
Idaho
National

Engineering
Laboratory

INEL/EXT-97-0 0 0 03

February 1997

Automatic TLI Recognition System,
General Description

G. D. Lassahn

L O C K H E E D M A R T I N f p

INEL/EXT-97-00 0 03

Automatic TLI Recognition System,
General Description

G. D. Lassahn

HQ PROJECT MANAGER - Michael O'Connell
PROJECT NUMBER - ST474E

Published February 1997

Idaho National Engineering Laboratory
EG&G Idaho, Inc.

Idaho Falls, Idaho 83415

MASTER
Prepared for the

US. Department of Energy
Office of Arms Control

under DOE Idaho Field Office
Contract DEAC07-76ID01570

mStRlBUTION OF THIS DOCUMWT IS UNLlM rkb

i

. Portions of this document mag be illegible
in electronic image p d u - fmRce~ are
produced finm the best available original
dOCUIIlent,

DISCLAIMER

This report was prepared as an account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, nmke any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any infomution, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or senice by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

This report is a general description of an automatic target
recognition system developed at the Idaho National Engineering
Laboratory for the Department of Energy. A user’s manual is a
separate volume, Automatic TLI Recognition System, User’s Guide,
and a programmer’s manual is Automatic TLI Recognition System,
Programmer’s Guide.

This system was designed as an automatic target recognition
system for fast screening of large amounts of multi-sensor image
data, based on low-cost parallel processors. This system naturally
incorporates image data fusion, and it gives uncertainw estimates.
It is relatively low cost, compact, and transportable. The software
is easily enhanced to expand the system’s capabilities, and the
hardware is easily expandable to increase the system’s speed. In
addition to its primary function as a trainable target recognition
system, this is also a versatile, general-purpose tool for image
manipulation and analysis, which can be either keyboard-driven or
script-driven. This report includes descriptions of three variants of
the computer hardware, a description of the mathematical basis if
the training process, and a description with examples of the system
capabilities.

ii

CONTENTS

.. ABSTRACT . 11

INTRODUCTION 1

TRAINABLE MODE PROCESS DESCFUPTION . 4

TRAINABLE MODE MATHEMATICAL APPROACH 6
Surveillance Process . 6
Training Process . 6

HARDWARE DESCFUPTION . 14
ATRl Hardware . 16
ATR2Hardware . 19
ATR3 Hardware ... 22

SOFTWARE DESCRIPTION . 24
Mask Creation Program G . 24
TrainingProgramF . 24
Surveillance Program E . 26
ATRl SCSISoftware . 26

SYSTEMTESTS . 27

CONCLUSIONS . 34

REFERENCES . 35

APPENDIX A: EXAMPLE 1: Median Filter Testing A-1

APPENDIX B: EXAMPLE 2: Roads and Riverbanks B-1

APPENDIX C: EXAMPLE 3: Buried Waste Location C-1

APPENDIX D: EXAMPLE 4: Finding Airplanes D-1

APPENDIX E: EXAMPLE 5: Stack Shadows E-1

iii

........ , , . , ; ;. ;:-.
'I 5 .. ;

- <
s 7 ' ' . , < ..

I . , ,,. \.:,.... .. 1' : !

.

Automatic TLI Recognition
General Description

System,

INTRODUCTION

This report comprises three parts, printed in separate volumes. This part is a general
description of the automatic target recognition (ATR) system and gives some indication of its
capabilities. The second part' is a user's manual for people who do the hands-on image data
analysis, giving instructions on how to use this ATR system. The third p a d is a programmer's
manual for people who want to modify or expand the software. The software described here is
version 14 of programs E, F, and G, and version 7 of TSCSI.

The purpose of this task is to develop an Automatic Treaty-Limited Item Recognition
System or, in the jargon of the literature, an automatic target recognition system. This task was
started as part of the development of the Airborne Multisensor Pod System (AMPS), a
reconnaissance system that can be attached to and carried aloft by any of several aircraft. This
A M P S system includes several imaging sensors, such as a visible light camera, an infrared
imaging system, and a radar imaging system. Each scene of interest can be photographed by each
sensor, so we can have several different images of each scene. The several images can be
analyzed by a computer to determine the presence of previously specified objects of interest in
the scene. In this report, we will refer to these objects of interest as 'Yargets", not to imply that
we intend to shoot at them, but because of the established language in the technical c o m m ~ t y .
The development of this computer system, an automatic target recognition (ATR) system, is the
present task.

This task includes choosing and assembling the computer hardware, developing the ATR
algorithms, and developing software to implement the algorithms on the selected hardware.
Special requirements for this ATR system include image fision and uncertainty estimation.
"Image fusion" means that the ATR system must analyze the several images jointly to produce
a single, high-confidence statement of the presence of a target, as opposed to analyzing the
several images separately and producing several separate, lower-confidence, possibly
contradictory, indications of the presence of targets. "Uncertainty estimation'' means that the
ATR system must tell the user what confidence the user should have in the ATR system's report
of the presence or absence of targets. In addition, there are the common requirements for speed,
portability, and low cost of the ATR system.

This ATR system was designed specifically for the A M P S project, but it should be equally
applicable to other projects. This ATR system can work with any number of images per scene;
or, it can work with the most common and simple case of one single image per scene. This ATR
system was designed to scan a scene for the presence of traditional objects such as trucks, golf
balls, or airport runways. However, it can equally well fmd ''object"' or targets such as a
particular type of vegetation, a chemical spill, or some specific type of terrain. This ATR system
can be useful in automatically scanning any set of images for any type of target, assuming of
course that the target is in some way discernible in the images. The images do not need to be
images in the traditional sense of light intensity versus position in two dimensions; for this ATR
system; an image is any two-dimensional array of numeric values. This ATR system informs the
user of the importance of keeping each calculated feature used to discriminate between target and

1

background, and thus gives the user the option of improving efficiency by eliminating
unnecessary calculations and unnecessary sensors.

The following discussions often assume that the ATR system is used in a way that we will
call the trainable mode, which includes using the training process to be described shortly. It is
not necessary to use this training process or this trainable mode of operation; the system is quite
versatile and can be used with other approaches to target recognition and for general purpose
image manipulation and analysis.

The software described in this report uses the general appoach of splitting each image
among several parallel processors. We expect that a future report will describe a different
software system, in which no image is distributed among several nodes, but rather any one scene
is analyzed entirely by one node. This difference in philosophy has major implications for
system performance, as will be discussed later in this report.

Three hardware implementations of the system -- called ATRl, A T E , and ATFU -- have
been assembled and tested. Table 1 lists some properties of the three systems. Various parts of
Table 1 will be explained in different parts of this report. The Table 1 values for calculation
speed, memory, cost, etc. are for one daisy node, not for the whole array of parallel processor
nodes. The cost values include a pro-rated share of the cost of the mother board needed to
support the node.

The appendices give examples of tests and simple applications of this ATR system.
Appendix A gives a very simple example that illustrates the use of the system and demonstrates
basic concepts such as marking a scene for the training process. Appendix B is a very simple
example of image fusion. Appendix C illustrates the use of data that would not normally be
considered image data, in an unconventional application of image analysis, and it also shows that
reasonable results can be obtained with no expert knowledge of the application. Appendix D is
a more realistic but still rather small example of a target recognition application, and Appendix
E is a more complicated example.

2

Table 1: Properties of Daisy Nodes in the Three Hardware Systems.

system name ATRI

T805

30

20

ATR2

T9000

20

100

ATR3

Alpha 21066

166(233)

250

prpcessor type

clock speed [MHz]

nominal link speed [Mbits/second]

nominal link speed [Mbytes/second] 1.8 10 17

126 LINPAC nominal calculation speed [Mflops] 4.3 peak 10 peak
6 sustained

memory (RAM) [Mbytes] 4 16 16

approximate cost $1 080 $2000 $1 01 00

relative calculation speed
expected
measured

1 .oo
I .oo

2.33
2.18

29.3
21.7

relative calculation speed per cost
expected
measured

1 .oo
1 .oo

1.26
1.18

3.13
2.32

relative communication speed
expected
measured

1 .oo
1-00

5.55
1.99

9.44
0.76

setup time per message pair [microseconds] 225 180 1760

3

TRAINABLE MODE PROCESS DESCRIPTION

The trainable mode of using this ATR system is based on the assumption that targets can
be distinguished from background by a quantitative measurement of the presence of ZocaZ
features. The term "local" normally implies that the features are small enough to be defined
within a region that is small compared to the target, although the formalism does not impose any
limit on the size of the features (except of course that the features must be smaller than the whole
image). Examples of simple features are edges; lines; intensity averaged over a small region;
and, speckle intensity. More complicated features include run length; other descriptors of size
or shape of some region; and, local co-occurrence matrices. One could define as a local feature
something as complicated as a detailed image of a particular target object, but this would not be
a normal or easy use of the present formalism, and this use would not be covered by the usual
interpretation of the phrase "local feature".

The training process is required by this trainable mode requires a set of images, one image
from each imaging sensor, for each of several training scenes. The system will work with as few
as one training scene, but better results might be expected from the use of many, perhaps
hundreds, of training scenes. The set of training scenes must include some (at least one) targets
and some background. A knowledgable person must examine each training scene and, for each
scene, create a mask. The mask is a set of data with the format of an image (one byte per pixel,
for example), but with each pixel value being 2, 1, or 0 indicating whether that pixel is part of
a target, background, or unspecified region in the training scene. Thus, the entire set of training
data comprises several real images and one mask "image" for each of several - or possibly only
one - real world training scenes. Each training scene should contain either some target region
or some background region or both; a training scene which contains neither target nor background
is useless and should be discarded from the set of training data.

In addition to designating target and background regions in the training scenes, a skilled
operator must select an initial set of local features that might distinguish between the target and
background regions. If this operator-selected initial set of features does not include features that
can distinguish target from background, the ATR computer will still function, but the uncertainty
in target identification will be large, perhaps so large that the ATR system results will be useless.
If, on the other hand, the operator-selected initial set of features includes more features than are
necessary to distinguish target from background, no real harm is done. The ATR system will tell
the operator the importance of each feature so that the operator can, if he wishes, discard
unimportant features and make the final process more efficient. The only disadvantages of an
operator selecting too large a feature set initially are some computational inefficiency in the
training process (which is probably tolerable) and, in the extreme case, the inability of the
computer programs to handle so many features. (The formalism can in principle handle any
number of featues, but of course any particular computer program will be limited.) Thus,
although great skill is not essential in selecting the initial set of features, a clever choice can
make the ATR process much more efficient and effective.

One additional task of the operator is to select a value for the relative weighting of two
types of error. A type I error is the incorrect designation of a background region as a target by
the ATR system; in a type 2 error, a target is wrongly called background. The ATR system
could make either of these two error rates as small as desired, at the expense of making the other
error rate larger. We would like to make both error rates small simultaneously, but that may not
always be possible. The procedure used here is to form a weighted sum of the two error rates,
with weights W, and 1.0-W,, where 0 < W, < 1, and to minimize this weighted sum. The W,

4

value is the relative weight of type 1 errors; type 1 errors are considered more important if W,
is larger (closer to 1 than to 0).

The ATR training process takes as input (1) the training images and masks; (2) the
definitions of the operator-selected feature set; and, (3) the value of the type 1 error weight W,.
The training process then calculates values for coefficients, optimized to minimize the total
(weighted sum) error rate. These coefficients are used in the surveillance process, to be discussed
shortly. The training process also gives indications of the importance of each feature, and an
estimate of the total error rate. The training program does this training process for the complete
feature set specified by the operator, and also for the subset in which the least important of the
original features is removed, and also for the best subset of this subset, and so on for all
successive best subsets of features until the smallest subset is too small to allow a calculation
(usually, one feature). This allows the operator to select an efficient subset of features with an
acceptably low error rate, if such a subset exists. Or, in the worst case, the operator must
recognize that this ATR system, with the feature sets that he has tried, cannot distinguish his
targets fiom his background.

One product of the training process is the magnitude of the minimized total error rate.
This is used as the estimated uncertainty in the ATR system for this particular set of features and
coefficients, for this type of image data. This is a prediction of the fraction of pixels that will
be misclassified as Yarget'' or "background" in the surveillance process.

After an acceptable feature set is found, the coefficients for that feature set are used in
setting up the surveillance program part of the ATR system. Then, the set of images (no mask)
fiom any scene is input to the surveillance program, and the program tells whether there is a
target in the scene. This surveillance process does not require any special skill on the part of the
operator. Since this surveillance process takes multiple images as input and yields one single
result image as output, it accomplishes image datafision, the simultaneous analysis of several
input images to produce a single result.

5

TRAINABLE MODE MATHEMATICAL APPROACH

Surveillance Process

The surveillance process is used to scan large amounts of data with minimal expert
interaction. This process accepts as input a set of T images of one scene; the mathematical
approach allows T to be any value greater than 0. From the T scene images, we calculate F
feature images F,, where s is the scene number and f is the feature number, +1,2,...F. The user
decides the number of feature images F and the nature of each feature image. Each feature image
is simply an "image", a two-dimensional array of values in image format, that is calculated from '

the scene images by any methods that the analyst chooses. Thus, any single feature image might
be derived fiom a single scene image, fiom another feature image, or fiom any combination of
scene images and feature images. A raw scene image can be used as a feature image. The ATR
algorithm always adds one special feature image to the set, the feature image numbered f=O, in
which every pixel is 1 regardless of the content of the scene images. The user should not include
this, or any image in which all the pixels have the same value, as one of his F feature images.
Each feature image is multiplied by a coefficient C, whose value has been determined in a
training process, and these scaled feature images are then added to obtain a result image R, for
this scene s:

F

6 0
R, = C, F,, for each scene s.

This operation requires that all the feature images must be of the same size. If a pixel in the
result image R, has a value greater than the value Q determined fiom the training process, that
pixel is called a target pixel; otherwise, the pixel is called a background pixel. Thus, the result
image classifies every pixel in the scene as either target or background. This surveillance process
is very simple in principle, although the calculation of some of the feature images fiom the scene
images may be complicated in practice.

Training Process

The values of the coefficients C, and Q, which are used in the surveillance process, are
determined by a training process. This training process uses S training scenes, indexed s=l,2, ... S.
For each scene, there are T training images, indexed Fl,2,...Ty and one three-level mask image.
The mask pixel values are 2 for target regions, 1 for background regions, and 0 for unspecified
regions. These regions have been selected manually by some knowledgeable person. The T
training images are fiom T different sensors, so that all T training images contain different
information. The T training images are assumed to be in registration. Let Ts,t be the training
scene images, and let M, be the mask, for each scene s.

6

For each scene s, we extract F feature images F , , f=1,2, ... F, fiom the T scene images.
We define a result image R, for each training scene s:

R,
F

+O
= Cf F,, for each s=1,2 ,... S.

The feature image with index f equal to 0 does not exist explicitly, but is implicitly defined to
be an image in which each pixel has the value 1. It is mathematically advantageous to include
this image in the set of feature images. The coefficients C, are to be determined in this training
process. The C, are the same for all s. We would like to be able to choose values for the Cf to
make R, equal to M, in regions 1 and 2 (we don’t care about region 0), for every s. We do not
expect to be able to accomplish this exactly.

We use a least squares fitting procedure to make a first estimate of the coefficients C,
We find the C, values that minimize the sum of the squares of the weighted differences between
the result images and the mask images for regions 1 and 2, with the weight for each pixel being
inversely proportional to the number of pixels in that pixel’s region. That is, we minimize

S S Q =
S
c weight(s,i,j) R(i,j) - W(i,j)I2

s=l i j
sum over all region 1 + region 2 pixels

S
c R (i d - Ms(iYj)l2

s=l i j
sum over all region 1 pixels

S
+ e C R (i j) - MS(ij)I2 /Mz,o

s=l i,j
sum over all region 2 pixels

[31

where
indexes i j denote a particular pixel in the image. The minimization condition is

and M2,0 are simply the number of pixels in region 1 and region 2 respectively. The

7

or

for each g=0,1,2, ... F. [41

This represents F+l inhomogeneous linear equations in F+l unknowns, the C, for +0,1,2,...F.
These can be easily solved unless two (or more) of the feature images contain the same
information, in which case one (or more).of the redundant feature images should be deleted from
the set.

After these first estimate C, values are determined, we can calculate the R, and generate
two histograms, one for values of R pixels in region 1 and another for values of R pixels in
region 2, both summed over all s=1,2, ... S. The region 1 histogram should have a peak near the
pixel value 1 , and the region 2 histogram should have a peak near the pixel value 2. We would
like these two histograms to appear as well separated peaks, but in practice we expect that the
high end tail of the region 1 histogram will overlap the low end tail of the region 2 histogram.
We define a parameter Q such that, for any scene, we call a pixel a target pixel if its value in the
result image R is greater than Q, and we call the pixel a background pixel if its value in the
result image R is less than Q. The value of Q will of course be between 1 and 2, between the
positions of the two histogram peaks. We would like to be able to choose a Q value such that,
in the training scenes, every region 2 pixel is called a target pixel and every region 1 pixel is
called a background pixel. This is clearly impossible if the two histograms overlap, which
condition we expect in practice. In this case, for whatever value of Q we choose, there will be
some region 1 pixels with R values greater than Q, or there will be some region 2 pixels with
R values less than Q, or both. These pixels represent errors in identifying targets. A region 1
pixel with an R value greater than Q is incorrectly called a target pixel; this will be referred to
as a type 1 error. A region 2 pixel with an R value less than Q will be called a type 2 error.
Part of the purpose of the training process is to find the value of Q that minimizes the total error
probability.

8

We approximate the two histograms, after normalization, with two continuous distribution
functions (probability density functions) D, and D,. We define two error probabilities E, and E,,
representing type 1 and type 2 errors:

and

Q
E, = I D,(x) dx.

-00

We define a total error rate as

E = W, E, + W, E, 171

with W,+W,=l.O, where W, and W, are positive coefficients that have been selected previously
to indicate the relative importance of the two types of error. We now want to fmd the values of
Q and all the C, to minimize the total error E. We have first estimates of the C, values from the
least squares fitting procedure; our frst estimate of Q can be 1.5 (although there may be better
first estimates of Q). We adjust all these parameter values by an iterative minimization
procedure. It is necessary to impose two constraints while minimizing E: the mean values of
the two distributions must be constrained to be 1 and 2. We use the method of Lagrange
multipliers and minimize the quantity E + A, p, + h, I.L;! while pl=l and I.L;!=~, by adjusting the
values of C, and Q. h, and h, are the Lagrange multipliers, and p1 and I.L;! are the mean values
of D, and D,.

Let M be the number of moments needed to define D, or D,. If D, is the Gaussian
distribution, for example, M=2; D, is defined by the mean (moment 1) and the variance (moment
2 - [moment l]’), and thus by the first two moments. (For normalized distributions, the zeroth
moment is always 1. We do not count this as one of the defining moments.) Let
be the m-th moments (about zero) of the distributions D, and D,, for m=1,2, ... M. Note that &e
above p, and p2 are the same as M,,, and M2 ,. These moments are useful intermediate variables
in the minimization of E.

and M2

9

Let the C, and Q represent the current estimates of the coefficients as defined above, and
let Bf+C, and P+Q represent the optimum values of those coefficients. It is helpful to linearize
E by expanding in a Taylor's series about the current values:

E(P+Q,B+C) = E(Q,C) +

a 2E(Q,C)

+ higher order terms to be neglected

2

or, using p and q to represent the sets of P with B, and Q with C, respectively and using the
gradient operator Vq for simpler notation,

E(p+q) = E(@ + p *VqE(s) + (p -Vq)2E(q)/2 + h.0.t. [91

Then the minimization condition is

1 = Ml,,(P+s)

and

2 = M2,1(P+s).

More explicitly, equations 10-12 can be written as

10

. a2E a 2E a 2E a 2E

acoaco ac, aco ac,ac0 aQaco
BO + Bl + ... + BF + P

2E a 2E a 2E a 2E
BO + Bl + ... + BF + P

acoacl ac, ac, 3 W C l aQac ,

a 2E a 2E a 2E a 2E

acoac, ac1 acF ac,ac, a Q a C F
BO + Bl + ... + BF + P

a 2E a 2E a 2E a 2~

acoaQ ac iaQ a G a Q a Q a Q
+ ... + BF + P BO * Bl

a E

a Q
+ o + o = -

[13.0]

[13.1]

[13.F]

a M1,l a W , l a M1,l

a CO ac1 a CF
+ B, - + ... + B F - + 0 + 0 + 0 = l-M1,l [15.1] Bo -

11

Equations 11 and 12 can be written in the form of 15.1 and 15.2 because Ml,l and M2,1 are linear
functions of the CP In equations 13.0 through 15.2, E, M,, M2, and their derivatives are to be
evaluated at C, and Q. Equation 10, or equations 13.0 through 13.F, represents F+2 equations
in the F+4 unknowns P, Bf for l?=O,l, ... F, A,, and &. Equations 11 and 12, or 15.1 and 15.2,
represent two more equations in the same unknowns. This set of linear equations can be solved
to get values for the Bf and P, which can then be used as corrections to the values of the C, and
Q. This process can be repeated, presumably with the corrections B, and P becoming smaller
with successive iterations until the values of C, and Q converge. These converged values
represent the values that are optimal in the sense that they minimize the total error E.

It is convenient to use the chain rule with the moments as intermediate variables in
evaluating the derivatives in equations 10-15:

a E aE1 a E2
WI - + w2 - for 2 = any C, or Q [I61 - =

az az aZ

a El - = -Dl(Q)
a Q

[181

c19.11

[19.21

12

In this formalism, D, and D,, their derivatives, and the integrals of these distribution functions
and their derivatives, which appear in equations 17 - 21, all depend on the particular functional
form chosen for the distribution functions that represent the histograms. The moments and their
derivatives are independent of this choice of functional form:

M1,o =
S
c e 1 1

s=l i j
1221

The indexes i and j denote the i-th column and the j-th row in an image. The sum over i j is to
be taken over all the region 1 pixels for Ml,,, or all region 2 pixels for MZm. Ml,o and M2,0 are
simply the number of pixels in all the training scenes in regions 1 and 2 respectively. The higher
moments are normalized using these zeroth moments:

M1,l =

Ml,, =

r241

and so on for the higher moments through m=M, with the obvious analogs for the region 2
moments. Note that these moments are taken about 0, not about the mean.

In practice, we need to go through all the feature images one time and calculate the sums
that appear in braces { 1 in equations 22-24, and then we no longer need to access the images.
It is important to access the images as infrequently and as efficiently as possible, because reading
the images can represent a significant part of the time consumption in executing the program.

13

HARDWARE DESCRIPTION

The basic hardware concept for the ATR systems is the use of parallel processors. The
three hardware systems discussed in this report - ATRl, ATR2, and ATR3 - are all variants of
the general arrangement indicated in Figure 1.

common
peripherals
(diskette, L- printer)

I operator’s
console
(monitor,
keyboard)

optional g+ optional
special
devices

Figure 1: General ATR hardware diagram.

Parallel processor systems like the ATR systems comprise several, perhaps many, nodes.
Each node includes one main central processor, and perhaps other devices such as memory and
peripheral device interface hardware. In the ATR type of system, each node has its own memory;
there is no shared memory, memory that ispccessible by any of several processors. The ATR
system nodes all exchange data via serial links, each of which is a two-way communication
channel.

As is typical of parallel processor systems, each of the ATR systems has a host node,
which we name HOST. The host node is a typical small computer, with the added feature that

14

it has hardware and software that allow it to communicate with the rest of the parallel processor
network. This host is the interface between the user and the parallel processor network; that is,
it supplies an operator’s console, a keyboard and a monitor. The host may also supply common
peripheral devices, such as a diskette drive and a printer. In some of the ATR systems, the host
also provides the essential high-capacity mass storage device, a mass data inpudoutput device,
and a high-resolution video monitor (separate from the operator’s console monitor). The host
function of allowing the parallel processor network to communicate with the operator and with
data storage and inpudoutput devices is referred to as a sewer function, and the program that runs
on the host computer to communicate with the network is called a server program. For the ATR
system, efficiency of the server function requires a fast data bus but does not require any
significant computation power. Thus, the ATR system does not require a computationally
powerful computer as a host. Prospective purchasers of parallel processor systems similar to
those described here should be aware that hardware and software exists to allow any of a wide
variety of computers to be used as hosts for any of the parallel processor networks described here.

In the ATR systems, only one parallel processor node is directly connected to the host.
This node is called the root node. Connected to the root node is a daisy chain of nodes called
daisies (not a standard term). With this simple linear configuration, the calculation speed of the
system can easily be increased by simply adding more nodes to the end of the chain. Adding
more nodes also increases the total memory of the system, since each node has its own memory.
This arrangement allows the user to easily tailor the ATR hardware system to suit his own
calculation speed requirements and budget constraints. In ATRl and A T E , the root node is
named ROOT, and the daisies are nanied DAISY 1, DAISY 2, etc. In ATR3, because of the way
the nodes are used, no node is named ROOT; the root node is DAISY 1.

Each of the ATR systems includes a high-resolution RGB monitor for displaying images,
separate from the standard operator’s console monitor. In ATRl, there is a special node that is
an interface between the parallel processor network and the RGB monitor. In ATR2, the root
node includes display interface hardware. In ATR3, the RGB monitor is a peripheral device on
the host computer. ATRl also has another special node, an interface between the parallel
processor network and a SCSI bus which can be connected to mass storage devices such as a disk
or a tape drive. The purpose of the special nodes is to allow large amounts of data to move
between the parallel processors and the RGB monitor or the mass storage devices without the
potential bottleneck of a relatively slow host computer bus.

The three existing ATR networks are diagrammed in Figures 2,4, and 6, in which each
node is represented by a box with a double-line border, with the node name near the bottom left
of the box. The name in parentheses at the bottom left of each node box indicates the program
that m s on that node, as described in the software documentation. These three systems are
described separately in the following sections.

15

ATRl Hardware

In ATRl, the root node and the 10 daisy nodes are CTRAMs (plug-in Computation
TRAnsputer Modules), each with an N O S T805 transputer (see Reference 3) running at 30
M H z and 4 Mbyte of memory. A transputer is a computer processor designed to work well with
other transputers in a parallel processing system. Each transputer includes its own logical and
numerical processors, a limited amount of fast (on-chip) memory, and four serial links to allow
communication with other transputers or other devices. Each CTRAM link transmits data at
about 1.8 Mbytelsecond in either direction. In addition to the CTRAMs, ATRl includes two
special purpose nodes, one to interface with the high-resolution RGB monitor and the other to
interface with a SCSI bus which gives access to mass storage devices, an Exabyte 8mm tape drive
and a 1 Gbyte disk. Each of the two special nodes includes a transputer, and each lu~ls a special
program appropriate to its peripheral interface function. These two special nodes are used to
avoid the potential bottleneck of the host computer bus when transferring large amounts of data
to the mass storage and display devices. The host computer is an IBM compatible system with
an Intel 80486DX processor operating at 33MHz, an ISA bus, an 80 Mbyte hard disk, diskette
drives, keyboard, and monitor. The parallel processor nodes are mounted on two expansion
boards, transputer mother boards, in the host computer, with the 10 physically small daisy nodes
on one board and the other 3 larger nodes on the other board. The SCSI disk and tape drives are
external, but could be mounted in the main computer case in future systems.

The checkfmtest software gives a listing indicating some transputer characteristics and
network connections for ATRl, which is augmented here with the names of the nodes:

check 2.52 mtest 2.52
Part rate Mb Bt [Link0 Link1 Link2 Link3 3
0 T805d-30 1 .36 0 [HOST ... 1:l 2 : l 3
1 T805d-25 1 . 7 9 1 [... 0:2 3 : l . .. 1
2 T805d-30 1 . 8 0 1 [... 0:3 4 : l ... 3

4 T805d-30 1 . 7 7 1 [... 2:2 5 : l ... 1
5 T805d-30 1 . 7 7 1 [... 4:2 6 : l ...]
6 T805d-30 1 . 7 7 1 [- - . 5:2 7:1 ... 1
7 T805d-30 1 . 7 7 1 [... 6:2 8 : l ... 3
8 T805d-30 1 .77 1 [... 7:2 9:l ... 3
9 T805d-30 1 .80 1 [... 8:2 1O:l ... 1

1 0 T805d-30 1 . 7 7 1 [... 9:2 11:l ... 3
11 T805d-30 1 . 7 7 1 [... 10:2 1 2 : l ... 3

3 T425b-25 1 . 7 5 1 [. . . 1:2 3

12 T805d-30 1 . 8 0 1 [... 11:2 * . 3

RAM, cycle
4K, 1+4096K, 3 ;
4K, 1+2048K, 4 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;
4K, 1+4096K, 3 ;

ROOT
VIDEO
DAISY 1
SCSI
DAISY 2
DAISY 3
DAISY 4
DAISY 5
DAISY 6
DAISY 7
DAISY 8
DAISY 9
DAISY 10

This list includes one line for each node except the host. The line including "DAISY 8", for
example, indicates that the node that we call DAISY 8 was labeled number 10 by the check
program, the processor is a T805 transputer running at 30 MHz, 1.77 Mbytelsecond are
transferred along link number 1 which is the boot link for this node, this node's link 1 is
connected to node 9 link 2, this node's link 2 is connected to node 11 link 1, and this node has
4 kbytes of 1-cycle memory and 4096 kbytes of 3-cycle memory.

This ATRl system (as well as ATR2 and ATR3) should work with a larger number of
daisy nodes, and in fact this system has been used with 20 instead of 10 daisy nodes. However,
the 20-daisy system did not work reliably, because of inadequate cooling air flow.

Figure 2 is a diagram of the ATRl network, with each node represented as a double-line
rectangle. Each node except the host is a TRAM (TRAnsputer Module) that plugs into a personal
computer expansion board (transputer mother board, TRAM holder) in the host personal

1 6

computer. LO, L1, L2, and L3 indicate link connections 0, 1,2, and 3. In Figure 3 the two large
rectangles represent two transputer mother boards and the double lines within the large rectangles
represent jumpers.

monitor
n

DAISY 1
(SLAVE) L1

LZ
INMOS T805 transputer,
3 0 MHz.
4 Mbyte RAM.

I

Intel 80486DX, 33MHz.
80 Mbyte disk.
5.2511 diskette.
3 -5" diskette.
2 Gbyte disk. '

8 Mbyte RAM.

(server)

DAISY 10 II (SLAVE) L1

I
L3

INMOS T805 transputer,
30 MHz.

4 Mbyte RAM.

LO

ROOT
(MASTER) L2

I

I

INMOS T805 transputer,
30 MHz.
4 Mbyte RAM.

DAISY 2
(SLAVE)

keyboard

INMOS T805 transputer,
30 MHz.
4 Mbyte RAM.

Transtech TTG3 video optional

INMOS T425 transputer, SCSI disk SCSI - drive, -
4 Mbyte RAM. bus 1 Gbyte bus

2 5 MHz.

Figure 2: ATRl parallel processor network.

tape
drive,
Exabyte

17

I

~

Alta Technology SuperLink/XL

DN 53

ss

SlOtO- Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 slot8 slot9
jmpr VIDEO jmpr SCSI ROOT
1=2--1 2-1-2-1 2 - - 1 2 - 1 2 - 1 2 - 1 2-1 2 - 1 2 -
0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3

I I I I 1 1 1 I 1 I (1 1 I 1 1 1 I 1 I I 1 1

P3 Configuration Array
c I 1

I 1 I 1 1 1 I 1 1 1 1 1 I I I I

1
I 1 1 1 1 II

Conf
52 0 1 2 3 -

,

I ! 52

I €Iost
P5 Dual Row Header

1 Host T222

I I ' IHost Interface, ISA bus address hex150 I

I I r i ~~

I konf I

P5 Dual Row Header
I

Figure 3: ATRl transputer mother board connections.

SlOtO- Slot1
DAISY DAISY
1 2--1 2 - 1
0 3 0 3

18

Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 slot8 slot9
DAISY DAISY DAISY DAISY DAISY DAISY DAISY DAISY

2 - 1 2 1 2 - 1 2 - 1 2 - 1 2 - 1 2 - 1 2
0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3

,-,-. --.
7 .

% . , ..

P3 Configuration Array

ATR2 Hardware

In ATR2, each of the 3 daisy nodes uses a T9000 transputer (see Reference 4) running
at 20 MHz, with 8 Mbyte of memory. The root node was designed as a video interface node and
includes a T9000 transputer and 4 Mbyte of DRAM along with additional memory and processors
for video display. The root node serves as both the master node and as a high-speed video
interface. The T9000 transputers in A T E are the gamma E03 release with known disadvantages
compared to the intended final production version, the most notable of which is the clock speed
of 20 MHz instead of the originally intended 50 MHz. The link speeds in A T E are set to 100
Mbit/second, which implies a one-way data transfer rate of about 10 Mbyte/second. The parallel
processor nodes are HTRAMs, which mount no more than 2 on each PC expansion board
(HTRAM mother board). In A T E , the host system disk is also used as the primary mass storage
device, so bulk data transfers must go through the host ISA bus, but this is not believed to be a
significant bottleneck in this case. A SCSI interface allows access to an external tape drive and
other mass data transfer devices.

The annotated listing from the t9spy software indicates the network connections, the
names and types of the nodes, and the software that runs on each node:

---------------- TgSpY -------------_
IDevice /Link O(Link llLink 2lLink 3; node node program

(0:T9000f EDGE I I 1: 1 I f QT9D ROOT MASTER+VIDEO
1:T9000 0: 2 I 2: 1 I B927 DAISY 1 SLAVE
/2:T9000/ 1 1: 2 f 3: 1 1 f B927 DAISY 2 SLAVE
13:T9000(.... I 2: 2 1 f I B927 DAISY 3 SLAVE

type name .

.

Figure 4 is a diagram of the A T E network, and Figure 5 indicates the connections on
and between the personal computer expansion boards (B 108 HTRAM mother boards) that support
the HTRAM nodes. The LO, L1, and L2 symbols in Figure 4 designate link connectors, and the
mother board jumpers required are shown as double lines in Figure 5.

19

Intel 80586, 90 MHz.
520 Mbyte disk. link
3.5" diskette.
5.25"diskette.
16 Mbyte RAM.

(server)

Figure 4: A T E parallel processor network.

QT9D display interface. L2
INMOS T9000 transputer,

20 MHZ.
4 Mbyte DRAM, 2 Mbyte VRAM. coax

RGB monitor
LO cables

ROOT
(MASTER, VIDEO)

20

iTR2 main chassis

cupJ.
Cdn-
Rim

Rot-

D 3-
D 2-
D 1-
D 0-

I108 HTRAM mother board

1108 HTRAM mother board

SW1 = off (H) on on off
I 1 - 1

FPGA ClOl ClOl

I

I I I
I

I
I

cup cdn cup cdn
SLOT 0 SLOT 1
ROOT DAISY 1 - Reset - Reset

0 1 3 2 0 1 3 2
1

Differential
Buffers

SLOT 0 SLOT 1
DAISY 2 DAISY 3

Reset Reset

D O-- -----_------
all jumpers = outside

bus, address hex280 (not used)

Figure 5: ATR2 transputer mother board connections.

21

ATR3 Hardware

The ATR3 host computer is a DEC 2000 Model 300 AXP. A VT510 monochrome
monitor and keyboard, connected to a serial port, are used as the operator’s console. With the
ATR software in its normal mode, the high-resolution RGB monitor is used solely for displaying
the images being processed. When the ATR software is being debugged with TCP/IP support,
the RGB monitor is used with the second keyboard and the mouse to manipulate and observe the
parallel processor nodes.

Each ATR3 parallel processor node is an Alta Technology ALN66 which includes a DEC
Alpha 21066 processor and 16 Mbyte of memory. Each node also includes a T425 transputer
to facilitate inter-node communication and control operations such as booting the network, but
the transputer’s operation is transparent and the user does not need to explicitly address it. The
nodes can communicate via the standard four 20 Mbitkecond (about 1.8 Mbytekecond in either
direction) transputer links, or T-links, and also via four 250 Mbidsecond (17 Mbytekecond) A-
links. The parallel processor nodes can be accessed using the TCP/IP model, in which case each
node’s T-links 2 and 3, and one host T-link, are used by the system and are not available
explicitly to the user; the other T-links and the A-links are available at the user’s discretion. This
TCP/IP access is very useful for debugging the software that runs on the parallel processor nodes,
as it allows each node to be monitored in a separate window of the user’s display. The parallel
processor network can also be used, more simply and efficiently, without TCP/IP support, in
which case all the links are at the user’s disposal. (T-links cannot be connected to A-links.) The
parallel processor nodes are mounted in a VME chassis, separate from the host. The ATR3
vendor recommends leaving one or two vacant slots between nodes in the VME chassis.

For historical reasons, three of the five nodes in this particular system have a clock speed
of 166 MHz, and two run at 233 MHz. The current version of the ATR software cannot allocate
computation tasks to the nodes differently depending on their different speeds. Therefore, the
system speeds that are discussed later are determined by the speed of the 166 MHz nodes. A
system using exclusively 233 MHz nodes would presumably be proportionately faster.

The ATR3 architecture would allow using several links in parallel; for example, we could
communicate one message via the A2 and A3 links and another message via the A0 and A1 links
at the same time, and thereby double the potential inter-node data transfer rate. However, this
would substantially complicate the inter-node communication part of the ATR software, and the
overall ATR software is such that it could not significantly benefit from the additional parallel
links. ATR3 normally uses the A0 and A1 links for inter-node communication.

The check software prints the following information about the network, indicating the T-
link but not the A-link connections:

Using /dev/hsil2 check 2.52
Part rate Mb Bt [Link0 Link1 Link2 Link3 3
0 T425c-25 1.65 2 [1:l ... HOST 1:2 1
1 T425c-25 1.75 1 [2:l 0:O 0:3 2:2 3
2 T425c-25 1.74 1 [3 : l 1:0 1:3 3:2]
3 T425c-25 1.75 1 [4:l 2:O 2:3 4:2]
4 T425c-25 1.74 1 [.. . 3:O 3 : 3 ... 3

Figure 6 is a diagram of the ATR3 network. In this figure, TO, T1, T2, and T3 are T-link
connectors, and AO, Al, A2, and A3 are A-link connectors. The UP and DOWN connections
are always required for system operation.

22

keyboard u

1 1 1 1 -

Alta AL/V66. T3 TO A0 A2
DEC Alpha 21066,
233 MHz.
16 Mbyte RAM.

DAISY 5
(SLAVE) T2 T1 Al A3

Alta AL/V66. T3 TO A0 A2
DEC Alpha 21066,
233 MHz.
16 Mbyte RAM.

DAISY 4
(SLAVE) T2 TI. Al A3

166 MHz.
16 Mbyte RAM.

T2 T1 Al -- A3 II DAISY 3
(SLAVE)

I I

Alta AL/V66. T3 TO A0 A2
DEC Alpha 21066,
166 MHz.
16 Mbyte RAM.

DAISY 2
(SLAVE) T2 T1 A1 A3

I I I I

I I I I
Alta AL/V66. T3 TO A0 A2
DEC Alpha 21066,
166 MHz.
16 Mbvte RAM.

T2 T1 Al A3
DAISY 1
(SLAVE)

I

DEC 2000 AXP 300. TO
DEC Alpha 21064,

150 MHz.
32 Mbyte RAM.

3.5" diskette.
CD-ROM. -
HOST
(MASTER) DNO

I L SCSI bus (optional tape drive, disk drive, etc.)
keyboard ThinWire Ethernet

optional printer

Figure 6: ATR3 parallel processor network.

23

SOFTWARE DESCRIPTION

There are three programs, called E, F, and G. The three programs have many functions
in common, but they also have some differences associated with the different operations they
perform. The ATRl system also includes the program TSCSI for manipulating the devices
attached to the SCSI interface node. The user’s manual’ lists the user functions currently
included in the ATR software.

A fundamental aspect of the current ATR software is that each image in memory is
divided among the several daisies (slave nodes). This has important implications in terms of the
speeds of the three hardware systems, which will be discussed later. A new version of the ATR
software will be developed, in which images will not be distributed among several nodes. This
new version will be described in a separate report later.

Mask Creation Program G

Program G is an interactive (keyboard-driven) program which can be used as a general
purpose image manipulation program and also as a tool to create masks that are needed in the
trainable mode of this ATR system. For each training scene, a skilled operator must create a
mask that indicates which parts of the scene are targets, which parts are background, and which
parts are not designated as either target or background regions. The program G is a tool to help
the operator do this task. G can read a scene image fiom a file specified by the operator, and
display the image on the screen. The operator can then use a cursor to draw polygons on the
image and can designate the areas inside of each polygon to be whichever region (target,
background, or unspecified) he wishes. Regions not marked by the operator are left as

, “unspecified”. G creates a mask, an image that contains the operator’s designations, and saves
the mask to the file of the operator’s choice. The original scene image file is not changed. The
training program F later reads the mask file along with the scene image files. Program G is
interactive in that it takes commands one at a time fiom the keyboard, not from a script file as
do programs F and E.

Training Program F

The training processes is implemented in program F. (For general purpose, script-driven
image manipulation applications, program E is better than program F.) The training program F
calculates feature images according to an operator-supplied list of instructions (a script file), and
finds the optimum values of coefficients to be used with these features in the surveillance
program E.

Feature calculation typically starts with scene images and calculates several feature
images. This may involve arithmetic or logical operations on a pixel-by-pixel basis; convolution
in two dimensions with a template that is typically much smaller than the scene image;
morphological operations; local order sorting operations, such as are done in a median filter; local
co-occurrence matrix calculation; and others, limited only by the imagination of the operator.
Of course, a given computer program can implement only a finite number of operations. The
operations currently available in this F program are listed in the user’s manual’. These built-in
operations can of course be combined to form very complicated feature calculation procedures.
The software can be expanded reasonably easily to incorporate additional operations, if that
should become necessary.

24

c_ .“_I_.- -.

Program F calculates the optimum values of the coefficients for the complete operator-
specified feature set and for certain feature subsets. It will often happen that a substantially
smaller subset will give error rates that are essentially the same as the error rate for the full
original feature set. It is important to know this, because efficiency of the surveillance process
(the analysis of images in the field) is greater for smaller feature sets. Therefore, the F program
is arranged to look for optimal feature subsets. For each case, F calculates the optimal coefficient
value for each included feature, and F also calculates the importance of keeping each feature
included in that case. Then, a new case is formed by deleting the least important feature from
the old set. This process of forming successively smaller subsets by deleting one feature at a
time does, in effect, yield a graph of total error rate versus number of features, like the example
in Figure 7. The operator can then see how many features he must include in the surveillance
process to attain the desired error rate, and he can judge the trade-off between increased error rate
and increased number of features.

Figure 7: Typical example of total (weighted sum) error rate
versus number of features. The optimization calculation tried
several times, with slightly different resulting error rates, for some
numbers of features; this is apparent from the double points plotted
for 36 and 37 features.

For each case, the optimum coefficient values are determined by minimisr,ing. the total error
rate. Program F does this minimization by using a linear approximation of the non-linear
equations. As is usually the case in this type of calculation, it is possible that the process will
not find the desired absolute minimum in the error rate, but will converge to a substantially

25

different relative minimum point. Sometimes this is evidenced by a smaller subset of included
features giving a smaller error rate than a larger, previously calculated feature set. When this
occurs, program F uses the coefficient values from the smaller subset, smaller error rate case as
a first guess and restarts with the full original set of features included. This procedure sometimes
leads to the discovery of optimal points with error rate minima that are substantially smaller than
those associated with the fxst-indicated optimal point for a given number of featues.

Surveillance Program E

Program E is a general-purpose, script-driven image manipulation program, and the script
can be arranged to use program E in the trainable mode of this ATR system in which the
optimized coefficients from program F are used. In the trainable mode, the surveillance program
E is used in the field to analyze a set of scene images (no mask) and report on whether there is
a target present in the scene. Program E uses the values of the coefficients determined by
program F. Program E inputs scene images and normally creates a result image. If the value
of any pixel in the result image is greater than Q, a value supplied by the training program F, that
pixel is interpreted as an indication of the presence of a target. The result image can be written
to a disk file with the Q value embedded in the file so that the image can be displayed later with
obvious indications of any targets that may be present, and of course the result image can be
displayed on the monitor immediately when it is calculated. Program E takes commands from
a script file, not from the keyboard.

ATRl SCSI Software

In the ATRl system, a SCSI bus is interfaced directly to the transputer network, not to
the host computer. One result of this is that the SCSI devices (disk drive. and tape drive) are not
controlled by the host DOS operating system. In this ATR application, separate file handling
software is used for the SCSI devices. The SCSI disk may be used by programs E and F and
G very much as if it were a DOS disk, for reading image files. A separate program, TSCSI, was
written to allow other types of access to the SCSI devices. This program allows such operations
as copying files to and from the SCSI devices, reading disk directories, deleting files, TAR file
extraction, and certain diagnostic operations, listed in the user's manual'. Program TSCSI takes
commands from the keyboard.

26

SYSTEM TESTS

The three programs E, F, and G have been verified as being functional on all three ATR
hardware systems.

An important aspect of this ATR systems is its speed, primarily the speed of the parallel
processor network. We have done direct measurements of speeds for certain typical image
analysis operations, and we have compared the three ATR systems which use essentially the same
software on different hardware systems. The results of the measurements reported here are in
some cases different from similar measurements reported earlier, primarily because of
improvements in the ATR3 system software and also because of changes in our own sohare.
For these timing measurements, ATR3 was used with only 3 daisy nodes, run at 166 MHz, to
make it more directly comparable with the three-node ATR2 system. The times quoted here were
measured with the echo turned off, using images with 512 columns by 480 rows of pixels. Some
explanation of these times follows:

COMMND, comments
ATRl seconds ATR2 seconds ATR3 seconds

This is the format for the following entries. The command, capitalized, and a comment
in italics are in the first line; the execution times for each of the three hardware systems, in
seconds, are in the second line; discussion is in following lines. The k values given with the
times are not statistical uncertainties; they are absolute limits on the accuracy of the time
measurements, imposed by the limited resolution of the accessible clock.

;remark; remark with leading semicolon
0.0001 < 0.0001 0.0001

This is the time required for the master to read a command from the feature calculation
file (script file) and dispose of it without any attempt at command interpretation. The times listed
here are for a remark of minimal length, ";" with no real remark text. These times are strongly
afYected by the time required to read a line of ASCII characters from a disk file; the times will
be greater for longer remarks.

REM, remark without echo
0.0003 k 0.0001 0.0001 k 0.0001 < 0.0001

This is the time required for the master to read a command from the feature calculation
file and do minimal command interpretation. Command interpretation times are different for
different commands and they are generally greater for greater numbers of parameters. The time
will of course increase if the echo is turned on. The times listed here are for a remark of
minimal length, "REM" with no real remark text.

SET-AB, set scale factors
0.0076 k 0.0001 0.0031 k 0.0001 0.0003 k 0.0001

The master sets the values of two variables in a table in the mater program, without
interacting with the slaves.

27

CLEAR, clear memory, with no memory de-allocation
0.0019 f 0.0001 0.0008 f 0.0001 0.0017 f 0.0001

The master writes values to a table in memory and sends a short message to all the slaves
(daisy chain nodes), so this example includes minimal one-way master-to-slave communication.
Each slave also writes a table in its own memory and, if images or kernels (operators) are
defined, fiees those memory blocks. No memory de-allocation was done in this test.

READI: wait until slaves are finished, with slaves not busy
0.0019 f 0.0001 0.0004 f 0.0001 0.0059 f 0.0001

The master sends a short message to all the slaves. Each slave responds separately, and
the master waits for all the slaves to respond. Thus, this command involves brief two-way
communication between master and slave, with essentially no other operation.

For the three commands SET-AB, CLEAR, and READY, the ATR3 times are in the
order expected when inter-node communication time dominates calculation time. For ATRl and
A T E , the SET-AB command apparently requires more time to do less than the CLEAR and
READY commands. This is believed to be because the SET-AB command requires a function
call with three parameters, whereas the other two commands use function calls with no
parameters. Times being dominated by calculation rather than communication would also account
for the CLEAR time being greater than the READY time for A T E .

D E F m m , deJine a kernel (operator)
0.0132 f 0.0001 0.0048 f 0.0001 0.0100 f 0.0001

This operation allocates memory for a local convolution type of kernel (operator), with
the whole kernel being stored in each slave’s memory. This operation does not set the values of
the kernel. The master sends a short message to all the slaves, and writes a few values to a table
in memory. Each slave writes a few values to memory, allocates a memory block, and sends a
short message back to the master. If the kernel was already defmed, the slave also de-allocates
the old memory block; this de-allocation was done in this test.

DEFIMG, decfine an image, with no overlap rows

DEFIMG, define an image, with I O overlap rows
0.0114 k 0.0001

0.0115 f 0.0001

0.0040 f 0.0001

0.0040 f 0.0001

0.0098 k 0.0001

0.0098 f 0.0001
This operation allocates memory for an image, with different parts of the image being

stored in different slave’s memories. This operation does not set any pixel values in memory.
The master sends a short message to all the slaves and writes a few values to a table in memory.
Each slave calculates which part of the image it should store in its own memory, allocates a
memory block, and sends a short message to the master. If the image was already defined, as
it was in this test, the slave also de-allocates the old memory block. Unlike an earlier version
of this software, no significant difference in time is expected when the number of overlap rows
is changed. This DEFIMG operation sends slightly shorter inter-node messages than the
DEFKERN operation.

28

ZEROIMAGE, zero an image, with no overlap rows
0.0250 2 0.0010 0.0580 f 0.0010

calcs=l.44

0.0640 f 0.0010

0.124 f 0.001
calcs=l .16

0.117 f 0.001
calcs=l.40

ZEROIMAGE, zero an image, with 10 overlap rows

ADD, add two images
0.0350 k 0.0010

0.043 f 0.001

MUL, multiply two images
0.049 k 0.001

On/: divide two images
0.239 +, 0.001

0.0045 k 0.0005
calcs=l8.52

0.0045 k 0.0005

0.038 f 0.001
calcs=3.77

0.038 f 0.001
calcs4.30

0.351 k 0.001
calcs=2.27 calcs=12.07

0.066 k 0.001

SQRT, square root of an image
0.288 +, 0.001 0.286 k 0.001 0.080 f 0.001

calcs=3.36 calcs=12.00
ABS, absolute value of an image

0.105 f 0.001 0.159 k 0.001 0.014 k 0.001
calcs=2.20 calcs=25.00

WXCON, clip low end values of an image, if all pixels are clipped
0.055 k 0.001 0.134 3- 0.001 0.014 f 0.001

calcs=1.37 calcs=l3.10
WXCON, clip low end values of an image, if no pixels are clipped

0.052 f 0.001 0.119 3- 0.001 0.014 f 0.001
calcs=l.46 calcs=12.38

ADDCON, add a constant to an image
0.037 f 0.001 0.096 k 0.001 0.012 f 0.001

calcs=l.28 calcs=10.28
MULCOfl multiply an image by a constant

0.042 k 0.001 0.104 3- 0.001 0.012 f 0.001
calcs=l.34 calcs=ll.67

DIVCON, divide an image by a constant
0.044 2 0.001 0.120 3- 0.001 0.012 k 0.001

calcs=l.22 calcs=12.22
For each of these simple arithmetic image manipulation operations, the master sends a

short message to all the slaves. Each slave does the indicated pixel-by-pixel operation for its part
of the specified images. There is no inter-slave communication. The bulk of the time is for the
actual image manipulation. These times should be inversely proportional to the number of slave
nodes, except for the ZEROIMAGE operation with overlap rows.

29

CONVOLVE, correlate an image with a kernel (operator), for a 5x5 pixel kernel
1.56 f 0.01 3.09 f 0.01 0.30 f 0.01

calcs=l.68 calcs=l7.33
The master sends a short message to all the slaves. Each slave does the convolution

calculation directly (no Fourier transform) for its part of the image. This operation normally
must be preceded by the OVERLAP operation to set the values of the pixels in the overlap rows.
This time should be inversely proportional to the number of slave nodes and roughly proportional
to the size of the kernel domain.

SSQ, local sum of squares, for 5x5pixel kernel
1.97 f 0.01 3.43 f 0.01 0.37 f 0.01

calcs=1.91 calc~17.75
The master sends a short message to all the slaves. Each slave calculates a weighted sum

of squares of values of the pixels in the local region indicated by the domain of the specified
kernel, with weights equal to the kernel values. This operation normally must be preceded by
the OWRLAP operation to set the values of the pixels in the overlap rows. This time should
be inversely proportional to the number of slave nodes and roughly proportional to the size of
the kernel domain.

OVERLAP, set pixel values in overlap rows, for 2 overlap rows
0.0169 f 0.0001 0.0076 k 0.0001 0.0300 f 0.0010

comms=2.22 comms=O. 56
OVERLAP, set pixel values in overlap rows, for 10 overlap rows

0.0604 k 0.0001 0.0303 f 0.0001 0.0800 f 0.0010
comms=l.99 comms=0.755

The master sends a short message to all the slaves. The slaves exchange the values of
the pixels in the overlap rows; thus, there is a lot of inter-slave communication, with one long
message in each direction for each overlap row. This time is expected to be roughly proportional
to the number of overlap rows and independent of the number of slave nodes.

S M T . ' . smooth in X direction, for 5 passes
0.720 L- 0.010 1.140 f 0.010 0.105 f 0.001

calcs=2.11 calcs=22.86
The master does a short calculation and sends a short message to all the slaves. Each

slave smooths its own part of the indicated image without communication with other slaves. The
smoothing function is more Gaussian for more passes, with 5 passes being a good approximation
to a real Gaussian and 1 pass having a sharp cusp in the smoothing function. The time is
proportional to the number of passes and inversely proportional to the number of slave nodes.

SMTm smooth in Y direction, for 5 passes
1.87 f 0.01 2.08 f 0.01 9.10 k 0.10

This is like SMTHX, X direction smoothing, except that this Y direction smoothing
requires significant inter-slave communication. Two short messages per image column per pass
are sent by each slave. This time should be roughly inversely proportional to the number of slave
nodes only if the calculation time dominates the communication time. The disproportionately
long time required by ATR3 for this operation is believed to be due to communication overhead.

30

MEDIAN, two-dimensional median $her, for a 21-pixel window
11.7 k 0.1 17.9 k 0.1 1.8 k 0.1

calcs=2.18 calcs=2 1.67
The master sends a short message to all the slaves. Each slave does the calculation for

its part of the image without inter-slave communication. This operation normally must be
preceded by the OVERLAP operation to set the values of the pixels in the overlap rows. This
time should be inversely proportional to the number of slave nodes.

WDERSAMPLE, decimate (undersample) an image, for decimation by a factor of 2 in each
direction with a pre-defined destination image

0.019 k 0.001 0.114 k 0.001 0.010 k 0.001
calcs=o.555 calcs=6.33

The master sends a short message to all the slaves. If the destination image is not already
defined, this operation defines it; in this test, the destination image was already defined. This
time should be inversely proportional to the number of slave nodes. For unknown reasons, ATR2
seems to have an anomalously low speed for this operation.

SCALE, scale an image
0.175 k 0.001 0.354 f 0.001 0.037 k 0.001

The master sends a short message to all the slaves. Each slave scans its part of the
specified image for the maximum value, and then the slaves daisy-chain communicate the
maximum value to the master. The master then sends a short message to all the slaves, and each
slave multiplies its part of the image by a constant. Thus, there is some master-slave and inter-
slave communication involved in this scaling operation. This time should be approximately
inversely proportional to the number of slave nodes.

READIMAGE, read an image
1.50 4 0.10 1.10 4 0.10 1-00 f 0.10

comms=l.36 comms=l.5

2.40 k 0.10 1.85 4 0.05 1.25 f 0.05
WRITEIMAGE, write an image

comms=l.30 comms=l.92
These times are for the host system disk. Accessing the ATRl SCSI disk takes a little

longer. These times should be essentially independent of the number of slave nodes. They
depend on external factors such as the disk speed, the bus speed, and perhaps the host operating
system or other data transfer software.

QUADVY; j?t every local region with a quadratic polynomial, for a 21-pixel kernel
108.0 k 1.0 147.0 f 1.0 41.0 f 1.0

calcs=2.45 calcs=8.78

fit, for every pixel. This time should be inversely proportional to the number of slave nodes.
This requires a substantial amount of calculation, including a 6-parameter least squares

31

BRANCH; in a minimal loop

JVMP, in a minimal loop
0.0218 IfI 0.0002 0.0086 f 0.0001 0.0012 f 0.0001

0.0222 5 0.0002 0.0088 f 0.0001 0.0013 f 0.0001
The times for BRANCH and JUMP commands vary greatly, depending mainly on the

length of the feature command file (the user command script), particularly that part of the file
before the BRANCH or JUMP command. The times will also depend on disk file access times
or disk caching capabilities. These times are for unrealistically small feature command files.
These times depend strongly on the speed of the host computer for command files of significant
size.

In systems of this type, two different speeds are of interest: the speed of calculations
within a node, and the speed of communication between nodes. Which is more important in
limiting the overall speed of the system depends strongly on the particular application. In the
above timing measurements, some commands are dominated by calculation time, and some by
communication time.

For those timing measurements that are almost totally indicative of calculation time, a
value is given for "calcs" for ATR2 and ATR3. This is the relative calculation speed per node,
relative to ATRl. It is calculated by

(ATR1 time) * (number of ATRl nodes)

(Am2 time) (number of ATR2 nodes)
calcs =

for ATR2, with the obvious analog for ATR3. The values for this speed ratio vary significantly
for different types of operations, because of the internal differences in the processors. There is
a tendency toward a greater speed advantage for ATR2 and ATR3 for the more complicated
calculations. We use as the representative calculation-intensive operation the two-dimensional
median filter, MEDIAN. For this operation, A T E has a relative speed per node of 2.18, and
ATR3 has a relative speed per node of 21.67. The important relative calculation speed per cost,
which is simply the relative speed per node divided by the relative cost per node, is about 1.18
for ATR2 and 2.32 for ATR3.

This s o h a r e package contains no operations that are purely communication. Even such
operations as reading an image from a disk file involve a significant amount of calculation, in
calculating array indexes and converting from 8-bit integers to 32-bit floating point values. One
indication of relative communication speed is the OVERLAP operation, in which 512 floating
point values (2048 bytes) per data transfer are exchanged between neighboring processors without
type conversion and the only arithmetic is array index calculation. For this, like most inter-node
communications, it is not reasonable to speak of speed per node, because the time of the overall
operation usually does not depend significantly on the number of nodes. In the typical inter-node
communication, there is in effect a parallelism with many pairs of nodes communicating
simultaneously, so that the overall time is essentially the time required for any one pair of nodes
to communicate. Thus, we represent the relative communication speed by the ratio of the times:

32

comms =
(ATR1 time 1

(ATR2 or ATR3 time)

This relative communication speed, as measured for the OVERLAP operation for 10 overlap
rows, is 1.99 for A T E and 0.755 for ATR3. The communication slowness of ATR3 is
surprising, in light of the raw A-link speed of 250 Mbithecond compared with the ATRl T-link
speed of 20 Mbitlsecond. The explanation is that the ATR3 system has a substantial per-message
overhead time, a time required to prepare for inter-node communication before the transmission
actually takes place. This is apparent in the very long time required for ATR3 to do the SMTHY
operation, which involves many short messages exchanged between neighboring nodes. A
comparison of the SMTHY and SMTHX operations (SMTHX requires no inter-node
communication, but is otherwise very similar to SMTHY) gives a quantitative estimate of the
overhead time per message pair, one message arriving and one message leaving via a different
link. These times for the three systems are included in Table 1. These values may not be
precise, but they are believed to be at least reasonable approximations.

For typical image analysis or target search applications of the ATR software, ATRl and
ATR2 seem reasonably balanced, with neither calculation speed nor communication speed being
a dominant factor in limiting the overall system speed. However, for ATR3 the communication
slowness is an obvious, major limit to overall system speed. In fact, some applications run
substantially faster on a single processor (the ATR3 host) than on the set'of 5 ATR3 parallel
processors. This obviously makes the use of parallel processors absurd, for this particular
situation. To take advantage of the potential speed advantage of parallel processing in the ATR3
system, a change is required in the basic approach used in the ATR software. The present
software distributes each image among the several daisy nodes; in ATR3, for example, 1/5 of
each image resides on each of the daisies. This requires some inter-node communication for
certain image analysis operations. Those operations that use many short messages between nodes
cause the large loss of speed in the ATR3 system. In some cases, it would be possible to
consolidate many short messages into one long message and thereby eliminate a large part of the
message set-up overhead time. However, this is not possible for some image analysis operations.

The only reasonable approach to circumventing the ATR3 communication time problem
seems to be a change in the basic approach used in the ATR software: instead of dividing each
image among the several daisy nodes, each scene should be analyzed on a single node. This
approach has its own problems. First, it imposes a more restrictive limit on how big a scene can
be analyzed in one step, with the memory of one node instead of the combined memory of all
the nodes being the new limiting factor. This is not a very serious problem, since it is usually
not too difficult to divide a large scene into smaller scenes for separate analysis. Second, if only
one scene is available at any one time, only one node will be used and all the other nodes will
be wasted. This is not a problem if there are many scenes waiting for analysis. It seems that the
new software approach should be tried.

33

CONCLUSIONS

This Automatic Target Recognition system cag be very effective for rapid screening of
large amounts of multi-image data. This system is versatile and should be broadly applicable.
It incorporates image data fusion and uncertainty estimation. The software is easily expandable
to incorporate new capabilities, and the hardware is easily expandable to increase the speed. This
ATR system also informs the user of the importance of each feature used in the analysis, so that
the user can make the process more efficient by eliminating unimportant features from the
calculations and perhaps eliminating unimportant sensors from the multisensor data acquisition
system. The s o h a r e and the three hardware systems have been evaluated and found fully
functional.

For the most advanced hardware system (ATM), with the greatest calculation speed per
parallel processor node, the technology of fast calculation has outpaced the technology of fast
inter-node communication. Taking full advantage of this calculation speed will require substantial
revision of the ATR software. This will be undertaken and reported separately.

34

REFERENCES

1.
February 1997.

G. D. Lassahn, Automatic TLI Recognition System, User’s Guide, INELEXT-97-00004,

2.
00005, February 1997.

G. D. Lassahn, Automatic TLI Recognition System, Programmer’s Guide, INELEXT-97-

3.
Phoenix, AZ 85022, 1989.

Transputer Databook, second edition, INMOS/SGS-THOMSON, 1000 East Bell Road,

4.
Road, Phoenix, AZ 85022, 1993.

T9000 Transputer Hardware Reference Manual, rNMOS/SGS-THOMSON, 1 000 East Bell

35

APPENDIX A

EXAMPLE 1: Median Filter Testing

I

EXAMPLE 1: Median Filter Testing

This example is presented to illustrate very simply what the ATR system does. In this
example, we use only one training scene, and we have only one image per scene. The goal in
this application is to fmd medium-sized lettering and reject large lettering, small lettering, and
other kinds of texture. This example was actually intended as a test of the one-dimensional
median filter calculation subroutines, but it does demonstrate some ATR system capabilities.

The training scene image is shown in Figure Al, color coded to indicate the target and
background regions specified by the user with program G. The green regions are designated as
targets for the training program. They include only the medium-sized lettering, in the top left
and the bottom right corners of the scene. The red regions, designated as background, include
the larger lettering, in the top right corner and at the left edge; some of the small lettering, at the
bottom of the scene; and, a large amount of the picture engraving. The blue regions are not
designated as either target or background, and are ignored by the training process. Note that it
is not necessary to mark all of the small lettering, for example, as background; if some of it is
marked as background and none of it is marked as target, that should be sufficient.

Two different values of the type 1 error weight coefficient W, were tried: 0.5 and 0.9.
The latter, larger value gives more weight to errors in which the ATR system incorrectly
classifies a background pixel as a target pixel, whereas the W,=0.5 value gives equal weight to
this type 1 error and type 2 errors in which a target pixel is incorrectly classified as a background
pixel. The two different values of W, give significantly different results. Figure A2 shows the
error rate versus number of features for both of two training program nux. The error rate values
above 0.15 are for the fust run, and the values below 0.05 are for the second run. That is, we
get a smaller total (weighted sum) error rate if we attach more importance to type 1 errors, for
this training data.

In this example, the coefficients chosen for use in the surveillance process are those for
the second training calculation, with W,=O.9. These coefficients were installed in the surveillance
program data files. The surveillsince program was then used to analyze four scenes, looking for
medium-sized lettering. The four scenes, and the surveillance program result images obtained
for each scene, are shown in Figures A3-A6. One of these surveillance scenes was also used as
a training scene. Of course, when the image is used as a surveillance scene, we do not tell the
ATR system which parts are target and background; we let the ATR computer tell us. All of
these images were originally the same size as the training image of Figure Al, but they were
reduced in size for easier presentation here. Unfortunately, the images loose a little quality and
detail in the reduction and reproduction for printing. Nevertheless, the results clearly illustrate
how the ATR system works.

In the result images, the left half of each of Figures A3-A6, the bright, green to pale
green to white, regions indicate what the ATR system classified as targets; the dark, red to black,
regions indicate background. The lighter regions are stronger indications of target.

A- 1

IMAGE FILE:
MASK FILE:

Figure Al: Training scene image with color-coded target (green),
background (red), and unspecified (blue) regions.

A- 2

0.30

p 0.20
4
tY

E
0 '
E
K w 0.10

I 1 I 1 1 1 I I I I 1 1 I I

+

+
+ $: + + + + + +

+ + + + + + + + + + + + +

0.00 ' I I I I I I I 1 I I 1 I I I

0 I 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
NUMBER OF FEATURES

Figure A2: Total (weighted sum) error rate versus number of
features for two training program calculations.

Figure A6 shows that the ATR system did correctly designate the medium-sized lettering as
target, and it did correctly reject the larger letters as background. The results are mixed for the
small letters at the bottom center of the scene, some being correctly rejected as background and
some being incorrectly identified as targets. A few other regions in the Figure A6 scene, as well
as a few small regions in the other scenes, are incorrectly identified as targets by this ATR
system. These incorrect identifications simply mean that this ATR system, with the particular
features which were chosen for this application, cannot distinguish between medium-sized
lettering and whatever is shown in the scene images at those regions incorrectly identified as
targets. Presumably, the operator could choose a better set of features and reduce the incidence
of errors in this ATR application. Note, however, that the relatively small set of relatively simple
features used in this simple example did quite well: there are essentially no type 1 errors
(incorrect designation of targets as background), and there are not many type 2 errors (incorrect
designation of background as target). The absence of type 1 errors is largely due to the large
value (0.9) chosen for the type 1 error weight in the F optimization calculation.

Conclusion

As expected, with a limited feature set (one-dimensional median filters only) and limited
training (only one training scene), the ATR system is quite effective but not perfect at
distinguishing targets from background.

A- 3

3

R '
F

i

*

~ . - . ~. ,,,.<-,.* - 3 - : _--:..-_ . - & ,_ -
RESULT FILE: (RI\DEMO~ .RI IMAGE FILE: \IMG\DEMOlA.IMG

Figure A3: Result image and scene image for DEMO 1.

-x7-T,-fL:-2: : --
_ ~ r r - . - . ~~ -- *. :,. -.

RESULT FILE: \RI\DEMO%.RI IMAGE FILE: \IMG\DEMO2A.IMG

Figure A4: Result image and scene image for DEM02.

A- 4

t -- -- *ir

Figure A5: Result image and scene image for DEM03.

RESULT FILE: \RI\DEM03.RI IMAGE FILE: \IMG\DEM03A.IMG

RESULT FILE: \RI\DEM04.RI
, i ' :-,::= -> .2-- .

IMAGE FILE: \IMG\DEM04A.IMG

Figure A6: Result image and scene image for DEM04.

A- 5

APPENDIX B

EXAMPLE 2: Roads and Riverbanks

EXAMPLE 2: Roads and Riverbanks

This simple example illustrates fusion of image data. We have two images of the same
scene, one visible light and one infrared image. (These images are part of a set supplied by
Karen Steinmaus of Battelle, Pacific Northwest Laboratories, one of the participants in the
Department of Energy’s Airborne Multisensor Pod System project.) The visible light image
(Figure Bl) shows roads quite clearly, but it also shows riverbanks and it is difficult to
distinguish between the two features in this image. The infrared image (Figure B2) does not
show the roads very well, but it clearly indicates where the river is. The two images together
should allow us to find roads and reject riverbanks. Note, however, that this cannot be done by
looking for roads in each of the two images separately and then simply adding or averaging the
two results; a more sophisticated approach to image data fusion, such as that used in this ATR
system, is required.

For this illustration, we do a very simple analysis using only 4 features. For the first
feature, we do a convolution of the visible light image with a 13x13 pixel kernel in which the
pixel values are proportional to X2 with the mean subtracted out, clip the result to keep only
negative values, and take the absolute value. This first feature indicates the presence of both
vertical roads and vertical riverbanks.

For the third feature, we do a convolution of the infrared image with a 13x13 pixel kernel
in which the pixel values are proportional to X, and square the result. This third feature is
insensitive to roads, but shows vertical riverbanks very well.

The second and fourth features are analagous to the first and third, using kernels with
dependence on the Y coordinate instead of the X coordinate to detect roads and riverbanks that
run horizontally in the images instead of vertically.

Figures B1 and B2 both show the operator-selected target (green) and background (red)
regions used in the training process. Note that these regions do not need to be marked on both
of the scene images separately; it is sufficient to use either one of the scene images with the
program G to mark the target and background regions. The training process was done with these
two images (one scene) as the training data. The optimized coefficients were put into the
surveillance program file, and the surveillance program was then used to analyze this same scene.
The result image is shown in Figure B3. In this result image, the white is the strongest indication
of roads, darker green is a weaker indication of roads, black is the strongest indication of
background (non-road), and lighter red is a weaker indication of background. This result does
distinguish clearly between road and riverbank, thus satisfying the goal for this illustration: the
two images analyzed jointly give a clear indication of a result that is not obvious in either image
separately. This result indicates horizontal roads more strongly than vertical roads; this is because
the horizontal roads appear narrower in these images, and the particular convolution calculations
used here are more sensitive to narrower features. This result also indicates as roads some
regions that are neither road nor riverbank, this is not surprising, since no significant effort was
made to exclude miscellaneous clutter from being identified as target in this very simple example.

.

Conclusion

This minimal example demonstrates image fusion: neither image alone allows finding
roads and distinguishing them from riverbanks, but the two images analyzed jointly, with a very
simple algoethm, accomplish the goal very easily.

B-1

Figure B1: Visible light image, color coded to indicate operator-
selected target (green) and background (red) regions.

B-2

IMAGE FILE:
MASK FILE:

image6b.img
PNIrmskO3. img

Figure B2: Infrared image, color coded to indicate operator-
selected target (green) and background (red) regions.

B-3

c= s

-a- %

-.* " - - 3 s m l m ~ : 4 F r I
RESULT FILE: epnl2b.ri

Figure B3: Result image.

B-4

.-

APPENDIX C

EXAMPLE 3: Buried Waste Location

EXAMPLE 3: Buried Waste Location

This example illustrates the use of the ATR system with data that is not standard image
data, and the use of a completely naive but still quite effective analysis method in which the ATR
system's capabilities replace operator understanding of the data. The primary purpose of this
study was to assess the utility of this ATR system in buried waste recovery operations. This data
is fiom the Department of Energy's Buried Waste Integrated Demonstration project at the Idaho
National Engineering Laboratory. The images in the figures in this example should be regarded
as maps of areas fiom which buried waste is being excavated.

In this application, as many as 7 sensors acquired different types of data. This data is not
image data in the traditional sense. Rather, each "image" is merely a set of values measured at
a two-dimensional array of points on the surface of the ground. Sensor S1A is the vertical
component of the earth's magnetic field, and S1B is the gradient (derivative with respect to
vertical position) of the vertical component of the magnetic field. S2A, S3A, S4A, and S5A are
measurements of the electrical conductivity of the soil, like eddy current measurements, taken
with different combinations of field orientation and phase shift. S6A is a volatile chemical
sensor. Most scenes include measurements fiom the first six sensors. Because data from the
seventh sensor S6A was available for only 3 of the 35 scenes, and for one of these three scenes
no other sensor data was available, this seventh sensor data was not used in this brief study.

There were 5 experiments, referred to as El, E2, E3, E5, and E6. The dlfferent
experiments represent data recorded over five different areas with different buried objects. The
five rectangles on the left of Figure C1 indicate the approximate sizes and locations of buried
objects in the five experiments, as seen fiom above. In these sketches, the solid objects are
magnetic, and the objects drawn with outlines only are, at least mostly, not magnetic. In E2, for
example, there are a magnetic barrel (object 7) and a wooden box (object 6). Objects 9 and 10
in E3 are two boxes, one above the other, with some magnetic material in the top box. The top
box was removed between L3 and L4 (to be described later). Similarly, object 20 (a vertical
barrel) in E5 was removed between L2 and L3, and object 27 (a vertical steel pipe) in E6 was
removed between L2 and L3.

For each experiment, there are several different levels or vertical positions of the sensors.
The number of different levels is not the same for all experiments. The several levels are
referred to as LO, L1, LO is the highest level, and the sensors are 6 inches lower for each
successive level. In some cases, layers of soil were removed between successive measurement
levels. In these analyses, any one level of any one experiment is treated as a separate scene.
Different scenes are expected to give different results for any measurement, because they contain
different objects or because the objects are at different distances from the sensors. There are a
total of 34 usable scenes in this data set.

The scene images in this data have 43 columns (43 x values, spaced 3 inches apart) and
25 rows (25 y values, spaced 6 inches apart). Some of the data sets did not have this many rows
or columns, and some were missing a few data points fiom what was expected to be a regularly-
spaced array. In all of these cases, the missing data points were filled in using a linear
interpolation or extrapolation procedure so that each scene image used in this study had a full
43x25=1075 data points.

Perhaps the simplest analysis we can use with this ATR system for a set of data with 6
sensors is a linear combination of the 6 raw data images (augmented with the "constant" image
which is always included for mathematical completeness). This simple linear analysis was tried
with the buried waste data. The training was done with 3 scenes: E2L7, E5L5, and E6L5. The

masks used were M2A, M5B, and M6A, shown in Figure C1. In this figure, the red (actually
more brown) areas of the masks are designated as background, the green areas are target, and the
black areas are not used in the training process. These masks mark barrels as targets and other
regions as background; that is, this analysis is a search for barrels. The results of this training
process were used to analyze 30 scenes from experiments E2, E3, E5, and E6; experiment El was
not included in this analysis because this analysis uses 6 sensors and only 4 sensors were used
in experiment El. The results are indicated in Figure C2. In this figure, as in any of the result
images, lighter regions are stronger indications of targets, and darker regions are stronger
indications of background. Green and white (that is, very light green) indicate what the ATR
system classifies as targets. Red and brown and black (dark red) indicate what the ATR system
classifies as background. Figure C2 shows that this analysis did correctly identify the barrel
(object 7) in E2 and another barrel (object 17) in E5 as targets when the excavation was deep
enough so that the sensors were close to the barrels. This process also incorrectly gave small
target indications at the top of E5L5 and in E6L6. These are ferromagnetic objects other than
barrels, so it is not too surprising that this simple linear combination algorithm did not distinguish
these objects from magnetic barrels. The process failed to detect a barrel at the center of E5, in
levels LO-L2 (this barrel was removed between L2 and L3). The reason for this failure is not
known. This barrel shows rather weakly in the raw data, suggesting the possibility that it may
have been buried too deep to be detected by this algorithm. Although this algorithm for finding
barrels did not yield perfect results, it did quite well, especially considering the simplicity of the
algorithm and the fact that the algorithm required absolutely no understanding of the
measurements or the physical processes involved.

This processes was repeated with an additional training scene, E5L2 with mask M5A,
which specifies that the troublesome barrel (object 20) is designated as a target in the training
process. The result of this analysis is shown in Figure C3. This process did locate object 20,
but it also incorrectly identified a box (object 6) and other objects as targets. This rather poor
performance is merely an indication that this simple linear combination algorithm cannot
distinguish reliably between the objects designated as targets and those designated as background
in this training set. The problem here is that object 20, which we believe to be a barrel, looks
to the sensors like some other (background) object more than a target. This is a situation in
which we must recognize that the algorithm we are using will not work well with this type of
data. The obvious procedure is to try a better algorithm.

The next obvious level of complication in analysis is to add quadratic terms to the linear
analysis, adding 21 product terms to the linear and constant terms in the previous analysis. This
was tried using the same 4-scene training data set described for the linear case, with the result
shown in Figure C4. As would be expected, this quadratic analysis is better than the linear
analysis at distinguishing barrels from background, but it is still not perfect.

The same quadratic analysis procedure was used to try to find boxes instead of barrels.
In this analysis, the training process used two training scenes, E5L5 with mask M5C and E2L7
with mask M2B. These masks select only boxes without ferrous metal contents as targets. The
results of this analysis for 30 scenes are shown in Figure C5. This analysis was repeated using
only the first training scene, with results shown in Figure C6. Obviously, the results of this type
of analysis can depend significantly on the choice of training data. In both of these two analyses,
boxes (objects 6, 9, 10, 21, 22, 23, and 24) were correctly identified as targets, and a few other
objects were incorrectly identified as targets, with the single-training-scene result a little better
than the two-training-scene result. This result is reasonably good.

An interesting aspect of these linear and quadratic analyses is that they require no

c-2

understanding of the measurements.
In an effort to more accurately identify barrels, we tried a more sophisticated analysis that

made use of some understanding of the measurement processes. In this analysis, we made an
effort to find peaks in the magnetic field and its gradient, and to discriminate on the basis of the
widths of the peaks, on the assumption that barrels should cause peaks of a certain width in
magnetic field measurements. This analysis used only sensors SIB and S1A; the other sensor
data was ignored. The training process used the same training scenes as were used for the
quadratic function search for barrels. The results of this analysis are s h o w in Figure C7. Note
that experiment 1 is included, since this analysis does not require the sensors that are not included
in experiment 1. This analysis was repeated with a different set of training data, using scenes
E2L8, E5L2, E5L5, and E6L6 with the same masks as before. This gave slightly better results,
shown in Figure C8. These results generally show the barrels as targets, which is good. They
also show other ferromagnetic objects as targets, which we had hoped to avoid. However, it is
not surprising that we are not able to distinguish well between barrels and other magnetic objects,
since the peak width which we tried as the distinguishing feature is not really unique to barrels.
Surprisingly, this analysis also shows as targets some presumed non-magnetic objects, such as a
box (object 6) in E2. This is interpreted as a fairly strong indication that these boxes do in fact
include some ferromagnetic material.

Conclusion

This ATR system is easily applicable to areas other than the usual airborne surveillance
and target searches. Specifically, this example indicates that the ATR system used with this data
can do quite well at finding buried objects, and it can give some indication of the nature of the
object (magnetic or not) and the depth of the object. Failure to do better at indicating object type
or depth is primarily due to limitations in the type of data available. This example also illustrates
the importance of having a good training set, knowing exactly what background and target objects
the training data represents, and making the training set self-consistent.

c- 3

El

M2A & M2B

-I--- I -
RESULT FILE: MASKS3.img
Figure C1: Buried objects, and masks used in training.

LO L1 L2 L3 b4 L5 L6 L7 L8

1

_ _ - , - 1 - j l

RESULT FILE: eomlA2.img
Figure C2: Search for barrels, linear combination, three training scenes.

c-4

LO Ll L2 L3 L4 L5 L6 L7

+-I e-*-+ E - 1
RESULT FILE: com4G2,img

Figure C3: Search for barrels, linear combination, four braining scenes.

L8

L3 L4 L5 b6

RESULT FILE: com412.img
Figure C4: Search for barrels, quadratic combination.

c-5

E2

E3

E5

E6

E2

€3

E5

E6

LO L1 L2 L3 L4 L5 L6 e7 L8

RESULT FILE: cOm4M22.img

Figure C5: Search for boxes, quadratic, two training scenes.

LO 11 L2 L3 b4 L5 L6 L7 L8

r - _ -I& **e - - - - I

RESULT FILE: com4M2l.img
Figure C6: Search for boxes, quadratic, one training scene.

C-6

E l

E2

E3

E5

E6

El

E2

E3

E5

E6

L2 L3 L4 L5 L6 L7 L8

-
-1
RESULT FILE: com5K2,img
Figure C7: Search for barrels, peak width, l irst training set.
LO L1 L2 L3 L4 L5 L6 L7
I

1 # 'I

I

I

*
I

i a

I

I

7 7T

&

S

L8

I ' -- -1

RESULT FILE: com502.img
Figure C8: Search for barrels, peak width, second training set.

c-7

-- .

APPENDIX D

EXAMPLE 4: Finding Airplanes

EXAMPLE 4: Finding Airplanes

This example illustrates the ability of the ATR system to function with poor data and in
spite of errors or ignorance on the part of the operator. The goal is to find airplanes in pictures
of airports, like the scene shown in Figure D1. There is an elegant approach to this problem,
based on the assumption that the airplanes have the general shape of crosses or f's. We can
define a pair of kernels or operators which, together, find this general cross shape using the
convolution operation. After some experimentation, this approach was used along with some very
basic operations including looking for the correct size of darker area on a lighter background.
For the training process, the scene was marked with two targets indicated in green (the airplane
at the bottom center, and the airplane closest to the center of the image) and several background
areas indicated in red in Figure D2. The training program gave the surprising result that
searching for the cross shape did not significantly improve the ability of the system to find
airplanes. The reason for the ATR system's not using the cross feature is obvious fiom an
examination of the details of the image. The human vision system, seeing a "good" image like
Figure D1 (perhaps in effect enhanced by the printing process) and knowing what to look for,
is very good at idealizing shapes and filling in missing details. However, as Figures D3 - D5
show for the 7 airplanes in the top half of the scene, the airplanes comprise a surprisingly small
number of pixels and they do not have much of the assumed cross shape. This image is actually
of rather poor quality in terms of representing airplanes. It is no longer surprising that the ATR
system did not give much weight to the cross feature in searching for airplanes. The interesting
point is that the ATR system automatically discounted the unproductive search for crosses and
used only the simpler features, even though this was contrary to the operator's expectations.

The result of using this very simple procedure is shown in Figure D6, in which the
computer has drawn circles around each area it interprets as a target. The ATR system with this
very simple scheme did correctly find all 9 airplanes, and it mistakenly marked a lot of
background areas as targets. This general behavior, finding all the real targets and some false
targets, is generally expected in a screening operation in which the system is optimized to not
miss any real targets. However, the number of false targets indicated in Figure D6 is probably
unacceptably high for most applications. We can improve on this result by placing more
stringent requirements on the sizes of the dark spots that are called targets. Using this modified
simple approach gives the result shown in Figure D7. This result correctly indicates all the
airplanes as targets, and it incorrectly indicates two background areas, one of them so small as
to be immediately discounted, as targets. This result is not perfect, but it is regarded as quite
good, especially considering the poor detailed definition of the airplanes in the scene image and
the simplicity of the search scheme.

Conclusions

This ATR system can correct some operator's mistaken assumptions, and can do a
surprisingly good job with poor data and simple analysis schemes.

D-1

\atr\ex3\INPUT.img

Pigure D1: A scene including 9 airplanes.

D-2

1c .
'1.

t * - -L ?
t . . .

s
3

IMAGE FILE: 1NPUT.img
MASK FILE: MASKD-img

Figure D2: The scene marked with two target (green) and seven
background (red) regions for training.

D- 3

. , , - . .- . .- .". . . , , -1-

IMAGE FILE: detaillA.img

IMAGE FILE: detaillC.img

- __
IMAGE FILE: detaillB.img

IMAGE FILE: detaillD.img

Figure D3: Details of the four airplanes closest to the top of the
scene.

1)-4

IMAGE FILE: detaillE.img

IMAGE FILE: detailld; img

IMAGE FILE: detaillF.img

IMAGE FILE: detail1 . img

Figure D4: Details of the next three airplanes.

D-5

Figure D5: Detail image printed with one dot per pixel.

D-6

I I
_ _
I_

RESULT FILE: E9Xres.img

Figure D6: Result of the simplest search scheme, showing a
number of false target indications.

D- 7

-- .,:%I I

, - - ,i x' 6
-.<t .

i? c

-0

i

Y

8
-. ~

(3’

_ _
II

RESULT FILE: E9Nres . i l ag

Figure D7: Result of a more restrictive search scheme, showing
only two false target indications.

D- 8

APPENDIX E

EXAMPLE 5: Stack Shadows

%I

EXAMPLE 5: Stack Shadows

This example is a more realistic target recognition application, and it includes an example
of using the ATR system without the training process. The targets here are gas effluent stacks,
such as a factory smoke stacks or chemical processing plant stacks for dispersing gaseous waste.
The image data is multispectral, comprising images in 3 wavelength bands at about 1, 8, and 12
microns, acquired with the Daedalus imager carried by the A M P S aircraft. The images are large,
with a typical scene containing ten million pixels for each of the three wavelengths.

As seen from above, the stacks themselves are not at all obvious or easily identifiable.
However, if the sun is shining, stacks cast a quite distinctive shadow in the visible and near
Mared spectral regions. Hence, this search for stacks is actually a search for stack shadows.
Searching for stack shadows instead of stacks themselves does have some disadvantages, in that
there are other objects that look very much like stack shadows. The procedure used here is a
two-step process. The first step is to search the near infrared image to find shadows of the right
size, shape, and orientation. This first step does not require any training process, since we know
from other sources what the correct shadows should look like. The second step is to use all three
of the available spectral bands with a training process in the hope that the extra spectral
information will provide enough information to distinguish between stack shadows and other
similar-looking objects, even though the nature of this multispectral information may not be at
all intuitive to the human observer.

Figure El shows an example of the results of the stack shadow search. The first step of
the search identified the four shadows marked in Figure El. The top two of these really are stack
shadows; the bottom two are shadows of the support structures of a water tower. The first step
also incorrectly identified some other objects that are almost invisible in this printing of the
image, including dirt roads, fences, and pond edges, near the top left corner of Figure El. Some
of these false indications of stack shadows could be eliminated by setting more stringent
requirements on the orientation of acceptable shadows; however, for purposes of testing and
demonstration, we left the angle criterion rather loose and used the multispectral information
instead.

To distinguish real from false stack shadows, we added 7 features to be evaluated: (1)
the intensity of the shadow in the (slightly smoothed) 1 micron image; (2) the contrast between
the shadow and its surrounding area in the 1 micron image; (3) the "brightness" parameter that
the program uses to describe how well the shadow fits the mathematical idealization of a straight
line segment; (4) and (5) the intensity of the shadow in the 8 and 12 micron images; (6) and (7)
the products (3) * (2) and (3) * (1). Training the system and using these features does indeed
remove many of the false indications of stack shadows, giving the result shown in the Figure El.

The total two-step search process was applied to 13 large scenes containing six known
stacks. Five of the six stacks were correctly located; the sixth was not identified as a target, for
two reasons, either of which would have been sufficient by itself. First, the sixth stack was larger
than the parameters we specified as representing an acceptable stack; that is, it was larger than
the stacks we were looking for. Second, the shadow of the sixth stack was interrupted by some
buildings that added their own shadows and changed the simple straight line stack shadow into
a more complicated, unacceptable shape. This second point is an unavoidable disadvantage of
trying to identify stacks by finding their shadows. Figure E2 shows the missed sixth stack, along
with another smaller stack that was correctly identified.

This stack search did wrongly identify some other objects as stacks, which might be
expected. One of these objects was the already-mentioned water tower, which appears near the

E-1

bottom of Figure El and also in three other scenes. Depending on the sun angle and how the
shadows of the different support structures of the water tower aligned at different times of the
day, the water tower shadows were sometimes indistinguishable from stack shadows. This of
course is not surprising, since the water tower supports and a gas effluent stack are very similar
structures, casting nearly identical shadows. Another stack-like structure that was incorrectly
identified as a stack was a tower supporting a major electrical power line, two instances of which
are shown in Figure E3. Figure E4 shows an agricultural area in which a segment of an
irrigation canal was incorrectly identified as a stack shadow. This type of error occurred several
times in the set of 13 scenes. As has been mentioned, the rate of occurrence of this type of error
could be reduced by more stringent geometrical tests, but even the relaxed test conditions used
here gave an acceptably low false positive error rate.

Conclusions

In a realistic application with large images, the ATR system performed well, finding all
the known targets with a few false positive target indications.

E-2

Figure El: Two correctly identified stack shadows (near top of
image) and a pair of incorrect indications fiom water tower
shadows (bottom of image).

E-3

Figure E2: One correctly identified stack shadow, and another that
was too large to be included by the size parameters specified for
this search.

E-4

.-
" I

\atr\W~~SS3a.img

Figure E3: Two power line support towers incorrectly reported as
stacks. Some of the electric cables are visible as light lines, and
their shadows are more reliably visible as dark lines in this image.
This image was greatly contrast-enhanced for this printing.

E- 5

9-3

	ABSTRACT
	INTRODUCTION
	TRAINABLE MODE PROCESS DESCFUPTION
	TRAINABLE MODE MATHEMATICAL APPROACH
	Surveillance Process
	Training Process

	HARDWARE DESCFUPTION
	ATRl Hardware
	ATR2Hardware
	ATR3 Hardware

	SOFTWARE DESCRIPTION
	Mask Creation Program G
	TrainingProgramF
	Surveillance Program E
	ATRl SCSISoftware

	SYSTEMTESTS
	CONCLUSIONS
	REFERENCES
	APPENDIX A: EXAMPLE 1: Median Filter Testing
	APPENDIX B: EXAMPLE 2: Roads and Riverbanks
	APPENDIX C: EXAMPLE 3: Buried Waste Location
	APPENDIX D: EXAMPLE 4: Finding Airplanes
	APPENDIX E: EXAMPLE 5: Stack Shadows

