the edge (largest column number) of the
images, and column colO + addcol is the pixel column number corresponding to this maximum
angle. However, you are not required to use maxang and addcol values with this simple
physical interpretation. Formally, the src pixels in columns col0 + addcol and col0 - addcol are
mapped directly to the same columns in dst. Pixels in columns other than these three special
columns are shifted laterally (to different columns) in the SBEND operation. The columns
numbered col0, colO + addcol, and colO - addcol do not have to actually exist in the images src
and dst.

If a value is not given for col0, it is assumed to be the center column in the images. If
values are not given for addcol and maxang, they are assumed to be 357.0 columns and 0.75049
radian (43.0 degrees), which are the values for a normal Daedalus image.

SCALE dst [, src [, xcl]]
Image dst is set equal to image src multiplied by a scale factor chosen to make the largest

value in image dst equal to 254. The edge pixels, defined by operator XCI, are excluded; their
values in src are not considered in determining the scale factor, and their values in dst are left
unchanged. The image dst coefficient A is set to 0.0 and B is set to the scale factor used in this
scaling operation, without regard to the coefficient values for image src, and the user-accessible
variables $A and $B are set equal to A and B. dst and src should be of the same size, and they
may be the same image. If a value is not given for src, it is assumed to be the same as dst.
Usually, SCALE should be used immediately before WIUTEFEAT and other 8-bit image writing
operations to be sure that the limited dynamic range of 8 bits per pixel is best utilized. SCALE
is also useful before screen display operations.

SDEFF32 srcl [we2 ...]
Define 32-bit floating point variables with names srcl, src2, ..., similar to SDEFI32.

F-24

SDEFI32 srcl [src2 ...]
Define 32-bit integer variables with names srcl, src2, ... Variable names are limited to

30 characters. The first character of a variable name must be an alphabetic character, not a
numeral or a special character. You must not try to re-define an already defined variable. This
operation does not assign values to the newly-defined variables. If a variable name is
immediately followed by brackets enclosing an integer constant or an already-defined integer
variable (with no intervening spaces), the variable is defined as an array instead of a scalar. For
example, the command

defines B as a single type I32 (32-bit integer) variable and AAA as an array of 7 type I32
variables which can be referred to individually as AAACO], AAA[l], ... AAA[6].

SDEFI32 AAA[7] B

SDIV dst, srcl, src2
Set scalar variable dst = srcl / src2.

SETHFA
Set parameters to be used in reading HFA files. name is the name of an HFA object to

be found, and type is the type of the HFA object to be found. If either name or type is I' * I t ,

then any name or type of HFA object is construed as being acceptable. n specifies that the n-th
occurrence of the object with matching name and type will be used. SETHFA should be used
to set n and name before using WADIMAGE or a similar command to read an image fiom an
HFA file (READIMAGE does not use type). Setting name to " * I' and n to 3, for example,
causes READIMAGE to read the third image encountered in the HFA file. If any of the
parameters for this command is not given, that parameter is left unchanged. If the echo is on,
the values of the parameters (after updating to the new values) are printed on the operator's
console.

In I, name [, type111

SEGLAB dst, src
SEGLAB assigns unique labels to image segments. SEGLAB assumes that image src has

patches of marked pixels, with values greater than 0, separated by regions of background pixels,
with values less than or equal to 0. For each marked src pixel, SEGLAB sets the corresponding
destination image dst pixel to some value that comprises a label for the segment. Each
contiguous segment gets a unique label, a floating point value equal to l+r+c/nc where nc is the
number of columns in the images and r and c are the row and column number for the lowest-
numbered pixel in the segment. dst pixel values are not changed if the corresponding src pixels
are not marked as segments. Normally, all dst pixels should be set to 0 before starting a
segmentation procedure that uses this subroutine. dst pixel values that are not 0 on entering this
subroutine are construed as indicating a pixel that is already labeled. A non-zero value for a dst
pixel and a greater-than-zero value for the corresponding src pixel is an inconsistency, indicating
overlapping patches (segments). When this occurs, the old labels will not be changed, and the
non-overlapping parts of the new overlapping patches will get a new label. Successive uses of
the same destination image with different source image will result in unique labels for all the
patches (segments) in the several source images as long as those patches do not overlap. src and
dst must be different images, they must be of the same size, and both dst and src must have at
least one overlap row. SEGLAB is not reliable for images with more than about 8 million pixels,
because of the limited precision of the 32-bit floating point variables that hold the l+r+c/nc
values.

F-25

SEQ dst, src
Set (numerical, integer or floating) scalar variable dst = src, where src may be either a

scalar variable or a numerical constant. Or, set file name variable dst equal to src, where src
may be either a file name variable or a literal string with no embedded spaces.

SET-AB img, A, B
SET-AB img

The first form sets the A and B coefficients for image img to floating point values A and
B. ([This image] = A + B * [original image].) These coefficients were initially set to A=O.O,
B=1.0 when the image was defined. This operation does NOT rescale the image; it merely sets
the values of the stored coefficients. The second form does not change the A and B coefficients
for image img. Both forms then set the user-accessible variables $A and $B equal to the A and
B values for image img.

SETCON dst, const
Set image dst = const (set all pixels to the same value).

SETPIX img, row, col, Val
Set the pixel in image img, row row, column col, to the floating point value Val. This

operation sets pixels in both the primary and the overlap rows. Note that images are stored in
memory as floating point data.

SEXP dst, src
Set scalar variable dst = exponential (inverse natural logarithm) of src.

SLOG dst, src
Set scalar dst = natural logarithm of src.

SMAX dst, srcl, src2
Set scalar variable dst = maximum of srcl or src2.

SMIN dst, srcl, src2
Set scalar variable dst = minimum of srcl or src2.

SMTHX dst, src, sigma, N 1, xcl]
Set image dst equal to image src smoothed in the x (horizontal) direction. The smoothing

operation comprises N repetitions of a two-pass (one pass increasing x, one pass decreasing x)
exponential smoothing filter, with the exponential filter width chosen to make the half-width (the
standard deviation) of the smoothing function of the total operation equal to the floating point
value sigma. Larger N values make the overall smoothing function look more Gaussian. The
domain of the operator xcl specifies an excluded edge region, in which the dst pixel values are
not changed. (The operator xcl is not used for anything except specifying this excluded edge
region.) dst should be the same size as src, and they may be the same image.

SMTHXS dst, src, sig [, xcl]
Set image dst equal to image src smoothed in the x (horizontal) direction. The smoothing

operation comprises a two-pass (one pass increasing x, one pass decreasing x) exponential

F-26

smoothing filter. The filter width is not necessarily constant for the whole image area; the
exponential filter width for each pixel is the value of the corresponding pixel in the image sig.
Such a smoothing operation, with the smoothing width varying from one pixel to the next, might
not have some properties normally expected from smoothing operations, such as conservation of
the area (or volume) under a peak. The domain of the operator xcl specifies an excluded edge
region, in which the dst pixel values are not changed. (The operator xcl is not used for anything
except specifying this excluded edge region.) dst, src, and sig should all be the same size. dst
and src may be the same image, but sig should be different from both dst and src.

SMTHY dst, src, sigma, N [, xcl]

not needed.)
Same as SMTHX, but this smoothing is in the y (vertical) direction. (Overlap rows are

SMTHYS dst, src, sig [, xcl]

not needed.)
Same as SMTHXS, but this smoothing is in the y (vertical) direction. (Overlap rows are

SMUL dst, srcl, src2
Set scalar variable dst = srcl * src2.

SQRT dst, src
Set image dst = square root of image src.

SSQ dst, src, opr
Set image dst equal to the local sum of squares of image src, with weighting coefficients

from operator opr. That is, set each image dst pixel value equal to the sum over the domain of
operator opr of (SIT * src * opr). The dst pixels in the excluded edge region, defined by the
domain of the operator opr, are set to zero. src should have enough overlap rows to
accommodate operator opr. opr must be greater than 0. dst and src should be different images.
The image dst does not need to be the same size as the image src, but the two images do need
to be distributed among the daisies in a manner compatible with the RESAMPLE algorithms.

SSQRT dst, src
Set scalar variable dst = square root of src.

SSUB dst, srcl, src2
Set scalar variable dst = srcl - src2.

STAN dst, src
Set scalar variable dst = tangent root of src, with src in radians.

STATS img [, xcl]
Calculate pixel value statistics for image img, excluding the edge region defined by the

domain of operator xcl. If xcl is not given, the value 0 is assumed and no edge region is
excluded. This operation sets the user-accessible variables $N = number of pixels, $AVG =
average value of pixels, $SIG = standard deviation of pixel values, $MAX = maximum pixel
value, $MIN = minimum pixel value, $NROW = number of rows, $NCOL = number of columns,

F-27

$A = value of A coefficient in tables, $B = value of B coefficient in tables.

STOP (no parameters)
Stop the feature calculation process for the current scene. For program G, stop execution

of the whole program. For program E, go on to the next scene. For program F, accumulate the
sums for this scene and then go on to the next scene, optimizing the coefficients after the last
scene.

SUB dst, srcl, src2
Set image dst = image srcl - image src2.

SUBCON dst, src, const
Set image dst = image src - const.

SUBDEF subname [typcod, varnam] [, ...]
Define a "subroutine" in a .fc file. This is the first line of a subroutine in a .fc file. A

subroutine is a block of commands that can be executed from elsewhere in the .fc file via the
GOSUB command. The subroutine starts with this SUBDEF command, normally includes several
other commands, and normally ends with the RETURN command which transfers control back
to the line following the GOSUB command that invoked the subroutine. (Actually, the
subroutine does not necessarily need a RETURN as its last physical line in the .fc file, but the
logical end of a subroutine must be a RETURN.) The subroutine, and hence the SUBDEF
command, should be placed in the .fc file in such a way that the SUBDEF command is never
encountered except via the GOSUB command, and the RETURN command is never encountered
except after a SUBDEF command.

The subroutine name subname is treated as a user-defined variable. Thus, it can be
chosen more or less arbitrarily within the limits of normal variable names, and it must be distinct
from all other variable names.

Each subroutine variable is specified by two parameters in the SUBDEF command. The
first parameter of the pair specifies the type of variable: I32 (32-bit integer), F32 (32-bit floating
point), CHR (character), or STR (character string). The second parameter of the pair is the name
of the subroutine variable. The name must conform to the rules for user-defined variable names.
It must be distinct from all other variable names in the .fc file, and it must not be defined
anywhere else in the .fc file. That is, all variables, both within a subroutine and outside of any
subroutine, are "global" in the sense that their names are all kept in the same list and they are all
accessible from anywhere in the entire .fc file. Subroutine variables are not in any way isolated
from other variables.

A subroutine variable can be either a scalar or a one-dimensional array. To specify that
a subroutine variable is an array, the name of the variable in the SUBDEF command is
immediately followed by an empty bracket pair "[]". Thus, the command line

specifies that ABC is the subroutine name; XXX represents an array of I32 values within the
subroutine; Y represents a single I32 value within the subroutine; and Z represents a character
string within the subroutine. Within the subroutine, we can refer to individual elements of the
array XXX, with commands like

where J is a variable that is defined elsewhere in the .fc file. This command sets element number

SUBDEF ABC I32 XXX[] I32 Y STR 2

SADD XXX[Jl XXX[2] Y

F-28

J of array XXX equal to the sum of Y and element number 2 of XXX.
The subroutine variables are accessible fiom elsewhere in the .fc file. However, you must

use caution and not access these variables until after they have been defined, which occurs when
the subroutine is defined. This happens the first time the software scans over the SUBDEF
command in the .fc file, even if the software is merely jumping over the SUBDEF command in
response to a JUMP command or a GOSUB to a different subroutine.

SUMPIX img [, xcl]
Calculate the sum of all the pixels in the image img, excluding the edge region defined

by the domain of operator xcl. If xcl is not given, the value 0 is assumed and no edge region
is excluded. This operation sets the user-accessible variables $N = number of pixels, $AVG =
average value of pixels.

TAN dst, src

corresponding image src pixel. Angles must be in radians.
Set each image dst pixel equal to the tangent of the angle specified by the value of the

UNDERSAMPLE dst, src, xcl, xfact, yfact, novl
Undersample image src and put the result into image dst. This function is the same as

RESAMPLE, except that, whereas RESAMPLE specifies the size of the new image dst directly,
UNDERSAMPLE uses xfact and yfact to specify the size of the new image dst relative to the
size of the old image src. The size of the new image dst will be the size of the old image src
minus the excluded edge regions defined by the domain of the operator xcl, divided by xfact in
the horizontal direction and yfact in the vertical direction. Images defined by this
UNDERSAMPLE operation are completely compatible with (are distributed among the slave
nodes the same way as) images defined by the RESAMPLE operation.

VGA caption, img [, row0 [, col0 [, Q I]]
Display image img on the system (console) monitor. The top left corner of the image will

appear at row0,colO in the screen display. Red will be used for pixels with value less than Q,
green for pixels with value greater than Q. The default values for row0, col0, and Q are 0, 0,
and 0.0. Pixel values should be between 0.0 and 255.0. The character string caption will be
printed below the image on the screen. caption should not contain any embedded spaces. If a
"." is the first character of the string given as the label, then the last-used result file name will
be used as the label. This requires that Gordon Lassahn's device handler VGA and compatible
video hardware are installed. This display function is rather crude, slow, and buggy, and is not
generally recommended.

WRITEFEAT filename, src
FOR PROGRAM F ONLY. WRITEFEAT writes image src to file filename, as in

operation WRITEIMAGE, and enters fdename into an internal list of feature image files (in the
user-accessible array $FFIA[]). If a string beginning with "+" is given instead of a file name,
the previously used feature image file name is incremented and used here. (See the INCFIL
command for an explanation of incrementing a file name.) The initial stored feature image file
name is \FI\FIOOOOOO.FI for ATRl and ATW, and /usr/users/fi/fiOOOOOO.fi for ATR3. Feature
images are always written with a Data Translation header, in which is embedded the value of the
last scale factor B used in scaling the image with the SCALE command.

F-29

Feature image files are written with each pixel represented as one 8-bit (1-byte) unsigned
integer. This means that any pixel value outside the range 0.0 to 255.0 will not be correctly
represented. It also means that precision is limited. As a worst case example, if the feature
image pixel values range from 0.0032 to 0.4158, they will all be written as 0 and all precision
will be lost. You must construct feature images in such a way that there are no negative values.
After this is done, you should usually use the SCALE command just before the WRITEFEAT
command. This scale command multiplies the image by a constant that allows optimal use of the
available precision, and this constant is written to the feature image file and it is used later by
the F program to restore the feature image pixels to their original (before scaling) values during
the suns calculations.

WRITEIMAGE filename, src [, header]
Write image number src to file filename. If the value of header is 0, no header is

written to the file; if the value is 1, a Data Translation header is written. If header is not given,
a value of 1 is used. Bytes 127 through 152 of the Data Translation header (the frst byte of the
header is called number 1) will be the scale coefficients A and B in FORTRAN format
(lx,e12.6,lx,e12.6). No other values can be used for header with WRITEIMAGE.

WRITERESULT src, header, Q
FOR PROGRAM E ONLY. This is the same as command WRITEIMAGE, with two

additional features. If header is 1, the value Q is stored in the file header in place of the value
of the scale factor A. The file name for this result image output file is read from the scene list
(.sl) file, the first of the set of file names given for the scene, the name that takes the place of
the name of the mask image in the scene list file used for the training process. If "+" is given
instead of a file name in the scene list (.sl) file, then the previously used result image file name
is incremented and used here. The initial file name is C:\ri\riOOOOOO.ri for ATRl and AT=, and
/usr/users/ri/riOOOOOO.ri for ATR3.

XGRAD dst, src
Set image dst equal to the x-gradient (derivative with respect to x, the coordinate that

increases from left to right) of the intensity in image src. The gradient values are calculated as
gradient = (intensity[i+l] - intensity[i-11) / 2. The first and last columns (left and right edges)
of dst are set to 0. dst and src should be different images, of the same size,

XIMG dst

left-most column is column 0, x=O.
Set the value of each pixel in image dst equal to the pixel's x (column) coordinate. The

XLINO1 dst, bright, tangle, opr
Extend lines found by LINO1. The "central" pixel in the local region of image dst is set

equal to the weighted sum of the brightnesses of the line segments that are in the local region
defined by the operator opr and are oriented in the direction so that their extensions would pass
through the central pixel. The weights are the values of the pixels in opr. bright and tangle
are the images containing the brightness and orientation data from LINO1. dst, bright, and
tangle should all be different images, all of the same size. This operation uses overlap rows for
both images bright and tangle. dst pixels in the excluded edge region defined by the domain
of opr are set to zero.

F-30

XY2RT dstr, dstt, srcx, srcy [, xcl]
Convert a vector field from x-y representation to r-tangent(ang1e) representation. Images

srcx and srcy contain the x and y component values. The vector magnitude will be put into
image dstr, and the tangent of the angle between the vector and the x axis will be put into image
dstt. xcl specifies an excluded edge region, in which the dstr and dstt pixel values will not be
changed. None of the images need be different from any of the others, although it would
normally not be sensible for srcx and srcy to be the same image. If the two destination images
dstr and dstt are the same, the destination image will contain the vector magnitudes and the
vector direction values will not be written to any image. All these images should be the same
size.

YGRAD dst, src
Set image dst equal to the y-gradient (derivative with respect to y, the coordinate that

increases from top to bottom of an image) of the intensity in image src. The gradient values are
calculated as gradient = (intensityb+l] - intensityrj-11) / 2. The top and bottom rows of dst are
set to 0. dst and src should be different images, of the same size. This operation requires one
overlap row for image src.

YIMG dst

row is row 0, YO.
Set the value of each pixel in image dst equal to the pixel’s y (row) coordinate. The top

ZEROIMAGE img
Set all the pixels in image img, including the overlap rows, to zero.

F-31

	ABSTRACT
	INTRODUCTION
	SOFTWAFECONCEPTS
	User-Accessible Variables
	Kernels and Excluded Edge Regions
	OverlapRows
	Image Compatibility

	PROGRAMS
	Mask Creation Program G
	Training Program F
	Surveillance Program E
	ATRl SCSI Software

	PROGRAMUSAGE
	Loading and Executing Programs
	Mask Creation Program G
	Training Program F
	Surveillance Program E
	ATRl ProgramTSCSI

	REFERENCES
	APPENDIX A: EXAMPLE 1 : Median Filter Testing
	APPENDIX B: EXAMPLE 2: Roads and Riverbanks
	APPENDIX C: EXAMPLE 3: Buried Waste Location
	APPENDIX D: EXAMPLE 4: Finding Airplanes
	APPENDIX E: EXAMPLE 5: Stack Shadows
	APPENDIX F: USER COMMANDS
	overlap
	medly
	smthx
	smthy
	resample 2 5 0 0 0 0 ; image 2 = feature
	mu1 2 2 6 ; image 2 = feature 4 * feature 2 = feature
	add
	medlx
	overlap
	medly
	smthx
	smthy
	resample 2 5 0 0 0 0 ; feature
	mu1 2 2 6 ; feature 8 = feature 5 * feature
	add
	medlx
	overlap
	medly
	smthx
	smthy
	resample 2 5 0 0 0 0 ; feature
	mu1 2 2 6 ; feature 11 = feature 6 * feature
	add
	defkern
	zeroimage
	copyedges 7 2 1 ; copy zeroed edges from image 2 to image

