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DISCLAIMER 

This report was prepared as an account of work sponsored by a n  agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, nmke any warranty, express or implied, or assumes any legal liabili- 
ty or responsibility for the accuracy, completeness, or usefulness of any infomution, appa- 
ratus, product, or process disdosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or senice by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or any agency thereof. 



ABSTRACT 

This report is a general description of an automatic target 
recognition system developed at the Idaho National Engineering 
Laboratory for the Department of Energy. A user’s manual is a 
separate volume, Automatic TLI Recognition System, User’s Guide, 
and a programmer’s manual is Automatic TLI Recognition System, 
Programmer’s Guide. 

This system was designed as an automatic target recognition 
system for fast screening of large amounts of multi-sensor image 
data, based on low-cost parallel processors. This system naturally 
incorporates image data fusion, and it gives uncertainw estimates. 
It is relatively low cost, compact, and transportable. The software 
is easily enhanced to expand the system’s capabilities, and the 
hardware is easily expandable to increase the system’s speed. In 
addition to its primary function as a trainable target recognition 
system, this is also a versatile, general-purpose tool for image 
manipulation and analysis, which can be either keyboard-driven or 
script-driven. This report includes descriptions of three variants of 
the computer hardware, a description of the mathematical basis if 
the training process, and a description with examples of the system 
capabilities. 
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Automatic TLI Recognition 
General Description 

System, 

INTRODUCTION 

This report comprises three parts, printed in separate volumes. This part is a general 
description of the automatic target recognition (ATR) system and gives some indication of its 
capabilities. The second part' is a user's manual for people who do the hands-on image data 
analysis, giving instructions on how to use this ATR system. The third p a d  is a programmer's 
manual for people who want to modify or expand the software. The software described here is 
version 14 of programs E, F, and G, and version 7 of TSCSI. 

The purpose of this task is to develop an Automatic Treaty-Limited Item Recognition 
System or, in the jargon of the literature, an automatic target recognition system. This task was 
started as part of the development of the Airborne Multisensor Pod System (AMPS), a 
reconnaissance system that can be attached to and carried aloft by any of several aircraft. This 
A M P S  system includes several imaging sensors, such as a visible light camera, an infrared 
imaging system, and a radar imaging system. Each scene of interest can be photographed by each 
sensor, so we can have several different images of each scene. The several images can be 
analyzed by a computer to determine the presence of previously specified objects of interest in 
the scene. In this report, we will refer to these objects of interest as 'Yargets", not to imply that 
we intend to shoot at them, but because of the established language in the technical c o m m ~ t y .  
The development of this computer system, an automatic target recognition (ATR) system, is the 
present task. 

This task includes choosing and assembling the computer hardware, developing the ATR 
algorithms, and developing software to implement the algorithms on the selected hardware. 
Special requirements for this ATR system include image fision and uncertainty estimation. 
"Image fusion" means that the ATR system must analyze the several images jointly to produce 
a single, high-confidence statement of the presence of a target, as opposed to analyzing the 
several images separately and producing several separate, lower-confidence, possibly 
contradictory, indications of the presence of targets. "Uncertainty estimation'' means that the 
ATR system must tell the user what confidence the user should have in the ATR system's report 
of the presence or absence of targets. In addition, there are the common requirements for speed, 
portability, and low cost of the ATR system. 

This ATR system was designed specifically for the A M P S  project, but it should be equally 
applicable to other projects. This ATR system can work with any number of images per scene; 
or, it can work with the most common and simple case of one single image per scene. This ATR 
system was designed to scan a scene for the presence of traditional objects such as trucks, golf 
balls, or airport runways. However, it can equally well fmd ''object"' or targets such as a 
particular type of vegetation, a chemical spill, or some specific type of terrain. This ATR system 
can be useful in automatically scanning any set of images for any type of target, assuming of 
course that the target is in some way discernible in the images. The images do not need to be 
images in the traditional sense of light intensity versus position in two dimensions; for this ATR 
system; an image is any two-dimensional array of numeric values. This ATR system informs the 
user of the importance of keeping each calculated feature used to discriminate between target and 
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background, and thus gives the user the option of improving efficiency by eliminating 
unnecessary calculations and unnecessary sensors. 

The following discussions often assume that the ATR system is used in a way that we will 
call the trainable mode, which includes using the training process to be described shortly. It is 
not necessary to use this training process or this trainable mode of operation; the system is quite 
versatile and can be used with other approaches to target recognition and for general purpose 
image manipulation and analysis. 

The software described in this report uses the general appoach of splitting each image 
among several parallel processors. We expect that a future report will describe a different 
software system, in which no image is distributed among several nodes, but rather any one scene 
is analyzed entirely by one node. This difference in philosophy has major implications for 
system performance, as will be discussed later in this report. 

Three hardware implementations of the system -- called ATRl, A T E ,  and ATFU -- have 
been assembled and tested. Table 1 lists some properties of the three systems. Various parts of 
Table 1 will be explained in different parts of this report. The Table 1 values for calculation 
speed, memory, cost, etc. are for one daisy node, not for the whole array of parallel processor 
nodes. The cost values include a pro-rated share of the cost of the mother board needed to 
support the node. 

The appendices give examples of tests and simple applications of this ATR system. 
Appendix A gives a very simple example that illustrates the use of the system and demonstrates 
basic concepts such as marking a scene for the training process. Appendix B is a very simple 
example of image fusion. Appendix C illustrates the use of data that would not normally be 
considered image data, in an unconventional application of image analysis, and it also shows that 
reasonable results can be obtained with no expert knowledge of the application. Appendix D is 
a more realistic but still rather small example of a target recognition application, and Appendix 
E is a more complicated example. 
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Table 1: Properties of Daisy Nodes in the Three Hardware Systems. 

system name ATRI 

T805 

30 

20 

ATR2 

T9000 

20 

100 

ATR3 

Alpha 21066 

166(233) 

250 

prpcessor type 

clock speed [MHz] 

nominal link speed [Mbits/second] 

nominal link speed [Mbytes/second] 1.8 10 17 

126 LINPAC nominal calculation speed [Mflops] 4.3 peak 10 peak 
6 sustained 

memory (RAM) [Mbytes] 4 16 16 

approximate cost $1 080 $2000 $1 01 00 

relative calculation speed 
expected 
measured 

1 .oo 
I .oo 

2.33 
2.18 

29.3 
21.7 

relative calculation speed per cost 
expected 
measured 

1 .oo 
1 .oo 

1.26 
1.18 

3.13 
2.32 

relative communication speed 
expected 
measured 

1 .oo 
1-00 

5.55 
1.99 

9.44 
0.76 

setup time per message pair [microseconds] 225 180 1760 
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TRAINABLE MODE PROCESS DESCRIPTION 

The trainable mode of using this ATR system is based on the assumption that targets can 
be distinguished from background by a quantitative measurement of the presence of ZocaZ 
features. The term "local" normally implies that the features are small enough to be defined 
within a region that is small compared to the target, although the formalism does not impose any 
limit on the size of the features (except of course that the features must be smaller than the whole 
image). Examples of simple features are edges; lines; intensity averaged over a small region; 
and, speckle intensity. More complicated features include run length; other descriptors of size 
or shape of some region; and, local co-occurrence matrices. One could define as a local feature 
something as complicated as a detailed image of a particular target object, but this would not be 
a normal or easy use of the present formalism, and this use would not be covered by the usual 
interpretation of the phrase "local feature". 

The training process is required by this trainable mode requires a set of images, one image 
from each imaging sensor, for each of several training scenes. The system will work with as few 
as one training scene, but better results might be expected from the use of many, perhaps 
hundreds, of training scenes. The set of training scenes must include some (at least one) targets 
and some background. A knowledgable person must examine each training scene and, for each 
scene, create a mask. The mask is a set of data with the format of an image (one byte per pixel, 
for example), but with each pixel value being 2, 1, or 0 indicating whether that pixel is part of 
a target, background, or unspecified region in the training scene. Thus, the entire set of training 
data comprises several real images and one mask "image" for each of several - or possibly only 
one - real world training scenes. Each training scene should contain either some target region 
or some background region or both; a training scene which contains neither target nor background 
is useless and should be discarded from the set of training data. 

In addition to designating target and background regions in the training scenes, a skilled 
operator must select an initial set of local features that might distinguish between the target and 
background regions. If this operator-selected initial set of features does not include features that 
can distinguish target from background, the ATR computer will still function, but the uncertainty 
in target identification will be large, perhaps so large that the ATR system results will be useless. 
If, on the other hand, the operator-selected initial set of features includes more features than are 
necessary to distinguish target from background, no real harm is done. The ATR system will tell 
the operator the importance of each feature so that the operator can, if he wishes, discard 
unimportant features and make the final process more efficient. The only disadvantages of an 
operator selecting too large a feature set initially are some computational inefficiency in the 
training process (which is probably tolerable) and, in the extreme case, the inability of the 
computer programs to handle so many features. (The formalism can in principle handle any 
number of featues, but of course any particular computer program will be limited.) Thus, 
although great skill is not essential in selecting the initial set of features, a clever choice can 
make the ATR process much more efficient and effective. 

One additional task of the operator is to select a value for the relative weighting of two 
types of error. A type I error is the incorrect designation of a background region as a target by 
the ATR system; in a type 2 error, a target is wrongly called background. The ATR system 
could make either of these two error rates as small as desired, at the expense of making the other 
error rate larger. We would like to make both error rates small simultaneously, but that may not 
always be possible. The procedure used here is to form a weighted sum of the two error rates, 
with weights W, and 1.0-W,, where 0 < W, < 1, and to minimize this weighted sum. The W, 
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value is the relative weight of type 1 errors; type 1 errors are considered more important if W, 
is larger (closer to 1 than to 0). 

The ATR training process takes as input (1) the training images and masks; (2) the 
definitions of the operator-selected feature set; and, (3) the value of the type 1 error weight W,. 
The training process then calculates values for coefficients, optimized to minimize the total 
(weighted sum) error rate. These coefficients are used in the surveillance process, to be discussed 
shortly. The training process also gives indications of the importance of each feature, and an 
estimate of the total error rate. The training program does this training process for the complete 
feature set specified by the operator, and also for the subset in which the least important of the 
original features is removed, and also for the best subset of this subset, and so on for all 
successive best subsets of features until the smallest subset is too small to allow a calculation 
(usually, one feature). This allows the operator to select an efficient subset of features with an 
acceptably low error rate, if such a subset exists. Or, in the worst case, the operator must 
recognize that this ATR system, with the feature sets that he has tried, cannot distinguish his 
targets fiom his background. 

One product of the training process is the magnitude of the minimized total error rate. 
This is used as the estimated uncertainty in the ATR system for this particular set of features and 
coefficients, for this type of image data. This is a prediction of the fraction of pixels that will 
be misclassified as Yarget'' or "background" in the surveillance process. 

After an acceptable feature set is found, the coefficients for that feature set are used in 
setting up the surveillance program part of the ATR system. Then, the set of images (no mask) 
fiom any scene is input to the surveillance program, and the program tells whether there is a 
target in the scene. This surveillance process does not require any special skill on the part of the 
operator. Since this surveillance process takes multiple images as input and yields one single 
result image as output, it accomplishes image datafision, the simultaneous analysis of several 
input images to produce a single result. 
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TRAINABLE MODE MATHEMATICAL APPROACH 

Surveillance Process 

The surveillance process is used to scan large amounts of data with minimal expert 
interaction. This process accepts as input a set of T images of one scene; the mathematical 
approach allows T to be any value greater than 0. From the T scene images, we calculate F 
feature images F,, where s is the scene number and f is the feature number, +1,2,...F. The user 
decides the number of feature images F and the nature of each feature image. Each feature image 
is simply an "image", a two-dimensional array of values in image format, that is calculated from ' 

the scene images by any methods that the analyst chooses. Thus, any single feature image might 
be derived fiom a single scene image, fiom another feature image, or fiom any combination of 
scene images and feature images. A raw scene image can be used as a feature image. The ATR 
algorithm always adds one special feature image to the set, the feature image numbered f=O, in 
which every pixel is 1 regardless of the content of the scene images. The user should not include 
this, or any image in which all the pixels have the same value, as one of his F feature images. 
Each feature image is multiplied by a coefficient C, whose value has been determined in a 
training process, and these scaled feature images are then added to obtain a result image R, for 
this scene s: 

F 

6 0  
R, = C, F,, for each scene s. 

This operation requires that all the feature images must be of the same size. If a pixel in the 
result image R, has a value greater than the value Q determined fiom the training process, that 
pixel is called a target pixel; otherwise, the pixel is called a background pixel. Thus, the result 
image classifies every pixel in the scene as either target or background. This surveillance process 
is very simple in principle, although the calculation of some of the feature images fiom the scene 
images may be complicated in practice. 

Training Process 

The values of the coefficients C, and Q, which are used in the surveillance process, are 
determined by a training process. This training process uses S training scenes, indexed s=l,2, ... S. 
For each scene, there are T training images, indexed Fl,2,...Ty and one three-level mask image. 
The mask pixel values are 2 for target regions, 1 for background regions, and 0 for unspecified 
regions. These regions have been selected manually by some knowledgeable person. The T 
training images are fiom T different sensors, so that all T training images contain different 
information. The T training images are assumed to be in registration. Let Ts,t be the training 
scene images, and let M, be the mask, for each scene s. 
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For each scene s, we extract F feature images F , ,  f=1,2, ... F, fiom the T scene images. 
We define a result image R, for each training scene s: 

R, 
F 

+O 
= Cf F,, for each s=1,2 ,... S. 

The feature image with index f equal to 0 does not exist explicitly, but is implicitly defined to 
be an image in which each pixel has the value 1. It is mathematically advantageous to include 
this image in the set of feature images. The coefficients C, are to be determined in this training 
process. The C, are the same for all s. We would like to be able to choose values for the Cf to 
make R, equal to M, in regions 1 and 2 (we don’t care about region 0), for every s. We do not 
expect to be able to accomplish this exactly. 

We use a least squares fitting procedure to make a first estimate of the coefficients C, 
We find the C, values that minimize the sum of the squares of the weighted differences between 
the result images and the mask images for regions 1 and 2, with the weight for each pixel being 
inversely proportional to the number of pixels in that pixel’s region. That is, we minimize 

S S Q  = 
S 
c weight(s,i,j) R(i,j) - W(i,j)I2 

s=l i j  
sum over all region 1 + region 2 pixels 

S 
c R ( i d  - Ms(iYj)l2 

s=l i j  
sum over all region 1 pixels 

S 
+ e  C R ( i j )  - MS(ij)I2 /Mz,o 

s=l i,j 
sum over all region 2 pixels 

[31 

where 
indexes i j  denote a particular pixel in the image. The minimization condition is 

and M2,0 are simply the number of pixels in region 1 and region 2 respectively. The 
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or 

for each g=0,1,2, ... F. [41 

This represents F+l inhomogeneous linear equations in F+l unknowns, the C, for +0,1,2,...F. 
These can be easily solved unless two (or more) of the feature images contain the same 
information, in which case one (or more).of the redundant feature images should be deleted from 
the set. 

After these first estimate C, values are determined, we can calculate the R, and generate 
two histograms, one for values of R pixels in region 1 and another for values of R pixels in 
region 2, both summed over all s=1,2, ... S. The region 1 histogram should have a peak near the 
pixel value 1 , and the region 2 histogram should have a peak near the pixel value 2. We would 
like these two histograms to appear as well separated peaks, but in practice we expect that the 
high end tail of the region 1 histogram will overlap the low end tail of the region 2 histogram. 
We define a parameter Q such that, for any scene, we call a pixel a target pixel if its value in the 
result image R is greater than Q, and we call the pixel a background pixel if its value in the 
result image R is less than Q. The value of Q will of course be between 1 and 2, between the 
positions of the two histogram peaks. We would like to be able to choose a Q value such that, 
in the training scenes, every region 2 pixel is called a target pixel and every region 1 pixel is 
called a background pixel. This is clearly impossible if the two histograms overlap, which 
condition we expect in practice. In this case, for whatever value of Q we choose, there will be 
some region 1 pixels with R values greater than Q, or there will be some region 2 pixels with 
R values less than Q, or both. These pixels represent errors in identifying targets. A region 1 
pixel with an R value greater than Q is incorrectly called a target pixel; this will be referred to 
as a type 1 error. A region 2 pixel with an R value less than Q will be called a type 2 error. 
Part of the purpose of the training process is to find the value of Q that minimizes the total error 
probability. 
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We approximate the two histograms, after normalization, with two continuous distribution 
functions (probability density functions) D, and D,. We define two error probabilities E, and E,, 
representing type 1 and type 2 errors: 

and 

Q 
E, = I D,(x) dx. 

-00 

We define a total error rate as 

E = W, E, + W, E, 171 

with W,+W,=l.O, where W, and W, are positive coefficients that have been selected previously 
to indicate the relative importance of the two types of error. We now want to fmd the values of 
Q and all the C, to minimize the total error E. We have first estimates of the C, values from the 
least squares fitting procedure; our frst estimate of Q can be 1.5 (although there may be better 
first estimates of Q). We adjust all these parameter values by an iterative minimization 
procedure. It is necessary to impose two constraints while minimizing E: the mean values of 
the two distributions must be constrained to be 1 and 2. We use the method of Lagrange 
multipliers and minimize the quantity E + A, p, + h, I.L;! while pl=l and I.L;!=~, by adjusting the 
values of C, and Q. h, and h, are the Lagrange multipliers, and p1 and I.L;! are the mean values 
of D, and D,. 

Let M be the number of moments needed to define D, or D,. If D, is the Gaussian 
distribution, for example, M=2; D, is defined by the mean (moment 1) and the variance (moment 
2 - [moment l]’), and thus by the first two moments. (For normalized distributions, the zeroth 
moment is always 1. We do not count this as one of the defining moments.) Let 
be the m-th moments (about zero) of the distributions D, and D,, for m=1,2, ... M. Note that &e 
above p, and p2 are the same as M,,, and M2 ,. These moments are useful intermediate variables 
in the minimization of E. 

and M2 
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Let the C, and Q represent the current estimates of the coefficients as defined above, and 
let Bf+C, and P+Q represent the optimum values of those coefficients. It is helpful to linearize 
E by expanding in a Taylor's series about the current values: 

E(P+Q,B+C) = E(Q,C) + 

a 2E(Q,C) 

+ higher order terms to be neglected 

2 

or, using p and q to represent the sets of P with B, and Q with C, respectively and using the 
gradient operator Vq for simpler notation, 

E(p+q) = E(@ + p *VqE(s) + (p -Vq)2E(q)/2 + h.0.t. [91 

Then the minimization condition is 

1 = Ml,,(P+s) 

and 

2 = M2,1(P+s). 

More explicitly, equations 10-12 can be written as 

10 



. a2E a 2E a 2E a 2E 

acoaco ac, aco ac,ac0 aQaco 
BO + Bl + ... + BF + P  

2E a 2E a 2E a 2E 
BO + Bl + ... + BF + P  

acoacl ac, ac, 3 W C l  aQac ,  

a 2E a 2E a 2E a 2E 

acoac, ac1 acF ac,ac, a Q a C F  
BO + Bl + ... + BF + P  

a 2E a 2E a 2E a 2~ 

acoaQ ac iaQ a G a Q  a Q a Q  
+ ... + BF + P  BO * Bl 

a E  

a Q  
+ o + o  = -  

[13.0] 

[13.1] 

[13.F] 

a M1,l a W , l  a M1,l 

a CO ac1 a CF 
+ B, - + ... + B F  - + 0 + 0 + 0 = l-M1,l  [15.1] Bo - 
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Equations 11 and 12 can be written in the form of 15.1 and 15.2 because Ml,l and M2,1 are linear 
functions of the CP In equations 13.0 through 15.2, E, M,, M2, and their derivatives are to be 
evaluated at C, and Q. Equation 10, or equations 13.0 through 13.F, represents F+2 equations 
in the F+4 unknowns P, Bf for l?=O,l, ... F, A,, and &. Equations 11 and 12, or 15.1 and 15.2, 
represent two more equations in the same unknowns. This set of linear equations can be solved 
to get values for the Bf and P, which can then be used as corrections to the values of the C, and 
Q. This process can be repeated, presumably with the corrections B, and P becoming smaller 
with successive iterations until the values of C, and Q converge. These converged values 
represent the values that are optimal in the sense that they minimize the total error E. 

It is convenient to use the chain rule with the moments as intermediate variables in 
evaluating the derivatives in equations 10-15: 

a E  aE1 a E2 
WI - + w2 - for 2 = any C, or Q [I61 - =  

az az aZ 

a El - = -Dl(Q) 
a Q  

[181 

c19.11 

[ 19.21 
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In this formalism, D, and D,, their derivatives, and the integrals of these distribution functions 
and their derivatives, which appear in equations 17 - 21, all depend on the particular functional 
form chosen for the distribution functions that represent the histograms. The moments and their 
derivatives are independent of this choice of functional form: 

M1,o = 
S 
c e 1 1  

s=l i j  
1221 

The indexes i and j denote the i-th column and the j-th row in an image. The sum over i j  is to 
be taken over all the region 1 pixels for Ml,,, or all region 2 pixels for MZm. Ml,o and M2,0 are 
simply the number of pixels in all the training scenes in regions 1 and 2 respectively. The higher 
moments are normalized using these zeroth moments: 

M1,l = 

Ml,, = 

r241 

and so on for the higher moments through m=M, with the obvious analogs for the region 2 
moments. Note that these moments are taken about 0, not about the mean. 

In practice, we need to go through all the feature images one time and calculate the sums 
that appear in braces { 1 in equations 22-24, and then we no longer need to access the images. 
It is important to access the images as infrequently and as efficiently as possible, because reading 
the images can represent a significant part of the time consumption in executing the program. 
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HARDWARE DESCRIPTION 

The basic hardware concept for the ATR systems is the use of parallel processors. The 
three hardware systems discussed in this report - ATRl, ATR2, and ATR3 - are all variants of 
the general arrangement indicated in Figure 1. 

common 
peripherals 
(diskette, L- printer) 

I operator’s 
console 
(monitor, 
keyboard) 

optional g+ optional 
special 
devices 

Figure 1: General ATR hardware diagram. 

Parallel processor systems like the ATR systems comprise several, perhaps many, nodes. 
Each node includes one main central processor, and perhaps other devices such as memory and 
peripheral device interface hardware. In the ATR type of system, each node has its own memory; 
there is no shared memory, memory that ispccessible by any of several processors. The ATR 
system nodes all exchange data via serial links, each of which is a two-way communication 
channel. 

As is typical of parallel processor systems, each of the ATR systems has a host node, 
which we name HOST. The host node is a typical small computer, with the added feature that 
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it has hardware and software that allow it to communicate with the rest of the parallel processor 
network. This host is the interface between the user and the parallel processor network; that is, 
it supplies an operator’s console, a keyboard and a monitor. The host may also supply common 
peripheral devices, such as a diskette drive and a printer. In some of the ATR systems, the host 
also provides the essential high-capacity mass storage device, a mass data inpudoutput device, 
and a high-resolution video monitor (separate from the operator’s console monitor). The host 
function of allowing the parallel processor network to communicate with the operator and with 
data storage and inpudoutput devices is referred to as a sewer function, and the program that runs 
on the host computer to communicate with the network is called a server program. For the ATR 
system, efficiency of the server function requires a fast data bus but does not require any 
significant computation power. Thus, the ATR system does not require a computationally 
powerful computer as a host. Prospective purchasers of parallel processor systems similar to 
those described here should be aware that hardware and software exists to allow any of a wide 
variety of computers to be used as hosts for any of the parallel processor networks described here. 

In the ATR systems, only one parallel processor node is directly connected to the host. 
This node is called the root node. Connected to the root node is a daisy chain of nodes called 
daisies (not a standard term). With this simple linear configuration, the calculation speed of the 
system can easily be increased by simply adding more nodes to the end of the chain. Adding 
more nodes also increases the total memory of the system, since each node has its own memory. 
This arrangement allows the user to easily tailor the ATR hardware system to suit his own 
calculation speed requirements and budget constraints. In ATRl and A T E ,  the root node is 
named ROOT, and the daisies are nanied DAISY 1, DAISY 2, etc. In ATR3, because of the way 
the nodes are used, no node is named ROOT; the root node is DAISY 1. 

Each of the ATR systems includes a high-resolution RGB monitor for displaying images, 
separate from the standard operator’s console monitor. In ATRl, there is a special node that is 
an interface between the parallel processor network and the RGB monitor. In ATR2, the root 
node includes display interface hardware. In ATR3, the RGB monitor is a peripheral device on 
the host computer. ATRl also has another special node, an interface between the parallel 
processor network and a SCSI bus which can be connected to mass storage devices such as a disk 
or a tape drive. The purpose of the special nodes is to allow large amounts of data to move 
between the parallel processors and the RGB monitor or the mass storage devices without the 
potential bottleneck of a relatively slow host computer bus. 

The three existing ATR networks are diagrammed in Figures 2,4, and 6,  in which each 
node is represented by a box with a double-line border, with the node name near the bottom left 
of the box. The name in parentheses at the bottom left of each node box indicates the program 
that m s  on that node, as described in the software documentation. These three systems are 
described separately in the following sections. 

15 



ATRl Hardware 

In ATRl, the root node and the 10 daisy nodes are CTRAMs (plug-in Computation 
TRAnsputer Modules), each with an N O S  T805 transputer (see Reference 3) running at 30 
M H z  and 4 Mbyte of memory. A transputer is a computer processor designed to work well with 
other transputers in a parallel processing system. Each transputer includes its own logical and 
numerical processors, a limited amount of fast (on-chip) memory, and four serial links to allow 
communication with other transputers or other devices. Each CTRAM link transmits data at 
about 1.8 Mbytelsecond in either direction. In addition to the CTRAMs, ATRl includes two 
special purpose nodes, one to interface with the high-resolution RGB monitor and the other to 
interface with a SCSI bus which gives access to mass storage devices, an Exabyte 8mm tape drive 
and a 1 Gbyte disk. Each of the two special nodes includes a transputer, and each lu~ls a special 
program appropriate to its peripheral interface function. These two special nodes are used to 
avoid the potential bottleneck of the host computer bus when transferring large amounts of data 
to the mass storage and display devices. The host computer is an IBM compatible system with 
an Intel 80486DX processor operating at 33MHz, an ISA bus, an 80 Mbyte hard disk, diskette 
drives, keyboard, and monitor. The parallel processor nodes are mounted on two expansion 
boards, transputer mother boards, in the host computer, with the 10 physically small daisy nodes 
on one board and the other 3 larger nodes on the other board. The SCSI disk and tape drives are 
external, but could be mounted in the main computer case in future systems. 

The checkfmtest software gives a listing indicating some transputer characteristics and 
network connections for ATRl, which is augmented here with the names of the nodes: 

check 2.52 mtest 2.52 
# Part rate Mb Bt [ Link0 Link1 Link2 Link3 3 
0 T805d-30 1 .36  0 [ HOST ... 1:l 2 : l  3 
1 T805d-25 1 . 7 9  1 [ ... 0:2 3 : l  . .. 1 
2 T805d-30 1 . 8 0  1 [ ... 0:3 4 : l  ... 3 

4 T805d-30 1 . 7 7  1 [ ... 2:2 5 : l  ... 1 
5 T805d-30 1 . 7 7  1 [ ... 4:2 6 : l  ... ] 
6 T805d-30 1 . 7 7  1 [ - - .  5:2 7:1 ... 1 
7 T805d-30 1 . 7 7  1 [ ... 6:2 8 : l  ... 3 
8 T805d-30 1 .77  1 [ ... 7:2 9:l ... 3 
9 T805d-30 1 .80  1 [ ... 8:2 1O:l ... 1 

1 0  T805d-30 1 . 7 7  1 [ ... 9:2 11:l ... 3 
11 T805d-30 1 . 7 7  1 [ ... 10:2 1 2 : l  ... 3 

3 T425b-25 1 . 7 5  1 [ . . . 1:2 . . . ... 3 

12 T805d-30 1 . 8 0  1 [ ... 11:2 ... . * .  3 

RAM, cycle 
4K, 1+4096K, 3 ; 
4K, 1+2048K, 4 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 
4K, 1+4096K, 3 ; 

ROOT 
VIDEO 
DAISY 1 
SCSI 
DAISY 2 
DAISY 3 
DAISY 4 
DAISY 5 
DAISY 6 
DAISY 7 
DAISY 8 
DAISY 9 
DAISY 10 

This list includes one line for each node except the host. The line including "DAISY 8", for 
example, indicates that the node that we call DAISY 8 was labeled number 10 by the check 
program, the processor is a T805 transputer running at 30 MHz, 1.77 Mbytelsecond are 
transferred along link number 1 which is the boot link for this node, this node's link 1 is 
connected to node 9 link 2, this node's link 2 is connected to node 11 link 1, and this node has 
4 kbytes of 1-cycle memory and 4096 kbytes of 3-cycle memory. 

This ATRl system (as well as ATR2 and ATR3) should work with a larger number of 
daisy nodes, and in fact this system has been used with 20 instead of 10 daisy nodes. However, 
the 20-daisy system did not work reliably, because of inadequate cooling air flow. 

Figure 2 is a diagram of the ATRl network, with each node represented as a double-line 
rectangle. Each node except the host is a TRAM (TRAnsputer Module) that plugs into a personal 
computer expansion board (transputer mother board, TRAM holder) in the host personal 
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computer. LO, L1, L2, and L3 indicate link connections 0, 1,2, and 3. In Figure 3 the two large 
rectangles represent two transputer mother boards and the double lines within the large rectangles 
represent jumpers. 

monitor 
n 

DAISY 1 
(SLAVE) L1 

LZ 
INMOS T805 transputer, 
3 0  MHz. 
4 Mbyte RAM. 

I 

Intel 80486DX,  33MHz. 
80 Mbyte disk. 
5.2511 diskette. 
3 -5" diskette. 
2 Gbyte disk. ' 

8 Mbyte RAM. 

(server) 

DAISY 10 II (SLAVE) L1 

I 
L3 

INMOS T805 transputer, 
30 MHz. 

4 Mbyte RAM. 

LO 

ROOT 
(MASTER) L2 

I 

I 

INMOS T805 transputer, 
30 MHz. 
4 Mbyte RAM. 

DAISY 2 
(SLAVE) 

keyboard 

INMOS T805 transputer, 
30 MHz. 
4 Mbyte RAM. 

Transtech TTG3 video optional 

INMOS T425 transputer, SCSI disk SCSI - drive, - 
4 Mbyte RAM. bus 1 Gbyte bus 

2 5  MHz. 

Figure 2: ATRl parallel processor network. 

tape 
drive, 
Exabyte 
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Alta Technology SuperLink/XL 

DN 53 

ss 

SlOtO- Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 slot8 slot9 
jmpr VIDEO jmpr SCSI ROOT 
1=2--1 2-1-2-1 2 - - 1  2 - 1  2 - 1  2 - 1  2-1 2 - 1  2 -  
0 3  0 3  0 3  0 3  0 3  0 3  0 3  0 3  0 3  0 3  

I I I  I 1  1 1  I 1  I (  1 1  I 1  1 1  I 1  I I  1 1  

P3 Configuration Array 
c I 1  

I 1  I 1  1 1  I 1  1 1  1 1  I I  I I  

1 
I 1 1 1 1  II 

Conf 
52 0 1 2 3  - 

, 

I !  52 

I €Iost 
P5 Dual Row Header 

1 Host T222 

I I ' IHost Interface, ISA bus address hex150 I 

I I r i  ~~ 

I konf I 

P5 Dual Row Header 
I 

Figure 3: ATRl transputer mother board connections. 
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ATR2 Hardware 

In ATR2, each of the 3 daisy nodes uses a T9000 transputer (see Reference 4) running 
at 20 MHz, with 8 Mbyte of memory. The root node was designed as a video interface node and 
includes a T9000 transputer and 4 Mbyte of DRAM along with additional memory and processors 
for video display. The root node serves as both the master node and as a high-speed video 
interface. The T9000 transputers in A T E  are the gamma E03 release with known disadvantages 
compared to the intended final production version, the most notable of which is the clock speed 
of 20 MHz instead of the originally intended 50 MHz. The link speeds in A T E  are set to 100 
Mbit/second, which implies a one-way data transfer rate of about 10 Mbyte/second. The parallel 
processor nodes are HTRAMs, which mount no more than 2 on each PC expansion board 
(HTRAM mother board). In A T E ,  the host system disk is also used as the primary mass storage 
device, so bulk data transfers must go through the host ISA bus, but this is not believed to be a 
significant bottleneck in this case. A SCSI interface allows access to an external tape drive and 
other mass data transfer devices. 

The annotated listing from the t9spy software indicates the network connections, the 
names and types of the nodes, and the software that runs on each node: 

---------------- TgSpY -------------_ 
IDevice /Link O(Link llLink 2lLink 3; node node program 

(0:T9000f EDGE I .... I 1: 1 I .... f QT9D ROOT MASTER+VIDEO 
1:T9000 .... 0: 2 I 2: 1 .... I B927 DAISY 1 SLAVE 
/2:T9000/ .... 1 1: 2 f 3: 1 1 .... f B927 DAISY 2 SLAVE 
13:T9000( .... I 2: 2 1 .... f .... I B927 DAISY 3 SLAVE 

type name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 4 is a diagram of the A T E  network, and Figure 5 indicates the connections on 
and between the personal computer expansion boards (B 108 HTRAM mother boards) that support 
the HTRAM nodes. The LO, L1, and L2 symbols in Figure 4 designate link connectors, and the 
mother board jumpers required are shown as double lines in Figure 5. 
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Intel 80586, 90 MHz. 
520 Mbyte disk. link 
3.5" diskette. 
5.25"diskette. 
16 Mbyte RAM. 

(server) 

Figure 4: A T E  parallel processor network. 

QT9D display interface. L2 
INMOS T9000 transputer, 

20 MHZ. 
4 Mbyte DRAM, 2 Mbyte VRAM. coax 

RGB monitor 
LO cables 

ROOT 
(MASTER, VIDEO) 
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iTR2 main chassis 

cupJ. 
Cdn- 
Rim 

Rot- 

D 3- 
D 2- 
D 1- 
D 0- 

I108 HTRAM mother board 

1108 HTRAM mother board 

SW1 = off (H) on on off 
I 1  - 1  

FPGA ClOl ClOl 

I 

I I I 
I 

I 
I 

cup cdn cup cdn 
SLOT 0 SLOT 1 
ROOT DAISY 1 - Reset - Reset 

0 1 3 2  0 1 3 2  
1 

Differential 
Buffers 

SLOT 0 SLOT 1 
DAISY 2 DAISY 3 

Reset Reset 

D O-- -----_------ 
all jumpers = outside 

bus, address hex280 (not used) 

Figure 5: ATR2 transputer mother board connections. 
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ATR3 Hardware 

The ATR3 host computer is a DEC 2000 Model 300 AXP. A VT510 monochrome 
monitor and keyboard, connected to a serial port, are used as the operator’s console. With the 
ATR software in its normal mode, the high-resolution RGB monitor is used solely for displaying 
the images being processed. When the ATR software is being debugged with TCP/IP support, 
the RGB monitor is used with the second keyboard and the mouse to manipulate and observe the 
parallel processor nodes. 

Each ATR3 parallel processor node is an Alta Technology ALN66 which includes a DEC 
Alpha 21066 processor and 16 Mbyte of memory. Each node also includes a T425 transputer 
to facilitate inter-node communication and control operations such as booting the network, but 
the transputer’s operation is transparent and the user does not need to explicitly address it. The 
nodes can communicate via the standard four 20 Mbitkecond (about 1.8 Mbytekecond in either 
direction) transputer links, or T-links, and also via four 250 Mbidsecond (17 Mbytekecond) A- 
links. The parallel processor nodes can be accessed using the TCP/IP model, in which case each 
node’s T-links 2 and 3, and one host T-link, are used by the system and are not available 
explicitly to the user; the other T-links and the A-links are available at the user’s discretion. This 
TCP/IP access is very useful for debugging the software that runs on the parallel processor nodes, 
as it allows each node to be monitored in a separate window of the user’s display. The parallel 
processor network can also be used, more simply and efficiently, without TCP/IP support, in 
which case all the links are at the user’s disposal. (T-links cannot be connected to A-links.) The 
parallel processor nodes are mounted in a VME chassis, separate from the host. The ATR3 
vendor recommends leaving one or two vacant slots between nodes in the VME chassis. 

For historical reasons, three of the five nodes in this particular system have a clock speed 
of 166 MHz, and two run at 233 MHz. The current version of the ATR software cannot allocate 
computation tasks to the nodes differently depending on their different speeds. Therefore, the 
system speeds that are discussed later are determined by the speed of the 166 MHz nodes. A 
system using exclusively 233 MHz nodes would presumably be proportionately faster. 

The ATR3 architecture would allow using several links in parallel; for example, we could 
communicate one message via the A2 and A3 links and another message via the A0 and A1 links 
at the same time, and thereby double the potential inter-node data transfer rate. However, this 
would substantially complicate the inter-node communication part of the ATR software, and the 
overall ATR software is such that it could not significantly benefit from the additional parallel 
links. ATR3 normally uses the A0 and A1 links for inter-node communication. 

The check software prints the following information about the network, indicating the T- 
link but not the A-link connections: 

Using /dev/hsil2 check 2.52 
# Part rate Mb Bt [ Link0 Link1 Link2 Link3 3 
0 T425c-25 1.65 2 [ 1:l ... HOST 1:2 1 
1 T425c-25 1.75 1 [ 2:l 0:O 0:3 2:2 3 
2 T425c-25 1.74 1 [ 3 : l  1:0  1:3 3:2 ] 
3 T425c-25 1.75 1 [ 4:l 2:O 2:3 4:2 ] 
4 T425c-25 1.74 1 [ .. . 3:O 3 : 3  ... 3 

Figure 6 is a diagram of the ATR3 network. In this figure, TO, T1, T2, and T3 are T-link 
connectors, and AO, Al, A2, and A3 are A-link connectors. The UP and DOWN connections 
are always required for system operation. 
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Figure 6: ATR3 parallel processor network. 
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SOFTWARE DESCRIPTION 

There are three programs, called E, F, and G. The three programs have many functions 
in common, but they also have some differences associated with the different operations they 
perform. The ATRl system also includes the program TSCSI for manipulating the devices 
attached to the SCSI interface node. The user’s manual’ lists the user functions currently 
included in the ATR software. 

A fundamental aspect of the current ATR software is that each image in memory is 
divided among the several daisies (slave nodes). This has important implications in terms of the 
speeds of the three hardware systems, which will be discussed later. A new version of the ATR 
software will be developed, in which images will not be distributed among several nodes. This 
new version will be described in a separate report later. 

Mask Creation Program G 

Program G is an interactive (keyboard-driven) program which can be used as a general 
purpose image manipulation program and also as a tool to create masks that are needed in the 
trainable mode of this ATR system. For each training scene, a skilled operator must create a 
mask that indicates which parts of the scene are targets, which parts are background, and which 
parts are not designated as either target or background regions. The program G is a tool to help 
the operator do this task. G can read a scene image fiom a file specified by the operator, and 
display the image on the screen. The operator can then use a cursor to draw polygons on the 
image and can designate the areas inside of each polygon to be whichever region (target, 
background, or unspecified) he wishes. Regions not marked by the operator are left as 

, “unspecified”. G creates a mask, an image that contains the operator’s designations, and saves 
the mask to the file of the operator’s choice. The original scene image file is not changed. The 
training program F later reads the mask file along with the scene image files. Program G is 
interactive in that it takes commands one at a time fiom the keyboard, not from a script file as 
do programs F and E. 

Training Program F 

The training processes is implemented in program F. (For general purpose, script-driven 
image manipulation applications, program E is better than program F.) The training program F 
calculates feature images according to an operator-supplied list of instructions (a script file), and 
finds the optimum values of coefficients to be used with these features in the surveillance 
program E. 

Feature calculation typically starts with scene images and calculates several feature 
images. This may involve arithmetic or logical operations on a pixel-by-pixel basis; convolution 
in two dimensions with a template that is typically much smaller than the scene image; 
morphological operations; local order sorting operations, such as are done in a median filter; local 
co-occurrence matrix calculation; and others, limited only by the imagination of the operator. 
Of course, a given computer program can implement only a finite number of operations. The 
operations currently available in this F program are listed in the user’s manual’. These built-in 
operations can of course be combined to form very complicated feature calculation procedures. 
The software can be expanded reasonably easily to incorporate additional operations, if that 
should become necessary. 

24 

c_ .“_I_.- -. 



Program F calculates the optimum values of the coefficients for the complete operator- 
specified feature set and for certain feature subsets. It will often happen that a substantially 
smaller subset will give error rates that are essentially the same as the error rate for the full 
original feature set. It is important to know this, because efficiency of the surveillance process 
(the analysis of images in the field) is greater for smaller feature sets. Therefore, the F program 
is arranged to look for optimal feature subsets. For each case, F calculates the optimal coefficient 
value for each included feature, and F also calculates the importance of keeping each feature 
included in that case. Then, a new case is formed by deleting the least important feature from 
the old set. This process of forming successively smaller subsets by deleting one feature at a 
time does, in effect, yield a graph of total error rate versus number of features, like the example 
in Figure 7. The operator can then see how many features he must include in the surveillance 
process to attain the desired error rate, and he can judge the trade-off between increased error rate 
and increased number of features. 

Figure 7: Typical example of total (weighted sum) error rate 
versus number of features. The optimization calculation tried 
several times, with slightly different resulting error rates, for some 
numbers of features; this is apparent from the double points plotted 
for 36 and 37 features. 

For each case, the optimum coefficient values are determined by minimisr,ing. the total error 
rate. Program F does this minimization by using a linear approximation of the non-linear 
equations. As is usually the case in this type of calculation, it is possible that the process will 
not find the desired absolute minimum in the error rate, but will converge to a substantially 
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different relative minimum point. Sometimes this is evidenced by a smaller subset of included 
features giving a smaller error rate than a larger, previously calculated feature set. When this 
occurs, program F uses the coefficient values from the smaller subset, smaller error rate case as 
a first guess and restarts with the full original set of features included. This procedure sometimes 
leads to the discovery of optimal points with error rate minima that are substantially smaller than 
those associated with the fxst-indicated optimal point for a given number of featues. 

Surveillance Program E 

Program E is a general-purpose, script-driven image manipulation program, and the script 
can be arranged to use program E in the trainable mode of this ATR system in which the 
optimized coefficients from program F are used. In the trainable mode, the surveillance program 
E is used in the field to analyze a set of scene images (no mask) and report on whether there is 
a target present in the scene. Program E uses the values of the coefficients determined by 
program F. Program E inputs scene images and normally creates a result image. If the value 
of any pixel in the result image is greater than Q, a value supplied by the training program F, that 
pixel is interpreted as an indication of the presence of a target. The result image can be written 
to a disk file with the Q value embedded in the file so that the image can be displayed later with 
obvious indications of any targets that may be present, and of course the result image can be 
displayed on the monitor immediately when it is calculated. Program E takes commands from 
a script file, not from the keyboard. 

ATRl SCSI Software 

In the ATRl system, a SCSI bus is interfaced directly to the transputer network, not to 
the host computer. One result of this is that the SCSI devices (disk drive. and tape drive) are not 
controlled by the host DOS operating system. In this ATR application, separate file handling 
software is used for the SCSI devices. The SCSI disk may be used by programs E and F and 
G very much as if it were a DOS disk, for reading image files. A separate program, TSCSI, was 
written to allow other types of access to the SCSI devices. This program allows such operations 
as copying files to and from the SCSI devices, reading disk directories, deleting files, TAR file 
extraction, and certain diagnostic operations, listed in the user's manual'. Program TSCSI takes 
commands from the keyboard. 
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SYSTEM TESTS 

The three programs E, F, and G have been verified as being functional on all three ATR 
hardware systems. 

An important aspect of this ATR systems is its speed, primarily the speed of the parallel 
processor network. We have done direct measurements of speeds for certain typical image 
analysis operations, and we have compared the three ATR systems which use essentially the same 
software on different hardware systems. The results of the measurements reported here are in 
some cases different from similar measurements reported earlier, primarily because of 
improvements in the ATR3 system software and also because of changes in our own sohare.  
For these timing measurements, ATR3 was used with only 3 daisy nodes, run at 166 MHz, to 
make it more directly comparable with the three-node ATR2 system. The times quoted here were 
measured with the echo turned off, using images with 512 columns by 480 rows of pixels. Some 
explanation of these times follows: 

COMMND, comments 
ATRl seconds ATR2 seconds ATR3 seconds 

This is the format for the following entries. The command, capitalized, and a comment 
in italics are in the first line; the execution times for each of the three hardware systems, in 
seconds, are in the second line; discussion is in following lines. The k values given with the 
times are not statistical uncertainties; they are absolute limits on the accuracy of the time 
measurements, imposed by the limited resolution of the accessible clock. 

;remark; remark with leading semicolon 
0.0001 < 0.0001 0.0001 

This is the time required for the master to read a command from the feature calculation 
file (script file) and dispose of it without any attempt at command interpretation. The times listed 
here are for a remark of minimal length, ";" with no real remark text. These times are strongly 
afYected by the time required to read a line of ASCII characters from a disk file; the times will 
be greater for longer remarks. 

REM, remark without echo 
0.0003 k 0.0001 0.0001 k 0.0001 < 0.0001 

This is the time required for the master to read a command from the feature calculation 
file and do minimal command interpretation. Command interpretation times are different for 
different commands and they are generally greater for greater numbers of parameters. The time 
will of course increase if the echo is turned on. The times listed here are for a remark of 
minimal length, "REM" with no real remark text. 

SET-AB, set scale factors 
0.0076 k 0.0001 0.0031 k 0.0001 0.0003 k 0.0001 

The master sets the values of two variables in a table in the mater program, without 
interacting with the slaves. 
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CLEAR, clear memory, with no memory de-allocation 
0.0019 f 0.0001 0.0008 f 0.0001 0.0017 f 0.0001 

The master writes values to a table in memory and sends a short message to all the slaves 
(daisy chain nodes), so this example includes minimal one-way master-to-slave communication. 
Each slave also writes a table in its own memory and, if images or kernels (operators) are 
defined, fiees those memory blocks. No memory de-allocation was done in this test. 

READI: wait until slaves are finished, with slaves not busy 
0.0019 f 0.0001 0.0004 f 0.0001 0.0059 f 0.0001 

The master sends a short message to all the slaves. Each slave responds separately, and 
the master waits for all the slaves to respond. Thus, this command involves brief two-way 
communication between master and slave, with essentially no other operation. 

For the three commands SET-AB, CLEAR, and READY, the ATR3 times are in the 
order expected when inter-node communication time dominates calculation time. For ATRl and 
A T E ,  the SET-AB command apparently requires more time to do less than the CLEAR and 
READY commands. This is believed to be because the SET-AB command requires a function 
call with three parameters, whereas the other two commands use function calls with no 
parameters. Times being dominated by calculation rather than communication would also account 
for the CLEAR time being greater than the READY time for A T E .  

D E F m m ,  deJine a kernel (operator) 
0.0132 f 0.0001 0.0048 f 0.0001 0.0100 f 0.0001 

This operation allocates memory for a local convolution type of kernel (operator), with 
the whole kernel being stored in each slave’s memory. This operation does not set the values of 
the kernel. The master sends a short message to all the slaves, and writes a few values to a table 
in memory. Each slave writes a few values to memory, allocates a memory block, and sends a 
short message back to the master. If the kernel was already defmed, the slave also de-allocates 
the old memory block; this de-allocation was done in this test. 

DEFIMG, decfine an image, with no overlap rows 

DEFIMG, define an image, with I O  overlap rows 
0.0114 k 0.0001 

0.0115 f 0.0001 

0.0040 f 0.0001 

0.0040 f 0.0001 

0.0098 k 0.0001 

0.0098 f 0.0001 
This operation allocates memory for an image, with different parts of the image being 

stored in different slave’s memories. This operation does not set any pixel values in memory. 
The master sends a short message to all the slaves and writes a few values to a table in memory. 
Each slave calculates which part of the image it should store in its own memory, allocates a 
memory block, and sends a short message to the master. If the image was already defined, as 
it was in this test, the slave also de-allocates the old memory block. Unlike an earlier version 
of this software, no significant difference in time is expected when the number of overlap rows 
is changed. This DEFIMG operation sends slightly shorter inter-node messages than the 
DEFKERN operation. 
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ZEROIMAGE, zero an image, with no overlap rows 
0.0250 2 0.0010 0.0580 f 0.0010 

calcs=l.44 

0.0640 f 0.0010 

0.124 f 0.001 
calcs=l .16 

0.117 f 0.001 
calcs=l.40 

ZEROIMAGE, zero an image, with 10 overlap rows 

ADD, add two images 
0.0350 k 0.0010 

0.043 f 0.001 

MUL, multiply two images 
0.049 k 0.001 

On/: divide two images 
0.239 +, 0.001 

0.0045 k 0.0005 
calcs=l8.52 

0.0045 k 0.0005 

0.038 f 0.001 
calcs=3.77 

0.038 f 0.001 
calcs4.30 

0.351 k 0.001 
calcs=2.27 calcs=12.07 

0.066 k 0.001 

SQRT, square root of an image 
0.288 +, 0.001 0.286 k 0.001 0.080 f 0.001 

calcs=3.36 calcs=12.00 
ABS, absolute value of an image 

0.105 f 0.001 0.159 k 0.001 0.014 k 0.001 
calcs=2.20 calcs=25.00 

WXCON,  clip low end values of an image, if all pixels are clipped 
0.055 k 0.001 0.134 3- 0.001 0.014 f 0.001 

calcs=1.37 calcs=l3.10 
WXCON,  clip low end values of an image, if no pixels are clipped 

0.052 f 0.001 0.119 3- 0.001 0.014 f 0.001 
calcs=l.46 calcs=12.38 

ADDCON, add a constant to an image 
0.037 f 0.001 0.096 k 0.001 0.012 f 0.001 

calcs=l.28 calcs=10.28 
MULCOfl multiply an image by a constant 

0.042 k 0.001 0.104 3- 0.001 0.012 f 0.001 
calcs=l.34 calcs=ll.67 

DIVCON, divide an image by a constant 
0.044 2 0.001 0.120 3- 0.001 0.012 k 0.001 

calcs=l.22 calcs=12.22 
For each of these simple arithmetic image manipulation operations, the master sends a 

short message to all the slaves. Each slave does the indicated pixel-by-pixel operation for its part 
of the specified images. There is no inter-slave communication. The bulk of the time is for the 
actual image manipulation. These times should be inversely proportional to the number of slave 
nodes, except for the ZEROIMAGE operation with overlap rows. 
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CONVOLVE, correlate an image with a kernel (operator), for a 5x5 pixel kernel 
1.56 f 0.01 3.09 f 0.01 0.30 f 0.01 

calcs=l.68 calcs=l7.33 
The master sends a short message to all the slaves. Each slave does the convolution 

calculation directly (no Fourier transform) for its part of the image. This operation normally 
must be preceded by the OVERLAP operation to set the values of the pixels in the overlap rows. 
This time should be inversely proportional to the number of slave nodes and roughly proportional 
to the size of the kernel domain. 

SSQ, local sum of squares, for 5x5pixel kernel 
1.97 f 0.01 3.43 f 0.01 0.37 f 0.01 

calcs=1.91 calc~17.75 
The master sends a short message to all the slaves. Each slave calculates a weighted sum 

of squares of values of the pixels in the local region indicated by the domain of the specified 
kernel, with weights equal to the kernel values. This operation normally must be preceded by 
the OWRLAP operation to set the values of the pixels in the overlap rows. This time should 
be inversely proportional to the number of slave nodes and roughly proportional to the size of 
the kernel domain. 

OVERLAP, set pixel values in overlap rows, for 2 overlap rows 
0.0169 f 0.0001 0.0076 k 0.0001 0.0300 f 0.0010 

comms=2.22 comms=O. 56 
OVERLAP, set pixel values in overlap rows, for 10 overlap rows 

0.0604 k 0.0001 0.0303 f 0.0001 0.0800 f 0.0010 
comms=l.99 comms=0.755 

The master sends a short message to all the slaves. The slaves exchange the values of 
the pixels in the overlap rows; thus, there is a lot of inter-slave communication, with one long 
message in each direction for each overlap row. This time is expected to be roughly proportional 
to the number of overlap rows and independent of the number of slave nodes. 

S M T . ' .  smooth in X direction, for 5 passes 
0.720 L- 0.010 1.140 f 0.010 0.105 f 0.001 

calcs=2.11 calcs=22.86 
The master does a short calculation and sends a short message to all the slaves. Each 

slave smooths its own part of the indicated image without communication with other slaves. The 
smoothing function is more Gaussian for more passes, with 5 passes being a good approximation 
to a real Gaussian and 1 pass having a sharp cusp in the smoothing function. The time is 
proportional to the number of passes and inversely proportional to the number of slave nodes. 

SMTm smooth in Y direction, for 5 passes 
1.87 f 0.01 2.08 f 0.01 9.10 k 0.10 

This is like SMTHX, X direction smoothing, except that this Y direction smoothing 
requires significant inter-slave communication. Two short messages per image column per pass 
are sent by each slave. This time should be roughly inversely proportional to the number of slave 
nodes only if the calculation time dominates the communication time. The disproportionately 
long time required by ATR3 for this operation is believed to be due to communication overhead. 
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MEDIAN, two-dimensional median $her, for a 21-pixel window 
11.7 k 0.1 17.9 k 0.1 1.8 k 0.1 

calcs=2.18 calcs=2 1.67 
The master sends a short message to all the slaves. Each slave does the calculation for 

its part of the image without inter-slave communication. This operation normally must be 
preceded by the OVERLAP operation to set the values of the pixels in the overlap rows. This 
time should be inversely proportional to the number of slave nodes. 

WDERSAMPLE, decimate (undersample) an image, for decimation by a factor of 2 in each 
direction with a pre-defined destination image 

0.019 k 0.001 0.114 k 0.001 0.010 k 0.001 
calcs=o.555 calcs=6.33 

The master sends a short message to all the slaves. If the destination image is not already 
defined, this operation defines it; in this test, the destination image was already defined. This 
time should be inversely proportional to the number of slave nodes. For unknown reasons, ATR2 
seems to have an anomalously low speed for this operation. 

SCALE, scale an image 
0.175 k 0.001 0.354 f 0.001 0.037 k 0.001 

The master sends a short message to all the slaves. Each slave scans its part of the 
specified image for the maximum value, and then the slaves daisy-chain communicate the 
maximum value to the master. The master then sends a short message to all the slaves, and each 
slave multiplies its part of the image by a constant. Thus, there is some master-slave and inter- 
slave communication involved in this scaling operation. This time should be approximately 
inversely proportional to the number of slave nodes. 

READIMAGE, read an image 
1.50 4 0.10 1.10 4 0.10 1-00 f 0.10 

comms=l.36 comms=l.5 

2.40 k 0.10 1.85 4 0.05 1.25 f 0.05 
WRITEIMAGE, write an image 

comms=l.30 comms=l.92 
These times are for the host system disk. Accessing the ATRl SCSI disk takes a little 

longer. These times should be essentially independent of the number of slave nodes. They 
depend on external factors such as the disk speed, the bus speed, and perhaps the host operating 
system or other data transfer software. 

QUADVY; j?t every local region with a quadratic polynomial, for a 21-pixel kernel 
108.0 k 1.0 147.0 f 1.0 41.0 f 1.0 

calcs=2.45 calcs=8.78 

fit, for every pixel. This time should be inversely proportional to the number of slave nodes. 
This requires a substantial amount of calculation, including a 6-parameter least squares 

31 



BRANCH; in a minimal loop 

JVMP, in a minimal loop 
0.0218 IfI 0.0002 0.0086 f 0.0001 0.0012 f 0.0001 

0.0222 5 0.0002 0.0088 f 0.0001 0.0013 f 0.0001 
The times for BRANCH and JUMP commands vary greatly, depending mainly on the 

length of the feature command file (the user command script), particularly that part of the file 
before the BRANCH or JUMP command. The times will also depend on disk file access times 
or disk caching capabilities. These times are for unrealistically small feature command files. 
These times depend strongly on the speed of the host computer for command files of significant 
size. 

In systems of this type, two different speeds are of interest: the speed of calculations 
within a node, and the speed of communication between nodes. Which is more important in 
limiting the overall speed of the system depends strongly on the particular application. In the 
above timing measurements, some commands are dominated by calculation time, and some by 
communication time. 

For those timing measurements that are almost totally indicative of calculation time, a 
value is given for "calcs" for ATR2 and ATR3. This is the relative calculation speed per node, 
relative to ATRl. It is calculated by 

(ATR1 time) * (number of ATRl nodes) 

(Am2 time) (number of ATR2 nodes) 
calcs = 

for ATR2, with the obvious analog for ATR3. The values for this speed ratio vary significantly 
for different types of operations, because of the internal differences in the processors. There is 
a tendency toward a greater speed advantage for ATR2 and ATR3 for the more complicated 
calculations. We use as the representative calculation-intensive operation the two-dimensional 
median filter, MEDIAN. For this operation, A T E  has a relative speed per node of 2.18, and 
ATR3 has a relative speed per node of 21.67. The important relative calculation speed per cost, 
which is simply the relative speed per node divided by the relative cost per node, is about 1.18 
for ATR2 and 2.32 for ATR3. 

This s o h a r e  package contains no operations that are purely communication. Even such 
operations as reading an image from a disk file involve a significant amount of calculation, in 
calculating array indexes and converting from 8-bit integers to 32-bit floating point values. One 
indication of relative communication speed is the OVERLAP operation, in which 512 floating 
point values (2048 bytes) per data transfer are exchanged between neighboring processors without 
type conversion and the only arithmetic is array index calculation. For this, like most inter-node 
communications, it is not reasonable to speak of speed per node, because the time of the overall 
operation usually does not depend significantly on the number of nodes. In the typical inter-node 
communication, there is in effect a parallelism with many pairs of nodes communicating 
simultaneously, so that the overall time is essentially the time required for any one pair of nodes 
to communicate. Thus, we represent the relative communication speed by the ratio of the times: 
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comms = 
(ATR1 time 1 

(ATR2 or ATR3 time) 

This relative communication speed, as measured for the OVERLAP operation for 10 overlap 
rows, is 1.99 for A T E  and 0.755 for ATR3. The communication slowness of ATR3 is 
surprising, in light of the raw A-link speed of 250 Mbithecond compared with the ATRl T-link 
speed of 20 Mbitlsecond. The explanation is that the ATR3 system has a substantial per-message 
overhead time, a time required to prepare for inter-node communication before the transmission 
actually takes place. This is apparent in the very long time required for ATR3 to do the SMTHY 
operation, which involves many short messages exchanged between neighboring nodes. A 
comparison of the SMTHY and SMTHX operations (SMTHX requires no inter-node 
communication, but is otherwise very similar to SMTHY) gives a quantitative estimate of the 
overhead time per message pair, one message arriving and one message leaving via a different 
link. These times for the three systems are included in Table 1. These values may not be 
precise, but they are believed to be at least reasonable approximations. 

For typical image analysis or target search applications of the ATR software, ATRl and 
ATR2 seem reasonably balanced, with neither calculation speed nor communication speed being 
a dominant factor in limiting the overall system speed. However, for ATR3 the communication 
slowness is an obvious, major limit to overall system speed. In fact, some applications run 
substantially faster on a single processor (the ATR3 host) than on the set'of 5 ATR3 parallel 
processors. This obviously makes the use of parallel processors absurd, for this particular 
situation. To take advantage of the potential speed advantage of parallel processing in the ATR3 
system, a change is required in the basic approach used in the ATR software. The present 
software distributes each image among the several daisy nodes; in ATR3, for example, 1/5 of 
each image resides on each of the daisies. This requires some inter-node communication for 
certain image analysis operations. Those operations that use many short messages between nodes 
cause the large loss of speed in the ATR3 system. In some cases, it would be possible to 
consolidate many short messages into one long message and thereby eliminate a large part of the 
message set-up overhead time. However, this is not possible for some image analysis operations. 

The only reasonable approach to circumventing the ATR3 communication time problem 
seems to be a change in the basic approach used in the ATR software: instead of dividing each 
image among the several daisy nodes, each scene should be analyzed on a single node. This 
approach has its own problems. First, it imposes a more restrictive limit on how big a scene can 
be analyzed in one step, with the memory of one node instead of the combined memory of all 
the nodes being the new limiting factor. This is not a very serious problem, since it is usually 
not too difficult to divide a large scene into smaller scenes for separate analysis. Second, if only 
one scene is available at any one time, only one node will be used and all the other nodes will 
be wasted. This is not a problem if there are many scenes waiting for analysis. It seems that the 
new software approach should be tried. 
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CONCLUSIONS 

This Automatic Target Recognition system cag be very effective for rapid screening of 
large amounts of multi-image data. This system is versatile and should be broadly applicable. 
It incorporates image data fusion and uncertainty estimation. The software is easily expandable 
to incorporate new capabilities, and the hardware is easily expandable to increase the speed. This 
ATR system also informs the user of the importance of each feature used in the analysis, so that 
the user can make the process more efficient by eliminating unimportant features from the 
calculations and perhaps eliminating unimportant sensors from the multisensor data acquisition 
system. The s o h a r e  and the three hardware systems have been evaluated and found fully 
functional. 

For the most advanced hardware system (ATM), with the greatest calculation speed per 
parallel processor node, the technology of fast calculation has outpaced the technology of fast 
inter-node communication. Taking full advantage of this calculation speed will require substantial 
revision of the ATR software. This will be undertaken and reported separately. 
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EXAMPLE 1: Median Filter Testing 

This example is presented to illustrate very simply what the ATR system does. In this 
example, we use only one training scene, and we have only one image per scene. The goal in 
this application is to fmd medium-sized lettering and reject large lettering, small lettering, and 
other kinds of texture. This example was actually intended as a test of the one-dimensional 
median filter calculation subroutines, but it does demonstrate some ATR system capabilities. 

The training scene image is shown in Figure Al, color coded to indicate the target and 
background regions specified by the user with program G. The green regions are designated as 
targets for the training program. They include only the medium-sized lettering, in the top left 
and the bottom right corners of the scene. The red regions, designated as background, include 
the larger lettering, in the top right corner and at the left edge; some of the small lettering, at the 
bottom of the scene; and, a large amount of the picture engraving. The blue regions are not 
designated as either target or background, and are ignored by the training process. Note that it 
is not necessary to mark all of the small lettering, for example, as background; if some of it is 
marked as background and none of it is marked as target, that should be sufficient. 

Two different values of the type 1 error weight coefficient W, were tried: 0.5 and 0.9. 
The latter, larger value gives more weight to errors in which the ATR system incorrectly 
classifies a background pixel as a target pixel, whereas the W,=0.5 value gives equal weight to 
this type 1 error and type 2 errors in which a target pixel is incorrectly classified as a background 
pixel. The two different values of W, give significantly different results. Figure A2 shows the 
error rate versus number of features for both of two training program nux. The error rate values 
above 0.15 are for the fust run, and the values below 0.05 are for the second run. That is, we 
get a smaller total (weighted sum) error rate if we attach more importance to type 1 errors, for 
this training data. 

In this example, the coefficients chosen for use in the surveillance process are those for 
the second training calculation, with W,=O.9. These coefficients were installed in the surveillance 
program data files. The surveillsince program was then used to analyze four scenes, looking for 
medium-sized lettering. The four scenes, and the surveillance program result images obtained 
for each scene, are shown in Figures A3-A6. One of these surveillance scenes was also used as 
a training scene. Of course, when the image is used as a surveillance scene, we do not tell the 
ATR system which parts are target and background; we let the ATR computer tell us. All of 
these images were originally the same size as the training image of Figure Al, but they were 
reduced in size for easier presentation here. Unfortunately, the images loose a little quality and 
detail in the reduction and reproduction for printing. Nevertheless, the results clearly illustrate 
how the ATR system works. 

In the result images, the left half of each of Figures A3-A6, the bright, green to pale 
green to white, regions indicate what the ATR system classified as targets; the dark, red to black, 
regions indicate background. The lighter regions are stronger indications of target. 
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IMAGE FILE: 
MASK FILE: 

Figure Al: Training scene image with color-coded target (green), 
background (red), and unspecified (blue) regions. 
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Figure A2: Total (weighted sum) error rate versus number of 
features for two training program calculations. 

Figure A6 shows that the ATR system did correctly designate the medium-sized lettering as 
target, and it did correctly reject the larger letters as background. The results are mixed for the 
small letters at the bottom center of the scene, some being correctly rejected as background and 
some being incorrectly identified as targets. A few other regions in the Figure A6 scene, as well 
as a few small regions in the other scenes, are incorrectly identified as targets by this ATR 
system. These incorrect identifications simply mean that this ATR system, with the particular 
features which were chosen for this application, cannot distinguish between medium-sized 
lettering and whatever is shown in the scene images at those regions incorrectly identified as 
targets. Presumably, the operator could choose a better set of features and reduce the incidence 
of errors in this ATR application. Note, however, that the relatively small set of relatively simple 
features used in this simple example did quite well: there are essentially no type 1 errors 
(incorrect designation of targets as background), and there are not many type 2 errors (incorrect 
designation of background as target). The absence of type 1 errors is largely due to the large 
value (0.9) chosen for the type 1 error weight in the F optimization calculation. 

Conclusion 

As expected, with a limited feature set (one-dimensional median filters only) and limited 
training (only one training scene), the ATR system is quite effective but not perfect at 
distinguishing targets from background. 
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Figure A3: Result image and scene image for DEMO 1. 
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Figure A4: Result image and scene image for DEM02. 

A- 4 



t -- -- *ir 

Figure A5: Result image and scene image for DEM03. 

RESULT FILE: \RI\DEM03.RI IMAGE FILE: \IMG\DEM03A.IMG 

RESULT FILE: \RI\DEM04.RI 
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IMAGE FILE: \IMG\DEM04A.IMG 

Figure A6: Result image and scene image for DEM04. 
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EXAMPLE 2: Roads and Riverbanks 

This simple example illustrates fusion of image data. We have two images of the same 
scene, one visible light and one infrared image. (These images are part of a set supplied by 
Karen Steinmaus of Battelle, Pacific Northwest Laboratories, one of the participants in the 
Department of Energy’s Airborne Multisensor Pod System project.) The visible light image 
(Figure Bl) shows roads quite clearly, but it also shows riverbanks and it is difficult to 
distinguish between the two features in this image. The infrared image (Figure B2) does not 
show the roads very well, but it clearly indicates where the river is. The two images together 
should allow us to find roads and reject riverbanks. Note, however, that this cannot be done by 
looking for roads in each of the two images separately and then simply adding or averaging the 
two results; a more sophisticated approach to image data fusion, such as that used in this ATR 
system, is required. 

For this illustration, we do a very simple analysis using only 4 features. For the first 
feature, we do a convolution of the visible light image with a 13x13 pixel kernel in which the 
pixel values are proportional to X2 with the mean subtracted out, clip the result to keep only 
negative values, and take the absolute value. This first feature indicates the presence of both 
vertical roads and vertical riverbanks. 

For the third feature, we do a convolution of the infrared image with a 13x13 pixel kernel 
in which the pixel values are proportional to X, and square the result. This third feature is 
insensitive to roads, but shows vertical riverbanks very well. 

The second and fourth features are analagous to the first and third, using kernels with 
dependence on the Y coordinate instead of the X coordinate to detect roads and riverbanks that 
run horizontally in the images instead of vertically. 

Figures B1 and B2 both show the operator-selected target (green) and background (red) 
regions used in the training process. Note that these regions do not need to be marked on both 
of the scene images separately; it is sufficient to use either one of the scene images with the 
program G to mark the target and background regions. The training process was done with these 
two images (one scene) as the training data. The optimized coefficients were put into the 
surveillance program file, and the surveillance program was then used to analyze this same scene. 
The result image is shown in Figure B3. In this result image, the white is the strongest indication 
of roads, darker green is a weaker indication of roads, black is the strongest indication of 
background (non-road), and lighter red is a weaker indication of background. This result does 
distinguish clearly between road and riverbank, thus satisfying the goal for this illustration: the 
two images analyzed jointly give a clear indication of a result that is not obvious in either image 
separately. This result indicates horizontal roads more strongly than vertical roads; this is because 
the horizontal roads appear narrower in these images, and the particular convolution calculations 
used here are more sensitive to narrower features. This result also indicates as roads some 
regions that are neither road nor riverbank, this is not surprising, since no significant effort was 
made to exclude miscellaneous clutter from being identified as target in this very simple example. 

. 

Conclusion 

This minimal example demonstrates image fusion: neither image alone allows finding 
roads and distinguishing them from riverbanks, but the two images analyzed jointly, with a very 
simple algoethm, accomplish the goal very easily. 
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Figure B1: Visible light image, color coded to indicate operator- 
selected target (green) and background (red) regions. 
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IMAGE FILE: 
MASK FILE: 

image6b.img 
PNIrmskO3. img 

Figure B2: Infrared image, color coded to indicate operator- 
selected target (green) and background (red) regions. 
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Figure B3: Result image. 
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EXAMPLE 3: Buried Waste Location 

This example illustrates the use of the ATR system with data that is not standard image 
data, and the use of a completely naive but still quite effective analysis method in which the ATR 
system's capabilities replace operator understanding of the data. The primary purpose of this 
study was to assess the utility of this ATR system in buried waste recovery operations. This data 
is fiom the Department of Energy's Buried Waste Integrated Demonstration project at the Idaho 
National Engineering Laboratory. The images in the figures in this example should be regarded 
as maps of areas fiom which buried waste is being excavated. 

In this application, as many as 7 sensors acquired different types of data. This data is not 
image data in the traditional sense. Rather, each "image" is merely a set of values measured at 
a two-dimensional array of points on the surface of the ground. Sensor S1A is the vertical 
component of the earth's magnetic field, and S1B is the gradient (derivative with respect to 
vertical position) of the vertical component of the magnetic field. S2A, S3A, S4A, and S5A are 
measurements of the electrical conductivity of the soil, like eddy current measurements, taken 
with different combinations of field orientation and phase shift. S6A is a volatile chemical 
sensor. Most scenes include measurements fiom the first six sensors. Because data from the 
seventh sensor S6A was available for only 3 of the 35 scenes, and for one of these three scenes 
no other sensor data was available, this seventh sensor data was not used in this brief study. 

There were 5 experiments, referred to as El,  E2, E3, E5, and E6. The dlfferent 
experiments represent data recorded over five different areas with different buried objects. The 
five rectangles on the left of Figure C1 indicate the approximate sizes and locations of buried 
objects in the five experiments, as seen fiom above. In these sketches, the solid objects are 
magnetic, and the objects drawn with outlines only are, at least mostly, not magnetic. In E2, for 
example, there are a magnetic barrel (object 7) and a wooden box (object 6).  Objects 9 and 10 
in E3 are two boxes, one above the other, with some magnetic material in the top box. The top 
box was removed between L3 and L4 (to be described later). Similarly, object 20 (a vertical 
barrel) in E5 was removed between L2 and L3, and object 27 (a vertical steel pipe) in E6 was 
removed between L2 and L3. 

For each experiment, there are several different levels or vertical positions of the sensors. 
The number of different levels is not the same for all experiments. The several levels are 
referred to as LO, L1, ... . LO is the highest level, and the sensors are 6 inches lower for each 
successive level. In some cases, layers of soil were removed between successive measurement 
levels. In these analyses, any one level of any one experiment is treated as a separate scene. 
Different scenes are expected to give different results for any measurement, because they contain 
different objects or because the objects are at different distances from the sensors. There are a 
total of 34 usable scenes in this data set. 

The scene images in this data have 43 columns (43 x values, spaced 3 inches apart) and 
25 rows (25 y values, spaced 6 inches apart). Some of the data sets did not have this many rows 
or columns, and some were missing a few data points fiom what was expected to be a regularly- 
spaced array. In all of these cases, the missing data points were filled in using a linear 
interpolation or extrapolation procedure so that each scene image used in this study had a full 
43x25=1075 data points. 

Perhaps the simplest analysis we can use with this ATR system for a set of data with 6 
sensors is a linear combination of the 6 raw data images (augmented with the "constant" image 
which is always included for mathematical completeness). This simple linear analysis was tried 
with the buried waste data. The training was done with 3 scenes: E2L7, E5L5, and E6L5. The 



masks used were M2A, M5B, and M6A, shown in Figure C1. In this figure, the red (actually 
more brown) areas of the masks are designated as background, the green areas are target, and the 
black areas are not used in the training process. These masks mark barrels as targets and other 
regions as background; that is, this analysis is a search for barrels. The results of this training 
process were used to analyze 30 scenes from experiments E2, E3, E5, and E6; experiment El was 
not included in this analysis because this analysis uses 6 sensors and only 4 sensors were used 
in experiment El. The results are indicated in Figure C2. In this figure, as in any of the result 
images, lighter regions are stronger indications of targets, and darker regions are stronger 
indications of background. Green and white (that is, very light green) indicate what the ATR 
system classifies as targets. Red and brown and black (dark red) indicate what the ATR system 
classifies as background. Figure C2 shows that this analysis did correctly identify the barrel 
(object 7) in E2 and another barrel (object 17) in E5 as targets when the excavation was deep 
enough so that the sensors were close to the barrels. This process also incorrectly gave small 
target indications at the top of E5L5 and in E6L6. These are ferromagnetic objects other than 
barrels, so it is not too surprising that this simple linear combination algorithm did not distinguish 
these objects from magnetic barrels. The process failed to detect a barrel at the center of E5, in 
levels LO-L2 (this barrel was removed between L2 and L3). The reason for this failure is not 
known. This barrel shows rather weakly in the raw data, suggesting the possibility that it may 
have been buried too deep to be detected by this algorithm. Although this algorithm for finding 
barrels did not yield perfect results, it did quite well, especially considering the simplicity of the 
algorithm and the fact that the algorithm required absolutely no understanding of the 
measurements or the physical processes involved. 

This processes was repeated with an additional training scene, E5L2 with mask M5A, 
which specifies that the troublesome barrel (object 20) is designated as a target in the training 
process. The result of this analysis is shown in Figure C3. This process did locate object 20, 
but it also incorrectly identified a box (object 6) and other objects as targets. This rather poor 
performance is merely an indication that this simple linear combination algorithm cannot 
distinguish reliably between the objects designated as targets and those designated as background 
in this training set. The problem here is that object 20, which we believe to be a barrel, looks 
to the sensors like some other (background) object more than a target. This is a situation in 
which we must recognize that the algorithm we are using will not work well with this type of 
data. The obvious procedure is to try a better algorithm. 

The next obvious level of complication in analysis is to add quadratic terms to the linear 
analysis, adding 21 product terms to the linear and constant terms in the previous analysis. This 
was tried using the same 4-scene training data set described for the linear case, with the result 
shown in Figure C4. As would be expected, this quadratic analysis is better than the linear 
analysis at distinguishing barrels from background, but it is still not perfect. 

The same quadratic analysis procedure was used to try to find boxes instead of barrels. 
In this analysis, the training process used two training scenes, E5L5 with mask M5C and E2L7 
with mask M2B. These masks select only boxes without ferrous metal contents as targets. The 
results of this analysis for 30 scenes are shown in Figure C5. This analysis was repeated using 
only the first training scene, with results shown in Figure C6. Obviously, the results of this type 
of analysis can depend significantly on the choice of training data. In both of these two analyses, 
boxes (objects 6, 9, 10, 21, 22, 23, and 24) were correctly identified as targets, and a few other 
objects were incorrectly identified as targets, with the single-training-scene result a little better 
than the two-training-scene result. This result is reasonably good. 

An interesting aspect of these linear and quadratic analyses is that they require no 
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understanding of the measurements. 
In an effort to more accurately identify barrels, we tried a more sophisticated analysis that 

made use of some understanding of the measurement processes. In this analysis, we made an 
effort to find peaks in the magnetic field and its gradient, and to discriminate on the basis of the 
widths of the peaks, on the assumption that barrels should cause peaks of a certain width in 
magnetic field measurements. This analysis used only sensors SIB and S1A; the other sensor 
data was ignored. The training process used the same training scenes as were used for the 
quadratic function search for barrels. The results of this analysis are s h o w  in Figure C7. Note 
that experiment 1 is included, since this analysis does not require the sensors that are not included 
in experiment 1. This analysis was repeated with a different set of training data, using scenes 
E2L8, E5L2, E5L5, and E6L6 with the same masks as before. This gave slightly better results, 
shown in Figure C8. These results generally show the barrels as targets, which is good. They 
also show other ferromagnetic objects as targets, which we had hoped to avoid. However, it is 
not surprising that we are not able to distinguish well between barrels and other magnetic objects, 
since the peak width which we tried as the distinguishing feature is not really unique to barrels. 
Surprisingly, this analysis also shows as targets some presumed non-magnetic objects, such as a 
box (object 6) in E2. This is interpreted as a fairly strong indication that these boxes do in fact 
include some ferromagnetic material. 

Conclusion 

This ATR system is easily applicable to areas other than the usual airborne surveillance 
and target searches. Specifically, this example indicates that the ATR system used with this data 
can do quite well at finding buried objects, and it can give some indication of the nature of the 
object (magnetic or not) and the depth of the object. Failure to do better at indicating object type 
or depth is primarily due to limitations in the type of data available. This example also illustrates 
the importance of having a good training set, knowing exactly what background and target objects 
the training data represents, and making the training set self-consistent. 
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RESULT FILE: MASKS3.img 
Figure C1: Buried objects, and masks used in training. 

LO L1 L2 L3 b4 L5 L6 L7 L8 
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RESULT FILE: eomlA2.img 
Figure C2: Search for barrels, linear combination, three training scenes. 
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LO Ll L2 L3 L4 L5 L6 L7 

+-I e-*-+ E -  1 
RESULT FILE: com4G2,img 

Figure C3: Search for barrels, linear combination, four braining scenes. 
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L3 L4 L5 b6 

RESULT FILE: com412.img 
Figure C4: Search for barrels, quadratic combination. 
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LO L1 L2 L3 L4 L5 L6 e7 L8 

RESULT FILE: cOm4M22.img 

Figure C5: Search for boxes, quadratic, two training scenes. 
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RESULT FILE: com4M2l.img 
Figure C6: Search for boxes, quadratic, one training scene. 
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RESULT FILE: com5K2,img 
Figure C7: Search for barrels, peak width, l irst training set. 
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RESULT FILE: com502.img 
Figure C8: Search for barrels, peak width, second training set. 
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EXAMPLE 4: Finding Airplanes 

This example illustrates the ability of the ATR system to function with poor data and in 
spite of errors or ignorance on the part of the operator. The goal is to find airplanes in pictures 
of airports, like the scene shown in Figure D1. There is an elegant approach to this problem, 
based on the assumption that the airplanes have the general shape of crosses or f's. We can 
define a pair of kernels or operators which, together, find this general cross shape using the 
convolution operation. After some experimentation, this approach was used along with some very 
basic operations including looking for the correct size of darker area on a lighter background. 
For the training process, the scene was marked with two targets indicated in green (the airplane 
at the bottom center, and the airplane closest to the center of the image) and several background 
areas indicated in red in Figure D2. The training program gave the surprising result that 
searching for the cross shape did not significantly improve the ability of the system to find 
airplanes. The reason for the ATR system's not using the cross feature is obvious fiom an 
examination of the details of the image. The human vision system, seeing a "good" image like 
Figure D1 (perhaps in effect enhanced by the printing process) and knowing what to look for, 
is very good at idealizing shapes and filling in missing details. However, as Figures D3 - D5 
show for the 7 airplanes in the top half of the scene, the airplanes comprise a surprisingly small 
number of pixels and they do not have much of the assumed cross shape. This image is actually 
of rather poor quality in terms of representing airplanes. It is no longer surprising that the ATR 
system did not give much weight to the cross feature in searching for airplanes. The interesting 
point is that the ATR system automatically discounted the unproductive search for crosses and 
used only the simpler features, even though this was contrary to the operator's expectations. 

The result of using this very simple procedure is shown in Figure D6, in which the 
computer has drawn circles around each area it interprets as a target. The ATR system with this 
very simple scheme did correctly find all 9 airplanes, and it mistakenly marked a lot of 
background areas as targets. This general behavior, finding all the real targets and some false 
targets, is generally expected in a screening operation in which the system is optimized to not 
miss any real targets. However, the number of false targets indicated in Figure D6 is probably 
unacceptably high for most applications. We can improve on this result by placing more 
stringent requirements on the sizes of the dark spots that are called targets. Using this modified 
simple approach gives the result shown in Figure D7. This result correctly indicates all the 
airplanes as targets, and it incorrectly indicates two background areas, one of them so small as 
to be immediately discounted, as targets. This result is not perfect, but it is regarded as quite 
good, especially considering the poor detailed definition of the airplanes in the scene image and 
the simplicity of the search scheme. 

Conclusions 

This ATR system can correct some operator's mistaken assumptions, and can do a 
surprisingly good job with poor data and simple analysis schemes. 
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Pigure D1: A scene including 9 airplanes. 
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IMAGE FILE: 1NPUT.img 
MASK FILE: MASKD-img 

Figure D2: The scene marked with two target (green) and seven 
background (red) regions for training. 
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IMAGE FILE: detaillA.img 

IMAGE FILE: detaillC.img 

- __ 
IMAGE FILE: detaillB.img 

IMAGE FILE: detaillD.img 

Figure D3: Details of the four airplanes closest to the top of the 
scene. 
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IMAGE FILE: detaillE.img 

IMAGE FILE: detailld; img 

IMAGE FILE: detaillF.img 

IMAGE FILE: detail1 . img 

Figure D4: Details of the next three airplanes. 
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Figure D5: Detail image printed with one dot per pixel. 
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RESULT FILE: E9Xres.img 

Figure D6: Result of the simplest search scheme, showing a 
number of false target indications. 
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RESULT FILE: E9Nres . i l ag  

Figure D7: Result of a more restrictive search scheme, showing 
only two false target indications. 
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EXAMPLE 5: Stack Shadows 

This example is a more realistic target recognition application, and it includes an example 
of using the ATR system without the training process. The targets here are gas effluent stacks, 
such as a factory smoke stacks or chemical processing plant stacks for dispersing gaseous waste. 
The image data is multispectral, comprising images in 3 wavelength bands at about 1, 8, and 12 
microns, acquired with the Daedalus imager carried by the A M P S  aircraft. The images are large, 
with a typical scene containing ten million pixels for each of the three wavelengths. 

As seen from above, the stacks themselves are not at all obvious or easily identifiable. 
However, if the sun is shining, stacks cast a quite distinctive shadow in the visible and near 
Mared spectral regions. Hence, this search for stacks is actually a search for stack shadows. 
Searching for stack shadows instead of stacks themselves does have some disadvantages, in that 
there are other objects that look very much like stack shadows. The procedure used here is a 
two-step process. The first step is to search the near infrared image to find shadows of the right 
size, shape, and orientation. This first step does not require any training process, since we know 
from other sources what the correct shadows should look like. The second step is to use all three 
of the available spectral bands with a training process in the hope that the extra spectral 
information will provide enough information to distinguish between stack shadows and other 
similar-looking objects, even though the nature of this multispectral information may not be at 
all intuitive to the human observer. 

Figure El shows an example of the results of the stack shadow search. The first step of 
the search identified the four shadows marked in Figure El. The top two of these really are stack 
shadows; the bottom two are shadows of the support structures of a water tower. The first step 
also incorrectly identified some other objects that are almost invisible in this printing of the 
image, including dirt roads, fences, and pond edges, near the top left corner of Figure El. Some 
of these false indications of stack shadows could be eliminated by setting more stringent 
requirements on the orientation of acceptable shadows; however, for purposes of testing and 
demonstration, we left the angle criterion rather loose and used the multispectral information 
instead. 

To distinguish real from false stack shadows, we added 7 features to be evaluated: (1) 
the intensity of the shadow in the (slightly smoothed) 1 micron image; (2) the contrast between 
the shadow and its surrounding area in the 1 micron image; (3) the "brightness" parameter that 
the program uses to describe how well the shadow fits the mathematical idealization of a straight 
line segment; (4) and (5) the intensity of the shadow in the 8 and 12 micron images; (6) and (7) 
the products (3) * (2) and (3) * (1). Training the system and using these features does indeed 
remove many of the false indications of stack shadows, giving the result shown in the Figure El. 

The total two-step search process was applied to 13 large scenes containing six known 
stacks. Five of the six stacks were correctly located; the sixth was not identified as a target, for 
two reasons, either of which would have been sufficient by itself. First, the sixth stack was larger 
than the parameters we specified as representing an acceptable stack; that is, it was larger than 
the stacks we were looking for. Second, the shadow of the sixth stack was interrupted by some 
buildings that added their own shadows and changed the simple straight line stack shadow into 
a more complicated, unacceptable shape. This second point is an unavoidable disadvantage of 
trying to identify stacks by finding their shadows. Figure E2 shows the missed sixth stack, along 
with another smaller stack that was correctly identified. 

This stack search did wrongly identify some other objects as stacks, which might be 
expected. One of these objects was the already-mentioned water tower, which appears near the 
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bottom of Figure El  and also in three other scenes. Depending on the sun angle and how the 
shadows of the different support structures of the water tower aligned at different times of the 
day, the water tower shadows were sometimes indistinguishable from stack shadows. This of 
course is not surprising, since the water tower supports and a gas effluent stack are very similar 
structures, casting nearly identical shadows. Another stack-like structure that was incorrectly 
identified as a stack was a tower supporting a major electrical power line, two instances of which 
are shown in Figure E3. Figure E4 shows an agricultural area in which a segment of an 
irrigation canal was incorrectly identified as a stack shadow. This type of error occurred several 
times in the set of 13 scenes. As has been mentioned, the rate of occurrence of this type of error 
could be reduced by more stringent geometrical tests, but even the relaxed test conditions used 
here gave an acceptably low false positive error rate. 

Conclusions 

In a realistic application with large images, the ATR system performed well, finding all 
the known targets with a few false positive target indications. 
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Figure El: Two correctly identified stack shadows (near top of 
image) and a pair of incorrect indications fiom water tower 
shadows (bottom of image). 
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Figure E2: One correctly identified stack shadow, and another that 
was too large to be included by the size parameters specified for 
this search. 
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Figure E3: Two power line support towers incorrectly reported as 
stacks. Some of the electric cables are visible as light lines, and 
their shadows are more reliably visible as dark lines in this image. 
This image was greatly contrast-enhanced for this printing. 
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