
Idaho
National

Engineering
Laboratory

INELEXT-97-00005

February 1997

Automatic TLI Recognition System,
Programmer's Guide

G. D. Lassahn

L O C K H E E D M A R T I N _fp

DISCLAIMER

This report was prepared as a n account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or othenvise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

'

DISCLAIMER

Portions of this document may be illegible
in electronic image produck Images are
pmduced from the best available original
document.

INEL/EXT-97-00005

D

c

Automatic TLI Recognition System,
Programmer’s Guide

G. D. Lassahn

HQ PROJECT MANAGER - Michael O’Connell
PROJECT NUMBER - ST474E

Published February 1997

Idaho National Engineering Laboratory
EG&G Idaho, Inc.

Idaho Falls, Idaho 83415

YE
Prepared for the

U.S. Department of Energy
Office of Arms Control.

under DOE Idaho Field Office
Contract DE-AC07-76ID01570

dtt
MSTRtBUflON OF THIS DOCUMWT 1s UNL1MW

ABSTRACT

This report describes the software of an automatic target
recognition system (version 14), from a programmer's point of
view. The intent is to provide information that will help people
who wish to modify the software. In separate volumes are a
general description of the ATR system, Automatic TLI Recognition
System, General Description, and a user's manual, Automatic TLI
Recognition System, User's Guide.

U

ii

CONTENTS

ABSTRACT ...
INTRODUCTION ..
SOFTWAREOVERVIEW ..

BUILD&LOAD&RUN PROCEDURES
INTERNALCHANNELS ...

MASTER and SLAVE SOFTWARE
DEFINES ...
GLOBALVARIABLES
STRUCTURES ...
FUNCTIONS ...
COMMANDCODES ...

ATRlSCSISOFTWARE ...
GLOBAL CONSTANTS AND VARIABLES
STRUCTURES ..
FUNCTIONS ..
COMMANDS ACCEPTED BY SCSI NODE

..
11

1

2

8

18

21
21
22
24
27
95

99
100
101
104
121

ATRl VIDEO SOFTWARE .. 124
FUNCTIONS . 125
COMMANDS ACCEPTED BY VIDEO NODE 127

REFERENCES . 128

c

iii

Automatic TLI Recognition System,
Programmer’s Guide

INTRODUCTION

This is the third of three volumes, a programmer’s manual to help people who want to
change the software of the automatic target recognition (ATR) system. It might be helpful for
the reader of this volume to have some knowledge of the information presented in the other two
volumes. The fxst volume’ is a general description of the ATR system. The second volume2 is
a user’s manual for people who do the hands-on image data analysis, giving instructions on how
to use this ATR system. The software described here is version 14 of programs E, F, and G, and
version 7 of TSCSI.

c

1

SOFTWARE OVERVIEW

We have three totally separate hardware systems: ATRl, A T E , and ATR3. Each is a
parallel processor system with several nodes serving different functions. All three systems use
essentially the same ATR software, with minor variations to accommodate certain hardware
differences. Each of the three hardware systems runs each of three applications, named E, F, and
G. ATRl runs a fourth application, TSCSI, which handles hardware that is not present in A T E
or ATR3. Each application on each hardware system comprises several programs, one program
for each hardware node in the system. The four programs used here are called MASTER,
SLAVE, SCSI, and VIDEO. Table 1 indicates which program runs on which type of node for
the three systems. Each application for hardware system ATRl, for example, runs the program
named MASTER on the node named ROOT, a copy of the program named SLAVE on each
DAISY node, the program named SCSI on the node named SCSI, and the program named
VIDEO on the node named VIDEO. The several applications include programs with the same
names, although the contents of the programs may be different for the different applications. The
ATRl and ATR2 host computers run a server program that is supplied by the vendor with the
parallel processor hardware. This server is mostly transparent to the user and is regarded as
system software, a kind of device driver that the host computer uses to communicate with the rest
of the network. The server's primary functions are to load the programs onto the non-host nodes
and to allow the root node program to access the host devices as if the root node program were
running on the host. ATR3 has a server only in the very limited sense of loading the software
onto the non-host nodes. In ATR3, the MASTER program m s on the host, so there is no need
for a server to make the host resources available to a master program on another node. The SCSI
and VIDEO nodes and programs exist only in the ATRl system.

Table 1: Nodes Types and their Programs

system node type Program

ATRl HOST (server)
ROOT MASTER
DAISY SLAVE
SCSI SCSI
VIDEO VIDEO

A T E HOST (server)
ROOT MASTER
DAISY SLAVE

ATR3 HOST MASTER
DAISY SLAVE

Much, but not all, of the source code is common to all the applications. Tables 2-4
indicate which source code files are used in which applications. Each of the source code files
is the same for all programs and all applications. For example, there is only one file named

2

emntrp.c, and it is used in both applications E and F in all three hardware systems. The .Ink files
are merely lists of object files that must be linked to produce a complete program. The .cfs files
describe the hardware configuration, following procedures supplied by the compiler vendors.
efg.h is a header file used by every .c file. comm.inc contains the inter-node communication
functions, and is included in the file that contains the main program for each node.

All the source code is in the C language. ATRl and ATR2 require cross-compilers
appropriate to the T805 and T9000 transputers. In ATR3, the C compiler for the host computer
is also used for the non-host node programs.

The SLAVE program does the bulk of the computational work, with a copy of SLAVE
running on each DAISY node. MASTER controls and coordinates the several SLAVE programs,
and also controls SCSI and VIDEO in ATRl. The SCSI and VIDEO programs handle the
parallel processor network's communication with external mass storage devices on the SCSI bus
and with the RGB monitor in ATRl.

3

Table 2: ATRl Source Code File Usage

E F G

MASTER:
em.lnk
fm.lnk
gm.lnk
emmain.c
fmmain.c
gmmain.c
emntrp.c
gmntrp.c
emi0.c
em info. c
emman.c
emmath.c
emfilt. c
emco nv. c
em1ines.c
empeakl .c
fm0pt.c
gmmask.c
tscsim.ln k
tscsim.c

SLAVE:
es.lnk
fs.lnk
gs.lnk
esnt rp. c
esi0.c
esinfo. c
esman.c
esmath.c
esfi1t.c
esc0nv.c
es1ines.c
espeakl .c
esdummy.c

tscsishk
tscsis.c

fs0pt.c

+
+

+
+

+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+

+
+
+
+
+
+
+
+
+
+

4

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

TSCSI

+
+
+

+
+
+
+
+
+
+
+
+
+
+

+
+

TabIe 2: ATRl Source Code File Usage (continued)

VIDEO:
video. Ink
vide0.c
tscsivhk
tscsiv.c

SCSI:
scsi7.lnk
scsi1ib.h
scsi1ib.c
scsi7.c
d is k7. c
tape7.c

+
+

+
+

ALL (MASTER&SLAVE&VIDEO&SCSI):

comm.inc + +
alta.cfs + +
efg.h + +

5

+
+

+
+
+

+
+

+
+
+
+
+
+

+
+
+

Table 3: ATR2 Source Code File Usage

E F G

MASTER:
em.lnk
fm.lnk
gm.lnk
emmain.c
fmmain.c
gmmain.c
emntrpx
g m nt rp. c
em io,. c
eminf0.c
emman.c
emmath.c
emfi1t.c
emc0nv.c
em1ines.c
empeakl .c
fm0pt.c
gmmask.c

SLAVE:
es.lnk
fs.lnk
gs.lnk
esnt rp. c
esi0.c
esinf0.c
esma n. c
esmath.c
esfilt. c
esc0nv.c
es1ines.c
espeakl .c
esdummy.c
fs0pt.c

+
+

+
+

+
+

+ +
+
+
+
+
+
+
+
+
+

+
+

+
+
+
+
+
+
+
+
+
+

ALL (MASTER&SLAVE):
efg.h +
comm. inc +
at r2. cfs +

6

+

+
+
+

+

+
+
+
+
+
+
+
+
+
+
+

+
+
+

MASTER:
emmain.c
fmmain.c
gmmain.c
emntrp.c
g m ntrp. c
emi0.c
eminf0.c
emman.c
e m m a t h x
emfi1t.c
emc0nv.c
em1ines.c
e m p e a k l .c
fm0pt.c
gmmask.c

SLAVE:
esntrp.c
esi0.c
esinf0.c
esman.c
esmath.c
esfi1t.c
esc0nv.c
es1ines.c
e s p e a k l .c
esdummy.c
fso p t . c

Table 4: ATW Source Code File Usage

E

+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

ALL (MASTER&SLAVE):

comm.inc +
erg. h +

7

F G

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+

+

+

+
+
+
+
+
+
+
+
+
+

+ +
+ +

BUILD&LOAD&RUN PROCEDURES

This section describes the procedures for building program files, loading the programs
onto the parallel processor network, and executing the programs. The examples are for
application E; the procedures are the same for applications F and G.

The ATR systems require a separate program to run on each type of node. The several
DAISY nodes all run copies of the same program, SLAVE. The program MASTER runs on the
ROOT node (for ATRl and A T E) or on the HOST node (for ATR3). ATRl requires two
additional programs, SCSI and VIDEO, to run on special interface nodes.

The software build procedures are illustrated in the following diagrams, in which ''em * I'

and "es * 'I represent an unspecified number of additional files. The symbols GDL- ... must be
defined at the beginnings of the indicated files, before the #include "efg.h" statement. Some files
are used or created by explicit operations; for example, the icc operation uses a .c file and creates
a .tco file. Other files are used as a result of being listed in a different file; .tco files are listed
in and hence used with .Ink files, and .Iku files are listed in the .cfs file.

The ATRl procedures are diagrammed in Figure 1. In ATRl, there are 10 source code
(.c) files, plus comm.inc and efg.h, for the MASTER program. These are compiled separately,
using the compiler icc. The 10 .tco files, and also some library files, are referenced by name in
the file em.lnk, which is used by ilink to produce the file master.lku. A similar procedure is used
to produce .h files for SLAVE, SCSI, and VIDEO. These four .Iku files are referenced by
name in the file alta.cfs, which also contains information about the parallel processor network
configuration. The tools icconf and icollect use the network configuration information and
combine the four .lku files into the file e.bti. This completes the build procedure for program
E.

Program E is loaded and executed in one step, using the command "run e". run.bat is a
simple batch file that merely invokes the server program with the appropriate arguments:

\atrl\bin\iserver /sb %I .btl /se

The processes for ATR2, diagrammed in Figure 2, are similar to those for ATRl.
However, ATR2 does not have the SCSI and VIDEO nodes. Also, because the T9000 transputer
HTRAMs in ATR2 are an early release, memory confguration for each type of node must be
given explicitly, in the files qt9d.mem and b927.mem. The imem tool is not essential to the build
process; it merely generates files containing information that may be interesting to the
programmer.

For A T E , the run.bat batch file is a little different:

@if %2x == x goto DEFNIF
@rem \qt9s\bin\t9server /sb %I .btl /sn %2.nif
c:\atr2\bin\t9server /sb %I .btl /sn %2.nif
goto END
: DEFN I F
@rem \qtgs\bin\tgserver /sb %I .btl /sn \atr2\atr2.nif
c:\atr2\bin\t9server /sb %I .btl /sn c:\atr2\atr2.nif
:END

Note that the file atr2.nif must be available at load&run time.

8

For ATRl and ATR2, the programs for all the nodes are put into one .btl file. For ATR3,
the MASTER and SLAVE programs are not put into the same file.

There are three fundamentally different ways to build, load, and execute the programs in
ATR3. The DEC 2000 AXP (host) UNIX operating system and the ALN66 (daisy node)
VxWorks operating system allow the user to set up a separate host window for each daisy and
use this window to rlogin to the daisy and monitor its operation while the ATR software is
running, using the TCPAP communication protocol between HOST and DAISY. This procedure
can be very useful while debugging new software, but it is not the most convenient procedure
for normal operation. The ATR3 buildkload options are diagrammed in Figures 3 through 9,
and some parallel explanation is given in the text following the figures.

In the diagrams of the ATR3 build&load&execute processes, some of the file names are
not really the names of files but are links to other files; in these cases, the link name is followed
by the real file name in parentheses. Some of the file names have the notations (AOS) or
(TOS}, which indicate that the file includes the Alpha or Transputer operating system software.

Figure 3 shows the build procedure that is common to both procedures 1 and 2. This
produces an executable file (em) for the MASTER program, and an object file (es.0) for the
SLAVE program.

Load procedure 1 is shown in Figure 4. This procedure uses the object file (es.0) from
the previous build procedure, along with some system software files. This procedure is a little
tedious, requiring that several commands be typed for each daisy. Load procedure 2, in the
following figure, uses a script file to accomplish the same load result much more efficiently.
After the daisies are loaded, the user may at his discretion rlogin (or simply remain logged in at
the end of the load process) to any or all of the daisies and monitor their operation and use the
VxWorks diagnostic tools. These build&load procedures 1 and 2 (sometimes referred to as
dynamic linking) preserve the names of global symbols in the SLAVE software, and the values
associated with these symbols can be inspected with VxWorks. The ATR software is executed
by typing "em" to the host. This execution can be repeated without reloading the daisies, unless
there is some error that causes the daisy communications to become unsynchronized.

ATR3 buildAoad procedure 3 allows monitoring the daisies via the TCP/IP links, as in
procedures 1 and 2. However, unlike procedures 1 and 2, procedure 3 does not preserve the
global symbols in the SLAVE software (static linking, as opposed to dynamic linking), so the use
of the VxWorks diagnostic tools is somewhat more limited.

Procedure 4 for ATR3 is convenient for routine use of the software. This procedure does
not allow logging in to the daisies.

emmain. c ice
GDL-MASTER
GDL-MAIN

emntrp. c icc
GDL-MASTER

emio . c ice

1

emmain.tco -

emntrp.tco -

emio.tco

master.lku
runs on

ROOT node

-e ilink e--(em.lnk I

-
scsi7. c
GDL-SCSI
GDL-MAIN

disk7. c
GDL-SCSI

scsi.lku -
runs on
SCSI node

ice scsi7.tco -

icc disk7.tco -

L
tape7. c
GDL-SCS I

scsilib .c

esntrp . c ice esntrp.tco
GDL-SLAVE -
GDL-MAIN

GDL-SLAVE

esdummy . c icc esdummy.tco
GDL-SLAVE

GDL-SLAVE

each DAISY

ice tape7.tco -

ice scsilib-tco

GDL-VIDEO

VIDEO node

\atrl\alta.cfs

Figure 1: Software build procedure for ATRl.

a e. cfb

icoilect

10

emmain. c
GDL-MASTER
GDL-mIN

emntrp. c
GDL-WTER

emio. c
GDL-MASTER

I i

.-
ice emmain.tco -

icc emntrp.tco -

ice emio-tco -

ROOT node

\atr2\qt9d.mem
(for ROOT)

I
imem

I

qt9d.asc
information

esntrp. c icc esntrp.tco
GDL-SLAVE -
GDL-M?UN

icc esio.tco esio. c
GDL-SLAVE -

esdummy. c ice esdummy.tco
GDL-SLAVE -

es*.c ice es*.tco
GDL-SLAVE

1

c ilink cjes.lnk I slave. lku

each DAISY

I.

\atr2\atr2.ndl

imem
indl

information

i c c k

e.cfb

icollect

e.btl

Figure 2: Software build procedure for ATW.

11

enunain. c cc emmain.0
GDL-MASTER -
GDL-MAIN

emntrp.~ cc emntrp.0
GDL-MASTER -

emio . c cc emio.0
GDL-MASTER -

GDL-MASTER

I d

GDL-SLAVE

r
esio. c cc esio-o
GDL-SLAVE -

GDL-SLAVE

es* .c
GDL-SLAVE

I I

($ALTAROOT/lib/systern.net.66.0)

Figure 3: ATR3 build procedures 1 and 2.

12

TI
each DAISY

s ys temT . img { AOS)
($ALTAROOT/images/systemT.net.66.img) h

I I I

($ALTAROOT/images/startvx.net.ldall.66.tld)
startvx.tld {TOS)

1 I I I

$ALTAROOT/bin/lips 1 none 0 $?&T?iNET $USER &

rlogin nodel

rlogin node2

(repeat for each node)

1

es.0

lh chost:/usr/ ... /es.o
sp es
logout

1$ chost:/usr/ ... /es.o
sp es
logout

(optionally, rlogin to nodes via separate terminals or windows)

em

Figure 4: ATR3 load&run procedure 1.

1es.o
systemT.img {AOS} -
($ALTAROOT/images/systemT.net.66.img)

systemT.script
($ALTAROOT/images/startvx.net.lda11.66.tld) (scriptfile)

$ALTAROOT/bin/lipi "host:"'pwd'/systemT.script 0 SALTANET $USER &

(optionally, rlogin to nodes via separate terminals or windows)

em

Figure 5: ATR3 load&m procedure 2.

13

I

emmain. c
GDL-MASTER
GDL-YN

cc enupain.0

~

esio. c cc esio.0
GDL-SLAVE - emntrp.~

GDL-MASTER

emio . c esdummy. c cc esdummy.0
GDL-SLAVE

cc emntrp.0 -

cc emio.0

esntrp. c cc esntrp.0
GDL-SLAVE -
GDL-MAIN

cc es*.o es* .c
GDL-SLAVE -

usrTask - o t
system.0
($ALTAROOT/lib/system.net.66.0)

I I l l

system. st

palcode/osfpal {AOS} ’

($ALTAROOT/palcode/alv66/osfpal) $ALTAROOT/bin/s$sgen

I e E g o n 1
each DAISY

Figure 6: ATR3 build procedure 3.

I

systemT.img {includes AOS}
(es.img)

$ALTqOOT/bin/lips none 0 SALTANET $USER &

(optionally, rlogin to nodes via separate terminals or windows)

em

(example: $ALTAROOT/examples/ldallnet with RUNMEb)

Figure 7: ATR3 load&nm procedure 3.

14

I emmain. c I cc 1emmain.o I
. GDL-MASTER

GDL-MAIN

esntrp. c cc esntrp.0
GDL-SLAVE -
GDL-MAIN

esio. c cc esio.0
GDL-SLAVE -

esdummy. c cc esdummy.0
GDL-SLAVE -

emntrp. c cc
GDL-MASTER

GDL-MASTER

emntrp.0 -

$ALTAFiOOT/lib/hsilink.o -/Ill

($ALTAROOT/images/startvx.nonet.lda11.66.tld)

es*.c
GDL-SLAVE

usirask. c usrTask . o
I

hl l system. o
($ALTAROOT/lib/system.nonet.66.o) I

1 ‘ 1 1 1 1

palcode/osfpal {AOS)
($ALTAROOT/palcode/alv66/osfpal)

es - img
each DAISY

Figure 8: ATR3 build procedure 4.

Figure 9: ATFG load&run procedure 4.

15

PROCEDURE 1: net support, dynamic link, manual load
Assume links are set up for TCP/IP service.
Assume that the cbld program has been run.
Assume that the lips program is not already running.
1.
2.
3.
and one large object file (es.0, for example) for SLAVE.
4.
that
startvx.tld -> $ALTAROOT/images/startvx.net.lda11.66.tId and
systemT.img -> $ALTAROOT/images/systemT.net.66.imgI
as is done by Alphaconfig with the "net" parameter.
5. For each node: Log in to the node ("rlogin nodeN"). Use a command like
"Id c host:/usr/users/gdI/alta6/examples/ldalInet/procl/es.o" (the path may be different)
to load your user code object files onto the node. The current software has a bug, which requires that this
load be done in two steps: .

Start your code running by typing the name of your main function (which should not be named "main") or,
preferably, by typing the spawn command such as %p es" where "es" is the name of your "main" function.
Optionally, logout of the node.
6. Start your host program running by typing the name of the MASTER executable (em, for example).

Use "$ALTAROOT/examples/AlphaConfig 66 net Idall".
Use cc to make user code in the form of object (.o) files.
Use Id to combine the several object files into one executable file (em, for example) for MASTER,

Use "$ALTAROOT/bin/lips none 0 $ALTANET $USER &" to start TCP/IP service. This assumes

(I) "Id chost:/usr/ ... /dlo.o", and
(2) dlo("usr","/usr/users/gdl/alta6/examples/ldallnet/procl","es.o").

PROCEDURE 2: net support, dynamic link, script load
Assume links are set up for TCP/IP service.
Assume that the cbld program has been run.
Assume that the lips program is not already running.
1. Use "ALTAROOT/examples/AlphaConfig 66 net Idall".
2. Use cc to make user code in the form of object (.o) files.
3. Use Id to combine the several object files into one executable file (em, for example) for MASTER,
and one large object file (es.0, for example) for SLAVE.
4. Create a script file to run in the VxWorks system on the Alpha nodes. This file should contain the
commands to load and start execution of your program, like the Id and sp commands used in Procedure
1. You can name the script file whatever you like; assume for this example that it is "scriptfile".
5. Use "$ALTAROOT/bin/lips "host:"'pwd'/scriptfile 0 $ALTANET $USER &'I

to start TCP/IP service and load and execute your program. This assumes that
startvx.tld --> $ALTAROOT/images/startvx.net.lda11.66.tld and
systemT.img --> $ALTAROOT/images/systernT.net.66.imgl
as is done by Alphaconfig with the "net" parameter. If you wish, you can rlogin to a node at this time and
verify that your program is running.
6. Start your host program running.

PROCEDURE 3: net support, static link, auto load
Assume links are set up for TCP/IP service.
Assume that the cbld program has been run.
Assume that the lips program is not already running.
1. Use "ALTAROOT/examples/AlphaConfig 66 net Idall".
2. Use cc to make user code in the form of object (.o) files. Your "main" SLAVE function must be
named "void usrTask (void)".
3. Use Id to create an executable file (em, for example) from your MASTER object files, and to
combine your SLAVE object files with $ALTAROOT/Iib/system.net.66.0 (or simply system.0, which is a
link set up by Alphaconfig) and with $ALTAROOT/lib/system.a to create a file called systemst.
4. Use $ALTAROOT/bin/REPAL and $ALTAROOT/bin/sysgen. This assumes that the palcode link
has been set up, as by Alphaconfig. Assume for this example that the output file from sysgen is called

16

es.img (system.img is a more common choice).
5.
refer to the file created by sysgen in s tep 4.
6.
that
startvx.tld -> $ALTAROOT/images/startvx.net.Idall.66.tld and
systemT.img -> the file created by sysgen in s tep 4.
If you wish, you can rlogin to a node a t this time and verify that your program is running.
7.

Use "rm systemT.img" and "In -s es.img systemT.img"; we must have the name "systemT.img"

Use "$ALTAROOT/bin/lips none 0 $ALTANET $USER &I to start TCP/IP service. This assumes

Start your host program running.

PROCEDURE 4: no net support, static link, auto load
Assume that the cbld program h a s been run.
Assume that the lips program is not running.
I. Use "ALTAROOT/exampIes/AlphaConfig 66 nonet Idall".
2. Use cc to make user code in the form of object (.o) files. Your SLAVE "main" function must b e
named "void usrTask (void)".
3. Use Id to combine your SLAVE object files with $ALTAROOT/lib/system.nonet.66.0 (or simply
system.o, which is a link s e t up by Alphaconfig), and your MASTER object files with
$ALTAROOT/lib/system.a.
4. Use $ALTAROOT/bin/REPAL and $ALTAROOT/bin/sysgen. This a s sumes that the palcode link
has been set up, as by Alphaconfig. Assume for this example that the output file from sysgen is called
es.img.
5.
startvx.tld -> $ALTAROOT/images/startvx.nonet.ldal1.66.tldI
which is done by Alphaconfig with the nonet option.
6. Use "$ALTAROOT/bin/ld-vflood es.img" to load the Alphas. Your SLAVE program is now running
on the parallel processors.
7. Start your MASTER program running on the host, by typing "em" to the host.

Note that the lips program is never used in this procedure, and this procedure will not work if the
lips program w a s already running. You cannot monitor the parallel processor nodes with this procedure.

Use "$ALTAROOT/bin/Id-all startvx.tld" to load the transputers. This a s sumes that

17

.- INTEmAL CHANNELS

On each node, there are at least three threads (tasks, processes) running concurrently: the
main thread, which does most of the work; a recv thread, which monitors internode links for
incomimg messages; and a send thread, which sends messages over internode links. Some
communication is necessary among the threads. When the recv thread receives data from a link,
it must notify the main thread that data is ready to be used in this node, or it must notify the send
thread that data is ready to be relayed on to the next node, or both. The main thread must notify
the recv thread when it is finished with data that recv passed to main. And, the main thread must
notify the send thread when main has prepared a message that must be sent to another node. The
easiest way to do these inter-thread communications is to associate a simple flag (an integer
variable) with each data buffer, with one thread setting the flag when it has filled the buffer and
each of the other threads executing a loop that reads the flag until the flag is set appropriately
for that thread to use the data buffer. A disadvantage of this method appears in ATR3 when the
user wishes to monitor a daisy using the TCP/IP communication system. The loop, which a
thread executes while waiting for a data buffer to become available, can tie up the processor in
that node and exclude or slow other processes such as TCP/IP communication. This suggests
using a different procedure, in whichno thread simply loops while waiting for a flag to be set,
but rather messages are sent on internal channels between threads when a data buffer is ready.
With this procedure, the thread that is waiting for the data buffer is blocked -- not using the
central processor -- until it gets the internal channel message indicating that the data buffer is
ready. This second procedure is used in the ATR s o h a r e if the symbol GDL-SHARE is
defmed in file efg.h. The internal channels used in this case are indicated in Figures 10 and 1 1.
The four internal channels are named recv2main, main2recv, m a s e n d , and recv2send. The
diagram indicates which functions in each thread use these channels, and the direction of
information flow for each channel. The actual data that is sent via these four channels is not
used; the only significance is that a message is sent over the channel. The linkup and linkdn
threads in ATR3 are very simple processes that do nothing more then relay incoming data from
a link to the recv thread. They are used because the current system s o h a r e has a bug that
prevents the ProcAlt function from working with external channels. These threads use two
elements of the Channel * innu array as two additional internal channels for data transfer.

18

nain thread

WainInnDa ta
ChanIn
recv2main

CheckInnData
ProcSkipAl t
recv2main

FreeInn
ProcSkipAlt
recv2main

ChanIn
recv2main

ChanOut

WaitOut
ChanOut
mainasend

sends hr t
ChanOut
main2send

sendlong
ChanOut
mainasend

recv thread

recv
ProcAlt

inn[LINKUP] c-
inn[LINKDN] c= -

ChanIn

chz%send ChanIn -$
ChanIn
inn[linkl e= -c

ChanOut
recv2send >

ChanOut

=> main2recv

=> main2recv

=> mainarecv

=e recv2main

send thread

send
ProcAlt .

> mainasend
ChanIn

ChanIn
> mainasend
ChanOut

ChanOut

I- recv2send C

recv2send c

out[LINKUP] >=

out[LINKDN] >=

1

=c link from higher node
=c link from lower node

=> link to higher node

=> link to lower node

Figure 10: Internal channels in ATR2 software.

19 I

nain thread

WainInnData
ChanIn
recv2main

CheckInnData
ProcSkipAlt
recv2main

FreeInn
ProcSkipAlt
recv2main

ChanIn
recv2main

ChanOut
mainarecv >=

Waitout
ChanOut
mainasend >

sendshrt
ChanOut
mainasend >

sendlong
ChanOut
mainasend >-

recv thread

recv
ProcAlt

=> main2recv
inn[LINKuP] e=
inn[LINKDN] e=

ChanIn

ChanOut
=> mainarecv

recv2send >

ChanOut
recv2send >-IL

ChanOut
----e recv2main

send thread

send
ProcAlt

> main2send
ChanIn

ChanIn
> mainasend
ChanOut

ChanOut

I- recv2send C

recv2send c

out[LINKUPl >=

I
out[LINKDN] >=

=>

=>

linkup thread

<
(link [LINKUP])
linkin c

(inn [LINKUP]) i FromNodeTJP
ChanIn

ChanOut
-e internal

I link& thread

FromNodeDN
ChanIn
linkin c

c internal c (inn [LINKDN] 1

I (link [LINKDN])
ChanOut

Figure 11: Internal channels in ATR3 software.

20

MASTER and SLAVE SOFTWARE

DEFINES

This section describes some of the important symbols that appear in #define ... statements.

132 the type of a 32-bit integer

F32 the type of a 32-bit floating point value

GDL-ATRI , GDL-ATR2, GDL-ATR3
o n e of these three sysbols must be defined at the beginning of the file
efg.h, to indicate which hardware system the software is for

GDL-MASTER, GDL-SLAVE, GDL-SCSI, GDL-VIDEO
o n e of these four symbols should b e defined a t the beginning of each
source code (.c) file, before "#include I ' e fg .h or %include "comm.inc"",
to indicate which type of node the software is to run on. MASTER
indicates the controlling, coordinating program, which runs on ROOT or
HOST. SLAVE indicates a DAISY node; the DAISY nodes sha re the bulk
of the computational work. SCSl and VIDEO indicate speciallized SCSl
bus interface and RGB display interface nodes that exist only in ATRI.
These symbols should not be defined in file comm.inc (which is used
each node's main or equivalent function file) or in file efg.h (which is used
in all .c files).

G D L-M AI N

GDL-SHARE

this symbol should b e defined a t t he beginning, before "#include "efg.h'"'
o r "#include "comm.inc"", of the file that includes the function main, o r the
equivalent function by s o m e other name, for any of the nodes.

See the section on INTERNAL CHANNELS

21

GLOBAL VARIABLES

This section describes some of the important symbols that are defmed as global variables,
in file efg.h.

bufinni[O]

bufinni[l]
bufinni[2]
bufinni[3]
bufinni[4]

bufinni[5]
bufinni[6]
bufinni[7]
bufinni[8]
bufinni[9]

132 bufinni[MIOWRD] bufinni is a buffer used to receive messages from other nodes and to
relay messages on to the next node as appropriate. bufinni[2] - bufinni[9]
are always received in any communication. If the bufinni[9] value is
greater than 0, that number of additional bytes is received in the next
data transfer as part of the same message. bufinni[O] and bufinni[l] are
never received from other nodes, but are set internally by each node.
buffer status code:

0 -> this buffer is ready for a new use
1 -> other threads don’t touch this buffer
2 -> main thread should use this data
4 -> this data should be output to another node

number of the link by which this data was received
number of the node that sent this data
lowest number node to receive this data
highest number node to receive this data; this data will go to all nodes
with numbers between bufinni[3] and bufinni[4] inclusive
command code
command-specific data
command-specific data
command-specific data
the number of additional bytes to be received in the next communication,
as a part of this message

F32 * bufinnf=(F32 *)bufinni
char * bufinnc=(char *)(bufinni+lO)

bufinnf and bufinnc are F32 and char type pointers to the bufinni array.
They facilitate transferring F32 and char data between nodes.

132 bufouti[MIOWRD] bufouti is very similar to bufinni, except that bufouti is used to send data
from the main thread of this node to another node. The first 10 words of
bufouti have the same meanings as the corresponding words of bufinni,
except for bufouti[l] which is not used.

F32 * bufoutf=(F32 *)bufouti
char Y bufoutc=(char *)(bufouti+lO)

bufoutf and bufoutc are F32 and char type pointers to the bufouti array.
They facilitate transferring F32 and char data between nodes.

char * hfabuf=(char *)NULL
hfabuf is a scratch buffer used by several functions for reading HFA files.

132 hfabufsiz=O hfabufsiz is the size of the buffer hfabuf.

struct HFAobject hfaobject
hfaobject is the only instance of the structure HFAobject. It is used when
reading images from HFA files; see the description of the function
inn 8 H FA.

22

132 np

F32 pf[MP]

132 pi[MP]

the number of parameters in the user command line; this count does not
include the command itself

pqk] is the F32 representation of user command parameter k, if such a
representation is possible

if user command parameter k is a single value (not a whole array) that
can be represented as an 132 value (perhaps after truncation of a
fractional part), pi[k] is that 132 value; or, if parameter k is a user-
accessible array (not just one element of an array), pi[k] is the number of
the user-accessible variable corresponding to that array

132 pn[MP] pn[k] is the value of the array index of user command parameter k, or -1
if no index brackets are part of parameter k, or -2 if parameter k includes
empty index brackets

char pr[MP][VARLEN] pr[k][] is a copy of user command parameter k as a character string

char pq[MP][VARLEN] pq[k]u is a copy of user command parameter k as a character string, with
any array index or subscript removed

char * ps[MP] ps[k] is a pointer to the character string representation of user command
parameter k

132 pt[MP] pt[k] is a code indicating the type of user command parameter k

23

STRUCTURES

This section describes some of the important global structures that are defined in file
efg.h.

STRUCTURE TYPE: BANDR, MASTER & SCSl

STRUCTURE INSTANCES: rband[MBAND], MASTER

STRUCTURE MEMBERS:
132 img

132 bytO

132 ncol
132 bpp

the number of the memory image to receive this band, or 0 if this band
is not to be used for a memory image
the number of bytes from the beginning of the file image composite row
to the beginning of the row for this band
the number of pixels in one row for this band
the number of bytes per pixel in this band

rband is an array of MBAND structures, each of which describes one band of a multi-band image
file. This array of structures is used when reading the file.

.

STRUCTURE TYPE: HFAobject

STRUCTURE INSTANCES: hfaobject

STRUCTURE MEMBERS:
132 n indicates the n-th occurrence of the HFA file object with name and type

matching the .name and .type members of this structure
char name[NAMELEN] the name of the sought HFA file object
char type[NAMELEN] the type of the sought HFA file object

This hfaobject structure is used by functions like inn8HFA, which scan an HFA file until they find
the hfa0bject.n-th occurrence of an object with name and type that match hfaobject.name and
hfaobject.type. hfaobject.name or hfaobject.type may be " * ", in which case any name or type is construed
as matching.

.

STRUCTURE INSTANCES: imtab See TABIMG

.

STRUCTURE INSTANCES: imtyp See TYPIMG

.

STRUCTURE INSTANCES: konop See TABOPR

.

24

STRUCTURE INSTANCES: rband See BANDR

.

STRUCTURE TYPE: TABIMG, MASTER & SLAVE

STRUCTURE INSTANCES: imtab[MIMG], MASTER & SLAVE

STRUCTURE MEMBERS, MASTER:
132 img
132 ncol
132 nrow
132 novl
F32 a
F32 b

this image number if this image exists, otherwise -1
number of columns in this image
number of rows in this image
number of overlap rows in this image
A in (this image) = A + B * (other image)
B in (this image) = A + B * (other image)

STRUCTURE MEMBERS, SLAVE:
132 img
F32 *addr
132 ncol
132 nrow
132 novl
132 rlo
132 rhi
132 alo
132 ahi
132 slo
132 shi

this image number if this image exists, otherwise -1
memory address of this node's part of this image
number of columns in this image
number of rows in this image
number of overlap rows in this image
lowest row number of this image in this node, including overlap rows
highest row number of this image in this node, including overlap rows
DISUSED; lowest row number to be analyzed in th i s node
DISUSED; highest row number to be analyzed in this node
lowest row number of this image in this node, excluding overlap rows
highest row number of this image in this node, excluding overlap rows

imtab is a n array of structures, each of which describes o n e image in memory. The structure is
different for MASTER and SLAVE nodes, because MASTER, not SLAVE, maintains the A and B values
for each image and because SLAVE, not MASTER, stores image data in memory.

.

STRUCTURE TYPE: TABOPR, MASTER & SLAVE

STRUCTURE INSTANCES: konop[MOPR], MASTER & SLAVE

STRUCTURE MEMBERS, MASTER & SLAVE:
,132 opr
F32 *addr
132 mini

132 maxi
132 minj
132 maxj

this kernel number if this kernel is defined, or -1
address of this kernel in memory
lowest i (column) number in this kernel's domain, relative to the origin
pixel
highest i (column) number in this kernel's domain, ...
lowest j (row) number in this kernel's domain, ...
highest j (row) number in this kernel's domain, ...

konop is a n array of MOPR structures, each of which describes o n e kernel in memory. The kernel
comprises (maxi-mini+l) * (maxj-minj+l) F32 values. Kernel 0 is a dummy, whose domain is only the
origin pixel.

.

STRUCTURE TYPE: TYPIMG, MASTER

25

STRUCTURE INSTANCES: imtyp[MIMGTYP], MASTER

STRUCTURE MEMBERS, MASTER:
132 nhead
132 cot0

132 coll

132 row0

132 row1

132 bpp bytes per pixel

imtyp is an array of MIMGTYP structures, each of which contains data on image structure and

number of bytes in the image file header
number of the header byte that contains the less significant part of the
number of columns in the image
number of the header byte that contains the more significant part of the
number of columns in the image
number of the header byte that contains the less significant part of the
number of rows in the image
number of the header byte that contains the more significant part of the
number of rows in the image

header contents for one image file format.

.

STRUCTURE TYPE: (none)

STRUCTURE INSTANCES: var[MUAV]

STRUCTURE MEMBERS:
char nam[VARLEN] name of variable
void *addr
132 tyP variable type code
132 dim number of array dimensions; 0 for a scalar variable, 1 for a one-

dimensional array
132 siz number of elements in this array; I for a scalar

var[k] is a structure that contains information about the k-th user-accessible variable.

address of variable in memory

.

' 26 I

FUNCTIONS

This section describes all the functions in both the MASTER and SLAVE programs.
After the function name, at the top of each entry, is an indication of the file or files in which the
function occurs, and an indication of whether the function occurs in the MASTER or the SLAVE
program. In many cases, two different functions with the same name, and often with the same
argument list, OCCUT in two different files, one for the MASTER program and one for the SLAVE
program. A few functions occur in only one of the E, F, or G programs; if there is no indication
to the contrary, the function is used in all three of E, F, and G.

' .

void abort0 (mess) file emmain.c, fmmain.c, & gmmain.c, MASTER

char * mess message to be printed

abort0 prints the specified error message and stops program execution.

................................

void abort2 (mess, c) file emmain.c, fmmain.c, & gmmain.c, MASTER

char * mess
132 * C

message to be printed
communication buffer to be partially printed

abort2 prints "UNEXPECTED MESSAGE FROM SLAVE1 along with the message supplied as the
first argument and part of the communication buffer specified as the second argument, and stops program
execution.

.

void abort8 (msg) file commhc, SLAVE

char * msg message to be displayed

abort8 is used by a slave node that does not have direct access to the host devices, to print an error
message and stop program execution.

.

void abort9 (c) file emmainx, fmmain.c, & gmmain.c, MASTER

132 * C communication buffer with message from slave

abort9 is used in response to a message from a slave, printing the "SLAVE RECEIVED BAD
COMMAND' message and part of that bad command and then stopping program execution.

.

132 alist (psrc, pv, pi, jhi, listlen, inc) file esfilt.c, SLAVE

F32 *psrc an array of values that may be put into the list; the source image data

27

F32 *pv
132 *pi
132 jhi

132 listlen
132 inc

a n array of values that a r e in the list
a n array of the psrc indices for the values that a r e in the list
the highest psrc index value for which the psrc value should be added to
the list
length of existing list
the increment between successive psrc index values used in this function

alist is used by the one-dimensional median filter functions med lx and medly. alist adds pixel
values to the list that comprises all the pixel values from the current local region, adding pixels with index
less than or equal to jhi. alist returns the new list length.

.

F32 asig (sig, n) file emfi1t.q MASTER

F32 sig
132 n

total standard deviation of smoothing function
number of smoothing passes

asig is used by smthx and smthy. These functions do multi-pass exponential smoothing. asig
calculates the witdth of the smoothing function required for each separate pass, in order to achieve the
desired total smoothing function width. asig returns the value of a constant related to the single-pass
width, which constant is used by the slave functions smthx and smthy.

.

void a sums (void) file fmopt.c, MASTER, F only

asurns accumulates certain s u m s of feature image pixel values and their products, for u s e in the
training process. Each call to asums accumulates the values for o n e training scene. z sums should be
called before the first call to a s u m s for the first of a sequence of scenes , and fsums should be called after
the last call to asums. a s u m s uses sums2.

.

F32 Y brent2 (func, fparm, iparm, ax, bx, cx, atol, rtol, itmax) file emmanx , MASTER

F32 * func(...)
F32 *fparm
132 *iparm
F32 a x
F32 bx
F32 cx
F32 atol
F32 rtol
132 itmax

represents the single-variable function to be minimized
a n array of F32 parameters
a n array of 132 parameters
the minimum allowable value of x, the function argument
a n intermediate value of x, the function argument
the maximum allowable value of x, the function argument
fraction-of-range convergence criterion
fraction-of-value convergence criterion
maximum allowed number of iterations

brent2 is not used in the current version of the software; it is replaced by brent3.
This function is adapted from William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian

P. Flannery, "Numerical Recipes in C, Second Edition", Cambridge University Press, 1992. This function
brent2 finds a minimum in the single-variable function represented by func(x, ...), using Brent's procedure,
with the function minimum position bounded by ax and cx. A test has been added to make sure the
parabolic extremum is a minimum. This allows this function brent2 to work even if the initial middle point
bx does not have a function value lower than those of the two end points ax and cx. The result from such
a case may be o n e of the end points, which is a minimum in the constrained domain, instead of a true
unconstrained minimum.

28

func represents a function of one primary variable x, perhaps with some indirect dependence on

* The second and third arguments of func are fparm and iparm, the same as the second and third
arguments of brent2. The first argument of func is an F32 value, call it x.

* the function is to be minimized with respect x.
* func returns a pointer to an F32 array, with array element 0 set to the function value, array

element 1 set to the x value used in the function evaluation (which may be different from the x
value supplied as an argument, depending on how func is programmed), and array elements 2
and 3 reserved for future use as a condition code and a not-yet-specified use.

ax, bx, and cx are three values of x, with ax < bx < cx, usually (but not necessarily in this modified
version of brent2) such that func(bx) is less than both func(ax) and func(cx).

atol is a fraction-of-range convergence criterion. Convergence is assumed complete when the x-
range that includes the minimum point is smaller than atol * (cx-ax). If a negative value is given for atol,
the value is changed to 0.000001 (a rather arbitrarily selected value). The use of at01 as a convergence
criterion can effectively be suppressed by supplying a value of 0.0 for atol.

rtol is a fraction-of-value convergence criterion. Convergence is assumed complete when the x-range
that includes the minimum point is smaller than rtol * x, where x is the current estimate of the minimum
point. If a value less than 0.00025 is given for rtol, the value is changed to 0.00025 at the beginning of
brent2 (this value is appropriate for F32, single-precision floating point, calculations). Convergence is
assumed if either the atol or the rtol criterion is satisfied.

itmax is the maximum number of iterations allowed. If the value 0 is given for itmax, there is no limit
on the number of iterations.

On entry to brent2, fparm[O] must be the function value at bx. brent2 returns a pointer to an F32
array. Element 0 of the array is the minimum function value; element 1 is the value of x at the function's
minimum point; element 2 is a status code: 0 indicates normal completion, 1 indicates some error that
does not allow normal completion, 2 warns that the minimum point is one of the range end points, 3
indicates that no minimum was found, and 4 indicates that too many iterations were used; element 3 is
the number of iterations done.

fparm and iparrn. func (see reg2c, for example) must be of a particular form:

.

F32 * brent2a (func, fparm, iparm, atol, rtol, itmax) file emman.c, MASTER

F32 * func(...)
F32 wfparm
132 *iparm
F32 atol
F32 rtol
132 itmax

represents the multi-variate function to be minimized
an array of F32 parameters for func and brent2a
an array of 132 parameters for func and brent2a
fraction-of-range convergence criterion for brent2
fraction-of-value convergence criterion for brent2
maximum allowed number of iterations for brent2

brent2a is not used in the current version of the software; it is replaced by brent3a.
brent2a is an example of the linmin function used by function powell. brent2a finds the minimum of

a multivariate function along a line in the multidimensional variable space. brent2a uses the single-
variable function minimization procedure brent2.

The multivariate function is represented by func (see reg2c, for example), which must be of a
particular form:

* The second and third arguments of func are fparm and iparm, the same as the second and third
arguments of brent2a. The first argument of func is an F32 value, call it x.

.y the function is to be minimized with respect to n variables, fparm[l], fparm[2], ... fparm[n], where
n = iparm[O].

* func evaluates the function at the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n].

* func returns a pointer to an F32 array, with array element 0 set to the function value, array
element 1 set to the x value used in the function evaluation (which may be different from the x
value supplied as an argument, depending on how func is programmed), and array elements 2
and 3 reserved for future use as a condition code and a not-yet-specified use.

3

29

, ..

On entry to brent2a:
* fparm[l], fparm[2], ... fparm[n] must be a point on the line along which the function is to be

minimized, and fparm[O] must be the function value at that point.
Y fparm[l+n], fparm[2+n], ... fparm[n+n] must specify the direction of the line along which the

function is to be minimized. That is, points on the line a r e specified by fparm[l]+x * fparm[l+n],
fparm[2]+x fparm[2+n], ... fparm[n]+x * fparm[n+n], with x being a measure of position along the
line.
fparm[l+2n], fparm[2+2n], ... fparm[n+2n] must be lower limits for the values of the n function
variables, and fparm[l+3n], fparm[2+3n], ... fparm[n+3n] must be upper limits for t he values of
the n function variables. The combination fparm[i+2n]=l.O and fparm[i+3n]=-l.O can be used to
indicate that variable i has no explicit limits. For the whole set of n variables, a t least 2 limits
must be imposed such that there is a n implied limit on x values, a n implied limit on the length of
the line along which the function is to be minimized.

brent2a is arranged so that it simply returns the first guess input point if the parameter limits a r e both
the s a m e as the first guess parameter value, if t he parameter range has zero width. This facilitates using
powell with brent2a to minimize multivariate functions with s o m e of the variables constrained to constant
values.

brent2a returns a pointer to a n F32 array. Array element 0 is the minimized function value; element
1 is the value of x a t the minimum; element 2 is a status code: 0 indicates normal completion, 1 indicates
some error that does not allow normal completion, 2 warns that the minimum point is o n e of the range end
points, 3 indicates that no minimum w a s found, 4 indicates that too many iterations were used in brent2, -
I indicates failure because of unbounded parameters, -2 indicates that the parameter range has zero width
(sometimes a n indication that the function was already minimized), and -3 indicates failure because the
initial guess w a s not in the acceptable parameter range; and element 3 is the number of iterations done
in brent2 (brent2a does not iterate). Also, on return from brent2a, fparm[l], fparm[2], ... fparm[n] indicates
the location of the minimum of the function along the specified line, and fparm[O] is the value of the
function at the minimum.

.

F32 * brent3 (func, fparm, iparm, ax, bx, cx, atol, rtol, itmax) file emman-c, MASTER

F32 * func(...)
F32 *fparm
132 *iparm
F32 ax
F32 bx
F32 cx
F32 atol
F32 rtol
132 itmax

represents the single-variable function to be minimized
a n array of F32 parameters
a n array of 132 parameters
the minimum allowable value of x, the function argument
a n intermediate value of x, the function argument
the maximum allowable value of x, the function argument
fraction-of-range convergence criterion
fraction-of-value convergence criterion
maximum allowed number of iterations

This function is adapted from William H. Press , Saul A. Teukolsky, William T. Vetterling, and Brian
P. Flannery, "Numerical Recipes in C, Second Edition", Cambridge University Press, 1992. This function
brent3 finds a minimurn in the single-variable function represented by func(x,...), using Brent's procedure,
with the function minimum position bounded by a x and cx. For this brent3 version, the function func is
presumed to represent l-correlation for s o m e correlation process, so that the normal function values range
from 0.0 to 2.0.

func represents a function of one primary variable x, perhaps with s o m e indirect dependence on
fparm and iparm. func (see reg3c, for example) must be of a particular form:

* The second and third arguments of func a r e fparm and iparm, the s a m e as the second and third
arguments of brent3. The first argument of func is a n F32 value, call it x.

* the function is to be minimized with respect x.
Y func returns a pointer to a n F32 array. Array element 0 is s e t to the function value, which must

be l-correlation for s o m e correlation process; element 1 is set to the x value used in the function
evaluation (which may be different from the x value supplied as a n argument, depending on how

30

func is programmed); element 2 is a status code: 0 for normal return, I for an unspecified error,
' 2 if the function argument is out of the allowable range; and, element 3 is the number of degrees

of freedom associated with the correlation calculation.
ax, bx, and cx are three values of x, with ax bx cx, usually (but not necessarily in this modified

version of brent3) such that func(bx) is less than both func(ax) and func(cx).
atol is a fraction-of-range convergence criterion. Convergence is assumed complete when the x-

interval that includes the minimum point is smaller than atol* (cx-ax). If a negative value is given for atol,
the value is changed to 0.000001 (a rather arbitrarily selected value). The use of atol as a convergence
criterion can effectively be suppressed by supplying a value of 0.0 for atol.

rtol is a fraction-of-value convergence criterion. Convergence is assumed complete when the x-
interval that includes the minimum point is smaller than rtol * x, where x is the current estimate of the
minimum point. If a value less than 0.00025 is given for rtol, the value is changed to 0.00025 at the
beginning of brent3 (this value is appropriate for F32, single-precision floating point, calculations).
Convergence is assumed if either the atol or the rtol criterion is satisfied.

itmax is the maximum number of iterations allowed. If the value 0 is given for itmax, there is no limit
on the number of iterations. If a value greater than 0 is specified for itmax, it must be at least 3 or brent3
will never indicate a successful minimization.

brent3 returns a pointer to an F32 array. Element 0 of the array is the minimized function value;
element I is the value of x at the function's minimum point; element 2 is a status code: 0 indicates normal
completion, I indicates that no acceptable minimum was found, and 2 indicates that the values that were
input to brent3 represented an already-converged condition (this is normally not an error); and, element
3 is the number of iterations done. brent3 does not directly change any of the fparm or iparm values,
although brent3 does call func which may change these values.

This version of brent3 requires that the function have a minimum (the correlation have a maximum)
within the specified interval. brent3 then uses all the function values it has calculated in finding this
minimum, and estimates the uncertainty (standard deviation) in the position of the assumed-parabolic
correlation peak. If the peak position uncertainty is greater than half of the initial x-interval cx-ax, the result
is declared unacceptable and brent3 returns the status code I.

.

F32 * brent3a (func, fparm, iparm, atol, rtol, itmax) file emman.c, MASTER

F32 func(...)
F32 *fparm
132 *iparm
F32 atol
F32 rtol
132 itmax

represents the multi-variate function to be minimized
an array of F32 parameters for func and brent3a
an array of 132 parameters for func and brent3a
fraction-of-range convergence criterion for brent3
fraction-of-value convergence criterion for brent3
maximum allowed number of iterations for brent3

brent3a is an example of the linmin function used by function powell. brent3a finds the minimum of
a multivariate function along a line in the multidimensional variable space. brent3a uses the single-
variable function minimization procedure brent3.

The multivariate function is represented by func (see reg3c, for example), which must be of a
particular form:

The second and third arguments of func are fparm and iparm, the same as the second and third
arguments of brent3a. The first argument of func is an F32 value, call it x.

* the function is to be minimized with respect to n variables, fparm[l], fparm[2], ... fparm[n], where
n = iparm[O].

* func evaluates the function at the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n].

* func returns a pointer to an F32 array. Array element 0 is set to the function value, which must
be I-correlation for some correlation process; element 1 is set to the x value used in the function
evaluation (which may be different from the x value supplied as an argument, depending on how

31

func is programmed); element 2 is a status code: 0 for normal return, I for an unspecified error,
2 if the function argument is out of the allowable range; and, element 3 is the number of degrees
of freedom associated with the correlation calculation.

brent3a does not directly require that the function func represent a l-correlation value, but brent3a uses
brent3 which does make that requirement.

On entry to brent3a:
Y fparm[l], fparm[2], ... fparm[n] must be a point on the line along which the function is to be

minimized.
* fparm[l+n], fparm[2+n], ... fparm[n+n] must specify the direction of the line along which the

function is to be minimized. That is, points on the line are specified by fparm[l]+x * fparm[l+n],
fparm[2]+x fparm[2+n], ... fparm[n]+x * fparm[n+n], with x being a measure of position along the
line.

* fparm[l+2n], fparm[2+2n], ... fparm[n+2n] must be lower limits for the values of the n function
variables, and fparm[l+3n], fparm[2+3n], ... fparm[n+3n] must be upper limits for the values of
the n function variables. The combination fparm[i+2n]=l.0 and fparm[i+3n]=-l.O can be used to
indicate that variable i has no explicit limits. For the whole set of n variables, at least 2 limits
must be imposed such that there is an implied limit on x values, an implied limit on the length of
the line along which the function is to be minimized.

brent3a is arranged so that it simply returns the first guess input point if the parameter limits are both
the same as the first guess parameter value, if the parameter range has zero width. This facilitates using
powell with brent3a to minimize multivariate functions with some of the variables constrained to constant
values.

brent3a returns a pointer to an F32 array. Array element 0 is the minimized function value; element
1 is the value of x at the minimum; element 2 is a status code: 0 indicates normal completion, 1 indicates
that no acceptable minimum was found, and 2 indicates that the parameter values input to brent3a
represented an already-converged condition (this is normally not an error); and element 3 is the number
of iterations done in brent3 (brent3a does not iterate). Also, on return from brent3a, fparm[l], fparm[2],
... fparm[n] indicates the location of the minimum of the function along the specified line, and fparm[O] is
the value of the function at the minimum, if an acceptable minimum was found. If no acceptable minimum
was found, fparm[O] ... fparm[n] are not changed by brent3a.

.

void c2132 (c, I)

char * c
132 I

pointer to a location to receive 2 characters
an 132 value

c2132 copies the least significant byte of the 132 value to the first byte at location c, and the second
least significant byte to the second byte at c.

.

void 4132 (c, 1)

char * c
132 I

pointer to a location to receive 4 characters
an 132 value

4132 copies the least significant byte of the 132 value to the first byte at location c, the second least
significant byte to the second byte at c, etc. for all 4 bytes.

.

132 ChecklnnData (void) file comm.inc, MASTER & SLAVE

32

I

ChecklnnData returns 1 if bufinni contains data for the main thread, 0 otherwise. ChecklnnData does
not wait for bufinni to receive data; it returns promptly. Data is put into bufinni by function rcv running in
a separate thread.

.

(macro) chknp(n) file emntrpx, MASTER

132 n minimum acceptable number of parameters

chknp checks whether np (the number of parameters in the user command line) is at least as large
as n, and prints a warning message if not. For programs E and F, chknp also s tops execution if np is less
than n.

.

void clrmem (void) file emman.c, MASTER & esman.c, SLAVE

clrmem clears the tables of defined images, kernels, and user-defined variables, and de-allocates
memory that w a s allocated for these items; defines kernel 0; and initiallizes rband, setting all the .img
members to 0 and all the other members to -1. clrmem implements the CLEAR user command.

.

void contour (dst, src, sval, dval) file esmath.c, SLAVE

132 dst
132 s r c
F32 sval
F32 dval

number of the destination image
number of the source image
the source image pixel value for which the contour is to be drawn
the destination image pixel value with which the contour is to be drawn

contour draws o n e contour curve in destination image dst, representing a curve of constant intensity
in source image src. If a pixel in s r c has intensity at least as great as the floating point value sval, and
a t least o n e of its four nearest neighbors has intensity less than sval, then the corresponding pixel in dst
is s e t equal to the floating point value dval. Otherwise, ds t pixel values a r e left unchanged. s r c should
have a t least I overlap row. ds t does not need to be the s a m e size as src. contour implements the
CONTOUR user command.

.

void convlv (dst, src, opr) file esconv.c, SLAVE

132 dst
132 s r c
132 opr

number of the destination image
number of the source image
number of the kernel which is to be convolved with the source image

convlv s e t s image dst equal to the convolution of image s r c with kernel opr. That is, set each ds t
pixel equal to the s u m of {src * opr}, summed over the domain of the kernel opr with the kernel's origin
pixel positioned on the s r c pixel that corresponds to the dst pixel. The pixels of image ds t in the excluded
edge region, which is defined by the domain of the kernel opr, a r e set to zero. s r c should have enough
overlap rows to accommodate kernel opr. The number of overlap rows should be at least as large as the
larger of the absolute value of jmax o r the absolute value of jmin for kernel opr. The image ds t does not
need to be the s a m e size as the image src, but the two images do need to be distributed among the
slaves in a manner compatible with the RESAMPLE algorithms. This is not strictly a proper convolution
calculation, which would require reversing the signs of the two indexes in the kernel. convlv implements

33

the CONVOLVE user command.

.

void copedg (dst, src, opr) file esman.c, SLAVE

132 dst
132 s rc
132 opr

number of the destination image
number of the source image
number of the kernel that defines the edge region to be copied

copedg copies the values of the pixels a t the edges of image s r c to the corresponding pixels of
image dst. The edge pixels a r e specified by the domain of the kernel opr. That is, if the origin pixel of
kernel opr can be aligned with a certain pixel of image s r c without the domain of the kernel extending off
the image, then that certain pixel is NOT an edge pixel and it will not be copied. Images dst and s rc
should be the s a m e size. copedg implements the COPYEDGES user command.

.

132 copid (dst, src, novl) file emman.c, MASTER
void copid (dst, src, novl) file esman.c, SLAVE

132 dst
132 s rc
132 novl

number of the new image
number of the old image
number of overlap rows for the new image

copid defines space for previously undefined image dst so that it is compatible with the previously
defined image src. That is, the total sizes are the s a m e for the two images, and their primary rows are
distributed the s a m e way among the several slaves, so that the two images a re compatible for 2- or 3-
image operations. The new image dst will have novl overlap rows regardless of how many overlap rows
the old image s r c had. copid does not set any pixel values. copid implements the COPDEF user
command.

.

void cwl (void)

cwl uses the s u m s from fsums or rsums, and implements the training process by optimizing the
coefficients for all the best subse ts of feature images. MASTER cwl uses cwlc, setfex, and incfex.
SLAVE cwl uses cwl b.

file fm0pt.c (and emdummy.c), MASTER & fs0pt.c (and esdummy.c), SLAVE, F only

.

void cwl b (void) file fsopt.c, SLAVE, F only

cwlb is used by SLAVE cwl, to optimize the coefficients for one subset of feature images in the
training process. cwl b uses hdist, hdistx, hdistl , hdist2, and eint2.

.

132 c w l c (kfr, cfr, port) file fmopt.c, MASTER, F only

132 *kfr
F32 *cfr
F32 *port

34

' I

cwl c is used by MASTER cwl , to receive from a slave node the results of optimizing the coefficients
for a particular set of feature images in the training process.

.

void deci (dst, src, opr, xf, yf, novld) file emman.c, MASTER

132 dst
132 src
132 opr
F32 xf
F32 yf
132 novld

number of the destination image
number of the source image
number of the exclusion kernel
x-direction (horizontal) decimation factor
y-direction (vertical) decimation factor
number of overlap rows for destination image

deci undersamples image s r c and puts the result in image dst. If image dst does not already exist,
it is created with novld overlap rows. Its x and y dimensions will be equal to the s rc image x and y
dimensions, excluding the edge region specified by kernel opr, divided by xf and yf respectively. If image
dst already exists, it is used as is. deci simply uses the xf and yf values to calculate the size of the image
dst, and then calls function resaml. deci implements the UNDERSAMPLE user command.

.

132 defimg (img, ncol, nrow, novl) file emman.c, MASTER
void defimg (img, ncol, nrow, novl) file esman.c, SLAVE

132 img
132 ncol
132 nrow
132 novl

number of the image being defined
number of columns
number of rows
number of overlap rows

The action of the function defimg depends on the value of the global variable np, the number of
parameters in the user command line.

If np is zero, defimg lists on the screen the image number, number of rows, number of columns, and
number of overlap rows for each defined image.

If np is one, defimg s e t s the user-accessible variables $NCOL, $NROW, and $N (internal variables - NCOL, -NROW, and -NUM) to the number of columns, number of rows, and number of overlap rows in
image img. If echo is on, these values a r e printed on the screen.

If np is greater than one, defimg reserves memory in each slave to hold part of image img, and
enters image description data in the appropriate tables. novl is the number of overlap rows. The full image
comprises ncol columns by nrow rows. defimg sets the scale factors A and B for image img to 0.0 and
1.0. defimg does not s e t pixel values. If either ncol or nrow is 0, the image img is undefined; its memory
space is deallocated and any image data is lost.

The operator does not have control over which part of the image is held by which slave. Two images
of the s a m e size may be distributed differently among the several slaves, if the two images do not have
the s a m e number of overlap rows or if they were created by different processes; such image pairs a r e not
compatible for most multiple-image operations. If two (or more) images a re defined by this defimg function
with the s a m e values of all 3 parameters ncol, nrow, and novl, they will be compatible for two-image
operations. The copid function (the COPDEF user command) can be used to ensure that two or more
images will be compatible, even if they have different numbers of overlap rows.

defimg implements the DEFIMG user command.

.

void defopr (opr, imin, imax, jmin, jmax) file emman.c, MASTER & esman.c, SLAVE

35

132 opr
132 imin

132 imax
132 jmin
132 jmax

number of the kernel to be defined
minimum column in the kernel domain, relative to the destination pixel
column
maximum column in the kernel domain, ...
minimum row in the kernel domain, ...
maximum row in the kernel domain, ...

The action of the function defopr depends on the value of the global variable np, the number of
parameters in the user command line.

If np is zero, defopr lists on the screen the kernel number and the domain limits for each kernel that
is defined.

If np is one, defopr sets the user-accessible variables $MINI, $MAXI, $MINJ, and $MAXJ (internal
variables -MINI, -MAXI, -MINJ, and -MAXJ) equal to the domain limits of kernel opr. If echo is on, these
values are listed on the screen.

If np is at least 5, defopr reserves memory in MASTER and in each SLAVE to hold all of kernel opr.
The parameters imin, imax, jmin, jmax define the domain of this kernel, in the horizontal (positive to the
right) and the vertical (positive downward) directions respectively, relative to the "origin" pixel. The origin
pixel does not need to be in the two-dimensional domain specified by imin, imax, jmin, jmax. The origin
pixel is merely the pixel with kernel domain coordinates i=O and j=O, which is often, but not necessarily,
in the center of the domain. opr must be greater than 0. Kernel 0 is always automatically defined with
imin, imax, jmin, jmax all equal to zero; this is useful as a dummy kernel with a one-pixel domain. Using
kernel 0 to specify an excluded edge region implies that none of the image is excluded.

defopr implements the DEFKERN user command.

.

void defudv (typ) file emmath.c, MASTER

132 tyP a user-accessible variable type code

defudv defines new user-accessible variables of type typ, one for each of the np parameters in the
command line. Variable names are limited to 30 characters. The first character of a variable name must
be an alphabetic character, not a numeral or a special character. You must not try to redefine an already
defined variable. This operation does not assign values to the newly-defined variables. defudv uses
defudvl and implements the SDEFF32 and SDEF132 user commands.

.

132 defudvl (typ, k) file emmath.c, MASTER

132 tyP
132 k

a user-accessible variable type code
the number of a parameter in the command line

defudvl defines a new user-accessible variable with the name specified by command line parameter
k, with type typ. This definition includes memory allocation for the variable's value (or values, if an array
is implied by the variable pn for this parameter). defudvl returns the index of the newly-defined variable.

.

void dispinit (argc, argv) file emio.c, MASTER

int argc
char * *argv

argument count for the command line that invoked the master program
an array of pointers to command line arguments

dispinit is a very short function which calls the correct machine-specific function - qt9dinit for ATR2

36

or xwininit for ATR3 (the ATRI system in initialized in the separate VIDEO program) - for initiallizing the
high-resolution RGB display software. dispinit is called once, when the program starts running.

.

void dispres (img, row0, coI0, q, caption, res) file emio.c, MASTER

132 img
132 row0
132 col0
F32 q
char * caption
132 res

number of the image to be displayed
screen pixel row for top of image
screen pixel column for left edge of image
green/red pixel color criterion
caption to be printed under the image being displayed
number of the image to be used for red/green pixel color decision

dispres is a short function which calls the correct machine-specific function - ttg3res, qtgdres, or
xwinres if r es is not zero, o r ttg3, qtgd, or xwin if res is zero - for displaying a n image on the high-
resolution RGB display. dispres implements the user commands DlSP and DISPRES.

A special case is img=-257, for which dispres does nothing except set the user-accessible variables
- MAXI ($MAXI) and -MAXJ ($MAXJ) to the width and height of the RGB display screen, and -MINI
($MINI) and -MINJ ($MlNJ) to the width and height of a n alphanumeric character on the RGB display.

132 dlist (pv, pi, ilo, listlen) file esfikc, SLAVE

F32 *pv
132 *pi
132 ilo

132 listlen

an array containing the values in the list
a n array containing the indices associated with the values in the list
the index value such that any values with lower index values should be
deleted from the list
length of the existing list

dlist is used with the onedimensional median filter functions med lx and medly. dlist removes
entries from the list that is to contain all the values in the onedimensional filter window, removing all
entries with index value less than ilo. dlist returns the new list length.

.

void drawln (nv, color) file gmmask.c, MASTER, G only

132 nv
132 color (for ATRI)

number of vertices in the user-drawn polygon

numeric value for polygon color
or unsigned long int color (for ATR3)

drawln draws the user-drawn polygon on the screen, during the process of constructing a 3-level
mask, during the process of marking target and background regions on a training scene.

.

void edj02 (dstb, dsta, src, skr, opr, minlen, maxwid, minavgz, mingrad)
void edjO2 (dstb, dsta, src, opr, minlen, maxwid, minavgz, mingrad)

file emlines.c, MASTER
file eslines.c, SLAVE

132 dstb
132 dsta
132 s rc

number of the image to receive the edge intensity values
number of the image to receive the edge angle values
number of the source image, in which edges a re being sought

37

132 skr
132 opr
F32 minlen
F32 maxwid
F32 minavgz
F32 mingrad

number of a n image to be used for scratch space
number of the kernel to be used for finding lines
the minimum acceptable length of a line
the maximum acceptable width of a line
the minimum acceptable edge intensity
the minimum acceptable edge gradient

The intent of edj02 is to find edges, regions in a n image such that the intensity is higher on one side
of a more-or-less linear boundary than on the other side. This edj02 uses xgrad followed by lin02 and
ygrad followed by lin02 to find sharp gradients in the image src. Image dstb is set to the magnitude of the
gradient, and image dsta is set to the tangent of the angle between the gradient direction and the x-axis.

. The opr, minlen, maxwid, and minavgz parameters a re those used in lin02. mingrad is a gradient
threshold; gradient amplitudes less than mingrad a re set to zero and ignored. skr is the number of an
image than can be used for scratch space. Either skr must be 0, in which case edj02 defines an image
and uses it and destroys it; or, image skr must be previously defined with enough overlap rows to
accomodate kernel opr, in which case the contents of image skr will be undefined after this edj02
operation. Image s r c should have one overlap row. All four images should be different, all of the s a m e
size. Image dstb pixels in the excluded edge region defined by the domain of kernel opr a r e s e t to zero.
edj02 implements the EDJO2 user command.

.

void eint2 (k, xc, mom, nmom, eo, e l , e2) file fsopt.c, SLAVE, F only

132 k

F32 xc
F32 *mom

132 nmom
F32 we0
F32 *el

F32 *e2

a code indicating which tail to integrate over: 1 , from xc to positive infinity;
2, from negative infinity to xc
the finite limit of integration
the values of the moments that specify quantitatively the distribution
function
the number of moments used to describe the distribution
the address of a variable to receive the value of the integral
the address of a n array to receive the values of the first derivatives of the
integral with respect to the distribution moments
the address of an array to receive the values of the second derivatives of
the integral with respect to the moments

eint2 integrates the distribution function that describes the pixel values in a feature image. The
integral is done from pixel value xc to positive infinity if k is 1, or from negative infinity to pixel value xc
if k is 2. eint2 also calculates the first and second derivatives of the integral with respect to the moments
that quantitatively describe the distribution. eint2 is used by cwl b in the training process.

.

void error9 (void) file esinfo.c, SLAVE

error9 sends a message to MASTER, indicating that this node received a bad command and giving
some values present in that bad command. MASTER responds by using abort9 to display the message
on the operator's console and stop program execution.

.

void etime (str) file emmain.c, fmmain.c, & gmmain.c, MASTER

char * str the message to be printed

38

etime prints the specified message, and also prints the current host computer clock time and the
number of seconds elapsed since the last previous call to etime. etime implements the ECHOTIME user
command.

.

void exsub (void) file emntrpx, MASTER, E and F only

exsub simply takes values from the programmer's stack and assigns them to the subroutine
arguments. exsub is called by the function jump in response to the GOSUB user command, to execute
a subroutine in the user command file.

.

void extract (dst, src, row, col) file emman.c, MASTER & esman.c, SLAVE

132 dst
132 s rc
132 row

132 col

number of the destination image
number of the source image
the source image row from which the top destination image row will be
copied
the source image column from which the left destination image column
will be copied

extract copies all of image dst from the region of image s r c with top left comer at row row, column
col. If part of the requested region lies outside of image src, that part of image dst is left unchanged. This
operation does set the overlap rows in dst. extract implements the user command EXTRACT.

.

void f2c (dst, src, cnst, kod) file esmath.c, SLAVE

132 ds t
132 s rc
F32 cnst
132 kod

number of the destination image '
number of the source image
value of the constant to be used
operation code

f2c does single-pixel arithmetic operations that require one image source and perhaps one constant
(scalar) source value. S o m e operations, square root, for example, set each destination image pixel equal
to a value calculated from the corresponding source image pixel. Other operations u s e a constant value,
which is the s a m e for all pixels, in addition to the source image pixel value to determine the destination
image pixel value, such as the operation of adding a constant to each pixel value, or the operation of
clipping pixel values that a r e higher than the specified constant value. dst and s r c do not need any
overlap rows, they must be the s a m e size, and they can be the s a m e image. The specific operation to
be done is specified by the value of kod:

- kod
136
125
126
127
128
131
132
133
134

operation
COPY
square root
absolute value
clip low values
clip high values
add constant
subtract constant
multiply by constant
divide by constant

39

135
151
152
154
155

set image to a constant
tangent
arctangent
natural logarithm
exponential

f2c implements the user commands COPY, SQRT, ABS, MAXCON, MINCON, ADDCON, SUBCON,
MULCON, DIVCON, SETCON, TAN, ATAN, LOG, and EXP.

.

void f2cc (dst, src, a, b, kod) file esmath.c, SLAVE

132 dst
132 src
F32 a
F32 b
132 kod

number of the destination image
number of the source image
value of the first constant to be used
value of the second constant to be used
operation code

f2cc does single-pixel arithmetic operations that require one image source and two constant (scalar)
source values. The only two operations now installed are (kod=l37) set the destination pixel equal to the
corresponding source pixel if the values of that pixel is greater than a, or to the value b otherwise; or
(kod=138) set the destination pixel equal to the corresponding source pixel if that pixel value is not greater
than a, or to b otherwise. dst and src do not need any overlap rows, they must be the same size, and
they can be the same image. The specific operation to be done is specified by the value of kode:

kod operation
137 replace low
138 replace high

-

f2cc implements the user commands REPLO and REPHI.

.

void f2udv (kode) file emmath.c, MASTER

132 kode function code

f2udv does a mathematical operation using the second user command parameter as the source and
the first user command parameter, which must be a user-accessible variable, as the destination. The
operation is specified by the value of kode:

- kode
20
25
26
51
52
54
55

operation
copy, numeric value or string
square root
absolute value
tangent [radians]
arctangent [radians]
natural logarithm
exponential

f2udv implements the user commands SEQ, SSQRT, SABS, STAN, SATAN, SLOG, and SEXP.

.

40

void f3 (dst, srl, sr2, kod) file esmath.c, SLAVE

132 dst
132 sr l
132 sr2
132 kod

number of the destination image
number of the first source image
number of the second source image
operation code

f3 does single-pixel arithmetic operations that require two images as sources. An example is the
subtraction of two images, in which each pixel of the destination image is set equal to the corresponding
pixel of the first source image minus the corresponding pixel of the second source image. The images
do not need any overlap rows, they must be the same size, and they can be the same image. The
specific operation to be done is specified by the value of kod:

- kod
121
122
123
124
153
129
130

operation
add
subtract
multiply
divide
arctangent 2
maximum
minimum

f3 implements the user commands ADD, SUB, MUL, DIV, ATAN2, MAX, and MIN.

.

void f3udv (kode) file emmath.c, MASTER

132 kode function code

f3udv does a mathematical operation using the second and third user command parameters as
sources and the first user command parameter, which must be a user-accessible variable, as the
destination. The operation is specified by the value of kode:

- kode
21
22
23
24
27
28
53

Operation
add, or concatenate strings
subtract
multiply
divide
maximum
minimum
arctangent [radians]

f3udv implements the user commands SADD, SSUB, SMUL, SDIV, SMAX, SMIN, and SATAN2.

.

void ffeats (void) files emntrp.c & gmntrp.c, MASTER

ffeats interprets the user commands. ffeats uses function read2 or function read3 to read the user
command and parse it, and ffeats then implements the command, usually by calling a function with the
arguments implied by the user command.

.

41

132 findHFAobject (initial-offset, n, name, type, device, filename, fp)

132 initial-offset
132 n occurrence number
char * name
char * type
132 device
char filename name of the HFA file
FILE *fp

file offset for beginning of search

sought HFA object name
sought HFA object type
number of the file device (SCSIDISK, SCSIHOST, etc.)

fill pointer, if the file is on the host (if device=SCSlHOST)

findHFAobject s c a n s a n HFA file to find the n-th occurrence of a n HFA object with object name and
object type that match the function arguments name and type. If either argument name or type is ” Y ”,
any HFA object name or type is construed as matching. findHFAobject returns the offset (byte number)
of the object in the HFA file, o r 0 if the object is not found.

.

132 findudv (name) file emmath.c, MASTER

char * name the name of a user-accessible variable

findudv finds a user-accessible variable name in the list, and returns the index of that variable in the
list. findudv returns -1 if the name is not in the list. If the name includes brackets [...I, the brackets a r e
not considered part of the name searched for in the list.

.

132 fixnam (fnam) file emio.c, MASTER

char * fnam a character string containing a file name

fixnam deletes any leading s p a c e s from the string pointed to by fnam, deletes the final ‘\n’ if it exists,
and adds a final ‘\O’ if it w a s not already present. fixnam returns the number of characters (excluding the
‘\O’) in the string.

’

.

void Freelnn (void) file comm.inc, MASTER & SLAVE

Freelnn changes the flags associated with the input data buffer bufinni to indicate that the main
thread is finished with bufinni, so bufinni is available to receive the next incoming data. Data is put into
bufinni by function rcv running in a separate thread. rcv cannot receive more data from other nodes until
the bufinni flags a re cleared by Freelnn.

.

void FrornNodeDN (notused, linkin, internal) file comm.inc, SLAVE, ATR3 only

Process * notused
Channel * linkin
Channel * internal

the process pointer returned by ProcAlloc
a channel pointer to the link used for input from the lower node
a channel pointer to a n internal channel

FromNodeDN is a (hopefully) temporary patch, to be used until certain improvements a r e made in
the system software. FromNodeDN is a simple relay, receiving messages from the link that is connected
to the next lower node and sending those messages via a n internal channel to the rcv function to be put

42

into the buffer bufinni.

.

void FromNodeUP (notused, linkin, internal) file comm.inc, SLAVE, ATR3 only

Process * notused
Channel * linkin
Channel * internal

the process pointer returned by ProcAlloc
a channel pointer to the link used for input from the lower node
a channel pointer to an internal channel

FromNodeUP is'a (hopefully) temporary patch, to be used until certain improvements are made in
the system software. FromNodeUP is a simple relay, receiving messages from the link that is connected
to the next higher node and sending those messages via an internal channel to the rcv function to be put
into the buffer bufinni.

* * * * Y *

void fsums (void) file fmoptx, MASTER, F only

fsums does reformatting and rearranging and normalization of the sums (of feature image pixel
values and their products) needed for the training process. If a file name was specified in the .cmd file,
fsums also writes the sums to a file. fsums is normally executed after the raw sums are accumulated by
asums, and before the optimization performed by cwl.

.

void getblk (data-offset, img, bpp, row0, col0, nrow, ncol, rowl, coll , wide, high, device, filename, fp)
file emio.c, MASTER
void getblk (void) file esio.c, SLAVE

132 data-offset
132 img
132 bpp
132 row0
132 col0
132 nrow
132 ncol
132 rowl
132 coll
132 wide
132 high
132 device
char * filename
FILE *fp

data block's offset (byte address) in the source file
image number
bytes-per-pixel code
first file image row to be read
first file image column to be read
number of rows to be read
number of columns to be read
image row number or the first row in the block
image column number of the first column in the block
number of columns in the block
number of rows in the block
number of source file device (SCSIHOST, SCSIDISK, etc.)
name of source file
file pointer, if the file is on the host

The MASTER getblk sends a block of image data, as from an HFA file, to the slave nodes, and the
SLAVE getblk receives blocks of data, converts it to F32 format, and writes it into the appropriate image
memory space. Each call to MASTER getblk sends one block; however, the block may be sent as several
parts in several separate messages, and SLAVE getblk interprets each of these messages as a separate
block. The arguments row0 and cot0 refer to the location in the overall file image which corresponds to
the top left pixel of the total memory image being read, and nrow and ncol are the size of the total memory
image being read, not just referring to the current block. The arguments rowl and cot1 indicate the
position of the top left pixel of the current block in the overall file image. MASTER getblk is called by
function inn8HFA.

43

.

132 getfilnam (filnam, inn) file emio.c, MASTER

char * filnam
FILE *inn

a buffer to receive the new file name
the file from which the new file name is being read

getfilnam reads a file name from the file pointed to by inn, and invokes the function fixnam. The file
name is assumed to occur in a line by itself in the file. getfilnam returns the number of characters in the
"fixed file name, or -1 if the attempt to read the file name was unsuccessful.

.

void getheader (filename, hdrtyp, head, bpr, nrows, nbands, bpp) file emio.c, MASTER

char * filename name of the file to be read
132 *hdrtyp pointer to file header type code variable
132 *nhead - pointer to file header length variable
132 *bpr pointer to bytes per row variable
132 *nrows pointer to number of rows variable
132 +ribands pointer to number of bands variable
132 *bpp pointer to bytes per pixel variable

getheader attempts to read the header from image file filename, and attempts to set the values of
certain image file descriptors using information in that header. The arguments of getheader (except
filename) are pointers to variables that are assumed to contain either tentative values for the parameters,
or the value -1 to indicate that there is no tentative value. If echo is on, getheader warns of differences
between tentative values and values implied by the file header. If there is a difference, the variable value
is not changed unless the value was -1, in which case it is set to the value determined from the file
header. The function getheader also attempts to replace values of -1 in the rband structure, if the file is
of the row-interleaved type. getheader is used by inn8 and by phead; this implies that the functions inn8
and phead may indirectly change the rband values.

.

void getheaderHFA (filename, br, nr, nb, bp) file emio.c, MASTER

char * filename
132 *br
132 * n r
132 * n b
132 *bp

name of an image file
pointer to a location to receive a bytes-per-row value
pointer to a location to 'receive a number-of-rows value
pointer to a location to receive a number-of-bands value
pointer to a location to receive a bytes-per-pixel value

getheaderHFA is called by function getheader, to read an HFA file and attempt to determine the 132
values from information in the file. getheaderHFA uses the hfa0bject.n-th occurrence of the Eimg-Layer
type object with a name matching hfaobject.name, to determine the values of * br, * nr, and * bp. If
hfaobject.name is " * ", every HFA file object name is construed as matching; otherwise, the HFA file object
name must exactly match hfaobject.name. The value returned for *nb is the total number of name-
matched Eimg-Layer type objects in the HFA file.

.

void getopr (opr,filename)
void getopr (void)

file emio.c, MASTER
file esio.c, SLAVE

44

132 opr
char * filename

number of the kernel to be read
name of the file to be read

getopr reads kernel number opr from file filename into the memory of each slave and the master.
The program assumes that the kernel buffer has already been defined (function defopr, user command
DEFKERN) and that the buffer and the file a r e compatible. opr must be greater than 0. The file is
assumed to contain ASCII characters, with the several values separated by spaces , commas, o r end-of-
'line characters. getopr implements the user command READKERNEL.

* * * w *

void getpixo (void) file esinfo.c, SLAVE

getpixo is like the SLAVE getpixp, in that it responds to a request from another node for a pixel
value. getpixo is different from getpixp in that getpixo will u se a pixel value from a n overlap row to satisfy
the request, whereas getpixp will u se only primary rows.

.

void getpixp (img, row, col, nparm)
void getpixp (void)

file eminfo.c, MASTER
file esinfo.c, SLAVE

132 img
132 row
132 col
132 nparm

image number
row number
column number
number of the user command parameter that is to receive the pixel value,
o r 0

getpix ge ts the value of the pixel a t row row, column col, in image img, and puts the value in the
global variable -AVG (user-accessible variable $AVG). If echo is on, the pixel value is printed on the
operator's console. If nparm is greater than 0, the pixel value is also assigned to the user-accessible
variable which is given as the nparm-th parameter in the user command line. getpix implements the
GETPIX user command.

.

void getri (void) file esio.c, SLAVE

getri receives one row of an image from another node (usually the master), decides whether that row
should be resident in that slave, and, if appropriate, converts and writes to memory as F32 values that row
of image. getri a s sumes that the image is already defined.

.

void gosub (void) file emntrp.c, MASTER, E and F only

gosub copies values from the user command line parameters into the programmer's stack, and then
uses the jump function to g o to the correct DEFSUB ... line in the user command file so the subroutine can
be executed. gosub implements the GOSUB user command.

.

void gradcon (dstb, dsta, srcb, srca) file esmath.c, SLAVE

132 dstb number of the image that will receive the gradient magnitude values

45

132 dst
132 src

132 dsta _-
132 srcb
132 srca

number of the image that will receive the gradient angle values
number of the image that holds the old gradient magnitude values
number of the image that holds the old gradient angle values

gradcon concentrates (or sharpens) the peaks in a vector field, in the direction of the vector. This
is intended to concentrate a gradient vector field, such as is obtained from function gradt or from the
combination of gradx, grady, and xy2rt. Image srcb contains the source vector magnitude, image srca
contains the tangent of the angle between the vector and the x axis, and images dstb and dsta will contain
the corresponding quantities for the concentrated vector field. gradcon assumes that the single rows and
columns of pixels at the edges of the source images are all zero, and it sets these edge pixels to zero in
dstb. Each source image should have one overlap row. All the images should be of the same size. The
destination images need not be distinct from the source images or from each other. If the two destination
images dstb and dsta are the same, the destination image will contain the concentrated vector magnitudes.
This operation is not perfect, but is quite good. There is sometimes some concentration in the wrong
direction, which gets worse with repeated application of gradcon. gradcon implements the GRADCON user
command.

.

void gradcon2 (x, y, absbc, xc, yc, alfac, pb, pa, n) , file esmath.c, SLAVE

F32 * X
F32 * y
F32 absbc
F32 xc
F32 yc
F32 alfac
F32 *pb
F32 *pa
132 n

address for new x-component of gradient
address for new y-component of gradient
source gradient magnitude
x-cornponent of source gradient
ycomponent of source gradient
square of cosine of gradient direction
address of source gradient magnitude pixel
address of source gradient tangent(ang1e) pixel
number of pixels offset to neighbor pixel

gradcon2 is used by gradcon.

.

void gradt (dstb, dsta, src) file esmath.c, SLAVE

132 dstb
132 dsta
132 src

number of the image to receive the gradient magnitude values
number of the image to receive the gradient angle values
number of the source image

gradt sets image dstb equal to the magnitude of the gradient, and image dsta equal to the tangent
of the angle between the gradient direction and the x (horizontal) axis, for the gradient of the intensity in
image src. This operation uses one overlap row for src. The destination images need not be different.
If the two destination images dstb and dsta are the same, the destination image will contain the gradient
magnitudes and the gradient direction values will not be written to any image. The top and bottom rows,
and the left and right columns, of dstb are set to zero. Both dstb and dsta should be different from src,
and all three images should be of the same size. gradt implements the GRADT user command.

.

void gradx (dst, src) file esmath.c, SLAVE

number of the image to receive the xderivative values
number of the source image

46

gradx sets image dst equal to the x-gradient (derivative with respect to x, the coordinate that
increases from left to right) of the intensity in image src. In each row, the gradient value at column i is
calculated as gradient = (intensity[i+l] - intensity[i-I]) / 2. The first and last columns (left and right edges)
of dst are set to 0. dst and src should be different images, of the same size. gradx implements the
XGRAD user command.

.

void grady (dst, src) file esmath.c, SLAVE

132 dst
132 src

number of the image to receive the yderivative values
number of the source image

grady sets image dst equal to the y-gradient (derivative with respect to y, the coordinate that
increases from top to bottom of an image) of the intensity in image src. The gradient values are calculated
as gradient = (intensity[j+l] - intensityu-I]) / 2. The top and bottom rows of dst are set to 0. dst and src
should be different images, of the same size. This operation requires one overlap row for image src.
grady implements the YGRAD user command.

.

132 hdist (void) file fsopt.c, SLAVE, F only

hdist simply returns the number of moments (excluding the zeroth moment) used to specify the
quantitative details of the distributions of pixel values in the feature images. The qualitative form of the
distribution function is assumed. In the current version, this value is 2, with Gaussian distributions
assumed. hdist is used by cwl b in the training process.

.

void hdistl (x, mom, hO, h l) file fsopt.c, SLAVE, F only

F32 x

F32 *mom
F32 *hO

F32 * h l

pixel value at which the distribution function and its derivatives are to be
evaluated
values of the moments that specify quantitatively the distribution function
address of a variable to receive the value of the distribution function at
pixel value x
address of the array to receive the values of the derivatives with respect
to the moment values of the distribution function at pixel value x

hdistl calculates the value of the feature image pixel value distribution function for the pixel value
x, and its derivatives with respect to each of the moments whose values are given in the array mom.
hdistl is used by cwl b in the training process.

.

void hdist2 (x, mom, hO, h l , h2) file fsopt.c, SLAVE, F only

F32 x

F32 *mom
F32 *hO

F32 * h l

pixel value at which the distribution function and its derivatives are to be
evaluated
values of the moments that specify quantitatively the distribution function
address of a variable to receive the value of the distribution function at
pixel value x
address of the array to receive the values of the first derivatives with
respect to the moment values of the distribution function at pixel value x

47

F32 * h 2 address of the array to receive the values of the second derivatives with
respect to the moment values of the distribution function at pixel value x

hdist2 calculates the value of the feature image pixel value distribution function for the pixel value
x, and its first and second derivatives with respect to each of the moments whose values a r e given in the
array mom. hdist2 is used by cwl b in the training process.

.

void hdistx (x, mom, hO, do) file fsopt.c, SLAVE, F only

F32 x

F32 *mom
F32 *hO

F32 *dO

pixel value a t which the distribution function and its derivative a re to be
evaluated
values of the moments that specify quantitatively the distribution function
address of a variable to receive the value of the distribution function a t
pixel value x
address of a variable to receive the value of the derivative with respect
to x of the distribution function at pixel value x

hdistx calculates the value of the feature image pixel value distribution function for the pixel value
x, and its derivative with respect to x. hdistx is used by cwl b in the training process.

.

void headbmpw (img) file emio.c, MASTER

132 img number of the image in memory for which the header is being constructed

headbmpw constructs a windows bitmap type file header for the specified image, in preparation for
writing an image from memory to a file. This function is not fully developed, and the header may be
incomplete.

.

void headdt (img, bpp) file emio.c, MASTER

132 img
132 bpp

number of the image in memory for which the header is being constructed
number of bytes per pixel

headdt constructs a Data Translation type file header for the specified image, in preparation for
writing a n image from memory to a file.

.

void headp l l (img) file emio.c, MASTER

132 img number of the image in memory for which the header is being constructed

headpl 1 constructs a Perceptron type file header for the specified image, in preparation for writing
an image from memo& to a file. This function is not fully developed, and the header may be incomplete.

.

48

void hexdump (buf, ilo, ihi) file eminfo.c, MASTER

char * buf
132 ilo
132 ihi

pointer to data that is to be printed
number of the first byte to be printed
1 + number of the last byte to be printed

hexdump prints on the operator's console the contents of character buffer buf, in hexadecimal and
in ASCII.

void hist02 (src, xcl, nbin, vmin, vmax, hst)
void hist02 (src, xcl, nbin, vmin, vmax)

file eminfo.c, MASTER
file esinfo.c, SLAVE

132 src
132 xcl
132 nbin

F32 vmin
F32 vmax
F32 * h s t

number of the image for which the histogram is being generated
number of the kernel that defines the excluded edge region
number of bins in the histogram, not including the high and low out-of-
range bins
low pixel value limit
high pixel value limit
an array to hold the histogram

hist02 creates a histogram of intensity values for image src. If echo is on, histO2 calls phst02 to
display the histogram on the operator's console. Kernel xcl defines an excluded edge region; xcl may be
0. The histogram will have nbin bins representing the pixel values from vmin to vmax, plus two more bins,
for valus less than vmin (in bin 0) and for values greater than or equal to vmax (in bin nbin+l). This
operation sets the user-accessible variables $N = number of pixels in the histogram range, $AVG =
average value of those pixels, and $SIG = standard deviation of those pixel values. These statistics are
calculated from the histogram, not directly from the image. hist02 implements the HIST2 user command.

.

132 1324 (c)

char * c pointer to a sequence of 4 characters to be read

1324 constructs an 132 value by using the first character at location c as the least significant byte
of the 132 value, the next character as the second least significant byte, etc. This 132 value is returned
by the function.

.

132 132~2 (c)

char w c pointer to a sequence of 2 characters to be read

132~2 constructs an 132 value by using the first character at location c as the least significant byte
and the next character as the second least significant byte, and setting the more significant 2 bytes to
zero. This 132 value is returned by the function.

.

(macro) 132 IEQ(x) file efg.h

1~

49

The function sendshrt uses values supplied as 32-bit integer (132) arguments, and puts these values
into the 132 array bufouti. IEQ is used to disguise a 32-bit floating point (F32) variable as an 132 argument,
allowing the bit pattern of the F32 variable to be put into the 132 array bufouti so that the F32 bit pattern
can be sent to another node.

.

void incfex (kf) file fmopt.c, MASTER, F only

132 * M M[i]=l if feature image i is to be included, 0 otherwise

incfex increments the indexes that are used to keep track of which combinations of feature images
have been used and which combination should be used next, in the sequence of optimizing the coefficients
for successive subsets of feature images in the training process. incfex is used by cwl.

.

void incfil (name, nleft, nrite) file emio.c, MASTER

char * name
132 nleft
132 nrite

a file name
number of the left-most character to be incremented
number of the right-most character to be incremented

incfil increments the given file name. Only those characters in the base part (not the path or the
extension) are incremented. Only the characters from the nleft'th through the nright'th before the extension
(or before the end of the file name) are incremented.

"lncrementing a file name" means that we treat the base file name, exclusive of the path and
extension, as if it were a kind of string of digits representing a number, and we increase it by one. For
example, with the broadest range specified by the values for nleft or nright, C:FILE15.1MG increments to

to TUOO; ,etc. The path and extension are never changed. Alphabetic characters always increment to
other alphabetic characters, and numerals to other numerals. For nleft=2 and nright=2, TT99 increments
to TTO9; for nleft=3 and nright=2, TT99 increments to TU09. incfil implements the INCFIL user command.

C:FILEIG.IMG; NAME29 to NAME30; FILE9 to FILFO; TESTA to TESTB; F7Z to.F8A; X Z Z to YAA; TT99

.

void indent (level) file eminfo.c, MASTER

132 level level of indentation; number of space blocks to indent

indent is used when printing, to accomplish a function like tab stops. indent inserts 3 * level spaces
into the current print line.

* * * * * * * * * * * + * + * * * * * * + * * * * * * * * * * *

void inn8 (filename, np, p l , p2, p3, p4, p5, p6, p7) file emio.c, MASTER

char * filename
132 nparm
132 p l

132 p2
132 p3

132 p4

image file name
how many of the parameters pl-p7 are meaningfully defined
the number of the memory image to be read, or -1 to indicate reading a
multi-band file
image file type code
number of columns in the image file; or, for a multi-band file, number of
bytes per composite row in the file
number of rows to read

50

132 p5
132 p6
132 p7

number of file image rows to skip a t the start
number of file image columns to skip in each row
bytes per pixel

inn8 is the primary function for reading a n image from a file into memory.
The value of the parameter p2 indicates the type of header on the image file, as follows:

p2 meaning
0 no header
1 Data Translation 512-byte header
2 Perceptron 1 1 -byte header
3 Microsoft OS2 bit map file header
4 Microsoft Windows bit map file, 8 bits per pixel
5 Daedalus 2048-byte header
6 Casi 1024-byte header
7 AMPS synthetic aperture radar
8 Erdas .Ian 8-bit and 16-bit, and .gis

If the value -1 is given for p2, inn8 will attempt to determine the header type from the file itself.
p3 is the number of columns in the file image or, for a row-interleaved multi-image file, the number

of bytes per composite row of the file. p4 is the number of rows of pixels to be read. If the memory image
is already defined, inn8 will not read more rows than can fit into the defined image. When reading multiple
images from a row-interleaved file, inn8 will not read more rows than can fit into the smallest previously
defined image. If the file image does not have enough rows to f i l l the memory image, the unfilled memory
image rows a re left with the s a m e values they had before.

The memory image is taken from that region of the file image with top left comer at row p5 and
column p6. Usually, p5 and p6 will be 0, indicating that the top left comer of the memory image is at the
top left corner of the file image.

p7 is the number of bytes per pixel. Acceptable values a re 1; 2, implying the less significant byte
of each pair is first in the file; and -2, implying two bytes per pixel with the more significant byte first. (In
all cases , the values a re assumed to be integer, not floating point.)

Unlike most operations, inn8 DOES set the values of the pixels in the overlap rows of the memory
image.

If the value -1 is given for any of the parameters p2-p7, that parameter is assumed to be unknown
by the calling function and inn8 attempts to determine the correct value o r a reasonable value from the
image file, from the other parameters, from the descriptors of already-defined images, etc. Also, inn8 will
attempt to replace -1 values in the rband structures, both directly and by calling the function getheader,
if the file is of the row-interleaved type. If the destination image is not already defined, inn8 will define it
(with 0 overlap rows) if enough information is available.

If the header is type 1 , the program will attempt to read the values of the scale factors A and B from
the header in the image file, and set the image table A and B values and the predefined user-accessible
variables ,A and -B (user names $A and $B) values accordingly. (These A and B values a re not part of
the standard Data Translation header, but this software package - function headdt -writes them as an
optional comment in the header.) Otherwise, these will be set to 0.0 and 1.0.

If the value -1 instead of an image number is given for p l , inn8 assumes that the file contains several
images with interleaved rows. That is, the file contains the first row of the first image, the first row of the
second image, ..., the first row of the Nth image, the second row of the first image, the second row of the
second image, ..., perhaps with additional bytes interspersed between the separate image rows and
perhaps with a file header. This command reads several images from the file in one operation. The
information about each image or band is assumed to be already specified in the rband structure, s e t by
function setrband (user command BANDR).

inn8 is used by the user commands READIMAGE, READSCENE, INS, and INM.

.

51

void inn8HFA (img, bpp, row0, col0, nrow, ncol, ncols, device, filename, fp)

132 img
132 bpp
132 row0
132 col0
132 ncols
132 device
char *filename
FILE *fp

destination image number
bytes-per-pixel code
file image row at which reading starts
file image column at which reading starts
number of columns in the file image
file device number (SCSIHOST, SCSIDISK, etc.)
name of the image file
file pointer, if the file is on the host (if device=SCSIHOST)

inn8HFA is called by function inn8 when reading an image from an HFA file.

.

void insert (dst, row, col, src) file emman.c, MASTER & esman.c, SLAVE

132 dst
132 row

132 col

132 src

number of the destination image
destination image row to which the top row of the source image will be
copied
destination image column to which the left column of the source image
will be copied
number of the source image

This command copies image src into image dst, with the top left pixel of image src going into dst
pixel (row, col). This operation copies only that part of src that will fit into the specified area of dst. src
and dst should be different images. This operation does set the overlap rows in dst. insert implements
the INSERT user command.

.

(macro) 132 iroundf(x) file efg.h

F32 x quantity to be rounded to an integer

iroundf rounds the F32 (32-bit floating point) argument x to the nearest integer value and returns it
as an 132 (32-bit integer) value.

.

void jump (void) file emntrp.c, MASTER, E and F only

The jump function moves to the specified line in the user command (.fc) file. If the jump function is
called in response to a user command in which the destination line number is already known, the jump
operation is quite simple. If the destination line number is not yet known explicitly but is specified in terms
of a not-yet-defined symbol (the argument of a LABEL or SUBDEF user command), then the jump function
scans forward (never backward) through the user command file until the symbol is found in the appropriate
context. When the symbol is found, it is defined by function linum. If the symbol is the argument of a
SUBDEF user command, the subroutine is executed by the function exsub. As the jump function scans
through the user command file, it uses the linum function to define every not-yetdefined symbol that
appears as a parameter of a LABEL or SUBDEF command. The jump function is used by the user
commands JUMP, BRANCH, and GOSUB.

.

52

132 kcurs (jcurs, icurs, minic, maxic, minjc, maxjc) file gmmask.c, MASTER, G only

132 +jcurs
132 *icurs
132 minic
132 maxic
132 minjc
132 maxjc

pointer to cursor row number
pointer to cursor column number
minimum allowed cursor column number
maximum allowed cursor column number
minimum allowed cursor row number
maximum allowed cursor row number

kcurs is used during the construction of a 3-level mask, while marking target and background regions
in a training image. kcurs moves the cursor on the screen in response to cursor key hits, and kcurs
returns the numerical value corresponding to the key whe.n any non-cursor key is hit.

.

132 keyhit (void) file gmmask.c, MASTER, G only, ATR3 only

keyhit is used during the 3-level mask construction process. keyhit removes from a buffer a
keystroke that w a s placed there by function keys, and returns the numerical code for that keystroke. The
combination of the two functions keyhit and keys simply ge t s keystrokes from the keyboard and makes
them available to the calling function.

.

void keys (pp) file gmmask.c, MASTER, G only, ATR3 only

pthread-addr-t pp a n unused but essential argument

keys runs in its own thread and monitors the keyboard and puts keystrokes into a buffer during the
3-level mask construction process. Keystrokes a r e removed .from the buffer by the keyhit function.

.

132 ldblk (block) file fmopt.c, MASTER, F only

132 block the block sequence number, o r 0

ldblk loads each slave node with o n e row of each feature image (a different row for each slave) and
with the appropriate products of feature image rows. The variable block indicates which'block of rows is
to be loaded. A block of rows comprises one row for each of the slave nodes present in the system. The
blocks a r e numbered 1,2, ... ldblk returns the number of the highest node loaded. If the value 0 is given
for block, ldblk does not load any image data, but simply returns the number of blocks required to include
the full feature image. ldblk is used by sums2.

.

void IinOl (dstb, dsta, src, opr, minlen, maxwid) file eslinesx, SLAVE

132 dstb
132 dsta
132 s r c
132 opr
F32 minlen
F32 maxwid

number of the image to receive the line intensity values
number of the image to receive the line angle values
number of the source image, in which lines a r e being sought
number of the kernel that defines the local region and its pixel wei'ghts
the minimum acceptable length of a line
the maximum acceptable width of a line

53

IinOl is intended, to find lines in image src. IinOl sets each pixel in image dstb equal to the
brightness of the line (if any) passing through the corresponding pixel in image src, and sets the
corresponding pixel in image dsta equal to the tangent of the angle between the line and the x (horizontal)
axis. IinOl will not find lines with negative brightness. dstb, dsta, and src should all be the same size, and
dstb and dsta should be different from src. If dstb and dsta are the same image, the image will be set
equal to the brightness values and the angle information will not be stored in any image. Kernel opr
contains weights for the local region which is analyzed for the presence of a line. minlen is the minimum
acceptable line length parameter, and maxwid is the maximum acceptable line width parameter. length
and width are measured in pixels, but they are floating point values and fractional parts are meaningful.
dstb pixels in the excluded edge region defined by the domain of opr are set to zero. Image src should
have enough overlap rows to accommodate kernel opr.

The IinOl algorithm is designed to find bright lines on a zero-intensity background, with no negative
pixel values. This algorithm treats the src * opr intensity versus position data as a bivariate probability
density function, finds the principal axes, and compares the standard deviations in the principal directions
with minlen/sqrt(l2) and maxwid/sqrt(l2) to determine whether the distribution is "long" and "narrow"
enough to be construed as a line. (For a line of uniform intensity, the standard deviations of the
distribution are equal to lengthlsqrt(l2) and width/sqrt(l2).) In other words, this algorithm looks at the
peak in the scr * opr values, regarded as a function of the two position coordinates x and y, and checks
to see whether this peak is long and narrow enough to be considered a line. Lines that do not pass
through the "central" pixel of the local region defined by opr are rejected.

Note that positive x is to the right, positive y is downward, and positive angles are clockwise from
the positive x axis.

linO1 implements the LlNOl user command.

.

void lin02 (dstb, dsta, src, opr, minlen, maxwid, minavgz) file eslinesx, SLAVE

132 dstb
132 dsta
132 src
132 opr
F32 minlen
F3 maxwid
F32 minavgz

number of the image to receive the line intensity values
number of the image to receive the line angle values
number of the source image, in which lines are being sought
number of the kernel that defines the local region and its pixel weights
the minimum acceptable length of a line
the maximum acceptable width of a line
the minimum acceptable line intensity

This is a line-finding operation like IinOl, except that lin02 rejects lines if the absolute value of the
average intensity in the local region is less than minavgz. lin02 can find lines with negative brightness.
lin02 implements the LIN02 user command.

.

132 lineq (mat, vec, neq, sol) file emmath.c, MASTER & file esmath.c, SLAVE

F64 *mat[]

F64 *vec
132 neq
F64 *sol

an array of pointers, each pointing to an array of F64 values that is one
row of the coefficient matrix
a pointer to an array containing the right side vector
the number of equations, the number of unknowns
an array to receive the solution values

lineq solves a set of neq linear equations in neq unknowns. The equations are specified by

lineq maintains crude uncertainty estimates, which serve to detect illconditioned sets of equations and
excessive roundoff error. The uncertainty of sol[i] is returned in vec[i]. lineq changes the values in mat.

sum over col=O to neq-1 of {mat[row][col] * sol[col].) = vec[row],
for each row=O,l, ..., neq-I.

54

.

132 linum (void) file emntrpx, MASTER, E and F only

linum creates the user-defined variables associated with labels (the LABEL user command) and
subroutines (the SUBDEF user command). h u m is called in direct response to the LABEL user command,
as might be expected. Note that linum may also be called when the jump function is executing a JUMP,
BRANCH, or GOSUB user command.

.

int main (argc, argv)
int main (void)

files emmain.c, fmmain.c, & gmmain.c, MASTER
file esntrp.c, SLAVE, ATRI & ATR2

int argc
char * *argv

the command line token count
a n array of pointers to the command line tokens

The MASTER and SLAVE main functions do the usual chores of initialking variables and controlling
the overall flow of the program. The SLAVE main function also receives command codes from other
nodes and starts the appropriate SLAVE function. (The ATR3 SLAVE "main" function is named "slave".)

.

void mark (void) file gmmask.c, MASTER, G only

mark allows the user to interactively create or modify a 3-level mask to accompany a scene image
to be used in the training process. This mask creation process is described in the user's manual.

.

void med lx (dst, src, n, opr) file esfilt.c, SLAVE

132 dst
132 s r c
132 n
132 opr

number of the destination image
number of the source image
number of pixels in the median filter window
number of the kernel that defines the excluded e d g e region

med lx s e t s image dst equal to image src median filtered, with a window of n pixels in the x
(horizontal) direction by 1 pixel in the y (vertical) direction. The domain of the kernel opr defines a n
excluded edge region, in which ds t pixel values a r e left unchanged and s r c pixels a r e not used. ds t and
s r c should be different images of the s a m e size. n should be a n odd integer. m e d l x uses the functions
alist, slist, and dlist. med lx implements the MEDIX user command.

.

void medly (dst, src, n, opr) file esfilt.c, SLAVE

132 dst
132 s r c
132 n
132 opr

number of the destination image
number of the source image
number of pixels in the median filter window
number of the kernel that defines the excluded edge region

medly s e t s image dst equal to image s r c median filtered, with a window of n pixels in the y (vertical)
direction by I pixel in the x (horizontal) direction. The domain of the kernel opr defines a n excluded edge

55

region, in which dst pixel values a r e left unchanged and s r c pixels a r e not used. dst and s r c should be
different images of the same size. n should b e a n odd integer. Image s r c should have at least (n-1)/2
overlap rows. med ly uses the functions alist, slist, and dlist. med ly implements the MEDIY user
command.

void median (dst, src, opr, nlo, nhi) file esfilt.c, SLAVE

132 dst
132 s r c
132 opr
132 nlo

132 nhi

number of the destination image
number of the source image
number of the kernel that defines the median filter window
number of excluded values a t the low-value end of the list of values in the
filter window
number of excluded values at the high-value end of the list of values in
the filter window

median does a n order sort filter, in which the output (filtered) value is neither the largest nor the
smallest of the values in the local region of the source image. This is a non-linear filter that removes local
minima with domains of nlo o r fewer pixels, and local maxima with domains of nhi or fewer pixels. For
each pixel in image dst, median finds the corresponding pixel in image s r c and aligns thereon the origin
pixel of kernel opr. For each non-zero element of the kernel, the corresponding s r c pixel is put into a list
of pixel values. T h e list is sorted according to value. The dst pixel value is set equal to the corresponding
s r c pixel value, unless this value is smaller than the (nlo+l)th smallest value o r larger than the (nhi+l)th
largest value in the list, in which case the limiting list value is used for t he dst pixel value. Thus, if nlo is
1 and nhi is 2, for example, the dst pixel value cannot be the smallest o r the largest or the second largest
value in the kernel domain of s r c pixels. The kernel values a r e not used except to specify which source
pixels a r e in the local neighborhood, which is that part of the kernel domain for which the kernel values
a re not zero. If the kernel has a n odd number of non-zero elements, and nlo and nhi a r e both half of that
number (integer division by 2), this median operation is the standard median filter in two dimensions.
Pixels in the excluded edge region of ds t a r e s e t to zero. dst and s r c should be different images, and they
may be different sizes. s r c should have enough overlap rows to accommodate opr.

Note that if nlo is 0 and nhi is o n e less than the number of non-zero elements in the kernel, this
median operation gives the minimum of the pixel values in the local region; this and the similar nhi=O,
nlo=(number of non-zero kernel elements)-I a r e convenient ways to get a local minimum or maximum.
The code implements these two special cases more efficiently than the general case of median.

median implements the MEDIAN user command. .

.

void modmsk (new, old, res, opr, region, q) file esmath.c, SLAVE

132 new
132 old
132 res

132 opr
132 region
F32 q

number of the destination image, which will receive the modified mask
number of the source image, which holds the old mask
number of the old result image, which is used to make decisions about
how to modify the old mask
number of a kernel that defines the excluded edge region
code for region to be modified
targetlbackground pixel value criterion

modmsk creates a new 3-level mask (used in the training process) in image new, by modifying a n
old mask from image old, using a result image from image res from a previous program E calculation. If
region is 2, then any pixel with value 2 in old is changed to 0 in new if the res pixel value is less than q.
If region is 1 , then any pixel with value 1 in old is changed to 0 in new if the res pixel value is greater than
q. If region is 3, both operations a r e done. Other pixels a r e simply copied from old to new. Thus, the

56

designated target (2) and background (1) regions in the mask a re shrunk so that they do not extend
beyond the target and background regions indicated in the result image res. This hopefully makes the
mask more efficient without damaging its intended target and background designations. Kernel xcl defines
an excluded edge region in which new pixels a r e left unchanged. All three images should be the same
size, and new may be the s a m e image as either old or res. modmsk implements the MODMSK user
command.

.

void moml (src, xcl, vmin, vmax, kode)
void moml (src, xcl, vmin, vmax)

file eminfo.c, MASTER
file esinfo.c, SLAVE

132 s rc
132 xcl
F32 vmin
F32 vmax
132 kode

number of the image
number of the kernel that defines the excluded edge region
minimum acceptable pixel value
maximum acceptable pixel value
operation code, 21 0 or 21 1

moml analyzes image src, excluding the edge pixels specified by kernel xcl, and including only those
pixels with values greater than o r equal to vmin and less than vmax. If vmin is greater than vmax, all pixel
values a r e included. moml treats these pixels as a distribution (a probability density function) in two
dimensions and calculates first and second moments and other data. If kode is 210 instead of 21 1 , the
included pixel values a re all assumed to be 1 when calculating the moments. mom1 s e t s some user-
accessible variables to the values of these moments (x=i=column number, increasing to the right; y=j=row .
number, increasing downward):

- MINI ($MINI)
- MAXI($MAXI)
- MlNJ ($MINJ) - MAXJ($MAXJ)
- N UM ($N) - AVGX($AVGX)
- SIGX($SIGX)
- AVGY ($AVGY)
- SI GY ($S I GY)

* - COXY ($COXY)

minimum column number with in-range pixel
maximum column number with in-range pixel
minimum row number with in-range pixel
maximum row number with in-range pixel
number of in-range pixels
average (distribution mean) x
standard deviation of x
average y
standard deviation of y
covariance of x and y

moml implements the user commands PDFXYZ (for kode=211) and PDFXYI (for kode=210).

.

void momuv (src, opr, c l , cu, cv, cuu, cw, tn l) file esconv.c, SLAVE

132 s rc
132 opr

132 cl
132 cu
132 cv
132 cuu
132 cw
132 tnl

number of the source image
number of the kernel that contains the weights for the pixels in the local
region
number of the image to receive the 1 moments
number of the image to receive the u moments
number of the image to receive the v moments
number of the image to receive the uu moments
number of the image to receive the w moments
number of the image to receive the values of the tangent of the angle
between the major principal axis u and the x axis

momuv treats the intensity values in the local region as if they were a n un-normalized probability

density function (PDF), and calculates the second and lower moments of the PDF about the origin pixel
of the local region (not about the mean). momuv does a coordinate rotation to maximize the second
moment in the u direction. If the PDF indicates no preferred direction, the u axis is along the x axis
(horizontal, positive to the right). The angle between the u axis and the x axis is always between -90 and
+90 degrees. Image src is the source image, and kernel opr defines the local region and the weights for
the pixels in the local region. Images c l , cu, cv, cuu, c w and tnl are destination images for the weighted
average intensity, the moments u, v, uu, and w (the uv moment is always 0), and the tangent of the angle
from the x axis to the u axis. If the value 0 is used for any of the destination image numbers, the
corresponding quantity is not written to any image. The x coordinate is positive to the right, and the y
coordinate is positive downward, and the origin is at the origin pixel of the local region. src must have
enough overlap rows to accommodate opr. The images must all be the same size. src should normally
be different from all the destination images. The excluded edge pixels in each dst are set to zero. momuv
implements the MOMUV user command.

.

132 newimg (void) file emman.c, MASTER

newimg returns the number of a not-yet-defined image. If all images are already defined, newimg
returns -1. It also sets the user-accessible variable $N (internal variable -NUM) equal to the new image
number. If the global variable np is greater than zero, the variable specified as the first parameter in the
user command line will be set to this new image number. newimg implements the NEWIMG user
command.

.

void nlinOl (dst, srcb, srca, opr) file eslines.c, SLAVE

132 dst
132 srcb
132 srca
132 opr

number of the destination image
number of the image containing the line brightness values
number of the image containing the line tangent(ang1e) values
number of the kernel that specifies how far to extend each line

nlinOl attempts to count hoe many lines or line extensions pass through each pixel. This operation
is similar to xlinOl. But, whereas xlinOl yeilds the sum of the intensities of all the line segments whose
extensions would pass through the central pixel, nlinOl is an attempt to count the number of line segments
whose extensions would pass through the central pixel, independent of the line segment intensities. nlinOl
does not work very well. The weights in the kernel opr should sum to. 1.0 along any one ray from the
origin pixel. nlinOl implements the NLlNOl user command.

.

void ntrpOO (dst, src, opr) file esman.c, SLAVE

132 dst
132 src
132 opr

number of the destination image
number of the source image
number of the kernel that contains the local region weights for
interpolation

ntrpOO does an interpolation, replacing pixels that have value 0.0 in the source image src with new
values in the destination image dst. The new value is the weighted average of all the non-zero-value
pixels in the local region of image src, with the weights contained in the kernel opr. src pixels with non-
zero values are simply copied to the corresponding pixel in dst. src should include enough overlap rows
to accommodate kernel opr. dst and src should be the same size. dst should usually be different from
src. ntrpOO implements the NTRPOO user command.

58

.

void ntrpOl (dst, src, opr) file esman.c, SLAVE

132 dst
132 src
132 opr

number of the destination image
number of the source image
number of the kernel that contains the local region weights for
interpolation

ntrpOl does an interpolation, replacing pixels that have value 0.0 in the source image src with new
values in the destination image dst. The new value is determined by a weighted least squares fit of a
linear function of position to all the non-zero-value pixels in the local region, with the weights contained
in the kernel opr. src pixels with non-zero values are simply copied to the corresponding pixel in dst. src
should include enough overlap rows to accommodate kernel opr. dst and src should be the same size.
dst should usually be different from src. ntrpOI implements the NTRPOI user command.

.

132 nvrt (mat, neq, inv) file emmath.c, MASTER

F64 *mati

132 neq
F64 *inv[]

an array of pointers, each pointing to an array of F64 values that is one
row of the matrix
the number of rows and columns in the matrix
an array of pointers, each pointing to an array of F64 values that will
receive one row of the inverse matrix

nvrt inverts a square matrix. nvrt maintains crude estimates of the uncertainties due to roundoff
error, to detect cases in which the matrix cannot be inverted reasonably. This function changes the values
of * mat.

.

void out5 (img, kode, filename, bpp) file emio.c, MASTER

132 img
132 kode
char *filename
132 bpp

number of the image to be written
file type code
name of the destination file
bytes per pixel in file

out5 writes memory image img to file filename. The file is written with the header type specified by
the value of kode, as listed with the inn8 function description. The current version of out5 accepts only
two values of kode: 0 (no header) or 1 (Data Translation header). If a Data Translation header is
specified, bytes 127 through 152 of the header (the first byte of the header is called number I) will be the
values of scale coefficients A and B, written in ASCII characters. For the common case of one byte per
pixel in the file (bpp=l), the memory image pixel values should be between 0.0 and 255.0 (see function
scale, user command SCALE). out5 implements the user commands WRITEIMAGE, WRITERESULT,
WRITEFEAT, OUTM, and OUTS.

.

void paccl (src, s u m l , sumx, sumy, sumxx, sumyy, sumxy)
SLAVE

file empeakl.c, MASTER & espeakl.c,

132 src number of the source image containing the peaks that we are

59

_- manipulating.
132 s u m l

132 sumx

132 sumy

132 sumxx
132 sumyy
132 sumxy

number of the image containing peak height information, generated by
function plnkl or function pmrgl.
number of the image containing the x-coordinates of the accumulators,
generated by function plnkl or function pmrgl.
number of the image containing the y-coordinates of t h e accumulators,
generated by function plnkl or function pmrgl.
number of the image to receive the xx moments of the peaks
number of the image to receive the yy moments of the peaks
number of the image to receive the xy moments of the peaks

paccl is used with the functions listed in the function peakl description. pacc l calculates s u m s for
each s r c image peak previously defined by peakl and plnkl, which s u m s can be used to calculate the
moments of each peak as if t he peak were a n un-normalized distribution function. On input, surnl should
be the s a m e as pv output by plnkl or pmrgl, sumx should be px, and sumy should be py. This function
treats each peak in s r c as a probability density function (unnormalized), calculates s u m s for each peak,
and assigns the s u m values to the destination image pixels corresponding to the accumulator pixel in peak
(hence the term "accumulator"). surnl is s e t equal to the sum of the s r c pixel values in the peak. sumx
and sumy a r e set equal to the s u m s of the distances (in pixels) from the accumulator pixel to the other
pixels in the peak, multiplied by the s r c pixel value. sumxx, sumyy, and sumxy a r e set equal to the s u m s
of the products of the distances, multiplied by src. The s u m s appear in the accumulator pixels only; the
donor pixels a r e s e t to zero (except for src, which is unchanged). These images should all be the s a m e
size, and they should all be distinct. No overlap rows a r e needed for this operation.

'

.

132 pacc la @o, jhi, ncol, p l , px, py, pxx, pyy, pxy) file espeakl-c , SLAVE

132 jlo
132 jhi
132 ncol
F32 *PI
F32 * p x
F32 *py
F32 wpxx

F32 *pxy
F32 *PYY

number of lowest row resident in this node
number of highest row resident in this node
number of columns in images
pointer to s u m l image data
pointer to sumx image data
pointer to sumy image data
pointer to sumxx image data
pointer to sumyy image data
pointer to sumxy image data

pacc la is used by paccl. pacc la receives a donor contribution from another s lave node and either
adds it to the accumulator pixels in this node or relays it on to another node.

.

132 passtest (void) file emntrp.c, MASTER

passtest u ses parameters 1, 2, and 3 of the user command line. These parameters a r e assumed
to be the first three tokens following a n "IF" command, with the second parameter being a n arithmetic
relational operator and the first and third parameters being numerical quantities. passtest returns 1 if the
arithmetic relationship in the IF command is true, 0 otherwise. If the command is true, passtest deletes
the first four tokens (the IF command and the following three parameters) from the command line buffer
and returns the remainder of the old command line to be interpreted as a new command. passtest
implements the IF user command.

.

60

void peakl (src, pv, px, py) file espeakl.c, SLAVE

132 s rc
132 pv
132 px
132 PY

number of the source image, in which w e seek peaks
number of the image to receive peak height values
number of the image to receive accumulator x-coordinates
number of the image to receive accumulator y-coordinates

Several functions a r e intended to b e used in sequence,
with the images output by one being used as input for the next.
The normal order of the functions is as in the following list.
before peakl :

s rc = source image, at least one overlap row.
s r c is never changed by any of the following functions.
s rc is assumed to have only non-negative pixel values.
any pixel with value 0 in s r c , is ignored by the following
functions.
images pv, px, py, qx, qy, and qv must be defined and must be
compatible with s r c and must have a t least one overlap row,
but their contents d o not matter.
an accumulator pixel is one at the top of a peak in s r c .
a donor pixel is part of a peak, but not the highest point in the peak;
donor pixels in s r c have values greater than 0 and not greater than
the accumulator pixel value for that peak.

pv = s rc pixel value for accumulator pixels, 0 for donor and non-peak pixels.
px = 0.5 + accumulator i for accumulators, 0 otherwise.
py = 0.5 + accumulator j for accumulators, 0 otherwise.

pv = this peak's accumulator value, for peak pixels; 0 for non-peak pixels.
px = this peak's accumulator's i + 0.5 for peak pixels; 0 otherwise.
py = this peak's accumulator's j + 0.5 for peak pixels; 0 otherwise.
that is, every pixel in each peak has the s a m e information
about the peak's accumulator pixel, its value and location.

The meanings of pv, px, and py a re unchanged by this function,
although the values may be changed to indicate the merging of
several peaks into one peak.
qx, qy, and qv a re used for scratch by pmrgl , and their values
after pmrgl may be anything.

the pv input image becomes the suml image on output.
the px input becomes the sumx output.
the py input becomes the sumy output.
it does not matter what sumxx, sumyy, and sumxy a r e on input.
on exit from paccl: for each accumulator pixel:
suml = sum of s rc pixel values v in that accumulator3 peak.
sumx = sum of v * x in that peak, x = donor i - accumulator i.
sumy = sum of v * y in that peak, y = donor j - accumulator j.
sumxx = sum of v * x * x in that peak.
sumyy = sum of v * y * y in that peak.
sumxy = sum of v * x * y in that peak.
for each donor pixel: s u m l , sumx, and sumy = 0.

peak1 (src, PV, PX, PY)

plnkl (SrcIPv, PX, PY)

pmrgl (src, pv, px, py,qx,qy,qv,step, maxsag) [optionall

paccl (src,pv ,px ,py ,sumxx,sumyy,sumxy)
paccl (src,suml ,sumx,sumy,sumxx,sumw,sumxy)

now use either pmomxy OR pmomuv, not one after the other.
pmomxy (suml ,sumx,sumy,sumxx,sumyy,sumxy) .

61

pmomxy (momO,avgx,avgy,varxx,varyy,varxy)
the s u m l input becomes the mom0 output.
the sumx input becomes the avgx output.
the sumy input becomes the avgy output.
the sumxx input becomes the varxx output.
the sumyy input becomes the varyy output.
the sumxy input becomes the varxy output.
on exit from pmomxy: for each accumulator pixel:
mom0 = sum of s r c values in peak, s a m e as s u m l input.
avgx = xdistance from accumulator to peak centroid.
avgy = ydistance from accumulator to peak centroid.
v a m = variance of peak about centroid, in x direction.
varyy = variance of peak about centroid, in y direction.
varxy = covariance of peak about centroid.

peakl finds peaks in image src. If a pixel in image s r c has value 0, it is not part of a peak, and the
corresponding pixel in image pv is set to 0. Each pixel with value greater than 0 in image s r c is compared
with its 8 nearest neighbors. If the s rc pixel value is less than any of its neighbors, o r if it is equal to a
neighbor with a lower address (lower row number or s a m e row and lower column number), the s r c pixel
is declared a donor and the corresponding pixel in pv is set to zero. Otherwise, if the s r c pixel value is
greater than its neighbor pixel values, the s r c pixel is considered a n accumulator, and its value (the peak
height) is assigned to the corresponding pixel in pv. This function is intended to work with s r c images that
have only non-negative pixel values. Images px and py a re s e t to zero for non-accumulator pixels, and
they a re set to O S + i and 0.5+j for accumulator pixels, where i and j a re the accumulator pixel coordinates.
The three images px, py, and pv a re set in that order, so that, for example, if pv and px a r e the s a m e
image, the image will be left with the peak height values. All the images should be distinct, and all should
be the s a m e size. s r c should have at least 1 overlap row. peakl implements the PEAK1 user command.

.

void phead (filename, type, length) file eminfo.c, MASTER

char * filename
132 type
132 length

name of image file
image file type code
number of bytes in image file header

phead reads and prints the header from the image file filename. type is a n integer code specifying
the type of header (see function inn8). If the value -1 is given for type, the program will attempt to
determine the header type by itself. If the value 0 is given for type, the program simply prints the first
length bytes of the file in hexadecimal and ASCII. T h e parameter length is not used unless type is 0.
phead uses the function getheader, and may therefore replace values of -1 in the rband structures if the
file is of the row-interleaved type. phead implements the PHEAD user command.

.

void pheadHFA (filename) file eminfo.c, MASTER

char * filename name of the image file

pheadHFA is called by function phead, to read header information from a n HFA file.

.

void phst02 (hst, nbin) file eminfo.c, MASTER

62

F32 *hst
132 nbin

the array holding the histogram
the number of bins in the histogram

phst02 draws (crudely) on the operator's console the histogram data created by hist02.

.

void plnkl (src, pv, px, py) file empeakl.c, MASTER & espeakl.c, SLAVE

132 src

132 pv

132 px

132 PY

number of the source image, in which occur the peaks that we are
characterizing
number of the image containing the values of the accumulator pixels, set
by function peakl
number of the image containing the x-coordinates of the accumulator
pixels, set by function peakl
number of the image containing the y-coordinates of the accumulator
pixels, set by function peakl

plnkl associates each donor pixel in image src, with a nearby accumulator pixel. The peakl function
should be used to set the values in pv, px, and py, before this plnkl function is used; see the peakl
description.

For a peak in image src, we will speak of an accumulator pixel and (usually) several donor pixels.
The accumulator for a peak is the pixel with the greatest intensity in src in that peak; a donor is any pixel
in that peak other than the accumulator (and with a src value greater than 0). The result of this plnkl
function is that each donor pixel in a peak is associated with the accumulator for that peak, by being
assigned the accumulator pixel's values in images pv, px, and py. That is, for each donor pixel, the values
of px - 1/2 and py - 1/2 are the coordinates of that donor's accumulator pixel, and the value of pv is the
value of that donor's accumulator pixel in src. Each donor pixel is associated with the same peak as its
nearest (of 8) neighbor pixel with the largest value in src. (This neighbor pixel value is larger than the
donor's own value, or the "donor" is actually an accumulator.) if there is a tie for highest value nearest
neighbor, the lower address neighbor is favored. This plnkl function is intended for src images with non-
negative pixel values. Pixels with value zero in image src are not assigned to any peak. plnkl implements
the PLNKI user command.

.

void pmom (kode, src, mom0, momu, momv, momuu, momw, tang, maxsag) file empeakl.c, MASTER

132 kode

132 src
132 mom0

132 momu

132 momv

132 momuu

132 momw

132 tang

if kode = 224, calculate the moments along the x and y axes; if kode =
225, calculate the moments along the principal axes of each peak
separately, with u and v representing the major and minor axes.
number of the source image
number of the image to receive the values of the sum of the pixels in
each peak
number of the image to receive the values of the x or u distance from the
peak maximum to the peak centroid
number of th'e image to receive the values of the y or v distance from the
peak maximum to the peak centroid
number of the image to receive the values of the xx or uu moment about
the centroid of the peak
number of the image to receive the values of the yy or w moment about
the centroid of the peak
number of the image to receive the values of the tangent of the angle
between the x-axis and the u-axis, for kode = 225, or the values of the xy
moment about the peak centroid, for kode = 224.

63

F32 maxsag the maximum allowable depth of a valley between two peaks that are to
be merged into one single peak

pmom finds intensity peaks in image src, treats each peak as an un-normalized probability density
function, and calculates the moments of that distribution. pmom uses the sequence of functions listed in
the function peak1 description. The values for the various moments for each peak are put into the pixels
corresponding to the highest value in image src for that peak; the other pixels in the several destination
images are set to zero. pmom implements the PMOMXY and PMOMUV user commands.

.

void pmomuv (momO, avgu, avgv, varuu, vaw, tang) file espeaklx, SLAVE

132 momO
132 avgu

132 avgv

132 varuu

132 varw

132 tang

number of the image containing sums of peak pixel values
number of the image containing s u m s of peak pixel values, weighted with
x distance from the accumulator pixel; to receive u distance from
accumulator to centroid
number of the image containing sums of peak pixel values, weighted with
y distance from the accumulator pixel; to receive v distance from
accumulator to centroid
number of the image containing sums of peak pixel values, weighted with
the square of the x distance from the accumulator pixel; to receive u
variance about the centroid
number of the image containing sums of peak pixel values, weighted with
the square of the y distance from the accumulator pixel; to receive v
variance about the centroid
number of the image containing s u m s of peak pixel values, weighted with
the product of the x and y distances from the accumulator pixel; to
receive the tangent of the angle between the x-axis and the u-axis

pmomuv is like pmomxy, except that pmomuv converts the results for each peak to a u-v coordinate
system for that peak. The u coordinate is chosen to be in the direction of the largest second moment for
the peak or, if there is no preferred direction, the u axis is along the x axis. The u-v covariance (the cross
second moment about the mean) is always zero; instead of this value, the last destination image is set
equal to the tangent of the angle between the u axis and the x axis. pmomuv implements the PMOMUVI
user command.

.

void pmomxy (momO, avgx, avgy, varxx, varyy, varxy) file espeaklx, SLAVE

132 momO
132 avgx

132 avgy

132 varxx

132 varyy

132 varxy

number of the image containing sums of peak pixel values
number of the image containing s u m s of peak pixel values, weighted with
x distance from the accumulator pixel: to receive x distance from peak to
centroid
number of the image containing sums of peak pixel values, weighted with
y distance from the accumulator pixel; to receive y distance from peak to
centroid
number of the image containing sums of peak pixel values, weighted with
the square of the x distance from the accumulator pixel; to receive x
variance about the centroid
number of the image containing s u m s of.peak pixel values, weighted with
the square of the y distance from the accumulator pixel; to receive y
variance about the centroid
number of the image containing sums of peak pixel values, weighted with

64

the product of the x and y distances from the accumulator pixel; to
receive the xy covariance about the centroid 9

pmomxy is part of the series of functions listed in the function peakl description. pmomxy converts
the sums from paccl into moments. On input, mom0 should be the s a m e as sum1 output by paccl , avgx
should be sumx, avgy should be sumy, varxx should be sumxx, varyy should be sumyy, and varxy should
be sumxy. This command treats each peak in peakl’s s r c as a probability density function (unnormalized),
calculates the moments for each peak, and assigns the moment values to the destination image pixels
corresponding to the accumulator pixel in peakl’s s r c image. mom0 is left unchanged, equal to sum1 , the
sum of the src pixel values in the peak. avgx and avgy a re set equal to the distance in pixels from the
accumulator pixel to the centroid of the peak. v a m , varyy, and varxy a re s e t equal to the second
moments (the variances and the covariance) about the centroid. These images should all be the same
size, and they should all be distinct. No overlap rows a r e needed for this operation. pmomxy implements
the PMOMXYI user command.

.

void pmrgl (src, pv, px, py, qx, qy, qv,
void pmrgl (src, pv, px, py, qx, qy, qv, step, maxsag)

maxsag) file empeak lx , MASTER
file espeakl.c, SLAVE

132 src

132 pv

132 px

132 PY

132 qY
132 qx

132 qv
132 s tep
F32 maxsag

number of the source image containing the peaks that w e are
manipulating.
number of the image containing peak height information (accumulator
pixel value in src), generated by function plnkl.
number of the image containing the x-coordinates of the accumulator
pixels, generated by function plnkl.
number of the image containing the y-coordinates of the accumulator
pixels, generated by function plnkl.
number of a scratch image
number of .a scratch image
number of a scratch image
code specifying which s tep of the overall process to do next
the maximum allowable depth of a valley between two peaks that a r e to
be merged into one single peak

pmrgl is used with several other functions, as listed in the function peakl description. pmrgl merges
peaks that are connected by a path in s r c such that the lowest pixel value along that path is not lower than
the higher peak value minus the value maxsag and the lowest pixel is also greater than 0. All the pixels
in two or more merged peaks are assigned to the s a m e accumulator. The images src, pv, px, and py
should be set by a prior call to the function plnkl, and these four images will have the s a m e meanings
(although perhaps different values) after pmrgl as after plnkl. The images qx, qy, and qv a re used for
scratch by pmrgl. All seven images should have at least one overlap row, all should be the s a m e size,
and all should be distinct. pmrgl implements the PMRGI user command.

.

void pmrglb (jlo, jhi, jmin, jmax, ncol, ip, jp, vq, xq, yq, ppv, ppx, ppy) file e s p e a k l x , SLAVE

132 jlo
132 jhi
132 jmin
132 jmax
132 ncol
132 ip
132 jp

lowest primary row in this node
highest primary row in this node
lowest overlap row in this node
highest overlap row in this node
number of columns in image
old accumulator column number
old accumulator row number

65

F32 vq
F32 xq
F32 Yq
F32 *ppv
F32 wppx
F32 *PPY

new accumulator peak magnitude
new accumulator x coordinate
new accumulator y coordinate
address of peak magnitude image
address of accumulator x coordinate image
address of accumulator y coordinate image

pmrgl b is used by SLAVE pmrgl. pmrgl b does the actual remapping of donor pixels to new
accumulator pixels, and in s o m e cases sends messages to other nodes instructing them to d o remapping.

.

132 pmrglc (jlo, jhi, jmin, jmax, ncol, ppv, ppx, ppy, pqv, repeat) file e s p e a k l x , SLAVE

132 jlo
132 jhi
132 jmin
132 jmax
132 ncol
F32 +ppv
F32 *ppx

F32 *pqv
132 *repeat

F32 *PPY

lowest primary row in this node
highest primary row in this node
lowest overlap row in this node
highest overlap row in this node
number of columns in image
address of accumulator values (peak heights)
address of accumulator x coordinates
address of accumulator y coordinates
address of temporary peak heights
address of repeat flag

pmrglc is used by SLAVE pmrgl. pmrglc accepts remapping commands from other slave nodes
while coordinating the required remapping of donor pixels in this node.

.

void pmrgld (src, pv, px, py, qx, qy, qv, kode, maxsag) file empeakl.c, MASTER

132 s rc

132 pv

132 px

132 PY

132 qx
132 qY
132 qv
132 kode
F32 maxsag

number of the source image containing the peaks that w e are
manipulating.
number of the image containing peak height information, generated by
function plnkl.
number of the image containing the x-coordinates of the accumulator
pixels, generated by function plnkl.
number of the image containing the y-coordinates of the accumulator
pixels, generated by function plnkl .
number of a scratch image
number of a scratch image
number of a scratch image
code specifying which detailed s t ep should be done
the maximum allowable depth of a valley between two peaks that a r e to
be merged into one single peak

pmrgld is used by MASTER pmrgl. pmrgld sends a message to the slaves, instructing them to do
the detail s tep specified by the value of kode.

132 pmrgle (kode) file empeakl.c, MASTER

132 kode expected value of code returned by slaves

66

pmrgle is used by MASTER pmrgl. pmrgle waits for a status report from the slave nodes, and
checks to see that the code sent by the slave agrees with kode. pmrgle returns the value of a status
code.

.

132 pop (void) file emntrp.c, MASTER

pop removes a n 132 value from the programmer's stack and returns that value. pop is used by
functions exsub and ret.

.

F32 * powell (func, fparm, iparm, linmin, linatol, linrtol, linitmax, atol, rtol, itmax) file emmath.c, MASTER

F32 * func(...)
F32 wfparm
132 *iparm
F32 * linmin(...)
F32 linatol
F32 linrtol
132 linitmax
F32 atol
F32 rtol
132 itmax

represents the rnulti-variate function to be minimized
a n array of F32 parameters for func, linmin, and powell
a n array of 132 parameters for func, linmin, and powell
minimizes a multivariate function (like func) along one line
linmin argument, usually a fraction-of-range convergence criterion
linmin argument, usually a fraction-of-value convergence criterion
linmin argument, usually the maximum allowed number of iterations
absolute convergence criterion for powell
relative convergence criterion for powell
maximum allowed number of iterations for powell

This function powell is adapted from William H. Press, Saul A. Teukolsky, William T. Vetterling, and

powell minimizes the multivariate function represented by func (see reg3c, for example), which must

* The second and third arguments of func a re fparm and iparm, the s a m e as the second and third
arguments of powell. The first argument of func is a n F32 value, call it x.

* the function is to be minimized with respect to n variables, fparm[l], fparm[2], ... fparm[n], where
n = iparm[O].

* func evaluates the function a t the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n], and s e t s fparm[O] equal to the function value.

* func returns a pointer to an F32 array. Array element 0 is set to the function value; element 1
is set to the x value used in the function evaluation (which may be different from the x value
supplied as a n argument, depending on how func is programmed); element 2 is a status code:
0 for normal return, 1 for unspecified error, 2 for argument out of acceptable range. Other array
elements a re available for special uses as the programmer wishes.

On entry to powell, fparm[I], fparm[2], ... fparm[n] must be a valid point in the function domain. An
earlier version of powell, commented VERSION 2 in the source code text, required further that fparm[O]
must be the function value at that point, but this requirement for fparm[O] does not apply to the current
VERSION 3.

The array elements fparm[n+l], ..., fparm[n+n] a re used by powell. The contents of these array
elements will be destroyed by powell, and will not be passed through powell to func o r to linmin. Any other
elements of fparm and iparm, not previously mentioned in this discussion, can be used as the programmer
wishes, perhaps for values for func o r for linmin.

linmin is a function (see brent3a, for example) which minimizes a multivariate function, represented
by func, along a line through the multiple variable space. linmin must have this form:

The first three parameters of linmin a re the s a m e as the first three parameters of powell, and the
next three parameters of linmin a re the powell arguments linatol, linrtol, and linitrnax. linmin does
not necessarily need to use all of its six parameters.

* linmin returns a pointer to a n F32 array. Array element 0 is the minimized function value;

Brian P. Flannery, "Numerical Recipes in C, Second Edition", Cambridge University Press, 1992.

be of a particular form:

67

element 1 is the value of x a t the minimum; element 2 is a status code: 0 for normal completion,
1 if no acceptable minimum was found, 2 if the initial values given to linmin represented a
converged condition (which is not normally a n error); element 3 is the number of iterations done.
powell actually uses only elements 0 and 2 of this array. If linmin returns a status code of 0 or
2, fparm[l], ... , fparm[n] is the position of a minimum along the line, and fparm[O] is the function
value at that minimum; otherwise, fparm[O] ... fparm[n] a r e unchanged from their values on entry
to linmin.

* Generally, linmin (or its subsidiary functions) must minimize func(x,fparm,iparm) with respect to
x, which usually sugges ts that linmin must select and try different values of x. linmin may or may
not u s e or set fparm and iparm values, apart from the required setting of fparm[O] ... fparm[n] as
mentioned above. Normally, linmin should not change the values of fparm[l+n] ... fparm[n+n].

On return from powell, fparm[l], fparm[2], ... fparm[n] is the location of the function minimum, and
fparm[O] is the function value at the minimum. powell returns a pointer to a n F32 array. Array element
0 is the minimized function value; element 1 is not used; element 2 is a status code: 0 for normal
completion, 1 if no acceptable minimum was found; and element 3 is the number of iterations done.

.

void print (msg, numchar, format) file comm.inc, SLAVE

char * msg
132 numchar
char format print format code

pointer to the data to be sen t
number of bytes to be sent

print is used by a slave node that does not have direct access to the host devices, to print a
message on the operator's console. The message is not made available to the MASTER main thread.
Each byte is printed as a n ASCII character, in octal notation, or in hexadecimal notation, depending on
whether the format argument is '12, Io', or 'XI.

.

void printpar (i) file emmath.c, MASTER

132 I the number of the command line parameter to be printed

printpar prints the value of command line parameter number i (the command itself is parameter 0),
on the operator's console.

.

void prints (void) file emmath.c, MASTER

If the global variable np (the number of parameters in the current command line) is 0 (that is, no
parameters were specified with the command), this function prints the values of all the user-accessible
variables, on the operator's console. If np is greater than 0, this function prints the values of the command
line parameters, not including the command itself.

.

void printvar (i)

132 i

printvar prints the value of user-accessible variable number i, on the operator's console.

file emmath.c, MASTER

the index of a user-accessible variable
1

68

.

132 printvar2 (typ) file emmath.c, MASTER

132 tyP a user-accessible variable type code

printvar2 is used with printvar and printpar, to print inforhation about the type of the variable or the
parameter on the operator's console.

.

void push (i) file emntrpx, MASTER

132 i the value to be pushed onto the programmer's s tack

push puts a n 132 value on the programmer's stack. push is used by function gosub.

.

void putbi (img, dstlo, dsthi, bpp) file esio.c, SLAVE

132 irng
132 dstlo
132 dsthi
132 bpp

number of the image to be sen t
destination node low limit
destination node high limit
bytes per pixel

putbi s ends the resident part of image irng to all nodes with numbers between dstlo and dsthi
inclusive. The image is converted from F32 values to integer values corresponding to the bytes-per-pixel
code (see function inn8) bpp before being sent. putbi is used by such operations as writing a n image to
a file and displaying a n image on the high-resolution RGB screen. putbi uses function putri to send
individual rows of the image.

.

void putbires (img, dstlo, dsthi, res, q) file esio.c, SLAVE

132 irng
132 dstlo
132 dsthi
132 res
F32 q

number of the image to be sen t
destination node low limit
destination node high limit
number of the image that holds the pixel color criterion values
red/green pixel color criterion

putbires s ends the resident part of image irng to nodes dstlo to dsthi inclusive. The image is sent
with a special 8-bit-per-pixel code: the low 7 bits indicate the pixel's value (intensity), and the highest bit
is 0 or 1 according to whether the corresponding pixel in image res has value less than or greater than
q. putbires u ses function putrires to send individual rows of the image. putbires is used with the DISPRES
user command.

.

void putri (img, row, dstlo, dsthi, bpp) file esiox, SLAVE

132 irng
132 row
132 dstlo

number of the image to be sen t
number of the row to be sen t
destination node low limit

69

132 dsthi
132 bpp

destination node high limit
bytes per pixel

putri is used by function putbi, to send one row of the image. That is, putbi calls putri once for each
resident row of image img.

.

void putrires (img, row, dstlo, dsthi, res, q) file esio.c, SLAVE

132 img
132 row
132 dstlo
132 dsthi
132 res
F32 q

number of the image to be sen t
number of the row to be sen t
destination node low limit
destination node high limit
number of the image that holds the pixel color criterion values
red/green pixel color criterion

putrires is used by function putbires, to send one row of the image. That is, putbires calls putrires
once for each resident row of image img.

.

void qt9d (img, row0, col0, q, caption) file emio.c, MASTER

132 img
132 row0
132 col0
F32 q
char * caption

number of the image to be displayed
screen row for top of image
screen column for left edge of image
red/green criterion
image caption

qt9d displays image img on the high-resolution RGB monitor. The top left corner of the image will
appear a t row0,coIO in the screen display. Pixel values in image img should be between 0.0 and 255.0
(see function scale, user command SCALE). Red will be used for pixels with value less than q, green for
pixels with value greater than q. The character string caption would be printed below the image on the
screen, except for defects in the software supplied with the QT9D interface hardware. If echo is on, the
image will remain on the screen, and the program will stop execution, until the operator hits a key on the
keyboard. qt9d implements the DlSP user command in ATR2.

.

void qt9dinit (void) file emio.c, MASTER

qt9dinit initiallizes the high-resolution RGB display software. qt9dinit is invoked one time, when the
program is started. qt9d is used only in ATR2.

.

void qt9dres (img, row0, col0, q, caption, res) file emio-c, MASTER

132 img
132 row0
132 col0
F32 q
char * caption

number of the image to be displayed
screen row for top of image
screen column for left edge of image
red/green criterion
image caption

7 0

132 res number of the image with the redlgreen criterion pixel values

qt9dres is like qt9d, except that the pixels are colored red or green according to whether the
corresponding pixel in the image res (normally, but not necessarily, a result image) has a value less than
q. This allows an input image to be displayed with color coding based on a result image. qt9dres
implements the DISPRES user command in ATR2.

.

void quadfit (opr) file emconv.c, MASTER

132 opr number of a kernel

quadfit checks the values in the kernel opr, to see that the equations will be solvable when kernel
opr is used as the weights for fitting a quadratic function to the intensities in a local region of an image.
quadfit is used with user commands QUADXY and QUADUV.

.

void quaduv (src, opr, cl, cu, cv, cuu, cw, tnl) file esconv.c, SLAVE

132 src
132 opr
132 cl
132 cu
132 cv
132 cuu
132 cw
132 t n l

number of the source image
number of the kernel that holds the weights for the pixels in the local area
number of the image to receive a1 values
number of the image to receive au values
number of the image to receive av values
number of the image to receive auu values
number of the image to receive aw values
number of the image to receive tangent(ang1e) values

Like quadxy, quaduv fits the local region with a quadratic function. quaduv then does a coordinate
rotation from the x-y to the u-v coordinates, with the u-axis chosen in the direction that maximizes the
second derivative with respect to u. Images cl, cu, cv, cuu, and cw are destination images for the
coefficients of the I , u, v, uu, and w terms in the fitted polynomial. (The uv term is always zero.) Image
tn l is the destination for the tangent of the angle between the x axis and the u axis. quaduv implements
the QUADUV user command.

.

void quadxy (src, opr, cl, cx, cy, cxx, cyy, cxy) file esconv.c, SLAVE

132 src
132 opr
132 cl
132 cx
132 cy
132 cxx
132 cyy
132 cxy

number of the source image
number of the kernel that holds the weights for the pixels in the local area
number of the image to receive a1 values
number of the image to receive ax values
number of the image to receive ay values
number of the image to receive axx values
number of the image to receive ayy values
number of the image to receive axy values

quadxy does a weighted least squares fit of a quadratic function of position,

intensity =a1 + a x * x + a y w y + a x x * x * x + a y y + y + y + a x y + x + y ,

to the pixels in a local region of the source image, and writes the 6 polynomial coefficients to the 6

71

destination images. If the image number supplied for any destination image is 0, the corresponding
quantity is not written to any image. The x coordinate is positive to the right, and the y coordinate is
positive downward, and the origin is a t t he origin pixel of the local region. Kernel opr defines the local
region and contains the weights. s r c must have enough overlap rows to accommodate opr. The images
must all be the s a m e size. s r c should normally be different from all the destination images. The excluded
edge pixels in each destination image a r e set to zero. quadxy implements the QUADXY user command.

.

void rcv (pp) file comm.inc, MASTER, ATR3

pthread-addr-t pp a n unused but essential argument

void rcv (pp) file comm.inc, MASTER except ATR3 & SLAVE

Process * p p process pointer from ProcAlloc

rcv receives data from another node, either directly from a hardware link o r indirectly via functions
FromNodeUP or FromNodeDN. rcv puts the data into buffer bufinni and notifies either snd to relay the
data to the next node, or the main thread to u s e the data, or both. rcv runs in a thread by itself.

.

132 read2 (sSL) file emntrp.c, MASTER, E & F only

char * sSL pointer to a character string that will hold a copy of the command line.

read2 reads and parses a user command line, and puts a copy of the command line into the string
sSL. read2 returns the number of parameters in the command line, not including the command itself.
read2 is used by ffeats.

.

132 read3 (sSL) file gmntrp.c, MASTER, G only

char * sSL pointer to a character string that will hold a copy of the command line.

read3 reads and parses a user command line, and puts a copy of the command line into the string
sSL. read3 returns the number of parameters in the command line, not including the command itself.
read3 is used by ffeats.

.

132 readimage (filnam) file gmntrpx, MASTER, G only

char * filename the name of the file from which the image is to be read

readimage does s o m e preliminary operations before reading a n image from a file. readimage returns
0 for normal completion, or -1 if a n error occurs. readimage is used by the READIMAGE, INS, and INM
user commands.

.

void ready (void) file emmain.c, fmmain.c, & gmmain.c, MASTER

72

ready queries all the nodes except MASTER, and waits for a reply from each. If echo is on, ready
displays a message for each node's reply. Receiving a reply from a node implies that the node is finished
with any previous activities. ready implements the READY user command.

.

void redraw (nrow, ncol, nv) file gmmask.c, MASTER, G only

132 nrow number of rows in the image
132 ncol number of columns in the image
132 nv number of verrices in the user-drawn polygon

redraw is used to refresh the display during the construction of a 3-level mask, during the process
of marking a training scene with target and background regions. redraw is invoked when the operator hits
the ";" key.

* * * * * * * * * * * * * * B * * * * * * * * * * * * * * * * *

void reg2 (hhh, ggg, fff, f s l , g s l , gs2, gs3, gs4, bux, buy, bu l , bvx, bvy, bvl , dux, duy, du l , dvx, dvy, dvl)

Function reg2 does not exist as a separate function in the current version of the software. reg2 can
be easily created by modifying reg3, following the comments in the text of the reg3 function. There a re
two significant differences: in reg2, brent2a and reg2c should be used instead of brent3a and reg3c, and
reg2 must set fparm[O] before calling powell.

.

F32 it reg2b (b, sig, hhh, ggg, fff, fsl, g s l , gs2, gs3, gs4) file emman.c, MASTER

F32 b[6]
F32 sig[6]
132 hhh

132 999
132 fff
132 fsl
132 g s l
132 g s 2
132 g s 3
132 gs4

mapping coefficients, the 6 function variables
smoothing widths
number of the destination image, which will be the smoothed source
image mapped to match template image; compatible with image fff
number of the source image
number of the template image, the image to b e matched
number of a scratch image, compatible with image fff
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg

reg2b is not used in the current version of the software; it is replaced by reg3b, which calculates the
number of degrees of freedom in addition to the correlation.

reg2b is used with function reg2. reg2b calculates the cross-correlation of image fffwith a smoothed,
mapped image ggg.

The goal is to calculate the correlation a t many points in the 6dimensional space spanned by the
mapping coefficients b[i], to smooth the correlation in each of the 6 b[i] directions with a smoothing function
that has standard deviation sig[i], and to return the value of the smoothed correlation function at the point
specified by the b argument. reg2b does an indirect calculation to produce the s a m e result. reg2 uses
the sig values to construct image ddd which contains local smoothing width values, u ses image ddd to
smooth image ggg into image sss, maps image sss into image hhh using the b values, and calculates and
returns the correlation of the mapped-to region of image hhh with the corresponding region of image fff.
The returned correlation values should always be between -1.0 and 1.0, with 1.0 representing perfect
correlation, 0.0 representing no correlation, and -1 .O representing a perfect negative correlation (eg, one
image is the negative of the other). reg2b returns the value -2.5 (not a possible correlation value) if the

73

two images - fff andmapped ggg - have no overlap, or -3.5 if all the pixels in the overlap region of either
image have the same value. These two error conditions arise because (1) the correlation obviously cannot
be calculated if the images do not overlap, and (2) the correlation involves a division by the standard
deviation of the pixel values, which division cannot be done if the pixels all have the same value so the
standard deviation is 0. Specifically, reg2b returns a pointer to an F32 array, in which element 0 is the
correlation value (or the error codes -2.5 or -3.5), element 1 is 0.0, and element 2 is the number of
mapped pixels in the destination image hhh.

The optimization problem which is addressed by functions powell and brentla in reg2 is to maximize
this function reg2b, the correlation, by adjusting the values of the 6 b[i] coefficients.

.

F32 * reg2c (x, fparm, iparm) file emman.c, MASTER

F32 x the single variable
F32 *fparm
132 *iparm

an array of F32 parameters
an array of 132 parameters

reg2c is not used in the current version of the software; it is replaced by reg3c.
reg2c is used with reg2. reg2c is an example of the function func used as an argument of function

powell; reg2c represents the 6-variable function reg2b in the I-variable form required for use with powell.
reg2c uses the fparm and iparm values to generate appropriate argument values for function reg2b, and
reg2c puts the function value returned by reg2b and other return values into the required format. reg2c
also converts from the correlation value calculated by reg2b to the l-correlation value required for the
minimization procedures.

x is the single variable, an argument that measures position along a line in the 6dimensional
parameter space of function reg2b, the line along which a single-variable minimization is done.
Specifically, reg2c evaluates reg2b at the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n] (with n=iparm[0]=6).

fparm contains values that supply the information necessary to construct a (constrained) 6-
dimensional position vector from the single parameter x. These include fparm[l]-fparm[6], which specify
the x=O point, and fparm[7]-fparm[l2], which specify the direction of the line through the 6-dimensional
space. fparm and iparm also contain values for the other arguments required by reg2b, and fparm
contains some scratch space used by reg2c to hold argument values for reg2b. Note that the arrays fparm
and iparm are defined in the function reg2 which calls reg2c.

reg2c evaluates the function reg2b at the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n], and sets fparm[O] equal to the required function value l-reg2b (l-correlation).
reg2c returns a pointer to an F32 array, with array element 0 set to the function value (l-correlation, 1-
reg2b); element 1 set to the x value used in the function evaluation (which in this case is the same as the
x value supplied as an argument); element 2 set to 0 for normal completion, -1 (unspecified error) if reg2b
returned -3.5, or -2 (variable out of range error) if reg2b returned -2.5; and element 3 set to 0.

.

void reg3 (hhh, ggg, fff, fsl , gsl , gs2, gs3, gs4, bux, buy, bul, bvx, bvy, bvl , dux, duy, dul l dvx, dvy, dvl)
file emman.c, MASTER

132 hhh

132 fff
132 fsl
132 gsl
132 gs2
132 gs3
132 gs4

132 999
number of the destination image
number of the source image
number of the image to be matched
number of a scratch image
number of a scratch image
number of a scratch image
number of a scratch image
number of a scratch image

74

F32 b...
F32 d...

first guess values for mapping coefficients
allowed deviations for mapping coefficients

reg3 finds and executes a mapping of image ggg into image hhh, such that the correlation of the

The row and column coordinates of corresponding pixels in the images hhh and ggg a r e related by

The b values given as arguments for this function are first guesses a t the optimal values. The b values
are adjusted by reg3 to achieve optimal mapping; these 6 b values a r e the 6 variables of the multi-variate
function that is minimized by powell.

The d arguments a r e the allowed deviations from the initial guess values of the b coefficients; initial
b - d <= final b <= initial b + d. If a negative value is given for any d, this function reg3 assigns a
reasonable value to that d.

Images ggg and fff a r e not changed by this operation. Images fff and hhh must be the s a m e size
and must be compatible for arithmetic operations (they must be distributed the s a m e way among the
nodes); image ggg may be different in size. fsl, g s l , gs2, gs3, and g s 4 a r e images that can be used as
scratch space by this operation. If 0 is given as the number for any of these scratch images, reg3 will
temporarily define suitable scratch images (if sufficient memory is available). If a valid image number is
given for any of these scratch images, then that image must be already defined. fsl must be compatible
with fff, and g s l , gs2, gs3, and gs4 must be compatible with ggg. All of the images must be distinct; none
of the images needs any overlap rows.

reg3 attempts to maximize the correlation between the mapped regions of image hhh and image W.
If no reliable correlation is found, the 6 "optimized" b values will be the s a m e as the values input as
function arguments. The final optimized values of bux, buy, bull bvx, bvy, and bvl a r e returned in the
user-accessible variables $AVGX, $AVGY, $AVG, $SIGX, $SIGY, and $SIG. The value of [I-correlation]
is returned in $COXY. Possible correlation values range from -1 to 1, so $COXY=[l-correlation] values
range from 0 (perfect correlation) to 2.

This function reg3 uses function powell, with brent3a as linmin and reg3c as func, to maximize the
correlation (minimize I-correlation) by adjusting the 6 b coefficients.

The following table indicates whether reg3 and its subsidiary functions use or set (change) the values
of fparm[] and iparm[]. The extreme right column indicates the values returned by each function.

mapped part of image hhh and image fff is maximized.

gggcol = bux * hhhcol + buy * hhhrow + bul
gggrow = bvx * hhhcol + bvy * hhhrow + bvl

Y

*
define fparm

alias
101

fparm fparm @arm fparm fparm fparm iparm iparm

b U minb maxb sig
set set set set set set

[I41 r-14 [IS181 [IS241 [25-30] [31-361 [0] 11 -81

{l-corr,O,code,powell iter}

{l-corr,x,code,brent3 iter}

powell
alias P U

set
n
use

brent3a
alias bO U minb maxb n

use use use use use
set (fparm[@-6] set only if brent3 returns a valid minimum) set

brent3 - {l-corr,x,code,brent3 iter}
(no direct reference)

@
alias bO U

set use use

{l-corr,x,ccde,DOF)
b
set

n
use

e
argument

{corr,DOF,overlap}
b sig * * *
use use use

I~

75

reg3 implements the REGISTER user command.

.

F32 * reg3b (b, sig, hhh, ggg, fff, fsl, gsl , gs2, gs3, gss4) file emman.c, MASTER

F32 b[6]
F32 sig[6]
132 hhh

132 999
132 fff

132 fsl
132 gsl
132 gs2
132 gs3
132 gs4

mapping coefficients
smoothing widths
number of the destination image, which will be the smoothed source
image mapped to match the template image; compatible with image fff
number of the source image
number of the template image, the image to be matched by the mapped
source image
number of a scratch image, compatible with image fff
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg
number of a scratch image, compatible with image ggg

reg3b is used with function reg3. reg3b calculates the cross-correlation of a smoothed image fff with
a smoothed, mapped image ggg. reg3b also calculates an estimate of the number of degrees of freedom
associated with the crosscorrelation calculation.

The goal is to calculate the correlation at many points in the 6dimensional space spanned by the
mapping coefficients b[i], to smooth the correlation in each of the 6 b[i] directions with a smoothing function
that has standard deviation sig[i], and to return the value of the smoothed correlation function at the point
specified by the b argument. reg3b does an indirect calculation to produce the same result. reg3b
calculates the correlation of the appropriately smoothed copy of image fff with the smoothed and mapped
image ggg. The returned correlation values should always be between -1 .O and 1.0, with 1 .O representing
perfect correlation, 0.0 representing no correlation, and -1 .O representing a perfect negative correlation
(eg, one image is the negative of the other). reg3b returns the value -2.5 (which is not a possible
correlation value) if the two images - fff and mapped ggg - have no overlap, or -3.5 if all the pixels in the
overlap region of either image have the same value. These two error conditions arise because (1) the
correlation obviously cannot be calculated if the images do not overlap, and (2) the correlation involves
a division by the standard deviation of the pixel values, which division cannot be done if the pixels all have
the same value so the standard deviation is 0. Specifically, reg3b returns a pointer to an F32 array, in
which element 0 is the correlation value (or the error codes -2.5 or -3.5), element 1 is the estimated
number of degrees of freedom, and element 2 is the number of mapped pixels in the destination image
hhh.

The optimization problem which is addressed by functions powell and brent3a in reg3 is to maximize
this function reg3b, the correlation, by adjusting the values of the 6 b[i] coefficients.

.

F32 * reg3c (x, fparm, iparm) file emman.c, MASTER

F32 x the single variable
F32 *fparm
132 wiparm

an array of F32 parameters
an array of 132 parameters

reg3c is used with reg3. reg3c is an example of the function func used as an argument of function
powell; reg3c represents the 6-variable function reg3b in the l-variable form required for use with powell.
reg3c uses the fparm and iparm values to generate appropriate argument values for function reg3b, and

76

reg3c puts the function value returned by reg3b and other return values into the required format. reg3c
also converts from the correlation value calculated by reg3b to the l-correlation value required for the
minimization procedures.

x is the single variable, an argument that measures position along a line in the 6-dimensional
parameter space of function reg3b, the line along which a single-variable minimization is done.
Specifically, reg3c evaluates reg3b at the point fparm[l]+x * fparm[l+n], fparm[2]+x * fparm[2+n], ...
fparm[n]+x * fparm[n+n] (with n=iparm[0]=6).

fparm contains values that supply the information necessary to construct a (constrained) 6-
dimensional position vector from the single parameter x. These include fparm[l]-fparm[6], which specify
the x=O point, and fparm[7]-fparm[l2], which specify the direction of the line through the 6-dimensional
space. fparm and iparm also contain values for the other arguments required by reg3b, and fparm
contains some scratch space used by reg3c to hold argument values for reg3b. Note that the arrays fparm
and iparm are defined in the function reg3 which indirectly and directly calls reg3c.

reg3c sets fparm[l+4 * n] ... fparm[6+4 * n] (fparm[25] ... fparm[30]) equal to the value of the 6-
component vector position at which reg3b is to be evaluated, fparm[l]+x*fparm[l+n] ...
fparm[6]+x * fparm[6+n] (fparm[l]+x * fparm[7] ... fparm[6]+x * fparm[l2]). reg3c then evaluates reg3b at
this point, and sets fparm[O] equal to the required l-correlation value. reg3c returns a pointer to an F32
array, with array element 0 set to the function value (l-correlation); element 1 set to the x value used in
the function evaluation (which in this case is the same as the x value supplied as an argument); element
2 set to 0 for normal completion, 1 (unspecified error) if reg3b returned -3.5, or 2 (variable out of range
error) if reg3b returned -2.5; and element 3 set to number of degrees of freedom in the reg3b correlation
calculation.

.

void remapl (dst, src, bux, buy, bull bvx, bvy, bvl) file emman.c, MASTER & esman.c, SLAVE

132 dst
132 src
F32 bux
F32 buy
F32 bul
F32 bvx
F32 bvy
F32 bvl

number of the destination image
number of the source image
mapping coefficient
mapping coefficient
mapping coefficient
mapping coefficient
mapping coefficient
mapping coefficient

remapl re-maps image src to produce image dst. The row and column values in the new image dst
are related to the row and column values in the old image src by an affine transformation:

(src col) = bux * (dst col) + buy * (dst row) + bul l
(src row) = bvx * (dst col) + bvy (dst row) + bvl.

This type of transformation allows for stretching or compression of the image in the x direction and in the
y direction; rotation; top-bottom and left-right reflection; and shear distortion.

If the src pixel corresponding to any dst pixel does not exist, the dst pixel is left with the value it had
before this operation. This remapl function uses remapla, and implements the REMAP user command.

.

void remapla (updn, more, dst, src, bux, buy, bu l , bvx, bvy, bvl) file esman.c, SLAVE

132 updn
132 *more
132 dst
132 src

code for addressing higher, lower, or this node
address of condition flag
number of the destination image
number of the source image

77

F32 bux
F32 buy
F32 bul
F32 bvx
F32 bvy
F32 bvl

(see remapl)

remapla is used by remapl. remapla determines which pixel values from this node will be needed
by other nodes, and sends the appropriate pixel values; remapl coordinates the overall process, making
sure that inter-node messages do not collide and lock the system.

.

132 resaml (dst, src, opr, ncold, nrowd, novld) file emman.c, MASTER
void resaml (dst, src, opr, mcold, mrowd, movld) file esman.c, SLAVE

132 dst

132 s rc

132 opr

132 ncold/mcold
132 nrowd/mrowd
132 novld/movld

number of the destination image, which will be a re-sampled version of
the source image
number of the source image, which will be re-sampled to create the
destination image
number of the kernel that defines an excluded edge region of the source
image
number of columns in the destination image
number of rows in the destination image
number of overlap rows in the destination image

resaml resamples image s r c and put the result into image dst. The kernel xcl defines an excluded
edge region of image src; xcl may be 0. There is no excluded edge in dst. If image dst is not yet defined,
it will be defined with ncol columns, nrow rows, and novl overlap rows, and its scale factors A and B will
be set to 0.0 and 1.0. Note that images defined by this resaml function may be distributed among the
slaves differently than images of the s a m e size defined by other processes. If image dst w a s previously
defined, it is assumed to have been defined with the correct size and with the correct parts allocated to
each slave, and the values supplied for ncol, nrow, and novl a r e ignored. The values of the overlap row
pixels in dst a re NOT set by this resarnl function. The resampling is done by the simplest nearest-pixel
method, with no interpolation or smoothing. If image s r c has fewer rows than image dst and image s rc
has overlap rows, the overlap rows will probably be used in the resaml procedure, so their values (if not
already current) should be updated with the share function (OVERLAP user command) before this resaml
function is used. s r c overlap rows may also be used if the s r c and dst images a re not distributed exactly
correctly among the slave nodes, as might happen if one of the images is defined by a process other than
the resaml function. resaml implements the RESAMPLE user command.

.

void resam2 (void) file esman.c, SLAVE

resam2 is an experimental program, not recommended for general u se and not guaranteed to work.
It accomplishes (maybe) the s a m e thing as resaml , but using different and probably much slower
methods.

.

void ret (void) file emntrpx, MASTER

ret returns from a subroutine in the user command (.fc) file. ret recovers from the programmer's
stack the line number of the GOSUB user command that invoked the subroutine, and uses the jump

7 8

function to go to that line in the command file. ret implements the RETURN user command.

.

void rijcon (dst, src, opr) file emconv.c, MASTER & esconv.c, SLAVE

132 dst
132 s r c
132 opr

number of the destination image
number of the source image
number of the kernel

T h e intent of rijcon is to concentrate ridges, but this operation is not accomplished perfectly. A ridge
is a n intensity maximum that extends much further in o n e direction then in the perpendicular direction.
We would like to make the ridge sharper, narrower in the narrow direction, but not change it significantly
in the long direction. A weighted least squares fit is used to fit a quadratic polynomial to the local region
in the source image src, with kernel opr containing the weights and specifying the local region. The kernel
should be invariant to 9 0 d e g r e e rotations about the origin pixel. If the fitted polynomial describes a ridge,
the ridge is smoothed along its length and concentrated in the direction perpendicular to its length, in the
destination image dst. ds t should be different from src, and they should be the s a m e size. s r c should
include enough overlap rows to accommodate opr. The excluded edge pixels in dst a r e s e t to zero. rijcon
implements the RIJCON user command.

.

void rmul (pimg, ncol, dst, s r c l , src2) file fsopt.c, SLAVE, F only

F32 *piing
132 ncol
132 ds t
132 s rc l
132 src2

pointer to the image data memory area
number of columns in the images
number of the destination image
number of the first source image
number of the second source image

rmul multiplies o n e image row by another image row. rmul is used by sums2 to form rows of product
pixels during the accumulation of s u m s for the training process. In this context, only o n e row of each
image is stored in the memory in any o n e node, and all the image data is in the s a m e memory block which
is pointed to by pimg. Thus, the address of the one row of image s r c l , for example, is pimg+srcl * ncol.

.

void rmulc (pimg, ncol, row, c) file fsopt.c, SLAVE, F only

F32 ~ p i m g
132 ncol
132 row
F32 c

pointer to the image da ta memory area
number of columns in the images
number of the destination image
value of the constant

rmulc multiplies o n e image row by a constant. rmulc is used by sums2 to apply the appropriate scale
factor (the B coefficient) to the feature image data during the accumulation of s u m s for the training
process. In this context, only o n e row of each image is stored in the memory in any o n e node, and all the
image data is in the s a m e memory block which is pointed to by pimg. Thus, the number of the row in the
memory block is the s a m e as the image number.

.

void RollCallM (cpi, cpo, nd, nil nv) file comm.inc, MASTER

7 9

Channel * cpi[J
Channel * cpo[J
132 wnd
132 *ni
132 *nv

a n array of channel pointers, to be used for input
a n array of channel pointers, to be used for output
pointer to number-of-slaves variable
pointer to SCSI-interface-node-number variable
pointer to video-interface-nodenumber variable

RollCallM is used to establish initial communication with the slave nodes, to determine which links
will be used, and to count the daisy nodes. cpi and cpo a r e arrays of channel pointers, with each array
having more elements than the number of inter-node links. RollCallM s e t s values for s o m e of these
channel pointers. nd should point to the global variable ndaisy, the number of daisy nodes in the system;
RollCallM s e t s this variable. RollCallM also s e t s the variables pointed to by ni and nv, which are
meaningful only in ATRI and a r e set to zero in ATR2 and ATR3.

.

.

void RollCallS (cpi, cpo) file comm.inc, SLAVE

Channel * cpi[J
Channel .IC cpo[]

a n array of channel pointers, to be used for input
a n array of channel pointers, to be used for output

RollCallS is used to establish initial communication with the other nodes, to determine which links
will be used, and to count the number of daisy nodes. ’ cpi and cpo a r e arrays of channel pointers, with
each array having more elements than the number of inter-node links. RollCallS sets values for s o m e of
these channel pointers.

.

void rsums (void) file fmopt.c, MASTER, F only

rsums reads from a file the s u m s previously written by fsums, which s u m s a r e used in the training
process. This allows trying variations of training processes that u s e the s a m e feature images, without re-
forming all the feature images and re-calculating the sums. That is, o n e call to rsums replaces a sequence
of calls to zsums, asums, and fsums.

.

void sbend (dst, s rc , tcol0, taddmax, tmax)
void sbend (void)

file emman.c, MASTER
file esman.c, SLAVE

132 ds t
132 s r c
F32 tcol0
F32 taddmax

F32 tmax

number of the destination image
number of the source image
number of the pixel column that is on the camera centerline
number of pixel columns between the camera centerline and the edge of
the field of view
angle [radians] from camera centerline to edge of field of view

This sbend function does the s-bend geometric correction. For image src, t he pixels within each row
(or the columns in the image) a r e assumed to represent samples that a r e uniformly spaced in terms of the
angle to the side of the camera center line. Image dst will have pixels that represent samples that a re
uniformly spaced in terms of the distance from the camera center line on a flat s c e n e plane or a flat film
plane. s r c and dst must be the s a m e size, and they may be the s a m e image. tcol0 is the number of the
image column corresponding to the camera center line, where angle = 0. tcolO is the s a m e for src and
dst, and the s r c tcol0 pixels a r e mapped directly to dst tcol0. tmax is usually the maximum angle included
in the camera’s field of view, corresponding to pixels at the edge (largest column number) of the images,
and column tcol0 + taddmax is the pixel column number corresponding to this maximum angle. However,

80

you a re not required to u s e tmax and taddmax values with this simple physical interpretation. Formally,
the src pixels in columns tcolO + taddmax and tcol0 - taddmax a r e mapped directly to the s a m e columns
in dst. Pixels in columns other than these three special columns are shifted laterally (to different columns)
in the SBEND operation. T h e columns numbered tcol0, tcol0 + taddmax, and tcol0 - taddmax do not have
to actually exist in the images s r c and dst. sbend uses sbenda, and it implements the SBEND user
command.

.

void sbenda (cold, xtcol0, f l , f2, ncol, nrow, psl, pdl) file esman.c, SLAVE

132 cold
F32 xtcol0
F32 f l
F32 f2
132 ncol
132 nrow
F32 *PSI
F32 * p d l

destination column number
number of column a t which angle=O, distance=O
columns per angle
normalized distance per column
number of columns in image
number of active rows in this node
address of t he source image
address of t he destination image

sbenda is used by sbend. sbend divides the image into as many as four groups of columns, s e t s
parameters for each group, and calls sbenda to do the actual mapping for each group.

.

void scale (dst, src, opr)
void scale (dst, src, opr, a, b) file esio.c, SLAVE

file emio.c, MASTER

132 ds t
132 src
132 opr
F32 a
F32 b

number of the destination image
number of the source image
number of t he kernel that defines the excluded edge region
value of A in (dst image) = A + B * (src image)
value of B in (dst image) = A + B * (src image)

scale s e t s image dst equal to image s r c multiplied by a scale factor chosen to make the largest value
in image ds t equal to 254. The edge pixels, defined by kernel xcl, a r e excluded; their values in s r c a re
not considered in determining the scale factor, and their values in ds t a r e left unchanged. The image dst
coefficient A is set to 0.0 and B is set to the scale factor used in this scaling operation, without regard to
the A and B coefficient values for image src, and the user-accessible variables $A and $B a r e s e t equal
to A and B. ds t and s r c should be of the s a m e size, and they may b e the s a m e image. Usually, scale
should be used immediately before displaying or writing a n image with a n 8-bit integer format. scale
implements the SCALE user command.

.

void SCSlDlSKclose (void) file emio.c, MASTER

SCSlDlSKclose closes the currently open file on the ATRl SCSl disk. This function is also present
in the ATR2 and ATR3 programs, but it should never be used except in ATRI.

.

void SCSlDlSKopen (filename, nskip) file emio.c, MASTER

the name of the ATRl SCSl disk file char * filename

81

~. - -- -~ ~. . I__-_-I

, -
- _. . - ~-

, -/ I - - , ’I .
._..- 1 .

,-

.. . - - . .
.. .,

132 nskip the number of bytes to be skipped at the beginnhg of the file

SCSlDlSKopen opens a file on the ATRI SCSl disk, and immediately skips nskip bytes in that file.
This function is also present in the ATR2 and ATR3 programs, but it should never be used except in

ATRI.

.

void SCSlDlSKread (buf, nbytes) file emio.c, MASTER

char * buf
132 nbytes

SCSlDlSKread reads nbytes of data from the currently open file on the ATRl SCSl disk. This
function is also present in the ATR2 and ATR3 programs, but it should never be used except in ATRl.

the buffer to receive the data from the file
the number of bytes to be read

.

void SCSlDlSKskip (bytes) file emio.c, MASTER

132 bytes the number of bytes to skip

SCSlDlSKskip skips the specified number of bytes in the currentiy open file on the ATRI SCSl disk.
This function is also present in the ATR2 and ATR3 programs, but it should never be used except in

ATRl.

.

void seglab (dst, src) files emmath.c, MASTER & esmath.c, SLAVE

132 dst
132 src

the number of the destination image
the number of the source image

seglab does a certain segment labeling operation. Image src is assumed to contain segments,
patches of pixels with values greater than 0 separated by regions of background pixels with values less
than or equal to 0. For each segment pixel in.image src, the corresponding pixel in image dst is set to
a value that is unique to that segment. The value is l+r+c/nc, where nc is the number of columns in the
images, r is the number of the lowest row occupied by the segment, and c is the number of the lowest
column occupied by the segment within row r. The image dst pixels that do not correspond to an image
src segment pixel are left unchanged.

Normally, one would start by setting all image dst pixels to zero. Then seglab could be used once
or repeatedly with the same dst image but with different src images, to accumulate information about
segments in different source images. If the image dst pixel corresponding to an image src segment pixel
is already non-zero, this is an indication of overlapping segments, and the results are not specified. This
seglab function is not reliable for images with more than about 8 million pixels, because of the limited
precision of the 32-bit floating point variables that hold the l+r+c/nc values. The two images must be
distinct, they must be the same size, and each must have at least one overlap row. seglab implements
the SEGLAB user command.

.

void sendlong (nodelo, nodehi, kode, kl , k2, k3) file comm.inc, MASTER & SLAVE

132 nodelo
132 nodehi

the number of the lowest node to receive this message
the number of the highest node to receive this message

82

132 kode
132 k l
132 k2
132 k3

user data, usually a command code
user data, usually a command parameter
user data, usually a command parameter
user data, usually a command parameter

sendlong is used to send a long (more than 4 132 values) message to one or more other nodes. The
message will be sent to all nodes with numbers from nodelo through nodehi inclusive. The four 132 values
given for kode, k l , k2, and k3 will be sent as part of the message. Before sendlong is called, bufouti[9]
should be set to the number of additional bytes to be sent, and those bytes should be already written into
bufouti[lO] ... (or, equivalently, bufoutc[O] ... or bufoufll01 ...). WaitOutFree should be called before writing
into bufouti. sendlong also sends the values of nodelo and nodehi (sendlong puts these values into
bufouti[3] and bufouti[4]) and the number of the sending node (bufouti[2]) with the message; however, the
values of nodelo and nodehi in the message are changed as the message moves from one node to
another.

.

void sendshrt (nodelo, nodehi, kode, k l , k2, k3) file comm.inc, MASTER & SLAVE

132 nodelo
132 nodehi
132 kode
132 k l
132 k2
132 k3

the number of the lowest node to receive this message
the number of the highest node to receive this message
user data, usually a command code
user data, usually a command parameter
user data, usually a command parameter
user data, usually a command parameter

sendshrt is used to send a short (4 132 values) message to one or more other nodes. The message
will be sent to all nodes with numbers from nodelo through nodehi inclusive. The four 132 values given
for kode, k l , k2, and k3 will be sent as part of the message. sendshrt also sends the values of nodelo
and nodehi (sendshrt puts these values into bufouti[3] and bufouti[4]) and the number of the sending node
(bufouti[2]) with the message; however, the values of nodelo and nodehi in the message are changed as
the message moves from one node to another. sendshrt uses bufouti, but sendshrt includes a call to
WaitOutFree, so WaitOutFree does not need to be called separately before sendshrt.

.

void setab (img, a, b) file emmans, MASTER

132 img image number
F32 a coefficient A
F32 b coefficient B in (this image) = A + B * (other image)

If the global variable np is at least 3, setab sets the A and B coefficients for image img to floating
point values a and b. (rh is image] = A + B * [original image].) These coefficients were initially set to
A=O.O, B=1.0 when the image was defined. This operation does NOT rescale the image; it merely sets
the values of the stored coefficients. If np is greater than 0, setab sets the user-accessible variables $A
and $B (internal variables ,A and ,B) equal to the A and B values for image img. If echo is on, setab also
prints the A and B values for image img on the screen. setab implements the SET-AB user command.

.

void setext (filename, ext) file emio.c, MASTER

char * filename
char * ext

pointer to file name character string
pointer to extension string

83

setext is intended to s e t the extension part of a DOS-type file name. setext assumes that the string
filename is a file name, and that the string ext is a 3character string. The file name is modified to make
the new file name extension (the part after the I . ') equal to the string ext. Any previous extension is
discarded. The string ext should not include the I.'. If the '.I was not already in the string filename, it is
appended a t the end of the original filename string before ext is added.

.

void setfex (kf) file fmopt.c, MASTER, F only

132 *M kf[i]=l if feature image i is to be included, 0 othetwise

setfex initializes a s e t of indexes that a r e used to keep track of which combinations of feature
images have been used and which combination should be used next, in the sequence of optimizing the
coefficients for successive subsets of feature images in the training process. setfex is used by cwl .

.

void setHFA (nparm, n, name, type) file emio.c, MASTER

132 nparm
132 n
char * name
char * type

number of parameters given in the user command line
specifies which occurrence of the HFA object to use
name of the HFA object
type of the HFA object

I If nparm is at least 1, setHFA s e t s the value of hfa0bject.n to n; if nparm is at least 2, setHFA se t s
hfaobject.name to name; if nparm is at least 3, setHFA sets hfaobject.type to type; and, if the echo is on,
setHFA prints the current values of all 3 members of the structure hfaobject. This function is used in
preparation for reading a n image from a n HFA file, for example, in which context the image being read
is the hfa0bject.n-th occurrence of a n image from an HFA Eimg-Layer type object with name equal to
hfaobject.name. setHFA implements the SETHFA user command.

.

void setpix (img, row, col, value) file esmanx , SLAVE

132 img
132 row
132 col
F32 value

image number
row number
column number
value to be assigned to pixel

setpix se t s the value of the pixel in image img, row row, column col, to the floating point value value.
This operation s e t s pixels in both the primary and the overlap rows. Note that images a re stored in
memory as type F32, 4-byte floating point data. setpix implements the SETPIX user command.

.

void setrband (nparm, band, img, byt0, ncol, bpp) file emio.c, MASTER

132 nparm
132 band
132 img
132 bytO

132 ncol

number of parameters in the command line
band number
number of memory image to receive this band
number of bytes from beginning of file image composite row to beginning
of memory image row for this band
number of pixels in one memory image row

84

132 bpp number of bytes per pixel

setrband s e t s and displays values in the structure rband[band], which is used by function inn8 for
rband[O] is used as

If nparrn is 0, setrband lists the rband entries for which the values a r e not the default values.
If nparrn is I , setrband s e t s the number of bands (rband[O].img) equal to the value of the parameter

If nparm is greater than I, setrband s e t s parameters for band (or sub-image) number band (band

If nparm > 1, set the memory image number for the specified band equal to img. If the value
0 is given as the image number, the specified band is not used for any memory image.

If nparm > 2, u s e the bytO value as the number of bytes skip before image img in each
composite row of the image file.

If nparm > 3, u s e the ncol value as the number of pixels in each row for the specified band.
If nparm > 4, u s e the bpp value as the bytes-per-pixel value for the specified band. (The

current version of function inn8 a s sumes that this is the s a m e for all images in any one row-
interleaved file.)

If the value -1 is given for byt0 o r ncol or bpp, for any band, the function inn8 (user command
READIMAGE -1) will attempt to determine the correct values for these parameters from the file header.
setrband implements the BANDR user command.

reading multi-image, row interleaved files. T h e bands a r e numbered I, 2, ...
temporary storage s p a c e for certain operations, and rband[O].img is the number of bands in the file.

band.

= 1, 2, ... nbands), as follows:

.

.

void share (img) file emman.c, MASTER & esman.c, SLAVE

132 img number of the image

share causes the slave nodes to exchange pixel values for image img, so that the values of all
overlap rows a r e updated from the current values in primary rows. That is, each slave obtains (from other
slaves) the correct, current values of the pixels in its own overlap rows. This should be done before
operations like convolution with a kernel o r median filtering in the y direction, which u s e the overlap rows.
The overlap rows a r e automatically assigned the correct values when a n image is read from a file, but the
overlap rows a re NOT assigned the correct values by most other operations. sha re uses shrinn and
shrout. share implements the OVERLAP user command.

.

132 shrinn (void) file esman.c, SLAVE

shrinn is used by share and other functions. shrinn is called when the input data buffer bufinni is
known to contain image data. shrinn copies the data from the buffer, in F32 format, to the appropriate
pixels in the image array, and releases the buffer.

.

void shrout (img, row, node) file esman.c, SLAVE

132 img
132 row
132 node

image number
row number
destination node number

shrout is used by sha re and other functions. shrout s ends o n e row of a n image to another node, in
F32 format.

85 I

.

int slave (void) file esntrp.c, SLAVE, ATR3 only

slave is the "main"' program for the slave nodes in ATR3. Its primary function is to interpret
commands or messages from other nodes.

.

F32 slist (pv, pi, listlen) file esfilt.c, SLAVE

F32 *pv
132 *pi
132 listlen

the values in the list
the indices associated with the values in the list
the number of values in the list

slist is used with the onedimensional median filter functions med lx and medly. slist sorts the list
and returns the value in the middle of the list, the median value.

.
' void smthx (dst, src, sig, n, opr) file emfilt.c, MASTER

void smthx (dst, src, a , opr) file esfilt.c, SLAVE

132 ds t
132 s r c
F32 sig
132 n
132 opr
F32 a

number of the destination image
number of the source image
width of the overall smoothing function
number of smoothing passes
number of the kernel that defines a n excluded e d g e region
a parameter related to the smoothing width

smthx s e t s image dst equal to image s r c smoothed in the x (horizontal) direction. O n e call to SLAVE
smthx does 2 passes of a n exponential smoothing filter, one pass with increasing x and o n e pass with
decreasing x. This double pas s is counted as o n e pass by MASTER smthx. The value of'the parameter
a is given by function asig. The combination of the functions MASTER smthx and asig calculate the value
of the SLAVE smthx parameter a so that the standard deviation of the total effective smoothing function
represented by n double pas ses (n calls to SLAVE smthx) is equal to sig. The domain of the kernel opr
specifies a n excluded edge region, in which the ds t pixel values a r e not changed. (The kernel opr is not
used for anything except specifying this excluded edge region.) ds t should be the s a m e size as src, and
they may be the s a m e image. smthx implements the SMTHX user command.

.

void smthxs (dst, src, sig, opr) file emfilt.c, MASTER & esfilt.c, SLAVE

132 dst
132 s r c
132 sig
132 opr

number of the destination (smoothed) image
number of the source (to be smoothed) image
number of the image that contains the local smoothing width
number of the kernel that defines the excluded edge region

lalues

smthxs does a kind of exponential smoothing of an image, in the x (horiiontal) direction. In smthxs,
the width of the exponential smoothing function is not constant, but can vary from o n e pixel to the next.
The value of this width - the standard deviation of the smoothing function - for each pixel is the value of
the corresponding pixel in the image sig. The smoothing is actually done in two passes , o n e with
increasing x and one with decreasing x, with the total effect of the two passes representing a smoothing

86

function with the standard deviation value specified in sig. Smoothing in this manner, with a n ever-
changing width of the smoothing function, is not a standard operation, and the results of this smoothing
a r e not simply predictable in a n intuitive sense. O n e implication is that this smoothing operation is not
strictly linear, so such quantities as the a rea under a peak may not be preserved. T h e domain of the
kernel opr specifies a n excluded edge region, in which the dst pixel values a r e not changed. (The kemel
opr is not used for anything except specifying this excluded edge region.) dst, src, and sig should all be
the s a m e size. ds t and s r c may be the s a m e image, but sig should be different from both ds t and src.
smthxs implements the SMTHXS user command.

.

void smthy (dst, src, sig, n, opr)
void smthy (dst, src, a, opr)

file emfiltx, MASTER
file esfi1t.q SLAVE

132 dst
132 s r c
F32 sig
132 n
132 opr
F32 a

number of the destination image
number of the source image
width of the overall smoothing function
number of smoothing passes
number of the kernel that defines a n excluded edge region
a parameter related to the smoothing width

smthy is like smthx except that smthy smooths in the y (vertical) direction instead of the x (horizontal)
direction. This y direction smoothing requires exchanging data between adjacent slaves, so the SLAVE
smthy function is more complicated than its x direction counterpart. smthy implements t he SMTHY user
command.

.

void smthys (dst, src, sig, opr) file emfilt.c, MASTER & esfikc, SLAVE

132 ds t
132 s r c
132 sig
132 opr

number of the destination image
number of the source image
number of the image that contains the local smoothing width values
number of the kemel that defines the excluded edge region

smthys is like smthxs except that smthys smooths in the y (vertical) direction instead of the x
(hogizontal) direction. This y direction smoothing requires exchanging data between adjacent slaves, so
the SLAVE smthys function is more complicated than its x direction counterpart. smthys implements the
SMTHYS user command.

.

void snd (pp) file c o m m h c , MASTER, ATR3 only

pthread-addr-t pp a n unused but essential argument

void snd (pp) file comm.inc, MASTER except A I R 3 & SLAVE

Process * p p the process pointer from ProcAlloc

snd transmits data via a hardware link to another node. The data must be in either of the two buffers
bufinni or bufouti. snd is invoked by the functions sendlong and sendshrt from the main thread (using
bufouti), and by rcv from its thread (using bufinni). snd uses s n d l , except in ATR3 MASTER. snd and
s n d l run in a separate thread.

. 87 I

................................

void s n d l (bu9 file comm.inc, MASTER except ATR3 & SLAVE

132 * buf a pointer to the data to be sent

snd l is used by snd to send the specified buffer's data. The buffer pointer buf should be either
bufinni or bufouti, described in the listing of global structures.

.

void s s q (dst, src, opr) file esconv.c, SLAVE

132 dst
132 s rc
132 opr

number of t he destination image
number of the source image
number of the kernel that has the weights for the local region pixels

s s q s e t s image dst equal to the local sum of squares of image src, with weighting coefficients from
kernel opr. That is, s s q s e t s each image dst pixel value equal to the sum over the domain of kernel opr
of {src * s rc * opr}. The dst pixels in the excluded edge region, defined by the domain of the kernel opr,
a re set to zero. s r c should have enough overlap rows to accommodate kernel opr. opr must be greater
than 0. dst and s rc should be different images. The image dst does not need to be the s a m e size as the
image src, but the two images d o need to be distributed among the slaves in a manner compatible with
the resaml (user command RESAMPLE) algorithms. ssq implements the SSQ user command.

.

void s ta ts (src, xcl) file eminfo.c, MASTER & esinfo.c, SLAVE

132 s rc
132 xcl

number of the source image
number of the kernel that defines the excluded edge region

s ta ts calculates pixel value statistics for image img, excluding the edge region implied by the domain
of kernel xcl. stats s e t s s o m e user-accessible variables:

number of pixels
average of pixel values
standard deviation of pixel values
maximum pixel value
minimum pixel value
number of rows
number of columns
value of A coefficient in table
value of B coefficient in table

stats implements the STATS user command.

.

132 streq (strl, str2, nchar) file emmain.c, fmmain.c, & gmmain.c, MASTER

char * strl
char * str2
132 nchar

first string
second string
number of characters to compare

88

streq compares the first nchar characters of the two strings, without regard to case, and returns the
number of equal characters before the first unequal character pair.

. I

F32 sumpix (src, xcl)
void sumpix (src, xcl)

file eminfo.c, MASTER
file esinfo.c, SLAVE

132 s rc
132 xcl

number of the source image
number of the kernel that defines the excluded edge region

sumpix calculates the sum of all the pixels in the image irng, excluding the edge region defined by
the domain of kernel xcl. This operation s e t s the user-accessible variables $NCNUM) = number of pixels,
$AVGCAVG) = average value of pixels. MASTER sumpix returns the s u m value. sumpix implements the
SUMPIX user command.

. * I

void sums2 (void) file fm0pt.c (& emdummy.c), MASTER & fs0pt.c (& esdummy.c), SLAVE, F only
~

sums2 is used by a sums to accumulate the sums used in the training process. sums2 uses Idblk.
~

. I

void ttg3 (img, row0, col0, q, caption) file emio.c, MASTER I
132 img
132 row0
132 col0
F32 q redlgreen criterion
char * caption image caption

number of the image to be displayed
screen row for top of image
screen column for left edge of image

ttg3 displays image img on the high-resolution RGB monitor. The top left corner of the image will
appear at row0,coIO in the screen display. Pixel values in image img should be between 0.0 and 255.0
(see function scale, user command SCALE). Red will be used for pixels with value less than q, green for
pixels with value greater than q. The character string caption will be printed below the image on the
screen. If echo is on, the image will remain on the screen, and the program will s top execution, until the
operator hits a key on the keyboard. ttg3 implements the DlSP user command in ATRI.

. I

void ttg3res (img, row0, col0, q, caption, res) file emio.c, MASTER
~

132 img
132 row0
132 col0
F32 q red/green criterion
char * caption image caption
132 res

number of the image to be displayed
screen row for top of image
screen column for left edge of image

number of the image with the red/green criterion pixel values

ttg3res is like ttg3, except that the pixels a re colored red o r green according to whether the
corresponding pixel in the image res (normally, but not necessarily, a result image) has a value less than
q. This allows a n input image to be displayed with color coding based on a result image. ttg3res
implements the DISPRES user command in ATRI.

89 I

void vga5 (img, row0, col0, q, text) file emio.c, MASTER

132 img
132 row0
132 col0
F32 g
char *text

number of the image to be displayed
screen row for top of image
screen column for left edge of image
red/green criterion
image caption

vga5 is used to display an image on the operator's console, as opposed to the usual RGB monitor.
The top left comer of the image will appear at row0,coIO in the screen display. Pixel values in image img
should be between 0.0 and 255.0 (see function scale, user command SCALE). Red will be used for pixels
with value less than q, green for pixels with value greater than q. The character string caption will be
printed below the image on the screen. If echo is on, the image will remain on the screen, and the
program will stop execution, until the operator hits a key on the keyboard. vga5 is slow and primitive and
buggy, and it is not recommended for general use. vga5 requires that the device handler VGA be installed
on the host, which must be an IBM DOS type of computer (ATRI or ATR2). vga5 implements the VGA
user command.

.

void wait (buf, j) file commhc, SCSl & VIDEO

132 * buf
132 j

an internode communication buffer, bufinni or bufouti
the waited-for value of buqO]

This function is used only by the ATRI programs SCSl and VIDEO. It causes the calling thread to
stop execution until buflO] is equal to j. This is used to make the main thread wait for the desired condition
of the flags for the bufinni and bufouti communication buffers.

.

void WaitlnnData (void) file comm.inc, MASTER & SLAVE

WaitlnnData blocks the calling thread (normally the main thread) until data is available in buffer
bufinni. Data is put into bufinni by the function rcv running is a separate thread.

.

void WaitOutFree (void) file comm.inc, MASTER & SLAVE

WaitOutFree blocks the calling thread (normally the main thread) until the data buffer bufouti is free
for a new use by the main thread. This function should be used before writing to bufouti, to avoid
overwriting data in bufouti that is being sent to another node by the function snd which runs in a separate
thread.

* * * * * * * * * * * * * I * * * * * * * * * * * * * * * * * *

void warn (mess) file emmain.c, fmmain.c, gmmain.c, MASTER

char * mess string to be printed

If echo is on, warn prints the specified string as part of a warning. For programs E and F, warn also
prints the line number for the .fc file containing the current command.

90

.

void warnl (dst, src) file emntrp.c, gmntrp.c, MASTER

132 dst
132 s r c

number of the first image
number of the second image

warnl prints a warning message if dst and s r c both refer to the s a m e image.

.

void warn2 (img, opr) file emntrpx, gmntrpx, MASTER

132 img
132 opr

number of the image
number of the kernel

warn2 prints a warning message if image irng does not have enough overlap rows to accommodate
kernel opr.

.

void warn3 (img, novl) file emntrp.c, gmntrpx, MASTER

132 img
132 novl

number of the image
number of required overlap rows

warn3 prints a warning message if image img has fewer than novl overlap rows.

.

void wtgtz (opr) file emconv.c, MASTER

132 opr number of the kernel

wtgtz checks to see that the sum of the values in the kernel opr is greater than zero, and stops
program execution if it is not. wtgtz is used with user command MOMUV.

.

void ximg (dst) file esmath.c, SLAVE

132 dst number of t h e destination image

ximg se t s the value of each pixel in image dst equal to the pixel's x (column) coordinate. Column
numbers start with 0 for the left-most column, and increase toward the right. ximg implements the XlMG
user command.

.

void xlinOl (dst, srcb, srca, opr) file eslines.c, SLAVE

132 dst
132 srcb
132 srca
132 opr

number of the destination image
number of the image with brightness values
number of the image with tangent(ang1e) values
number of the kernel that specifies how much to extend the lines

91

xlin01 extends lines found by IinOl. T h e "central" pixel in the local region of image ds t is set equal
to the weighted sum of the brightnesses of the line segments that a r e in the local region defined by the
kernel opr and are oriented in the direction so that their extensions would pass through the central pixel.
The weights a re the values of the pixels in opr. srcb and srca a re the images containing the brightness
and orientation data from linO1. dst, srcb, and srca should all be different images, all of the s a m e size.
This operation uses overlap rows for both images srcb and srca. dst pixels in the excluded edge region
defined by the domain of opr a re set to zero. xlinOl implements the XLlNOl user command.

.

void xwin (img, row0, col0, q, caption) file emio.c, MASTER

132 img
132 row0
132 col0
F32 q red/green criterion
char * caption image caption

number of the image to be displayed
screen row for top of image
screen column for left edge of image

xwin displays image img on the high-resolution RGB monitor. The top left comer of the image will
appear a t row0,coIO in the screen display. Pixel values in image img should be between 0.0 and 255.0
(see function scale, user command SCALE). Red will be used for pixels with value less than q, green for
pixels with value greater than q. The character string caption will be printed below the image on the
screen. If echo is on, the image will remain on the screen, and the program will s top execution, until the
operator hits a key on the keyboard. xwin implements the DlSP user command in ATR3.

.

void xwininit (argc, argv) file emio.c, MASTER

int argc
char * *argv

xwininit initiallizes the high-resolution RGB display software. Its arguments argc and argv a r e the
token count and token pointer arguments of the function main, referring to the arguments on the operating
system command line that invoked this software (no arguments should be specified in this command line).
The ATR3 system uses the environment variable DISPLAY, and assumes that the window manager
program mwm is running in the background. xwininit is invoked one time, when the program is started.
xwininit is used only on ATR3.

.

void xwinres (img, row0, col0, q, caption, res) file emio.c, MASTER

132 img
132 row0
132 col0
F32 q red/green criterion
char * caption
132 res

number of the image to be displayed
screen row for top of image
screen column for left edge of image

image caption
number of the image with the red/green criterion pixel values

. xwinres is like xwin, except that the pixels a re colored red o r green according to whether the
corresponding pixel in the image res (normally, but not necessarily, a result image) has a value less than
q. This allows a n input image to be displayed with color coding based on a result image. xwinres
implements the DISPRES user command in ATR3.

92

.

void xy2rt (dstr, dstt, srcx, srcy, xcl) file esmath.c, SLAVE

132 dstr
132 dstt
132 srcx
132 srcy
132 xcl

number of the image to receive radius values
number of the image to receive tangent(ang1e) values
number of the image with x-coordinate values
number of the image with y-coordinate values
number of the kernel that defines the excluded edge region

xy2rt converts a vector field from x-y representation to r-tangent(ang1e) representation. Images srcx
and srcy contain the x and y component values. The vector magnitude will be put into image dstr, and
the tangent of the angle between the vector and the x axis will be put into image dstt. xcl specifies an
excluded edge region, in which the dstr and dstt pixel values will not be changed. None of the images
need be different from any of the others, although it would normally not be sensible for srcx and srcy to
be the same image. If the two destination images dstr and dstt are the same, the destination image will
contain the vector magnitudes and the vector direction values will not be written to any image. All these
images should be the same size. xy2rt implements the XY2RT user command.

.

void yimg (dst) fife esmath.c, SLAVE

132 dst number of the destination image

Set the value of each pixel in image dst equal to the pixel's y (row) coordinate. Row numbers start
with 0 for the top row, and increase toward the bottom of the image. yimg implements the YlMG user
command.

.

void zerbuf (img) file esmath.c, SLAVE

132 img number of the destination image

zerbuf sets all the pixels in image img, including the overlap rows, to zero. zerbuf implements the
ZEROIMAGE user command.

.

void zsums (void) file fmopt.c, MASTER, F only

zsums initiallizes (sets to zero) certain sums of feature image pixel values and their products, which
are used in the training process. zsums is called before the first call to asums for the first of a sequence
of training scenes.

.

void ztbrows (img, jlo, jhi) file esmath.c, SLAVE

132 img
132 jlo
132 jhi

number of the destination image
upper limit of low-number rows to be zeroed
lower limit of high-number rows to be zeroed

ztbrows sets to zero all the pixels in the indicated top and bottom rows of image img. The zeroed

93

rows are all rows with row number less than jlo and those with row number greater than jhi.

.

I

94 '

COMMAND CODES

Numeric values are used as command codes throughout the sohare . The following table
summarizes the interpretations that the different types of node apply to different command code
values. For example, command code 2 is interpreted in the MASTER prograh (in function feats)
as the READY user command, and the SLAVE (S), SCSI (I), and VIDEO (V) programs interpret
command code 2 as a command to simply reply to MASTER. (The SCSI and VIDEO nodes
exist only in ATRl.)

E

CODE MASTER response

0
1
2
3
4
5
6
9

11
12
13
20
21
22
23
24
25
26
27
28
51
52
53
54
55

101
1 02
103
104
105
106
107
108
I09
110
111
112
113
114
115
116

REM
ECHO
READY
ECHOTIME
ECHO-ON
ECHO-OFF
PAUSE
STOP, END
PRINTS
SDEF132
SDEFF32
SEQ
SADD
SSUB
SMUL
SDlV
SSQRT
SABS
SMAX
SMlN
STAN
SATAN
SATAN2 0

SLOG
SEXP
NEWIMG
READIMAGE
READKERNEL
CONVOLVE
WRITEIMAGE
OVERLAP
COPYEDGES
ZEROIMAGE
DISPRES
SCALE
SSQ
STATS
ORDFLT
DEFIMG
DEFKERN
U N DERSAM P LE

other node response

S,I,V: reply when ready

S: stop feature calculation subroutine

S: receive image row
S: receive kernel
S: convolve.

S: share overlap values
S: copy edges
S: zero image
S: send image, color coded
S: scale image
S: local sum of squares
S: calculate image statistics
S: order filter
S: define image
S: define kernel
S: DELETED

I: SCSI input

S: send image I: SCSI output

V: display, color coded

95

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
161
162
171
172
173
174
176
177
178
179
181
1 82
183
184
185
186
188
189

COPDEF

WRITERESULT
RESAMPLE
ADD
SUB
MUL
DIV
SQRT
ABS
MAXCON
MINCON
MAX
MIN
ADDCON
SUBCON
MULCON
DIVCON
SETCON
COPY
REPLO
REPHI
SETPIX

GETPIX
SMTHX
SMTHY
HIST2

SETHFA
TAN
ATAN
ATAN2
LOG
EXP

TTG3 diagnose
READSCENE
WRITEFEAT
FEAT *
CLEAR
MEDIX
MEDIY
VGA
SET-AB

FEATFIL
MODMSK
LlNOI
XLlNOl
NLINOI
XGRAD
YGRAD

S: copy image definition
S: (F only) calculate feature weights

S: scale resample
S: add
S: subtract
S: multiply
S: divide
S: square root
S: absolute value
S: maximum, constant
S: minimum, constant
S: maximum
S: minimum
S: add constant
S: subtract constant
S: multiply by constant
S: divide by constant
S: set to a constant
S: copy image
S: replace low values
S: replace high values
S: set a pixel
S: get a pixel, overlap, getpixo
S: ge t a pixel, primary, getpixp
S: exponential smooth x
S: exponential smooth y
S: histogram
S: (F only) accumulate sums
S: linear resample, resam2
S: getblk

S: tangent
S: arctangent
S: arctangent2
S: natural logarithm
S: exponential
I: SCSl commands
V: diagnose

S: clear tables
S: median filter x
S: median filter y

S: send one row

S: modify mask
S: find lines 1
S: extend lines 1
S: count lines 1
S: gradient x
S: gradient y

96

190
I91
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21 0
21 1
221
222
223
224
225
226
227
228
231
232
233
234
235
236
237
238
239
240
241
242
243
244
256
257
258
259
260
261
262
263
271
272
273

LIN02
EDJO2
DlSP
GRADT
XY2RT
GRADCON
RIJCON
CONTOUR
SEGLAB
COMPOZ
NTRPOO
NTRPOI
QUADXY
QUADUV
EXTRACT
MOMUV
LABEL
JUMP
IF
BRANCH
PDFXYI
PDFXYZ
PEAK1
PLNKI
PACCI
PMOMXYI
PMOMUVI
PMOMXY
PMOMUV
PMRGI
BANDR
PHEAD
INCFIL
REMAP
SUMPIX
REGISTER
XlMG
YlMG
SMTHXS
SMTHYS
SBEND
GOSUB
SUBDEF
RETURN

INS (G only)
INM (G only)
MARK (G only)

S: find lines 2
S: find edges 2
V: display
S: gradient
S: rectangular to polar

. S: concentrate gradient
S: concentrate rigdes
S: make contours
S: label segments
S: insert image
S: interpolate, constant
S: interpolate, linear
S: quadratic fit
S: quad fit, rotated
S: extract image
S: PDF moments

S: image PDF

S: find peaks
S: link peak pixels
S: accumulate peak sums
S: sums to moments
S: sums to moments

S: merge peaks

S: remap1
S: sumpix
S: regla (DELETED)
S: ximg
S: yimg
S: smthxs
S: smthyx
S: s-bend correction

V: erase
V: cursor 1 on
V: cursor 1 off
V: position cursor 1
V: start line
V: draw line
V: write pixels
V: write text

97

274 OUTS (G only)
275 OUTM (G only)

98

ATRl SCSI SOFTWARE

These sections describe software that is used exclusively on the ATRl SCSI interface
node. (A T E and ATR3 do not have a SCSI node or a TSCSI program.) The software described
here is for version 7 of program TSCSI and for version 14 of programs E, F, and G. Some
software that is used on both the SCSI node and either the MASTER or the SLAVE node is
described in earlier parts of this programmer’s manual. Many of the functions included in the
SCSI node software are accessible fiom the MASTER program of TSCSI but not from the
programs E, F, or G. However, the presence of these inaccesssible functions does not cause any
problems for E, F, or G, and in the interest of simplicity of software maintenance the same SCSI
node software is used for E, F, and G as is used for TSCSI.

The SCSI node source code comprises the files scsi7.c, disk7.q tape7.c, scsilib.c, scsilib.h,
efg.h, and comm.inc. scsi1ib.c is primarily low level SCSI functions supplied by Alta Technology
Corp., and those functions are not described here.

The TSCSI program is for manipulating the devices that are attached to the ATRl SCSI
interface node. The interesting software is that which runs on the SCSI node; the MASTER node
software merely sends commands to the SCSI node, and the SLAVE and VIDEO software serve
no real function except to make the overall TSCSI program complete enough to function.

99

GLOBAL CONSTANTS AND VARIABLES

This section describes some global variables and constants that are important in the SCSI
node software and are not described ip previous sections that discuss MASTER and SLAVE node
software.

char Gbuf[l600] a scratch buffer for general use

132 Gbufsiz size of the scratch bufffer Gbuf

#define MDEV 5 maximum allowed number of devices

#define SCSIHOST 0 device numbers
#define SCSlDlSK 1
#define SCSITAPE 2
#define BUFFER 3

char * devnam[MDE~=("SCSIHOST:","SCSlDlSK:ii,i'SCSlTAPE:ii,'iBUFFER:i',ii 'I} '
an array of names of the hardware devices and pseudodevices, ending
with a blank name

DEV device[MDEV] an array of structures describing the hardware devices and pseudo-
devices

132 iddev[MDEV] iddev[dev] is the SCSl ID for device dev. If iddev[dev]==-I, there is no
SCSl ID for device dev, probably because device dev does not exist. If
iddev[dev]==8, the device exists but does not actually use the SCSl bus.

devid[id] is the device number for the device with SCSl ID id, or -1 if no
device has SCSl ID id. SCSl ID 0 always goes with device SCSIHOST.

132 devid[8]={SCSIHOST,-I ,-I ,-I ,-I ,-I ,-I ,-I}

100

STRUCTURES

This section describes some structures that are important in the SCSI node software and
are not described in previous sections that discuss MASTER and SLAVE node software.

.

STRUCTURE TYPE: DEV

STRUCTURE INSTANCES: device[MDEV]

STRUCTURE MEMBERS:

132 bufsiz
132 (* openr)(FILE7 * fil)
132 (* openw)(FILE7 *f i l l 132 tim)
132 (*fillbuf)(FILE7 * fil)
132 (* skipb)(FILE7 * f i l l 132 skipbytes)
132 (* emptybuf)(FILE7 * fil)
132 (* close)(FlLE7 * fil)
132 flags device flags

buffer size, in bytes
pointer to device-specific openr function
pointer to device-specific openw function
pointer to device-specific fillbuf function

pointer to device-specific emptybuf function
pointer to device-specific close function

pointer to device-specific skipb function

The array device[] includes a structure of this type for each hardware device (such as SCSIDISK,

The device SCSIDISK is a hard disk, DOS formatted.
The device SCSITAPE is an Exabyte 8 mm tape drive, or perhaps a compatible device.
The device SCSIHOST is the link from the SCSl node to the MASTER node. No more than one

input (read) file and one output (write) file can be opened at any one time for the SCSIHOST device.
Since this device uses the bidirectional link to the MASTER node and the communication buffers bufinni
and bufouti, etc., other uses of these buffers and this link while a SCSIHOST file is open may cause
problems. For SCSIHOST files, the .ptr element of the FILE7 structure points to an array of 9 132 values.
The scsi7-fillbuf or host7-fillbuf command waits until there is data in the communication input buffer
bufinni, and it sets the .bufsiz element of the FILE7 structure equal to bufinni[9] and returns with the FILE7
pointers pointing to bufinnc. Data received in the lower elements of bufinnin is copied into the 132[9] array
pointed to by the .ptr element of the FILE7 structure. The scsi7-emptybuf or host7-emptybuf command
causes the data buffer to be sent out over the link, with the 132[9] array at FILE7.ptr used as the values
for the first 9 elements of bufouti[] in the sendlong function call. The number of bytes sent in bufoutc[]
(that is, beyond the first 9 132 elements of bufoutiu) is the value of the .nbytes element of the FILE7
structure. Some of the programs that use the SCSIHOST device use the convention that a message with
zero length (bufinni[9] or bufouti[9] is 0) indicates an end-of-file condition.

The device BUFFER is simply a FILE7 structure and a buffer (a block of memory) that the FILE7
structure points to, with no physical device that the buffer can be copied to or from. You can create
multiple instances of pseudo-files for this BUFFER device, and they are all maintained independently.
These pseudo-files can be written to and read from by functions like copfil, as long as not more than one
buffer full of data is written or read without resetting the FILE7 pointers. A BUFFER pseudo-file is created
by calling scsi7-open with the mode parameter either NULL or the name of an existing character buffer
that is to be used for this pseudo-file; mode should not be W' or "R, or "w" or Y'. The scsi7-emptybuf
function, or the buffi-emptybuf function, should be called before reading from the buffer, and the
scsi7-fillbuf function, or the bum-fillbuf function, should be called before writing to the buffer. The buffer
contents can also be accessed directly, by using the .buf element of the FILE7 structure as a pointer to
the buffer, but of course such access does not automatically maintain the pointers in the FILE7 structure.
The scsi7-close function, or the bum-close function, destroys the pseudo-file and, if the buffer was
allocated by the scsi7-open (bum-openw) function, de-allocates the buffer.

SCSITAPE, and SCSIHOST) and each pseudodevice (such as BUFFER).

101

STRUCTURE TYPE: FILE7

STRUCTURE MEMBERS: .

132 dev
char 8 nam
char buf
132 bufsiz
132 pbytes
132 nbytes

132 filsiz
132 flags
void ptr

hardware device number for this file
pointer to file name, without device name
pointer to data buffer, o r NULL
size of data buffer, in bytes
number of bytes before this buffer
position in buffer; number (relative to start of buffer) of next byte to be
read from buffer or written to buffer
size of file, or -1
1 -> read; 2 -> write; 4 -> borrowed buffer
pointer to other (device-specific) data for this file

A structure of this type is created (memory is allocated) for each file and pseudo-file that is
opened, and this structure is destroyed when the file is closed.

.

STRUCTURE TYPE: HFP

STRUCTURE MEMBERS:

132 buf9[9] values to be put into bufouti[O-81 when sending data, or copied from
bufinni[O-81 when receiving data

This structure is used as the SCSIHOST-specific data pointed to by the .ptr member of the FlLEL7
structure.

.

STRUCTURE TYPE: DFP

STRUCTURE MEMBERS:

132 loc
132 dir
132 off
132 sector
132 nbytes

location (sector number) of file
location of this file’s home directory
offset of this file’s entry from the beginning of the directorty
number of last sector transferred between disk and memory, or -1
number of bytes written or read, including those written to a memory
buffer but not yet written to the disk, not including those read from the
disk but not yet read from the memory buffer

This structure is used as the SCSIDISK-specific data pointed to by the .ptr member of the FILE7
structure.

.

STRUCTURE TYPE: DIRE

STRUCTURE MEMBERS:

102

char nam[DIREnamlen]
char typ file type code:

file name, 8char base + 3char ext

bit 0 -> read only
bit 1 -> hidden
bit 2 -> system
bit 3 -> volume name
bit 4 -> subdirectory
bit 5 -> archive (normal file)

char res[IO] reserved
U16 tim file creation time
U16 dat file creation date
U16 loc
132 siz file size, bytes

file location, cluster number

This structure DIRE is the standard DOS disk file directory entry structure.

.

103

FUNCTIONS

This section describes all the functions in the SCSI node software, except those in the Alta
Technology Corp. library. '

.

132 bum-close (fil)

FILE7 *til pointer to the BUFFER file

bum-close destroys the pseudo-file. bum-close always returns 0. bum-close is the BUFFER-
specific close function and should normally be called only by scsi7-close. See the discussion of the
BUFFER device in the DEV structure description.

.

132 bum-emptybuf (fil)

FILE7 w f i l pointer to the BUFFER file

bum-emptybuf resets the pointers to indicate a n empty buffer and allow writing to a BUFFER
pseudo-file: fil->nbytes=O; fil->filsiz=-l; fil->pbytes=O. buff7-emptybuf always returns 0. bum-emptybuf
is the BUFFER-specific emptybuf function and should normally be called only by scsi7-emptybuf. See the
discussion of the BUFFER device in the DEV structure description.

.

132 bum-fillbuf (fil)

FILE7 *fil pointer to the BUFFER file

bum-fillbuf resets the pointers to allow reading data from a BUFFER pseudo-file: fil->pbytes=O;
fil->filsiz=fil->nbytes; fil->nbytes=O. buM'fi1lbuf always returns 0. bum-fillbuf is the BUFFER-specific
fillbuf function and should normally be called only by scsi7Jillbuf. See the discussion of the BUFFER
device in the DEV structure description.

.

132 bum-openw (fil, size)

FILE7 w f i l
132 size

pointer to the BUFFER file
size of buffer to be created

bum-openw opens a pseudodevice file, for device BUFFER. The device is open for both read and
write operations; there is no bum-openr function. If fil->ptr is NULL, bufn-openw allocates a buffer with
size bytes; if filbbuf is not NULL, the buffer pointed to by fil->ptr is used as the file buffer. On return from
burn-openw, f ibbuf points to the buffer; fil->ptr is NULL; fil->nbytes is 0; f ibpby tes is 0; f ibbufsiz is
equal to the input parameter size; fil->filsiz is -1; and fil->flags is 0 if the buffer w a s created by
burn-openw, or 4 if the buffer is borrowed (if f i b p t r was not NULL on entry to bum-openw).
bum-openw always returns 0. bum-openw is the BUFFER-specific open function and should normally
be called only by scsi7-open. See the discussion of the BUFFER device in the DEV structure description.

,~
104

.

132 bum-skipb (fil, skipbytes)

FILE7 *fil
132 skipbytes

pointer to the BUFFER file
number of bytes to be skipped

bum-skipb skips skipbytes in reading from a BUFFER pseudo-file. bum-skipb always returns 0.
bum-skipb is the BUFFER-specific skipb function and should normally be called only by scsi7-skipb. See
the discussion of the BUFFER device in the DEV structure description.

.

void c2132 (c, i)

char * c
132 i

a pointer to a character array
the value to be put into the character array

c2132 puts the two least significant bytes of i into the first two bytes of character buffer c, with the
less significant byte first.

.

void MI32 (c, i)

char * c
132 i

a pointer to a character array
the value to be put into the character array

MI32 puts the four bytes of i into the first four bytes of character buffer c, with the less significant
bytes first.

.

132 CS (S)

132 S a sector number

CS returns the number of the cluster that includes sector number S, or 0 if S is less than the first
sector of cluster 2.

.

void disk2-fixnam (oldnarn, newnam)

char * oldname
char * newname

an ATRI SCSl node device&file name, input
a modified form of oldname, returned

disk2-fixnam starts with the ATRI SCSl device&file name oldname, removes any ATRl SCSl node
device name (such as SCSIDISK:, SCSITAPE:, SCSHOST:) and converts the remainder of the file name
in oldname to upper case characters, and copies this modified file name into the string newname. The
character pointers newname and oldname can be the same; that is, the file name can be modified in place
without being copied to a new string.

.

8

105

132 disk2-namfit (entry, wildnam)

char * entry
char * wildnam

pointer to a DOS file name, with no wild characters
pointer to a DOS file name template, with wild characters

disk2-namfit compares a DOS file name entry, with no wild characters, with another DOS file name
wildnam, which may include wild characters. disk2-namfit returns 0 if the names do not match, or the
number of matching characters (not including the terminating '\Or, '\VI or ' I) in wildnam if the names do
match. Any occurrence of '?" in wildnam is construed as matching any o n e character except delimiters
in entry. Any occurrence of I' * I' in wildnam is construed as matching any substring not including
delimiters in entry. A substring is any sequence of characters that does not include a delimiter character.
The only delimiter in this context is the implied I.' (period) that does not appear explicitly but is assumed
between the eighth and ninth characters of entry. The substring that matches the * can have 0 length.
If a ' I * ' ' in wildnam is immediately followed by a nondelimiter character, the entry substring that is
replaced by the 'I * I' is construed as ending before the next occurrence of that nondelimiter character in
entry. Thus, when I' * 'I is encountered in wildnam, characters in entry a re skipped until either a delimiter
character or the non-delimiter character following the 'I * " is encountered.

.

void disk2Jarsel (oldnam, newnam)

char * oldnam
char * newnam

DOS path&file name, input; part of path, returned
part of DOS file name, returned

d i s k 2 j a r s e l separates the last part of the path&file name input as oldnam, copies the last part into
the string newnam, and deletes that last part from the string oldnam. The separation is done after the last
'\V that precedes a n alphanumeric character or a wild character (' * or I?') in the input oldnam. If no
alphanumeric character is found, the entire input oldnam is returned in oldnarn and newnam is returned
as a n empty string. If the input oldnam contains a n alphanumeric character but no preceding VI oldnam
is returned as a n empty string and the entire input oldnam is returned in newnam. Examples:

input oldnarn output oldnarn output newnarn
\dir\subdir\file.ext ==> \dir\subdir\ + file.ext
\dir\subdir\ ==> \dir\ + subdir\
\dir\ ==> \ + dir\
dir\ ==> + dir\
file.ext -->
\ ==> \ +

+ file.ext --

.

void disk2-writD (ptrD, nam, tim, loc, siz)

DIRE *ptrD
char * nam
132 tim
132 loc
132 siz

pointer to a DOS disk directory entry structure to be written to
DOS file name, with no path or device
time&date value from the host system clock
number of the first cluster in the file
number of bytes in the file

disk2-writD constructs a DOS disk directory entry in the structure pointed to by ptrD. In this entry,
nam will be the file name (8 character base + 3 character extension), tim will be the file creation time, loc
will be the location (cluster number) of the start of the file, and siz will be the number of bytes in the file.
It is the programmer's responsibility to ensure that these values really do represent the actual file. If the
last character in the string nam is a 'W, the entry is marked as a subdirectory; otherwise, it is marked as

106

a simple file.

.

void disk6-delete ‘(filnam)

char * filnam

disk6-delete deletes SCSlDlSK disk files. T h e string filnam may include the wild characters Y and

name of SCSlDlSK disk file to be deleted

’?’ in the base or extension parts of the file name, but not in the path part.

.

void disk6-dir (filnam)

char * filnam path or directory name

disk6-dir prints the directory for the SCSlDlSK disk subdirectory specified in the string filnam. filnam
can include a file name as well as a path or subdirectory name, and the file name (but not the path) can
include the wild characters * I and ’?’.

.

void disk6-Enew (filnam, tim, ptrnewfil, ptmewdir)

char * filnam
132 tim
DFP *ptmewfil
DIRE * ptrnewdir

name of the new file
time&date value for the new file creation time
pointer to a disk file pointer structure for the new file
pointer to the structure in which the new entry is to be written

disk6-Enew creates a new file on the SCSIDISK disk. It allocates the first cluster for the file, and
it writes a directory entry describing the new file. The directory entry is written to a memory location;
copying this new directory entry onto the disk must be done separately. disk6-Enew also s e t s the values
in * ptrnewfil appropriate to the new file.

.

void disk6-find (filnam, filpointr, direntry)

char * filnam
DFP * filpointr
DIRE * direntry

path&file name of the file sought
pointer to a disk file pointer structure that will receive the file pointers
pointer to the structure that will receive the directory entry

disk6-find finds the file specified in the string filnam, and s e t s the values in the structures filpointr
and direntry to describe the file. If the file is not found, disk6-find sets filpointr->loc to 0 and
direntry->nam[O] to W. If the last char of filnam is ’ I (a space), the found entry must be a simple file,
not a subdirectory. If the last char of filnam is ’\Y, the found entry must be a subdirectory, not a simple
data file.

.

132 disk6-IinkC (oldC)

132 oldC the number of the present cluster in the file

107

disk6-IinkC returns the number of the next cluster in the SCSlDlSK disk file or subdirectory that
includes cluster number oldC. If oldC is the last cluster in its chain, disk6-IinkC finds a n unused cluster
and adds it to the chain and returns its number. If oldC is 0, disk6-IinkC starts a new chain.

.

132 disk6-IoadDS (DSO, D, bufDS)

132 DSO
132 D
char * bufDS

the sector number where the subdirectory starts
the number of the entry in the subdirectory
the destination buffer, to receive o n e sector of the directory

disk6-IoadDS copies o n e sector of a directory from the SCSlDlSK disk into the memory buffer at
bufDS. The sector is the o n e that contains the D-th entry of the directory that starts at sector DSO. (The
numbering of entries, the D values, starts at 0 for the first entry in each directory.) disk6-IoadDS returns
the number of the sector that is copied into memory, o r 0 if a n error occurs.

.

132 disk6-IoadFS (relFS, bufFS)

132 relFS the relative sector number, relative to the beginning of the FAT
char Y bufFS the destination buffer, to receive o n e sector of the FAT

disk6-IoadFS copies o n e sector of the first File Allocation Table (FAT) from the SCSlDlSK disk into
the memory buffer a t bufFS. The sector is the o n e numbered relFS relative to the first FAT sector;
relFS=O refers to the first FAT sector. disk6-IoadFS returns the absolute sector number of the loaded
sector.

.

132 disk6-IoadnextS (oldS, bu9

132 oldS current sector number
char * buf memory buffer to receive the sector .

disk6-IoadnextS copies o n e sector from the SCSlDlSK disk into the memory buffer at buf. The
copied sector is the o n e which is next in the chain for the file that includes sector number oldS.
disk6-IoadnextS returns the number of the copied sector. If sector oldS is the last o n e in the chain,
disk6-IoadnextS returns the value 0 and does not load anything into the buffer buf.

.

void disk6-mkdir (filnam, tim)

char * filnam path&file name for the new directory
132 tim time&date value for the new directory creation time

disk6-mkdir creates a new subdirectory on the SCSlDlSK disk.

.

void disk6-mkfil (filnam, tim, ptrfil)

char * filnam path&file name for the new file

108

132 tim _-
DFP *ptrfil

time&date value for the new file creation time
pointer to the disk file pointer structure that will receive information about
the new file

disk6-mkfil creates a new file (not a directory) on the SCSlDlSK disk. If the subdirectories implied
in the path specified in filnam do not already exist, they are created as required. The values in the DFP
structure pointed to by ptrfil are set to describe the new file.

.

132 disk6-newC (void)

disk6-newC finds a not-yet-used cluster on the SCSlDlSK disk, sets its FAT entry to -1 (to indicate
that this cluster is the last in its chain), and returns the number of the cluster. It is the programmer's
responsibility to use this returned cluster number to link this cluster to the previous cluster or to a directory
entry.

.

132 disk6-nextC (thisC)

132 thisC number of the current cluster

disk6-nextC finds the SCSlDlSK disk cluster that is next in the chain for the file that includes cluster
number thisC, and returns that next cluster number. If thisC is the last cluster in the chain, disk6-nextC
returns 0.

.

, char +disk6_nextD (ptrD, ptrS, buf)

132 *ptrD
132 *ptrS
char * buf

pointer to directory entry number
pointer to sector number
pointer to memory buffer

If * ptrD is -1, disk6-nextb copies SCSlDlSK disk sector number * ptrS into the memory buffer at
but sets * ptrD to 0, indicating the first entry of the directory; and returns buf, which points to that first
entry which is at the beginning of the buffer buf. If * ptrD is greater than -1, disk6-nextD assumes that
buf already holds a copy of sector number * ptrS, that this sector is part of a directory, and that this sector
includes entry number * ptrD of that directory. disk6-nextD returns a pointer to the next directory entry
in buf and increments the value of * ptrD. If necessary to get to the next directory entry, disk6-nextD
reads a new sector from the disk into buffer buf and sets * ptrS to the number of the sector in buf. Thus,
this function allows the programmer to step through all the entries in a disk directory. This function will
go past the last valid entry in the directory, so the returned pointer might point to an unused entry. If the
end of the directory file is passed, disk6-nextD returns char * NULL, leaves * ptrS unchanged, and sets
* ptrD to -2.

.

void disk6~ename (names)

char names a string containing two file names separated by a '\O'

disk6-rename changes the names of files on the SCSlDlSK disk. The first path&file name in the
string names, the target name, is the old file name that is to be changed, and the second file name in the

109'

string names is the replacement file name. The target name can contain the wild characters ' * ' and I?,

in the file name but not in the path name. If the target name contains wild characters, the replacement
name should usually contain corresponding wild characters; otherwise, if the target name with wild
characters matches more than one existing disk file name and the replacement name does not have
corresponding wild characters, all of the matching disk file names will be changed to the same replacement
file name. disk6-rename can be used to change subdirectory names as well as simple file names.

.

void disk6-rmdir (filnam)

char * filnam

disk6-rmdir deletes a subdirectory from the SCSlDlSK disk. The subdirectory must be empty.

name of the subdirectory to be deleted

.

void disk6-saveFS (relFS, bufFS)

132 relFS
char * buRS

relative FAT sector number, relative to the beginning of the FAT
pointer to memory buffer

disk6-saveFS copies one sector from memory buffer buRS to each FAT (File Allocation Table) of
the SCSlDlSK disk, to relative FAT sector number relFS in each FAT.

.

132 disk6-vacant (void)

disk6-vacant returns the number of unused bytes left on the SCSlDlSK disk.

.

void disk7-cd (filnam)

char * filnam DOS-type disk path

disk7-cd changes the current SCSlDlSK directory to that indicated in the string filnam.

.

132 disk7-close (fil)

FILE7 *fi l pointer to the SCSlDlSK file

disk7-close closes the disk file. If the buffer was not empty, disk7-close calls disk7-emptybuf to
write the buffer to the disk. disk7-close completes the disk directory entry describing the file, and returns
0. disk7-close is the SCSIDISK-specific close function, and should normally be called only by scsi7-close.

.

void disk7-delD (DFP +file)

DFP *file pointer to the directory to be deleted

110

disk7-delD deletes the file or subdirectory pointed to by the DFP structure file. Specifically, the first
character in the file’s entry in its parent directory is set to (hex)Efi to indicate a deleted file entry; and, if
the entry had a non-zero file location (cluster number), the FAT is modified to make the cluster chain
starting at that location available and the location value in the directory entry is set to 0.

.

132 disk7-emptybuf (fil)

FILE7 w f i l pointer to the SCSlDlSK file

disk7-emptybuf transfers data from the file’s memory buffer to the disk, for a SCSlDlSK file open
for output (write), and returns 0. disk7-emptybuf is the SCSIDISK-specific emptybuf function, and should
normally be called only by scsi7-emptybuf. -
.

132 disk7-fillbuf (fil)

FILE7 *f i l pointer to the SCSlDlSK file

disk7Jillbuf transfers data from the disk to the file buffer, for a SCSlDlSK file open for input (read).
disk7-fillbuf returns 0 for normal completion, or -1 for an anticipated end-of-file, or -2 for error conditions
including an unexpected end-of-file. disk7-fillbuf is the SCSIDISK-specific fillbuf function, and should
normally be called only by scsi7-fillbuf.

.

132 disk7-openr (fil)

FILE7 *fil pointer to the SCSlDlSK file

disk7-openr opens a SCSlDlSK file for input (read). disk7-openr returns 0 for normal completion,
or -1 if the requested file is not found. disk7-openr is the SCSIDISK-specific openr function, and should
normally be called only by scsi7-open.

.

132 disk7-openw (fil, tim)

FILE7 w f i l
132 tim

pointer to the SCSlDlSK file
time&date value from the system clock

disk7-openw opens a SCSlDlSK file for output (write), and returns 0. disk7-openw is the SCSIDISK-
specific openw function, and should normally be called only by scsi7-open.

.

void disk7grnpthl (filnam)

char * filnam name of a file in the current directory

disk7jrnpthl prints the total path for the file filnam in the current directory.

Y * Y

111

132 disk7-skipb (fil, skipbytes)

FILE7 *fil
132 skipbytes

pointer to the SCSlDlSK file
number of bytes to skip

disk7-skipb skips skipbytes in a SCSlDlSK file that is open for input (read). disk7-skipb retums 0
for normal completion, or -1 for a n anticipated end-of-file, o r -2 for error conditions including a n unexpected
end-of-file. disk7-skipb is the SCSIDISK-specific skipb function, and should normally b e called only by
scsi7-skipb.

.

void disk7-start (void)

disk7-start reads disk sector 0 and the boot record, and s e t s disk descriptor parameters in the ATRI
SCSl software. This software uses the first partition encountered; other partitions on the disk a r e ignored.
This software a s sumes that t he disk is a DOS disk, and that there is no more than o n e disk served by the
SCSl software (any disk accessed directly by the MASTER node is separate from this SCSl system). This
disk7-start function should be executed when the SCSl program is started, before other functions access
the disk.

.

void disk7-zero (tim)

132 tim time&date value from the system clock

disk7-zero resets the SCSIDISK disk File Allocation Tables (FATS) and the root directory to indicate
an empty disk. This a s sumes a DOS disk. The boot record and sector 0 a re not changed. This function
operates only on the first disk partition encountered; other partitions a r e ignored.

.

132 dummy-openr (dummy)

FILE7 +dummy pointer to a file

dummy-openr is a dummy function that does not do anything. It always retums 0.

.

132 host7-close (fil)

FILE7 +f i t pointer to the SCSIHOST file

host7-close close,s the SCSIHOST file and returns 0. host7-close is the SCSIHOST-specific close
function and should normally be called only by scsi7-close. See the description of the SCSIHOST device
in the description of the DEV structure.

.

132 host7-emptybuf (fil)

FILE7 *fil pointer to the SCSIHOST file

112

host7-emptybuf empties the buffer when the SCSIHOST device is open for output, as a write file
operation. host7-emptybuf sends the current buffer of data out over the link. host7-emptybuf always
returns 0. host7-emptybuf is the SCSIHOST-specific emptybuf function and should normally be called only
by scsi7-emptybuf. See the description of the SCSIHOST device in the description of the DEV structure.

.

132 host7-fillbuf (fil)

FILE7 *fil pointer to the SCSIHOST file

host7-fillbuf fills the buffer when the SCSIHOST device is open for input, as a read file operation.
host7-fillbuf waits for a message to arrive on the link and appear in the input communication buffer bufinni.
host7-fillbuf returns 0 unless a message with 0 length (bufinni[9]=0) is received on the link, in which case
host7-fillbuf a s sumes a n "end of file" condition and returns -2. host7-fillbuf is the SCSIHOST-specific
fillbuf function and should normally be called only by scsi7-fillbuf. See the description of the SCSIHOST
device in the description of the DEV structure.

.

132 host7-openr (fil)

FILE7 *fil pointer to the SCSIHOST file

host7-openr opens the SCSIHOST device for input, as a read file operation. That is, host7-openr
prepares to receive data from MASTER through the hardware link, and to treat this device as a file.
host7-openr always returns 0. host7-openr is the SCSIHOST-specific openr function and should normally
be called only by scsi7-open. See the description of the SCSIHOST device in the description of the DEV
structure.

.

132.host7-openw (fil, dummy)

FILE7 *fit
132 dummy

pointer to the SCSIHOST file
a n unused dummy argument

host7-openw opens the SCSIHOST device for output, as a write file operation. That is, host7-openr
prepares to send data to MASTER through the hardware link, and to treat this device as a file.
host7-openw always returns 0. host7-openw is the SCSIHOST-specific openw function and should
normally be called only by scsi7-open. See the description of the SCSIHOST device in the description
of the DEV structure.

.

132 host7-skipb (fill skipbytes)

FILE7 *fi l
132 skipbytes

pointer to the SCSIHOST file
number of bytes to skip

host7-skipb skips bytes in the input stream when the SCSIHOST device is open for input, as a read
file operation. host7-skipb returns 0 unless a message with 0 length (bufinni[9]=0) is received on the link,
in which case host7-skipb a s sumes a n "end of file" condition and returns -2. host7-skipb is the
SCSIHOST-specific skipb function and should normally be called only by scsi7-skipb. See the description
of the SCSIHOST device in the description of the DEV structure.

113

.

132 132~2 (c)

char * c pointer to a sequence of 2 bytes in memory

132~2 reads two bytes from the memory location * c, and uses the two bytes as the low bytes in the
132 value that. is returned by 132~2. The two high bytes in the 132 value are 0. The first byte in memory
becomes the lowest byte in the 132 value.

132 132~4 (c)

char * c pointer to a sequence of 4 bytes in memory

132~4 reads four bytes from the memory location * c, and copies them bit-for-bit into the 132 value
that is returned by 132C4. The first bytes in memory become the least significant bytes in the 132 value.

.

int main (void)

main is the main function for the SCSl node. It receives and interprets command codes from other
nodes, primarily MASTER, and generally controls all operations on the SCSl node.

.

void report (status, msg)

132 status
char * msg

status value returned by a SCSl CCS command
message to be printed if the status value is not zero

* report prints the character string msg on the operator's console if status is not 0. This report function
is used with a SCSl Common Command Set function(...) as the argument status, so the message is
printed if the SCSl function returns an error code.

.

void RollCalll (cpi, cpo)

Channel * cpi[]
Channel * cpo[]

array of channel pointers for input links
array of channel pointers for output links

RollCalll sets up inter-node communication links in this SCSl node and informs the MASTER node
of the existence of this SCSl node.

.

132 SC (132 C)

132 C cluster number

SC returns the number of the first sector in cluster C, or 0 if C is less than 2.

114

.

132 scsi7~close (fil)

FILE7 ofil

scsi7~close calls the device-specific function to close the file pointed to by fil. scsi7-close always

pointer to the file to be closed

returns 0.

.

132 scsi7-copfil (src, dst, limit)

FILE7 *src
FILE7 *dst
132 limit

pointer to the source file
pointer to the destination file
maximum number of bytes to be copied

scsi7-copfil copies bytes from file src to file dst until either one of these conditions is met:
1. the number of bytes copied is equal to limit, if the value of limit is greater than -1.
2. the number of bytes copied is equal to the size of either file as indicated in that file's .filsiz

structure element, if that value is greater than -I.
The .filsiz condition is checked after the limit condition, so if both conditions are met simultaneously,
scsi7-copfil returns as if only the limit criterion had been met.

If the copying stops because of the limit value, scsi7-copfil simply returns. The dst buffers may be
left partly full and may not be written to the device.

If the copying stops because of a .filsiz value, scsi7-copfil does one of two things before returning:
1. If the dst buffer is not full, the remaining bytes are set to zero. These zeroed bytes are not

included in the byte count.
2. If the dst buffer is full, the data is transferred from the buffer to the device (using scsi7-emptybuf).
scsi7-copfil returns the number of bytes copied to the dst buffer, regardless of whether this data has

been transferred from the buffer to the device.

.

132 scsi7-copy (srcfilnam, dstfilnam, tirn)

char * srcfilnam
char * dstfilnam
132 tirn time&date value

name of source file
name of destination file

scsi7-copy copies from file srcfilnam to file dsffilnam. srcfilnam and dstfilnam are assumed to begin
with device names such as "SCSIHOST:", "SCSIDISK:", or "SCSITAPE:". The value of tim is used if
appropriate, as when a disk file is created as the destination. scsi7-copy returns the number of bytes
copied, or -1 if an error occurs.

.

132 scsi7-dev (whole, part)

char * whole
char * part

file name including a device name
file name without any device name

scsi7-dev returns the number of the device for which the device name matches the first part of
whole, or return -1 if there is no match. whole is assumed to begin with a device name such as
'SCSIHOST:", "SCSIDISK:", or "SCSITAPE:". part is set equal to whole with the device name removed.

115

part and whole c a n .both point to the same character array.

.

132 scsi7-emptybuf (fil)

FILE7 *fil pointer to the file open for output

scsi7-emptybuf calls the appropriate device-specific function to transfer data from the buffer to the
hardware device during a file write operation. scsi7-emptybuf is used during such operations as copying
files.

For the special case in which the device is a BUFFER, scsi7-emptybuf (actually the BUFFER-specific
bum-emptybuf) merely sets the pointers in the structure f i l to the beginning of the buffer in such a way
that the buffer can be read from. scsi7-emptybuf always returns 0.

.

132 scsi7-fillbuf (fil)

FILE7 *fil pointer to the file open for input

scsi7-fillbuf calls the appropriate device-specific function to transfer data from the hardware device
to the data buffer during a file read operation. scsi7-fillbuf is used during such opreations as copying files.

For the special case in which the device is a BUFFER, scsi7-fillbuf (actually the BUFFER-specific
bufn_fillbuf) merely sets the pointers in the structure fil to the beginning of the buffer in such a way that
the buffer can be written to.

scsi7-fillbuf always returns 0.

.

132 scsi7jetb (fil)

FILE7 *fil pointer to the source file

scsi7jetb returns the 132 equivalent of one byte from file or device fill or returns -1 if the end of the
file is passed. scsi7jetb returns the value -2 only if certain inconsistencies in the FILE7 structure values
are detected.

.

132 scsi7~etnam (fill nam)

FILE7 *fil
char * narn

pointer to the source file
destination string for the file name

scsi7jetnam reads a character string from the file fil and writes it into the memory buffer nam. '\I-'
characters are always skipped. Leading spaces, before the file name, are skipped. A space after a file
name character is recognized as a terminating character, and the characters '\Of and '\nl are recognized
as terminating characters even if no valid file name character has been read. The terminating character
is not copied into the buffer nam; a '\O' character is written into buffer nam at the end of the string.
scsi7jetnam returns the number of characters copied, or returns -1 if the end of the file is encountered
before a string terminating character.

.

116

void scsi7-innrband (src, nrow, nbytes, dstlo, dsthi, nbands, rband)

FILE7 * s r c
132 nrow
132 nbytes
132 dstlo
132 dsthi
132 nbands
struct BANDR * rband

pointer to the source file
number of image rows to be read
number of bytes per composite image row in the source file
lowest number destination node
highest number destination node
number of image bands to be read
description of the assumed band structure in the source file

scsi7-innrband is the SCSl node support for the MASTER function inn8 used to read row-interleaved
images. Any image header in the source file should already be skipped over, and the s r c FILE7 structure
should point to the first composite image row desired, before this function is called.

.

void scsi7-innsmpl (src, nrow, nbytes, dstlo, dsthi, img, bpp)

FILE7 + s r c
132 nrow
132 nbytes
132 dstlo
132 dsthi
132 img
132 bpp

pointer to the source file
number of image rows to be read
number of bytes per image row in the source file
lowest number destination node
highest number destination node
number of the memory image destination
bytes-per-pixel code

scsi7-innsmpl is the SCSl node support for the MASTER function inn8 used to read simple (not row-
interleaved, not HFA) images. Any image header in the source file should already be skipped over, and
the s r c FILE7 structure should point to the first image row desired, before this function is called.

.

FILE7 * scsi7-open (filnam, mode, tim)

char * filnam device&file name
char * mode
132 tim

usually, a read-write code
usually, a time&date value

scsi7-open allocates a FILE7 structure, s e t s the values of some elements in the structure, and calls
the appropriate device-specific function to open a file. filnam is assumed to begin with a device name
such as "SCSIHOST:", "SCSIDISK:", or "SCSITAPE:". For normal files, the string mode should be 9V"
or "w" to open a file for writing, o r " R or '?'" to open a file for reading. Otherwise, for a pseudo-file, the
parameters in the scsi7-open call may be interpreted differently.

If filnam is "BUFFER:", the "file" is actually just a data buffer that is treated in a limited way as a file.
See the discussion of BUFFER in the description of the DEV structure. In this case, if mode is NULL, a
buffer is created for the duration of the pseudo-file existence, and the value of tim is used as the number
of bytes in the buffer. If mode is not NULL, it is treated as a pointer to a buffer that already exists and
will be used for this pseudo-file.

scsi7-open returns a pointer to the FILE7 structure that it allocated, or NULL if the file could not be
opened.

.

void scsi7_poll (void)

117 I

scsi7goll checks all SCSl IDS except ID=O (which always corresponds to the host device
SCSIHOST), tries to match any active SCSI ID with the appropriate known device (SCSITAPE or
SCSIDISK), and sets values in tables (arrays iddevu and devid[]) to match devices and SCSl IDS. Also,
for pseudo-devices that do not really use the SCSI bus (such as BUFFER), scsi7goll sets the SCSl ID
to the dummy value 8 (iddev[BUFFER]=8, for example). scsi7goll prints a listing of devices and SCSl
IDS on the operator's console.

.

132 scsi7-skipb (fil, skipbytes)

FILE7 *fil
132 skipbytes

pointer to the file open for input
number of bytes to skip

scsi7-skipb calls the appropriate device-specific function to skip skipbytes bytes when reading an
input file. scsi7-fillbuf always returns 0.

.

132 scsi7-tart (tamam)

char * tarnam name of device&file containing the TAR

scsi7Jart prints on the operator's console a list of the files in the TAR. tarnam should include the
device name (SCSIDISK: or SCSITAPE:, for example). If the TAR is on tape, the tape should be
positioned at the start of a TAR file header when this scsi7Jart function is called. scsi7-tart returns 0 for
normal completion, or -1 if an error occurs.

.

132 scsi7-tan< (tarnam, Istnam, tim)

char tarnam name of device&file containing the TAR
char * lstnam

132 tim

name of device&file containing a list of pairs of TAR file names and
destination file names
time&date value from host

scsi7-tam extracts files from a TAR. tamam is the name of the file or device that contains the TAR.
lstnam is the name of the file or device that contains a list of name pairs, each pair comprising a srcnam
and a dstnam. srcnam is the file name that is in the TAR header for a TAR file. dstnam is the file that
the TAR file will be extracted to; dstnam should include the device name, such as "SCSIDISK:". srcnam
and dstnam should be separated by a space, '. Successive srcnamdstnam pairs should be separated
by a '\n'. If srcnam is a real file name, the TAR will be scanned in the forward direction (never backward)
until the TAR file srcnam is found, and it will then be copied to the device&file dstnam. If the first
character of srcnam is I+', the next TAR file will be copied to the destination. If the first character of
srcnam is ' * I , dstnam should be a device name followed by an asterisk ("SCSIDISK: * 'I, for example) and
all the remaining TAR files in the TAR will be copied to destination files with the device name as specified
in dstnam and with file name the same as the TAR file name (except that I/' will be replaced with '\Y).
Regardless of srcnam, if the first character of dstnam (after the device name) is ' * ', the destination file
name will be the same as the TAR file name. The list of srcnamdstnam pairs should be terminated either
with a '\O' or with "\n\n". tamam, Istnam, and dstnam must include a device name prefix. srcnam will
generally not include such a prefix. If the TAR is a tape, the tape should be at the start of a TAR file
header when this scsi7-tam function is called. tim is the date&time from the host, and is used if
appropriate in creating the destination file. scsi7-tarx returns 0 for normal completion, or -1 if an error
occurs.

118

132 scsi7-tarxl (tar, dstfilnam, tim, size)

FILE7 *tar
char * dstfilnam
132 tim
132 size

pointer to the source (input) file that contains the TAR
name of destination devicegfile
timetkdate value from host
number of bytes to be transferred

scsi7-tarxl extracts one file from a TAR, into file dstfilnam. The source file pointers in tar should
be at the beginning of a TAR file (after the header) on entry to this function. dsffilnam should include a
device name, such as "SCSIDISK:". scsi7-tarxl returns the number of bytes transferred, or -1 if an error
occurs.

.

132 tape7-close (fil)

FILE7 w f i l pointer to a SCSITAPE file

tape7-close closes a SCSITAPE tape device file. tape7-close always returns 0. tape7-close is the
SCSITAPE-specific close function, and it should normally be called only by scsi7-close.

.

132 tape7-emptybuf (fil)

FILE7 *fil pointer to a SCSITAPE file

tape7-emptybuf writes data to the SCSITAPE tape device from the memory buffer, when writing to
the SCSITAPE tape as an output file. tape7-emptybuf always returns 0. tape7-emptybuf is the
SCSITAPE-specific emptybuf function, and it should normally be called only by scsi7-emptybuf.

.

132 tape7-fillbuf (fil)

FILE7 *fi l pointer to a SCSITAPE file

tape7-fillbuf reads data from the SCSITAPE tape device into the memory buffer, when reading the
SCSITAPE tape as an input file. tape7-fillbuf returns 0 on normal completion, or -1 for an anticipated end-
of-file, or -2 for a tape input error condition (including an unexpected end-of-file condition). tape7-fillbuf
is the SCSITAPE-specific fillbuf function, and it should normally be called only by scsi7-fillbuf.

.

132 tape7-openr (fil)

FILE7 *fil pointer to a SCSITAPE file

tape7-openr opens the SCSITAPE tape device as a file for input (read). tape7-openr always returns
0. tape7-openr is the SCSITAPE-specific openr function, and it should normally be called only by
scsi7-open.

.

119

132 tape7-openw (fil, dummy)

FILE7 * f i l
132 dummy

pointer to a SCSITAPE file
not used

tape7-openw opens the SCSITAPE tape device as a file for output (write). tape7-openw always
returns 0. tape7-openw is the SCSITAPE-specific openw function, and it should normally be called only
by scsi7-open.

void tape7-setBL (bytes)

132 bytes desired tape block length, in bytes

tape7-setBL s e t s the SCSITAPE tape block length parameter. It may be necessary to set this
parameter correctly before reading a tape.

.

132 tape7-skipb (fill skipbytes)

FILE7 w f i l
132 skipbytes

pointer to a SCSITAPE file
number of bytes to skip

tape7-skipb skips skipbytes when reading the SCSITAPE tape as a n input file. tape7-skipb returns
0 on normal completion, o r -1 for a n anticipated end-of-file, o r -2 for a tape input error condition (including
a n unexpected end-of-file condition). tape7-skipb is the SCSITAPE-specific skipb function, and it should
normally be called only by scsi7-skipb.

.

void tape7-start (void)

tape7-start s e t s up parameters for other functions that u se the SCSITAPE tape device. This function
should be executed when the program is started, before other tape access functions a r e used.

.

12 0

COMMANDS ACCEPTED BY SCSI NODE

This section is an outline of the commands accepted by the SCSI node main program.
As an example: the second line in the following list indicates that if bufinni[5] is equal to 102,
the command is to input an image fiom a device attached to the SCSI node. The next line
indicates that if bufinn[6] is equal to the value SCSIDISK, the data is to come from a SCSI disk
file; a later line indicates that bufinn[6] being equal to SCSITAPE implies that the data should
come fiom the SCSI tape. bufiinni[7]=1 is a command to open the file and skip bufinni[8] bytes,
with bufinni[lO] and following bytes being the name of the file; bufinni[7]=2 is a command to
read from the file, with bufinni[8] and following bufinni elements being values of parameters
used in the read operation; bufiinni[7]=3 is a command to close the file; and bufinni[7]=4 is a
command to skip bufinni[8] bytes in the input file. In this list, "dev" is the device number.

Some of these commands are for standard SCSI Command Command Set (CCS)
operations, such as inquiry, ready, etc., and are used primarily for diagnostic operations. A few
of the commands are essentially duplicates, accomplishing the same overall tasks in different
ways; the duplicates are retained to allow compatibility with earlier versions of MASTER and
SLAVE programs.

[5] 2 -> respond, node ready
[5] 102 -> input a n image

[7] 1 --> open file to read

[7] 2 -> read

[6] SCSIDISK -> from SCSl disk

[8] number of bytes to skip

[8] bytes per pixel

[I O ...I file name, without device name

[I O] number of records
[I l l bytes per record

[I21 low node destination
[I31 high node destination

[I51 number of bands
[I6 ...I bandl , ...

[I41 image number

[7] 3 -> close file, end image input operation
[7] 4 -> skip

[8] number of bytes to skip
[6] SCSITAPE -> from SCSI tape

[7] 1 -> open file to read
[8] file number (file mark number)

[7] 2 -> read
[IO] number of records
[Ill bytes per record

[I21 low node destination
[I31 high node destination

[7] 3 -> close file, end image input operation
[I41 image number

[5] 105 -> write an image

[7] time and date

[5] 161 -> SCSl command

[6] SCSIDISK -> write to SCSl disk file

[6] SCSITAPE -> write to SCSl tape
[I O ...I file name, without device name

121 I

[6] Ox00 --> test unit ready
[7] dev

[6] Ox01 -> rewind (rezero)
[7] dev

[6] 0x03 --> request sense
[7] dev

[6] Ox10 --> write filemark
[7] dev, SCSITAPE only

[6] 0x11 --> space
[7] dev, SCSITAPE only

[8] number of filemarks to write

[8] number of items to space over

3 --> goto end of data.
[IO] 0 -> items are blocks, 1 -> items are filemarks,

[6] 0x12 -> inquiry
[7] dev

[6] OxlA -> mode sense
[7] dev

[6] 0x25 -> read capacity
[7] dev

[6] 0x28 -> read block of SCSl disk
[7] dev, must be SCSlDlSK

[8] block number
[6] Ox2B -> locate logical block

[7] dev (implemented only for dev=SCSITAPE)
[8] block number

[6] 0x34 --> read position

[6] 0x37 --> read defect data

[6] -2 --> SCSl bus reset
[6] -3 --> scan disk for nondefault blocks (DO NOT USE THIS COMMAND)
[6] -4 --> initiallize device, delete all files

[6] -5 -> print directory

[6] -6 --> delete a file

[6] -7 -> set block length

[6] -9 --> do nothing
[6] -11 -> copy one tape file to one disk file

[8] time and date
[I O ...I file name, without device name

[I O] number of records
[Ill bytes per record

[I21 bytes to skip

[7] dev

[7] dev

[7] dev

[7] dev
[I O ...I OPTIONAL file name (for disk only)

[7] dev (implemented for dev=SCSIDISK only)
[I O ...I file name, without device name

[8] block length in bytes
[7] dev (implemented for dev=SCSITAPE only)

[7] 1 --> open disk file to write

[7] 2 --> COPY

[7] 3 --> close files, end copy operation
[6] -12 -> copy one SCSI disk file to host

[I O ...I SCSl disk file name, without device name

12 2

[6] -13 -> copy one host file to SCSl disk
[8] time and date
[I O ...I SCSl disk file name, without device name

[7] dev (implemented for dev=SCSIDISK only)
[6] -14 --> rename a SCSl disk file

[6] -15 -> change current directory
[IO ...I target name, '\VI replacement name, 70', without device names

[I 01 new directory name, without device name
[6] -18 -> copy TAR to disk

[8] time and date

[6] -19 --> general copy
[8] time and date

[6] -20 -> TAR file extract
[8] time and date

[6] -21 --> TAR directory

[7] dev (implemented for dev=SCSIDISK only)

[IO ...I TAR file name and disk file name, withoug device name

[IO ...I source file name, W , and destination file name, including device names

[IO ...I TAR device:file name, W , and list device:file name, including device names

[I O ...I TAR file name, including device name

12 3

ATRl VIDEO SOFTWARE

These sections describe software that is used exclusively on the ATRl video interface
node. (ATR2 and ATR3 do not have a video node.) Some software that is used on both the
VIDEO node and either the MASTER or the SLAVE node is described in earlier parts of this
programmer’s manual. The software described here is for version 14 of programs E, F, and G.

Most of the VIDEO software is built on the TTGS library, which is not described here.
A few functions in the TTGS library seemed to behave incorrectly, and they were replaced by
the GDL- ... functions listed here.

Y

124

FUNCTIONS

This section describes all the functions in the VIDEO node software.

.

void GDL-attach-cursor (id)

132 id cursor number

GDL-attach-cursor does the actual drawing of cursor number id at a previously specified location
on the RGB monitor screen.

.

132 GDL-create-cursor (cursor, ncol, nrow, ec, ic)

char * cursor[]
132 ncol
132 nrow
132 ec
132 ic

array of strings that defines the shape of the cursor being created
width of cursor
height of cursor

GDL-create-cursor defines a cursor which other functions can draw and move on the RGB monitor
screen, and returns the id6ntification number of the new cursor.

.

void GDL-draw-cursor (id, col, row)

132 id
132 col
132 row

cursor number
desired column position
desired row position

GDL-draw-cursor draws cursor number id at position (row,col) on the RGB monitor screen.

.

void GDL-unattach-cursor (void)

GDL-unattach-cursor erases whatever cursor may be on the RGB monitor screen.

.

void movcur (row, col)

132 row
132 col

desired row position
desired column position

movcur draws a cursor on the RGB monitor at the indicated row and column position.

.

int main (void)

12 5

main is the main function for the VIDEO node. It receives and interprets command codes from other
nodes, primarily MASTER, and generally controls all operations on the VIDEO node.

.

void RollCallV (cpi, cpo)

Channel * cpi[]
Channel * cpo[]

RollCalN sets up inter-node communication links in this VIDEO node and informs the MASTER node

array of channel pointers for input links
array of channel pointers for output links

of the existence of this VIDEO node.

.

void subl (void)

subl puts a test pattern on the RGB monitor, for test and diagnostic purposes.

.

126

COMMANDS ACCEPTED BY VIDEO NODE

This section is an outline of the commands accepted by the video node main program.
The number in brackets [3 at the beginning of each line is the number of the bufinnio may
element that contains the value, and the following text gives the meaning of the value. A line
that is indented is part of the command message that includes the less-indented preceding line.

[5] 2 READY, respond to master when ready.
[5] 109 fetch and display an image, result-coded.

[6] image number

[8] cot0
[7] row0

[IO] Q (floating)
[Ill ncol

[I21 nrow
[I31 result image number

[5] 162 special TTG3 diagnostic commands.
[6] 1 change display parameters and draw test pattern.

[I O] PixelClock

[I21 xRes
[I I] LineFrequency

[I31 yRes

[6] image number

[8] col0

[I41 FrameRate
[5] 192 fetch and display an image.

[7] row0

[IO] Q (floating)
[Ill ncol

[I21 nrow
[5] 256 erase
[5] 257 cursorl on
[5] 258 cursorl off
[5] 259 position cursorl

[6] cursorl row
[7] cursorl column

[5] 260 position cursor0 (invisible cursor)
[6] cursor0 row

[7] cursor0 column
[5] 261 draw line using cursor0

[6] ending row
[7] ending column

[8] color

[6] starting row
[5] 262 write some pixels on the screen

[7] starting column
[8] number of pixels

[5] 263 write text on screen

[7] starting column

[I O] ... pixel values, one pixel per byte

[6] starting row

[IO] ... characters, one per byte

127

REFERENCES

1.
00003, February 1997.

G. D. Lassahn, Automatic TLI Recognition System, General Description, INELEXT-97-

2.
February 1997.

G. D. Lassahn, Automatic TLI Recognition System, User's Guide, INELEXT-97-00004,

12 8

	ABSTRACT
	INTRODUCTION
	SOFTWAREOVERVIEW
	BUILD&LOAD&RUN PROCEDURES
	INTERNALCHANNELS
	MASTER and SLAVE SOFTWARE
	DEFINES
	GLOBALVARIABLES
	STRUCTURES
	FUNCTIONS
	COMMANDCODES

	ATRlSCSISOFTWARE
	GLOBAL CONSTANTS AND VARIABLES
	STRUCTURES
	FUNCTIONS
	COMMANDS ACCEPTED BY SCSI NODE

	ATRl VIDEO SOFTWARE
	FUNCTIONS
	COMMANDS ACCEPTED BY VIDEO NODE

	REFERENCES

