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ABSTRACT 
Major many-body effects that are important for semiconductor laser modeling are summarized. We adopt a bottom- 
up approach to incorporate these many-body effects into a model for semiconductor lasers and amplifiers. The optical 
susceptibility function (x) computed from the semiconductor Bloch equations (SBEs) is approximated by a single 
Lorentzian, or a superposition of a few Lorentzians in the frequency domain. Our approach leads to a set of effective 
Bloch equations (EBEs). We compare this approach with the full microscopic SBEs for the case of pulse propagation. 
Good agreement between the two is obtained for pulse widths longer than tens of picoseconds. 
Keywords: Many-body interactions, simulation and modeling, semiconductor lasers, gain and refractive index 
dispersions 

1. INTRODUCTION 
Many-body effects in semiconductors have been mostly studied for ultra-short pulse p r o p a g a t i o n l ~ ~ ~  and for the gain 
and refractive index computation.2 As a results of these studies, the microscopic theory known as the semiconductor 
Bloch equations (SBEs) is now quite well established. This is achieved through systematic comparison of the gain 
and refractive index measurements with theoretical or through comparing pulse reshaping in pump- 
probe experiments with theoretical prediction. Although the theory itself is still a topic of current research activity 
and more systematic comparison with experiments of various kinds is still necessary, we'think that the theory now 
should be applied in a systematic way to modeling and simulation of space-time dynamics of semiconductor lasers 
on nano- to tens of pico-second time scales. 

In this paper, we first summarize the major many-body effects that are relevant to semiconductor laser modeling. 
We will show why the conventional approach to semiconductor laser modeling based on the rate-equation apprxi- 
mation is not adequate. A procedure will then be introduced that takes into account the full gain nonlinearity and 
dispersion of gain and refractive index, computed using the microscopic many-body theory. This approach leads to a 
set of effective equations similar to the Bloch equations for two level atoms, thus the term effective Bloch equations 
(EBEs). A comparison of the EBEs with the semiconductor Bloch equations for the pulse propagation is made to 
demonstrate the validity and limitation of the model. 

2. MANY-BODY EFFECTS 
The free-carrier version of the microscopic theory for semiconductor lasers was first formulated about thirty years 

Although some of the many-body effects in semiconductors became known in 197O's,l4 a systematic theory 
for semiconductor-light interactions including Coulomb interactions was only available much later.15J6Ji2 The many- 
body version of the microscopic theory is very often presented in the form of the semiconductor Bloch e q u a t i ~ n s . ' ~ J ~ ~  
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2.1. The semiconductor Bloch equations (SBEs) 
Under the slowly varying envelope (SVE) and rotating wave approximation (RWA), the interaction of a semiconductor 
with a laser field can be described by the following set of e q u a t i o n ~ ' J ~ ~ ~ :  

d E  n g d E  -+-- = az at 
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where E is the complex field amplitude written with respect to a reference frequency w,. IC = y n b  is the wave 
vector in the background medium. I' is the confinement factor. The ng and nb = 6 are the group index and phase 
index. The other constants have the usual meanings. The last two equations for the interband polarization ( p k ) ,  
electron (n+)  and hole (nhlk) populations are derived up to the second order in the screened Coulomb potential 
V s , k , k ~ .  The Sk = w,-wk is the detuning between the individual transition frequency wk and the reference frequency 
of E. rOut(IC) and rin(lc, IC') are scattering rates out of, and into, the state IC, respectively, which are both second 
order in the screened Coulomb potential and both functions of the Fermi distributions for electrons ( f e , k )  and for 
holes (fh,k). When more than one conduction or valence band is involved, the corresponding equations for the 
distribution functions (ne,k or nh,k) should be added and similar polarization equation should be written for each 
transition channel. 

To obtain the optical susceptibility function, we solve(2)' in the Fourier representation. We assume that the 
actual distributions ne,k and nh,k can be approximated by the corresponding Fermi-Dirac distributions f e , k  and 
fh,k, respectively. We further assume that the explicit time dependence of total carrier density can be ignored when 
performing the Fourier transformation. Using the Fourier space definition of the susceptibility function x(w ,  N ) ,  
&(w) = eocbXk(w, N ) k ( w )  (quantities with tilde represent their Fourier transforms), we obtain from (2) 

We see that, because of the non-diagonal terms in the second line, the above equation cannot be solved in a 
closed form. In general, this integral equation has to be solved numerically. We note that, however, since equation 
(2) is accurate up to second order, we need only to solve equation (4) iteratively up to the second order in Coulomb 
potential. This leads to the following expression: 

where the &k is the new enhancement factor due to the Coulomb interaction and can be approximated by 



where Ak and xg are given respectively by 

The x! is the free-carrier susceptibility with a k and carrier density dependent dephasing rate r w t ( k ) .  
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Figure 1. (a) Peak gain frequency vs. carrier density 
for the free-carrier model (stars) and for the many- 
body model (diamonds). (b) Peak gain difference be- 
tween the many-body model and free-carrier model 
(with bandgap renormalization included). 

Figure 2. Gain spectra for a 10 nm InGaAs quantum 
well. Dashed lines represent many-body gain with a 
constant dephasing rate. Solid line represent many- 
body gain model with in- and out-scattering terms. 
The symbols (crosses, diamonds, and triangles) 
represent experimentally measured gain by 
Bossert and Gallant21. 

The Coulomb enhancement factor Qk is analogous to the one used in1i2 without the rin term. The validity of 
this approximation and its accuracy should be checked against experimental measurements of the gain and refractive 
index change. 

2.2. Bandgap renormalization 
From the above discussion, we can immediately identify several effects of the many-body interactions: First the 
individual transition frequency W k  is renormalized by the Coulomb interaction2 



fiwk = Eg,O + Ee,k  + Eh,k  + AE(N), (9) 
where Eg,0, Ee,k, and Eh,k  are the bare band gap, electron and hole kinetic energies, respectively. The last term 
is the bandgap shrinkage due to the Coulomb interaction which is treated usually to first order in the Coulomb 
potential. This term depends on the total carrier density N. As a result, the gain spectrum is shifted toward the red. 
This fact is shown in Fig.l(a) where the peak gain frequency is plotted against the carrier density for the cases with 
(diamonds) and without (stars) many-body interactions. The structure considered here is a 10 nm GaAs quantum 
well with AIo .~~Guo . ,~~As  confining layers on both sides. In Fig.l(a) we see that the peak gain frequency is shifted 
toward red by about 50 meV with respect to the free-carrier gain model due to the bandgap renormalization. It is to 
be noted that the actual band gap renormalization is usually larger than this number. With the increase of carrier 
density, there are two things happening at the same time. One is the red shift of the band edge, and another is the 
blue shift of the gain peak. The final peak gain position reflects the balance of the two. This peak gain shift (about 
10 ThZ) is important for predicting laser frequency, because the typical laser intermode spacing is much smaller than 
this value. 

2.3. Coulomb enhancement 
Because of the interband Coulomb attraction between electrons and holes, the transition dipole moment is enhanced. 
This is the Coulomb enhancement factor represented by (6). In Fig.l(b) we show the peak gain difference (denoted by 
AGma,) between the cases with and without Coulomb enhancement effect. A positive AGma, means that peak gain 
with Coulomb enhancement is larger. We see that AGma, increases initially with density increase until a maximum 
is reached. Afterwards AGmaz decreases to zero with further density increase. This behavior can be understood 
in the following way. We expect the Coulomb interaction to increase with increase of the average interparticle 
distance. With further increase of the carrier density, the screening becomes important, which decre.ases the effective 
interactions. In the large density limit, the strong screening leads to a free gas-like situation, except for an overall 
bandedge shift. We therefore should expect the agreement of the peak gain for the cases with and without Coulomb 
enhancement in the limit of large density. A similar process repeats itself for the second quantized band, as is 
evidenced by the peak frequency jumps in Fig.l(a) and the AGma, rise at density around 7.5 x 1012cm-2. At the 
density value of 3.5 x 10'2cm-1, where the AGma, peaks at about 200 cm-', the absolute gain is about 1100 cm-l. 
The relative gain difference between the case with and without Coulomb enhancement is between 15 to 20 percent. 
This difference should be quite important for laser operation. 

2.4. The line shape of the gain spectrum 
Although line shape is one of the most important issues for semiconductors, semiconductor gain and refractive index 
have almost exclusively been computed using a simple Lorentzian line with the line width constant for all k-vectors ( 
see, however26 for examples of exceptions). Only very recently has a detailed computation been performed with both 
in and out-scattering included, as represented by J?in and rout in (2). The inclusion of both in- and out- 
scattering may help resolve a serious difference on the shape of the gain spectrum between experiment and a theory 
that uses a simple constant Lorentzian line width. The issue concerns the gain rise at the bare bandedge. While 
theoretical calculation gives a very sharp increase of gain at the bandedge, experiments give a consistently much 
smoother rise.21-23 This difference was emphasized by Hybertsen et al. recently.22 Fig. 2 shows a comparison of 
gain spectra at three densities with a constant Lorentzian line width of 1013 s-l (dashed lines) and those calculated 
with a model including both in- and out-scattering terms. As is clearly shown there, even in the frequency domain 
near the gain peak, the two theories give drastically different results. The experimental resu1ts2l are also included, 
as marked with different symbols. Clearly the theory with both in- and out scattering gives much better agreement. 
This comparison therefore leads us to believe that the consistent difference of the gain spectra at  band edge between 
experiment and theory is due to the inappropriate treatment of the scattering terms. 

3. THE CONVENTIONAL SEMICONDUCTOR LASER MODELING 
3.1. Rate equations with linearized gain 
Contrary to the detailed microscopic theory represented by the SBEs, semiconductor lasers are usually modeled with 
a much simpler m 0 d e 1 , ~ ~ a ~ ~ * ~ ~  with all, or most of the above many-body effects ignored. The essence of this type 



of modeling is the equations for E and the total carrier density N = 6 Ck na,k.2*27 By adiabatically eliminating 
pk (setting p~ = 0) in (2), one obtains a static susceptibility function through P = + C k p k p k  E E ~ E ~ x ( N ) E .  
Linearizing this nonlinear x ( N )  around the transparency density Ntr , one obtains 

x ( N )  = (w + ix) ( N  - Ntr)  + ... a N  d N  

where Gr; = - W ( N  - Ntr)  is the linear gain and (Y = %/% is the linewidth enhancement factor introduced by 
Haug and Haken Y Z  (see, also31). &om the above definitions and from (1-3) we then obtain: 

r --+A- - - - G ~ ( l - i a ) E  aE n dE 
az at 2 

where the parameters 7, J, e, w are respectively, the quantum efficiency, pumping current, electron charge, and active 
region thickness. The relation between the pumping current density J and the microscopic pumping expressions can 
be found, for example, in reference? 

The advantage of using this model is that it is simple and that it captures some of the important features of 
semiconductor lasers. The disadvantages are also obvious. The linearized gain model requires that the carrier density 
within the active semiconductor must be very close to the given density (very often, the transparency density). This 
assumption fails on several occasions: In a typical semiconductor laser, the lateral carrier distribution is determined 
by the shape of the pumping stripe and carrier diffusion. The carrier density at the lateral edges of the device changes 
between around threshold to zero within some finite region (see Fig.4). 

Figure 3. On-axis density variation and the corresponding 
gain profiles using different gain models along 
the MOPA s t r u ~ t u r e ' ~ * ~ ~ .  
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Figure 4. Density variation and the corresponding 
gain profiles using different gain models lateral 
to the DBR laser structure in the MOPA20i34. 



The active medium changes from an amplifier to an absorber, depending on the local carrier density. Another 
example is a DBR laser where the same active material is used for the pumped region as that underneath the DBR 
sections. Usually DBR sections act as absorbers with quite strong variation of the carrier density along the DBR 
sections. The strength of the absorption is very crucial to the overall DBR laser performance. In some of the high 
power devices, such as the DBR-Master Oscillator integrated with a Power Amplifier (MOPA), the longitudinal and 
lateral density variation is very ~ignificant.3~ Fig.3 and FigA show the carrier distribution along and across such a 
MOPA device together with the corresponding gain profiles. We also plot the linearized gain at different densities 
and the actual nonlinear gain. Obviously all these situations cannot be taken into account by a simple linearized 
gain. 

3.2. Rate equations with nodinear gain 
The shortcoming of the linear gain model can be overcome by keeping the actual nonlinear dependence of gain ( G ( N ) )  
and index change (6n(N)) on carrier den~ity.~' Similar to the derivation of equations (11) and (12), we obtain 

C 

aE n,dE r = - - + -- az at 2 

For a given laser structure, a microscopic calculation is performed to obtain the actual nonlinear carrier density 
dependence of the gain and index change at the peak gain frequency. This dependence is then tabulated as lookup 
tables to be used in the actual simulation of equations (13) and (14). A detailed comparison between the nonlinear 
and linear gain models is made in?' 

3.3. Gain and refractive index dispersion 
There is, however, another serious problem that cannot be overcome by either a linear or nonlinear gain model. 
The gain and refractive index dispersion (the frequency dependence) is not considered in either of these approaches. 
This means that all the longitudinal and transverse modes experience the same gain or index change. In the case 
of pulse propagation, different frequency components of the pulse undergo the same amplification. This is certainly 
a poor representation of what happens in a semiconductor laser or amplifier. The gain dispersion, no matter how 
small, is very critical in influencing the long time dynamics of semiconductor lasers. The index dispersion which 
results in a frequency dependent a factor is also important for semiconductor laser modeling. The absence of the 
gain discrimination leads to the artificial instabilities that are very easily mistaken for numerical in~tabilities.3~ 

The microscopic theory as represented by the semiconductor Bloch equations (SBEs) contains all the features 
mentioned above. However, due to the widely varying time scales involved and the complexity of the set of equations, 
it is almost impossible to solve the SBEs on the nanosecond time scale and resolve, at the same time, the transverse 
and longitudinal space dimensions. 

From the above discussion, it is clear that a model is needed that contains the actual gain and index spectra 
and their carrier density dependence. Such a model has recently been c o n ~ t r u c t e d ~ ~  for the freecarrier theory. As 
we have shown in this section, many-body interactions are very important in modifying gain and refractive index 
spectra and therefore should be incorporated into theory. 



4. EFFECTIVE BLOCH EQUATIONS 
Our approach3’ is based on the parameterization of the gain and refractive index spectra. We assume that the 
susceptibility function X ( W ,  N )  for a given laser structure is known either from the above microscopic calculation, 
or from an experimental measurement. We assume that this function can be well approximated, in general, by a 
superposition of several (M) Lorentzian oscillators: 

where we also include a %ackground” contribution x o ( N )  which is frequency independent. In (15) we use a detuning 
parameter: 60 = w,-E,/li. Note that we allow the density dependence of the [’parameters” Al(N) ,  r l ( N ) ,  and &(N) 
for the individual Lorentzian oscillators. The density dependence of the gain and refractive index spectra are now 
taken into account by these density dependent parameters. In general we expect to approximate the susceptibility 
function quite well using only a few such oscillators. For many applications, however, it suffices to have only one 
such Lorentzian oscillator plus the “background” absorption and index. An example for this approximation is shown 
in Fig.5 where gain and index spectra for bulk GaAs, calculated from the microscopic theory for three different 
densities, are plotted (solid lines) together with the spectra of the approximations using (15) (dashed lines). 
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Figure 5. Gain (left) and index (right) spectra for carrier density of 2, 3, and 4 ~ l O ~ ~ / c r n ~ ,  respectively. Solid lines 
are fitted with a single Lorentzian, while dashed lines are the results computed numerically from the SBEs. 

Once we have the parameterized Lorentzian oscillators, we can easily write down the corresponding polarization 
in the Fourier representation. 



The total polarization in real space is given by: 

L C P k P k  = Po +PI + P2 + . . . 
I r k  

If we perform the inverse Fourier transform of equation (16), we obtain 

(18) I -  dP-(t) - { - r j (N)  + i[60 - a j ( ~ ) ] ) ~ j ( t )  - iq,caAj(N)E(t), ( j  = 1,2, .  . .) 
dt 

while for (j = 0) we have Po(N) = coq,Xo(N)E(t), because no frequency dependence of xo(N)  is assumed. It 
is important to note that, in performing the Fourier transformation, we have treated density-dependent functions 
I ' j(N),  6j(N),  A j ( N ) ,  and xo(N)  as if they were independent of time. In fact this is not the case, because these 
functions depend on a time-varying density. However, this is still a good approximation as long as the carrier density 
changes much more slowly compared to the inverse gain bandwidth. This is obviously true in a typical laser. For 
very strong and short- pulses, this assumption needs to be reexamined. 

Once we have the equations for P j ,  we can sum over the L- resolved density equations (3)of the SBEs1s2 to obtain 
the equation for the total carrier density. 

dN t7J i -= -TNN + - + - [(PO + 9 +. - .)*E - (Po + PI + . . .)E*]. dt em 46 

Equation (1) for the laser field amplitude is now written as 

Equations (18,19,20) form the basic set of equations for our model. These equations contain density dependent 
parameters which must be obtained from the independent calculation of gain and index spectra, or from experimental 
measurements. If the lateral variation is to be resolved, we can add a carrier diffusion term in (19) and a diffraction 
term in (20). 

5. COMPARISON BETWEEN EBEs AND SBEs 
To test the validity of the EBEs (18-20), we consider pulse propagation in a bulk GaAs semiconductor amplifier by 
solving both the SBEs and the EBEs. In our solution of the SBEs, the scattering terms are treated using scattering 
rate approximation, both for carrier-carrier and for carrier-phonon scatterings. First me consider propagation of an 
initially strong pulse of amplitude 6 meV. The input pulse is sech-shaped with FWHM of 20 ps. Fig.S(a) shows 
the pulse profiles at selected propagation distances into the medium. The corresponding plasma temperature rise is 
shown in Fig.G(b). In spite of the plasma temperature rise of about 10K and in spite of the fact that no temperature 
effect is considered in the EBE model, the two profiles agree very well with each other. The more stringent test of 
the model is for the shorter pulse propagation. Fig.7 shows the last portion of the propagation of an initially short 
pulse of 2 ps duration. The initial amplitude is 0.1 meV. We see that, with propagation into the medium, the two 
profiles start to diverge with the one simulated by the SBEs giving lower profile than the one by EBEs. 
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Figure 6. (a) Pulse profiles using the SBEs and the EBEs. (b) The corresponding temperature profile as predicted 
by the SBEs. 

Figure 7. (a) Pulse profiles using the SBEs(1ower one) and the EBEs(higher one). (b) The corresponding temperature 
profile as predicted by the SBEs. 

In Fig.7(b), we see that the plasma temperature rise in this case is larger than in Fig.7(b). This more significant 
plasma heating leads to a stronger saturation of the gain, and therefore less amplification of the pulse. Rom this 
comparison, we conclude that for the pulse width of tens of picoseconds, the EBE model gives good agreement. 
When the pulse becomes shorter, the plasma heating plays a more important role. Since our model does not include 
plasma heating, it fails for the propagation of pulses of a few picosecond duration. It is worthwhile to mention that 
our main intended application area is modeling laser dynamics, in which case, the time scales involved are usually 
much longer than a few picoseconds, or the amplitude of the electric field is much smaller. In these cases, we expect 
that this model to work well. Obviously, if we can generalize the present model to include plasma heating, the range 
of validity could be further extended. 



6. SUMMARY 
We have shown in the previous sections of this paper why it is necessary to include the nonlinear carrier density 
dependence and dispersion of the gain and refractive index for semiconductor laser modeling. Our main purpose is 
then to incorporate these dependences into a set of modeling equations. Because many-body interactions are very 
important in determining the spectral shape and amplitude of the gain and refractive index change, it is natural that 
such a systematic model should take Coulomb interactions into account. Our systematic, bottom-up construction of 
the effective Bloch equations also takes the material and structure parameters into account. Because the approach 
is based on the approximation of the gain and refractive index by Lorentzian oscillators, it could be equally well 
applied to experimentally measured data. A summary of our approach and the detailed procedure are shown in Fig.8. 
We think that the flexibility of this comprehensive model will allow more quantitative investigation of the space- 
time dynamics of broad-area semiconductor lasers, complex laser arrays, and other more complex laser structures. 
Currently we are working on the inclusion of the temperature effects in the same fashion. 
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Figure 8. Summary schemes used in our approach. 
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