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Abstract 

Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra 
degree of electronic freedom in the growth direction, giving rise to new transport phenomena not 
found in single electron layers. This report describes work done on coupled DQWs subject to in- 
plane magnetic fields B,,, and is based on the lead author’s doctoral thesis, successfully defended at 
Oregon State University on March 4, 1997. 

First, the conductance of closely coupled DQWs in B,, is studied. B,,-induced distortions in the 
dispersion, the density of states, and the Fermi surface are described both theoretically and 
experimentally, with particular attention paid to the dispersion anticrossing and resulting partial 
energy gap. Measurements of giant distortions in the effective mass are found to agree with 
theoretical calculations. 

Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The 
magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface 
components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is 
observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to 
agree exceptiondly well with the data. 

Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. 
Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting 
transport effects in these devices. Difficulties in sample fabrication have to date prevented 
experimental verification. However, recently developed techniques to overcome these difficulties 
are described. 
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ELECTRON TRANSPORT IN COUPLED DOUBLE 

QUANTUM WELLS AND WIRES 

1. INTRODUCTION 

The microelectronics industry has continuously sought to increase the operating speeds 

and complexity of integrated circuits and to reduce their power dissipation. One of the 

most important methods for accomplishing these goals has been to reduce the minimm 

feature sizes of electronic devices. This trend has pushed feature sizes from = 3 pm in 

1980 [ 11 to roughly 0.35 pm in present day commercial devices and minimum feature sizes 

are predicted to reach 0.1 pm by the year 2007 [2]. Fundamental limits to continued 

miniaturization, first recognized by Swanson [3] and Landauer [4], will be reached in one 

or two decades [5,6]. To continue the trend of miniaturization and enhanced performance, 

new technologies must be developed to replace traditional transistor technology before 

these limits are met. 

Several devices that utilize quantum mechanical effects have been proposed as 

alternatives to today’s technology. These quantum effect devices can be divided into three 

categories [7]: 

1. Quantum wave devices: these devices are based on the quantum mechanical 

interference of electron wavefunctions and use the wave-nature of electrons. In one 

possible device, the electron wavefunction is split in two, the phase of one part is changed 

relative to the other, typically with a Schottky gate, and then the two components are 

brought back together and interfere either constructively or destructively, similar to a Mach- 

Zehnder interferometer [SI. 



2. Quantum functional devices: these use quantum mechanical effects such as 

tunneling or size-quantization effects. Cellular automata and single electron devices fall 

into this category. 

Cellular automata are arrays of cells used to perform logic functions in which each cell 

interacts only with its nearest neighbors and, in some implementations, its next-nearest 

neighbors [9]. The state of each cell is determined from the states of its neighbors using 

predefined interaction rules. All data enters and exits from the edge of the array. One 

implementation of cellular automata is based on a cell composed of five coupled quantum 

dots; four at the corners of a square and the fifth in the center of the square [ 101. Electrons 

can tunnel between the dots within a cell but can not tunnel from one cell to another cell. 

The ideal cell has two free electrons in it and therefore has two possible states which are 

determined by quantum mechanics and Coulomb interaction. The electrons can occupy 

either the upper left/lower right dots or lower left/upper right dots. Neighboring cells 

respond to a cell through Coulomb interactions which can cause a cell to change state. 

Several of these cells are grouped together to perfom various logic functions, including 

inversion, and programmable AND and OR gates [ 1 13. 

Single electron devices are composed of small metallic islands that are weakly coupled 

to source/drain regions through tunnel junctions and capacitively coupled to nearby 

electrodes. These devices show charging effects when single electrons tunnel onto or off 

of the metallic island. For a tutorial review of this subject, see reference [12]. One 

realization starts with a two-dimensional electron gas (2DEG) and uses Schottky gates to 

electrostatically form the metallic island, known as a quantum dot, that is linked to the 

2DEG through tunnel junctions formed by two quantum point contacts. Quantum point 

contacts have been extensively studied and a review is given in reference [ 131. Electrons 

can tunnel onto the dot through one junction and off of the dot through the other when a 

small source/drain bias is applied across the dot. A nearby electrode, known as a control 

gate, which is capacitively coupled to the device, is used to control the tunneling by 

2 



changing the electrostatic potential of the dot. A new approach for the design of digital 

logic circuits utilizing these devices has been suggested [14]. 

3.  Atomic or molecular devices: these devices would apply an external signal to 

change the state of a molecule in a detectable way. The existence of molecules that mimic 

the behavior of a relay has been suggested but has yet to be demonstrated [ 151. Research 

in this area is in its infancy and no specific devices have been proposed yet. 

A system that holds promise for future quantum effect electronic devices, and also 

photonic devices, is coupled double quantum wells (DQWs) in III-V compound 

semiconductors. This system consists of two quantum wells separated by a narrow barrier 

which electrons can tunnel through. Several quantum effect devices have already been 

proposed for DQWs. These include the Double Electron Layer Tunneling Transistor 

@EL") [16], the velocity modulated transistor E171 and the resonant interband 

tunneling transistor [18]. The purpose of the present study is to further investigate 

transport phenomena in DQWs to facilitate development of new electronic devices. The 

main emphasis of this work is the effect of dispersion curve distortions on the transport 

properties of DQWs. The dispersion curve is distorted by applying a magnetic field (BII)  in 

the plane of the QWs. 

There has already been much work on the transport properties of DQWs, including 

tunneling between the two QWs, a resistance resonance that occurs when the QW densities 

are equal to each other, and the Coulomb drag effect which occurs when a current flowing 

through one QW induces a voltage drop in the other QW. Before reviewing this work in 

the second half of Chapter 2, the first half of that chapter provides an introduction to the 

DQW system. The conduction band diagram and wavefunctions are discussed along with a 

description of the basic characterization of a DQW sample. Chapter 3 discusses sample 

preparation and the experimental setup for all of the experiments. 

The next three chapters discuss the experimental results of this dissertation. Chapter 4 

investigates features in the in-plane conductance (G~~(BII))  which result from an anticrossing 

3 



of the QW dispersion curves due to BII. The main effect of BII is a linear transverse shift of 

one QW dispersion curve with respect to that of the other QW. For the case of strong 

coupling between the two QWs, the two dispersion curves anticross and a partial energy 

gap opens, resulting in a two-component dispersion curve. These distortions in the 

dispersion curve give rise to distortions in the density of states, Fermi velocity and other 

transport properties. The features in Gll(B11) evolve with surface gate and this dependence 

is used in a model to extract the layer separation and the energy gap. The second part of the 

chapter deals with the measurement of the electron cyclotron mass (m*) in this system. 

The mass is obtained from the temperature dependence of the magnetoresistance 

(Shubnikov - de Haas (SdH)) oscillations when a small perpendicular ( B i )  component of 

magnetic field is added to BII.  Both parts of this chapter also present theoretical calculations 

by S .  K. Lyo that show excellent agreement with the experimental results. 

Chapter 5 extends the experiments of Chapter 4 to the case of crossed magnetic fields. 

The addition of a stronger B l  causes Landau level formation for each branch of the 

distorted dispersion curve. There is complex beating in the magnetoresistance as the 

electron population in one branch of the dispersion curve increases while the electron 

population of the other decreases as BII  is increased. A semiclassical calculation of the 

Landau level positions in B i  and Bll is also performed. This calculation takes into account 

the changing m* with BII and shows excellent agreement with the data. As 231 is increased 

this field causes electrons to tunnel across the gap in k-space formed by the anticrossing. 

This tunneling is known as magnetic breakdown and results in additional beating in the 

magnetoresistance data at higher B i .  

Experiments on one-dimensional structures formed on DQWs are discussed in Chapter 

6. The two main structures are quantum point contacts and short quantum wires. For both 

structures, an anticrossing in the one-dimensional dispersion curve, similar to the 

anticrossing of the two-dimensional dispersion curve in Chapter 4, is expected with the in- 

plane magnetic field perpendicular to the current. In the quantum point contacts, this 

4 



anticrossing would result in quantized conductance steps as a function of BII  when each 

QW has a single conducting channel through it. For short quantum wires, Lyo has 

predicted that a quenching of intra-wire back scattering would result in an enhancement of 

the conductance by orders of magnitude. Finally, Chapter 7 summarizes this dissertation 

and suggests further experimental work that could be done with this system. 

5 
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2. BACKGROUND 

There has been much interest in DQWs in the last several years. This interest stems 

from the additional degree of freedom, which results from tunneling between the two QWs, 

found in this system as compared to single QWs. This chapter discusses the basic features 

of DQWs and reviews some of the new phenomena previously observed in these 

structures. 

2.1 Electronic Properties of Double Ouantum Wells 

Coupled DQWs are formed by bringing two 2DEGs close to each other and separating 

them by a thin barrier which electrons can tunnel through. Because of their relevance to 

DQWs, the main properties of single 2DEGs will be presented in this section, along with 

their extension to DQWs. Single 2DEGs have been extensively studied over the last two 

decades and a large body of literature exists on the subject [19]. This work focuses on 

electron transport only. Therefore, optical properties, the valence band, holes, and 

excitons will not be considered here. A discussion of these topics can be found in 

references [20] and [21]. 

2.1.1 Growth Structure 

A DQW consists of two regions of a narrow band gap semiconductor embedded in a 

wide band gap semiconductor and separated by a thin barrier of the wide band gap material. 

Electrons are confined to two-dimensional planes in the quantum wells formed by the 

narrow band gap material. Typically, the narrow gap semiconductor is gallium arsenide 

(GaAs) and the wide gap semiconductor is aluminum gallium arsenide (AlXGal-,As), 

where x is the mole fraction of Al and is usually about 0.3. The mole fraction x = 0.3 is 

7 



used for several reasons. First, larger x results in larger barrier heights and better 

confinement of the electrons. However, above x = 0.35, the presence of defect levels, 

known as DX centers [22], becomes important and is manifested in effects such as 

persistent photoconductivity. For x < 0.35, these levels move above the Fermi energy and 

their presence does not affect electron transport Also, when x is increased above 0.45, the 

GaAs cap 
ND= le18 cm4 

ND = le18 ~ r n - ~  

GaAs QW 
Alo.sG%.~As Barrier 

GaAs QW 

Delta-Doped 

ND = le12 cm-* 
A10.3Ga0.7As 

G aAs/AIo,G aos7As 
Superlattice Buffer 

Fig. .1 

EC 
Sample Top Surface 

30 A 

500 A 

200 A 

500 A 

150 A 

150 A 
500 A 

15-40A 

2000 A 

600 ptn 

G 
I 
EF 

Generic growth structure and conduction band schematic, with band benc ing 
ignored, for a double quantum well sample. Typical layer thicknesses and 
doping densities are also shown. 
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conduction band minimum goes from the r valley, which has a low effective mass, to the 

X valley which has a much higher effective mass [23]. These structures are most 

commonly grown by molecular beam epitaxy (MBE) but have also be grown using 

metalorganic chemical vapor deposition (MOCVD) [24, 251. Both growth methods result 

in abrupt interfaces that are smooth on an atomic scale and high mobility material, with 

MBE material typically having considerably higher mobility than MOCVD material. Kelly 

[20] discusses both methods in detail and provides references to current research topics in 

semiconductor growth techniques. The mobility of DQW samples grown by either method 

is generally somewhat lower than single heterojunctions, due to the ‘inverted’ interface that 

OCCUTS when switching from AlGaAs to GaAs during growth. 

Fig. 2.1 shows a generic growth structure for a DQW sample with typical layer 

thicknesses shown. Modulation doping is employed to provide electrons for the QWs 

while keeping the mobility as high as possible by separating the dopants from the free 

electrons in the QWs, thereby reducing remote ionized impurity scattering. Narrower 

spacer layers result in higher electron densities but also in reduced mobility. In DQWs, the 

electron density is typically chosen such that only the two lowest subbands are occupied. 

The right side of Fig. 2.1 shows the sample’s conduction band energy as a function of 

position, with band bending ignored. The conduction band offset (A&) between GaAs 

and AlxGal-xAs is a strong function of mole fraction x. For x < 0.45, AEc = (1.1 eV) x x 

[23], where A& = 280 - 300 meV for Al0.3Gao~As. At low temperatures, electron states 

are filled to the Fermi energy (EF), which is shown as the dashed line. 

2.1.2 Subband Energies and Wavefunctions 

In the growth plane (x-y plane), the electrons are not confmed and the wavefunctions 

for these directions can be taken as plane waves [20]. However, in the direction 

perpendicular to the growth plane (z-direction), the electrons are confined in the QWs and 
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the one-dimensional Schrodinger equation must be solved in the effective mass 

approximation to find the subband energies and wavefunctions. The one-dimensional 

Schrodinger equation is given by 

(-ft2/2m*(a2/az2) + VCZ)) Y(z) = &*Y(Z), (2.1) 

where V(z) is the conduction band energy plus the electrostatic potential of the free 

electrons and ionized impurites, Y(z) is the wavefunction, and sn is the eigenenergy. The 

electron effective mass is m* (see Section 2.1.5), which for GaAs is m * ~ &  = 0.067me 

and for Al0.3Ga0.7As is 0.073me, where me is the free electron mass. For convenience, 

m * ~ d ~  is typically used for both the QWs and the barriers. Due to band bending caused 

by ionized impdties and free electrons, the potential V(z) must be found by solving 

Poisson’s equation. In one-dimension, Poisson’s equation is given by 

d2V(z)/dz2 = -P(z)/E~, (2.2) 

where p(z) is the charge density and cr is the relative dielectric constant. The free electron 

contribution to the charge density is obtained from the electron wavefunction obtained from 

the solution of the Schrodinger equation, where p(z) = elY(z)12. Therefore, these 

equations are solved iteratively, with the V(z) found from Poisson’s equation being used to 

solve the Schrodinger equation and the resulting electron wavefunction being used to 

modify the solution of Poisson’s equation [26]. The iteration continues until in the change 

in the electron wavefunction, the subband energy levels, or the potential is small and meets 

a convergence criterion. This is known as a self-consistent solution. Electron-electron 

interactions can also be included using the Hartree approximation [27]. Closed-form, self- 

consistent solutions for DQW structures are not possible, so the solution must be obtained 

numerically. Finite difference and finite element techniques can be employed in the 

numerical solution of these equations [28]. 
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Fig. 2.2 Plot of the calculated conduction band energy as a function of position for a 
DQW. 

Fig. 2.2 shows the results of a finite difference calculation which I performed for the 

structure shown in Fig. 2.1 with a barrier d = 25 A. There are several features of the 

conduction band to note. First, and most important, is that the bottoms of the QWs, and 

only the QWs, are below the Fermi energy, ensuring that, at sufficiently low temperatures, 

there are free electrons in the QWs and no free electrons in other parts of the sample. As 

stated previously, electrons fill available states up to EF while states above EF remain 

unfilled at temperature T = 0. Also due to the electrons in the QWs, the bottoms of the 

QWs are not flat. This band bending pushes the electrons in one QW away from electrons 
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in the other QW, resulting in weaker coupling between the two QWs. At the surface of 

the sample, the Fermi energy is pinned near mid-gap by surface states [29]. This pinning 

can deplete the top QW if the top dopant layer is not doped heavily enough or if the total 

spacer thickness is too small. In the doped regions, the conduction band is pulled down 

close to the Fermi energy by the dopants. The energy required to promote an electron from 

a bound state in an impurity to the conduction band is the dopant ionization energy ED, 

where ED = 8 meV in x = 0.3 AlGaAs [23]. Thus the conduction band is pulled to within 

roughly 8 meV from the Fermi energy in the doped regions. Finally, in the bulk of the 

material, the Fermi energy approaches mid-gap as one goes deeper into the bulk because 

this region is undoped. This region may be unintentionally doped to = lOI4  ~ r n - ~  due to 

residual dopants in the system. 

Expanded views of the bottoms of the QWs and the wavefunctions for two different 

gate biases (VG) are shown in Fig. 2.3. Negative gate biases raise the conduction band at 

the surface of the sample and deplete electron layers under the gate, while positive biases 

lower the conduction band and increase the electron density. In the first case (Fig. 2.3(a)), 

VG = 0 V and the two QWs have equal electron densities. In this case, the system is said to 

be ‘in balance’ or ‘in resonance’ and the band bending in one QW is nearly identical to the 

band bending in the other QW, except reflected about the center of the barrier. If there is 

no tunneling between the two QWs, the eigenenergies for the lowest two states are equal 

and the wavefunctions are localized in one QW or the other. However, when tunneling is 

permitted, the wavefunctions are delocalized across both QWs and the two energy levels 

repel each other, fonning symmetric and antisymmetric states. These states have unequal 

electron densities but the two QWs still have equal electron densities. The energy 

difference between these subbands is hE = E2 - E1 = ASAS, the symmetric-antisymmetric 

gap. For the structure simulated, ASAS = 1.32 meV and is too small to be resolved in Fig. 

2.3(a). Tunneling is strong when the sample is in balance because energy and momentum 

are conserved in a tunneling event, as will be discussed below. 
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As VG is made more negative, the density of the top QW decreases while the density 

of the bottom QW remains unchanged [30] and the sample is now said to be ‘out of 

balance’ or ‘out of resonance’. Fig. 2.3(b) shows the same sample for the case where VG 

<< 0 V, where the sample is out of balance. Energy and momentum conservation are no 

200 
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n > - E O b - +  
P a> >r p I I I I 

E 200 
F 

n 

1200 1800 

Fig. 2.3 Plot of the conduction band energies and wavefunctions (solid = 91, dotted 
= <p2) for (a) balanced DQW and (b) unbalanced DQW. The dashed lines 
indicate the eigenenergies of the two states. 
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longer met and tunneling between the two QWs is now reduced. The ground-state 

wavefunction is mostly confined to the bottom QW with eigenenergy &1 = -10.2 meV and 

the next higher subband is mainly confined to the top QW with eigenenergy &2 = 1.8 meV. 

This subband is totally depleted of electrons because its eigenenergy is above the Fermi 

energy (EF = 0). The energy difference is now given by AE = E2 - E1 = [MQ$ + 
AS AS^]-''^ [31], where AEQW = &2i - Eli and &2,1i are the eigenenergies of the isolated 

single QWs, which are obtained by solving the Schrodinger equation. When ASAS is small 

compared to AEQw, the two wavefunctions become totally localized in one QW or the 

other. In the balanced, unbalanced, and intermediate regimes, the system forms two 

parallel 2DEGs. 

An approximate solution to the Schrodinger equation can be obtained using a tight- 

binding perturbation calculation where the single isolated square QW wavefunctions ( I VI), 

I ~ 2 ) )  are used as basis wavefunctions [20, 211. The isolated QWs are assumed to be 

identical, each with eigenenergy &QW. The wavefunctions are obtained from analytic 

solutions of the Schrodinger equation for finite wells, which can be found in introductory 

quantum mechanics books [21,32]. The infinite well approximation cannot be used in this 

situation because the wavefunctions are zero outside of the QWs, resulting in no coupling 

between the QWs when they are brought close to each other. The coupled-QW 

wavefunction (I")) is assumed to be a linear combination of the isolated-QW 

wavefunctions; 1 Y )  = a 1 vl) + fJ 114.~). The Schrodinger equation is expanded in terms of 

this basis and is written in matrix form as: 

where the matrix elements are: v1 = (Wl I V2(Z) I v1) = (v2 I Vl(Z) I v2)  and 

v12 = (v1 I V2(Z) I Y2) = (v2 I Vl (z) I Wl). 
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This equation is solved to give the energy levels E1,2 = Eo + VI 2 I V12 I resulting in ASAS 

= 2 I V12 1 .  The lower energy state is the symmetric combination of basis wavefunctions 

and the higher energy state is the antisymmetric combination. This method over-estimates 

ASAS because it ignores band bending which moves the wavefunctions to the outsides of 

the QWs (ie. farther apart), reducing their overlap and thus &AS. 

No Coupling 
Coulomb Coupling 

Weak Tunneling 
Strong Tunneling 

2.1.3 Symmetric-Antisymmetric Energy Gap 

0 b> lo00 
= O  
< 1  
> 1  b c 5 0  

200 c b < 1000 
50 c b < 200 

ASAS is a measure of the coupling strength between the two QWs and depends 

strongly on the width and height of the barrier between them and to a lesser extent on the 

QW width and electron densities. For wider, higher barriers, the wavefunction of one QW 

does not extend as far into the other QW, which results in a smaller ASAS. The height of 

the barrier is lowered by reducing x, the Al concentration of the AlxGal,As barrier. The 

wavefunctions of wider QWs do not extend as far into the barriers as those of narrower 

QWs and this also results in a smaller ASAS. Increasing the electron densities in the QWs 

results in increased band bending which pushes the wavefunctions farther apart and 

reduces ASAS. For closely coupled DQWs, &AS is on the order of 1 meV and decreases 

with increasing barrier thickness. 

Table 2.1 lists the four general regimes of coupling: (1) No coupling: in this regime the 

Table 2.1: Coupling regimes in double quantum wells. 

I COUPLING REGIME I ASAS (meV) I BARRIER (A) I 
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electron wavefunctions in the individual QWs do not overlap and the Coulomb interaction 

between electrons in opposite QWs is negligible. (2) Coulomb coupling: the Coulomb 

coupling regime is characterized by Coulomb interactions between electrons in opposite 

QWs but tunneling does not occur between the two QWs. (3) weak tunnel coupling. 

(4) strong tunnel coupling. In the two tunneling regimes, electron wavefunctions from the 

two QWs overlap and tunneling is allowed between the two QWs. The boundaries 

between these different regimes are not abrupt. For weakly coupled DQWs, ASAS 

approaches zero and for strongly coupled systems it can be as high as 15 - 20 meV. For 

the samples in this work ASAS = 1 - 3 meV, which represents fairly strong coupling. 

There are several methods used to determine ASAS and these will be discussed later. 

2.1.4 Dispersion Curve and Fermi Surface 

In Section 2.1.2, the subband energy (En) associated with confinement in the z- 

direction was calculated. The kinetic energy associated with motion in the x-y plane is 

h2/2m(k,2 + ky2), giving a total energy of E = En + h2/2m(k,2 + ky2) where kx and k,, are 

the wave vectors in the x- and y-directions, respectively. The resulting energy versus wave 

vector diagram for a given n (fixed En), also known as a dispersion curve, is a parabloid 

with states existing only on the surface of the parabloid. In three-dimensions, the 

dispersion curve is also a parabloid, but in that case, states exist on the surface and within 

the volume of the parabloid. Fig. 2.4(a) shows the dispersion curve for a DQW with two 

subbands occupied. The dispersion curve has the same form when the system is in either 

the balanced or unbalanced state. The Fenni surface (FS) is the intersection of the 

dispersion curve with a plane at the Fermi energy (EF) and, for DQWs, the two- 

dimensional Fermi surface consists of two concentric circles. Electrons fill available states 

up to EF while states above EF remain unfilled at temperature T = 0. The Fermi surface is 
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important because transport occurs within a few kBT of EF so only electrons on the Fermi 

surface need to be considered when studying conduction at low temperatures [33]. 

2.1.5 Density of States, Effective Mass, and Fermi Velocity 

Several important quantities are calculated from the dispersion curve. The first is the 

density of states (DOS), which is important because many transport, optical, and 

thermodynamic quantities are closely related to the DOS and, in particular, to the functional 

form of the DOS near band edges [20]. The DOS is defined as the number of states per 

-1 .o 0 1 .o 
ky (1 08 t11-1 = 1 /I OOA) 

(a) 

0 i 2 -  

(b) 

Density of States (m*/nh2) 

Fig. 2.4 (a) Dispersion curve for a DQW with two subbands occupied. (b) The density 
of states for the dispersion curve shown. 
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unit area per unit energy and is equal to l/A,-(CUVI(E)/dE), where Ac is the area of the 

conductor and NT (E') is the number of states with energy less than E [33]. For ZDEGs, 

NT (E) = g, x (FS area) / (aredstate) = 2 x (np)/(47c2/Ac) = m*Ac/(nh2) x (&En), where 

gs is the spin degeneracy (8, = 2 when there is no spin splitting), En is the subband energy, 

and the areas are k-space areas. From this, DOS = m*/(nh2) *(E-€,), where 6 is the unit 

step function. The DOS is constant for each subband and the total DOS has a step increase 

when another subband is occupied. Fig. 2.4(b) shows the DOS for a DQW with two 

subbands occupied. 

The second quantity obtained from the dispersion curve is the electron effective mass 

m*. The effective mass accounts for the effects of the periodic potential of the 

semiconductor crystal on the electrons and is given by: l/m* = l/fi2(d2E(k)/dk2). Thus, 

m* is inversely proportional to the curvature of the dispersion curve and for a parabolic 

dispersion it is constant. A third important quantity that is calculated from the dispersion 

curve is the group velocity, which is v = l/h(dE(k)/dk) [21]. Thus the velocity is 

determined by the slope of the dispersion curve and for parabolic dispersion it is linear with 

k (v = hk/m*). 

2.1.6 Conduction and Mobility (B = 0) 

The response of electrons in a ZDEG to an applied electric field is the same as that of 

electrons in metals. With no applied field, the electrons move in random directions with no 

net current flow. When the external field E is turned on, the electrons acquire an average 

drift velocity vd in the direction of the field. At steady-state, the rate at wbich momentum is 

gained from the field is equal to the rate at which momentum is lost in scattering processes 

1331; (dP/dt)field = (dP/dOscuttering- (dpld0field = -eE and (dp/dOscuttering = m*v&m 

where z, is the momentum relaxation time. The mobility p of a sample is a measure of 

how easily electrons respond to applied fields and is defined as p = Ivd/ El and from the 
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above equations, p = eT,/m*. Due to reduced ionized impurity scattering, 2DEGs have 

low scattering rates and thus have high mobilities. 

Another related quantity is the sample conductivity 0, which is defined as j = oE, 

where j is the current density, j = -evdn,, where n, is the electron density. Using the 

equations from above, (T = n,e2z,/m* = epn,. From this, the product p, can be obtained 

from measurements of the conductivity at zero magnetic field. However, conductivity 

measurements in perpendicular magnetic fields can give both n, and p, as will be discussed 

In DQWs, these quantities have the same definitions, but there is the added 

complications of having two electron channels. Measurements with B = 0 can give the 

conductivity, and thus product of mobility and density, of both subbands in parallel (ototal 

= eptompztotal ) or, by depleting the top QW with a gate bias, the conductivity of the 

bottom QW ( C F ~ ~ ~ ~ , )  can be measured, assuming obogom is when carriers exist in the top 

QW as it is when there are no carriers in the top QW. The top QW conductivity (atop) can 

then be calculated from otoul = atop + obogom. When the DQW is in balance, the electron 

wavefunctions occupy both QWs equally and the total conductivity is approximately equal 

to the lower of the two QW conductivities. 

2.1.7 Hall Effect and Quantum Hall Effect in Single 2DEGs 

Conductivity measurements in weak magnetic fields (Hall effect) and in strong 

magnetic fields (quantum Hall effect) are important techniques for separately determining 

the mobility and density of 2DEGs. In both cases, the magnetic field is applied 

perpendicular to the plane of the 2DEG. Both techniques can be used to characterize 

DQWs, although the Hall effect gives only the mobility and density for both QWs in 

parallel, while the quantum Hall effect, on the other hand, can be used to obtain the 

densities and mobilities for the individual QWs. 
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In magnetic fields (B = (0, 0, B l ) ) ,  the momentum relationship, (dpldt)fieu = 

(dp/dt),cattering, now becomes -e(E + vd X B) = m*Vd/'t;n. This can be rewritten as[33]: 

(2.4) 

where v,, vy  and E,, Ey are the x- and y-components of the velocity and electric field, 

respectively. Using j = -ev@,, CT = epn,, and p = eTm/m*, and rearranging 

where the resistivities are pxr = pyy = 6' and pq = -pyx = BlIea,. In two dimensions, 

the longitudinal resistance (Rm) is Rm = pm (WIL), where WIL are the width and length of 

the sample, respectively, and the Hall resistance (RV) is equal to pq. This model predicts 

that Rm will be constant with B i  and Rq will increase linearly with B i .  Experiments on 

single 2DEGs (Fig. 2.5) show that this is true for low magnetic fields ( B l  < = 0.5 T). 

However, at higher B l ,  Rxr has plateaus and Rm oscillates. The model presented above 

can not explain this behavior; so a new model will have to be devised. This measurement 

can be used to obtain n, from the slope of pq versus BI when this trace is linear at low 

BI.  However, if conduction also occurs through the doped regions (parallel conduction), 

the slope of pq changes and the correct value of a, in the QW is not obtained. 

To properly describe these results, the Schrodinger equation including a vector 

potential to represent the magnetic field must be solved. This calculation is done elsewhere 

[34]; here, however, a more physical explanation will be given. Classically, the magnetic 

field will cause electrons to move in circular orbits in the plane of the 2DEG with radius r, 

= v h , ,  where o, = eBl/m*.  Classically, r, can have any value, but quantum 

mechanically, the circumference of the orbit must be an integer number of de Broglie 

wavelengths (h/m*v). This restriction 

quantizes the kinetic energy ( rn*v2/2 = ih0,/2) and predicts that the total energy is E = 

Thus 2mc  = ih/m*v where i is an integer. 
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Fig. 2.5 Measured Rxr and Rxr for a single 2DEG. The Landau level filling factors are 
indicated for v = 2, 3, and 4. The inset shows a fast Fourier transform of Rn 
versus UBI. 

En + i(hoJ2). This result is similar to the energy predicted by the full quantum mechanical 

calculation, where E = En + (i + 1/2)fio,. These energy levels are known as Landau levels 

(LLS). 

Fig. 2.6(a) shows the DOS of the system which now has peaks at the Landau levels. 

These peaks are delta functions when there is no broadening or disorder, and take on a 

finite width when scattering is present. The DOS at a Landau level with broadening is 

sketched in Fig. 2.6(b). As is shown, the tails of the peak contain localized states, due to 

the presence of disorder, while the center of the peak consists of extended states, 
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Fig. 2.6 (a) Density of states of a single 2DEG in B l .  (b) Expanded view of the DOS 
for a single Landau level showing the localized and extended states. 

broadened due to scattering. The energy spacing between Landau levels is ha,, which is 

proportional to B l ,  and the degeneracy of each level is gseBl/h, where gs is the spin 

degeneracy. (At low B l ,  the levels are not spin split and g, = 2 while at high B l ,  they are 

spin split and g, = 1.) Therefore, as BL increases, the spacing between the Landau levels 

and the number of electrons in each level increases. 

The oscillations in Rxr and the plateaus in RV can be explained in terms of these 

Landau levels. When EF is in a Landau level, current-carrying electrons can scatter from 

one extended state to another, resulting in a high resistance. However, when B l  is 
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increased so that EF is between two Landau levels, there are no available extended states 

for current-carrying electrons to scatter into and the resistance decreases. The Fermi energy 

can reside between two Landau levels because there are localized, non-current carrying 

states which pin EF here (see Fig. 2.6(b)). If these states did not exist, EF would jump 

from one Landau level to the next higher Landau level as B l ,  and hence the Landau level 

degeneracy, was decreased. Rather, as B_L is increased Landau levels move up in energy 

and pass through EF. Hence, Rxx goes through one cycle of oscillation when the system 

changes from the center of one Landau level being at EF to the center of the next Landau 

level being at EF. At lower B l ,  the Landau levels are still fairly close together and their 

tails overlap, so the resistance does not go to zero. But at higher B l ,  the spacing between 

Landau levels is sufficiently large that the resistance drops to zero. 

The Hall resistance has plateaus when EF is between Landau levels because the 

number of current-carrying states is constant while the localized states are swept through 

EF. The Hall resistance is quantized at values of RV = Bi/ens = (h/gse2)/i, where Bi is the 

field in the middle of a plateau, i is an integer, and ns = i(gseB/h) (see below) was used. 

RV depends on fundamental constants only and not on any material parameters. This 

effect is known as the quantum Hall effect and was first observed by von Klitzing et al. in 

1980 [35]. In ultra-pure samples, plateaus in RV and minima in Rxx can appear when a 

certain fraction of a h d a u  level is filled. This is the fractional quantum Hall effect and 

was first seen by Tsui et aZ. in 1982 [36]. Several review articles give more details on 

these two phenomena [34,37,38]. 

The Landau level index i can be determined by inspection from the plateaus in RV and 

the minima in Rxr. At high B l ,  where pxy = 25.8 kQ, pxx is at a minimum, and at 

magnetic field B l =  B1, only one Landau level (index i = 1) is occupied (the lowest index 

seen in Fig. 2.5 is i = 2). The next minimum in Rxx occurs when two Landau levels are 

occupied at B i  = B1/2 and RV = 25.8 WZ / 2 = 12.9 WZ. As B l  is decreased, successive 

minima in Rxx and plateaus in Rxy occur at &/i. The electron density can then be calculated 

23 



by multiplying the number of occupied Landau levels by the Landau level degeneracy; n, = 

i (g,eBi/h), where Bi is the magnetic field at the minima in Rm The Landau level filling 

factor (v) is the ratio of the total density to the Landau level degeneracy, where v = 

ns/gseBl/h. The filling factor is an integer when the highest Landau level is completely 

filled and it is a real number when the highest level is partially filled. The filling factors for 

several completely filled Landau levels are labeled in Fig. 2.5. 

The density can be calculated from the oscillations in Rxr in another way. The number 

of occupied Landau levels is given by ns/( g,eBi/h) and if B1 and B2 are the magnetic field 

values of two successive peaks, 

This holds for any two successive peaks and shows that the oscillations are periodic in 

1/Bl and the density can be calculated from that period. The period can be calculated by 

inspection by reading values off of the graph or it can be obtained from the Fourier power 

spectrum of Rxr versus UBI.  The inset to Fig. 2.5 shows the results of a fast Fourier 

Transform (FFT) performed on the data of Fig. 2.5. The densities calculated by this 

method and from the positions of the minima agree to within roughly 10%. 

2.1.8 Quantum Hall Effect in Double Quantum Wells 

The above description for single 2DEGs in a perpendicular magnetic field also holds 

for DQWs with a slight modification. The description above was for a system with only 

one subband occupied. When a second subband is occupied, there are oscillations in Rx\: 

due to the first subband and oscillations from the second subband superimposed on the first 

set of oscillations. Due to the density difference between these two subbands, the two sets 
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Fig. 2.7 Measured R, and R for a DQW. The oscillations in R, show beating due to 
the two component grmi surface. The Landau level filling factors are indicated 
for v = 3 and 4. The inset shows a fast Fourier transform of Rm versus 1/Bl. 
The FFI' has a peak for each occupied subband. 

of oscillations have different frequencies which results in beating in the oscillations as 

shown in Fig 2.7 for a DQW. Similar beating is seen in single QWs with two subbands 

occupied. The Hall resistance again has plateaus where R, has minima. The total density 

can be obtained from the positions of minima in Rn and plateaus in Rxy, as done for single 

2DEGs. To obtain the densities for both subbands, the Fourier power spectnun of R, 

versus 1/Bl must be calculated. The results of an FFT on the data of Fig. 2.7 are shown 

as an inset to that figure. There are two sharp peaks in the FFT, corresponding to the 

25 



I I I I 

2.0 

1.5 
k 
0 
.- 

1.0 
.r 
v 

S 

0.5 

0.0 
-0.3 -0.2 -0.1 0.0 

VG (v) 

1.4 

1.2 
S 
h 
A 
0 
-L 

1.0 -L 

0 
3 I 
lb 
v 

0.8 

0.6 

Fig. 2.8 Measured density (open circles) and density difference (closed circles) for the 
two lowest subbands of sample E. 

densities of the two subbands and the sum of these agree to within roughly 10% with the 

total density calculated from the Landau level positions. 

The densities obtained from the SdH oscillations can be used to determine ASAS [39]. 

The symrnetric-antisymmetric energy gap is given by ASAS = Es - EAS, where ES,AS = 

fi2ks,~s2/2m* and kS,AS = ( ~ ~ s , A s ) ' ~  are the radii of the two Fermi circles. From these, 

ASAS = zh2Aiz/m*, where An = nS - nAS is the density difference between the 

two subbands. The densities of the two subbands are found as a function of gate bias and 

the minimum density difference is used to calculate ASAS. The density and density 

difference as a function of gate bias for sample E (see section 3.1) are shown in Fig. 2.8. 

The minimum An = 0.64 x 10" cmq2 at VG = -0.1 V gives ASAS = 2.3 meV, in good 
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agreement with the calculated value of 2.1 meV. Near VG = -0.1 V, the system is 

balanced and therefore, the two QWs have equal electron densities and the wavefunctions 

are equally shared by the QWs. Near V' = -0.3 V and VG = 0.5 V, the QWs have 

unequal densities and the wavefunctions are becoming localized in the QWs. Another 

method for calculating ASAS from transport measurements is presented in Chapter 4. 

Raman spectroscopy, which is a resonant inelastic light scattering technique, can also be 

used to determine ASAS optically [40,41]. 

- 2.2 Literature Review 

Improvements in MBE growth in the la five years have allowed the growth of DQWs 

with mobilities approaching those found in single 2DEGs. This improvement in sample 

quality has made a variety of transport experiments in DQWs possible. Here, several of the 

key experimental results will be summarized. 

In transport experiments in high perpendicular magnetic fields, both the integer and 

fractional quantum Hall effects have been observed in DQWs [39] and other multi-layer 

structures [42,43]. What sets DQWs apart from single 2DEGs is that odd-integer quantum 

Hall states can be missing under certain conditions [39] and the v = 1/2 fractional state 

[44], which is not seen in single 2DEGs can appear. The missing odd-integer quantum 

Hall states have been investigated both experimentally [39, 45, 461 and theoretically [47, 

481. The odd-integers in DQWs are caused by the ASAS energy gap, which is the single- 

particle tunneling gap. When the interlayer Coulomb interactions dominate, the &AS gap 

collapses and the ground-state is a gapless correlated bilayer state. That is, the electrons 

correlate their interlayer positions so as to reduce their Coulomb energy. This leads to the 

disappearance of the v = 1, and 3 states. The appearance of the fractional state at v = 1/2 is 

also thought to be caused by interplay between intralayer and interlayer Coulomb 

correlations [MI. The possibility of correlated states in Coulomb-coupled DQWs has also 
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been extensively studied theoretically [49 - 521. 

observed in wide single 2DEGs with two subbands occupied [53,54]. 

These phenomena have also been 

In a precursor to the work presented here, Boebinger et aZ. measured the magneto- 

resistance of a DQW in small tilted magnetic fields [55], with 0 < B l <  0.8 T and 0 < BII < 

1.4 T, where BII is the in-plane magnetic field component. For constant, non-zero Bil and 

changing B l ,  the magnetoresistance shows SdH oscillations with beating, similar to the BII 

= 0 T case. Nodes in the beating occur when phases of the oscillations from the two 

subbands differ by an odd multiple of n. The Bi-positions of these nodes change with BII, 

indicating that the density difference between the two subbands increases with BII. A 

calculation of the dispersion curve showed that Bll distorts the dispersion. These 

distortions are the emphasis of the present work and will be discussed in greater detail in 

Chapter 4. The Bl-positions of the nodes can also be calculated semiclassically and. for 

low B l ,  good agreement between measured and calculated node positions was obtained, 

while deviations fiom semiclassical behavior are observed at higher B i .  These deviations 

were later attributed to magnetic breakdown [56] Magnetic breakdown is tunneling across 

gaps in k-space from one Fenmi surface component to another, and is caused by B i .  

Magnetic breakdown will be discussed in Chapter 5. We note that, surprisingly, 

Boebinger et aZ. failed to realize that, at sufficiently high B i ,  the Fermi surface distortions 

take on a completely different character, resulting in an anticrossing and singularities in the 

density of states, effective mass, and group velocity. The work described in this thesis 

was the first observation of that effect. 

One of the main areas of research in DQWs has been tunneling from one QW to the 

other, which is tunneling from 2D to 2D. Resonant 3D-2D tunneling has been widely 

studied in double barrier structures [57]. The first 2D-2D tunneling experiments were done 

on GaAs/AlGaAs heterostructures with an inversion layer and an accumulation layer 

separated by a doped AlGaAs barrier [58]. Due to conservation of 

resonant tunneling only occurs when the QW subbands are aligned. 

in-plane momentum, 

This means that the 
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parabolic dispersion curves of the two QWs must sit on top of one another. The tunneling 

conductance can be directly measured by making electrical connection to the individual 

QWs [59], typically using front and back depletion gates. A variety of methods have been 

used to make back gates on DQWs [60 - 621. By using a surface gate, the density, and 

therefore subband energy, of the top QW can be varied and the DQW brought in to 

resonance. Sharp peaks in the conductance are observed when the system is in resonance 

and electrons tunnel from one QW to the other [59]. 2D-2D tunneling has also been 

studied in parallel [63 - 651 and perpendicular [66, 671 magnetic fields. Resonant 

tunneling between a 2DEG and a quasi -lD wire has been investigated on DQWs [68] 

Another resonant phenomenon found in DQWs is the resistance resonance [69]. The 

resistance of both QWs in parallel is measured as a function of gate bias and, when the two 

QWs are in resonance, a local maximum in the resistance occurs. When the system is out 

of resonance, the lowest subband’s wavefunction is localized in the higher density QW and 

the next higher subband’s wavefunction is localized in the other QW. The resistance of the 

system is the parallel combination of the resistance of the two QWs and approaches the 

resistance of the lower resistance QW. When the system is in resonance, the 

wavefunctions of the two lowest subbands extend across both QWs equally and the 

resistance approaches that of the higher resistance QW [69]. The resistance peak is 

enhanced when the two QWs have drastically different mobilities[ 70, 7 13. The resistance 

resonance is suppressed in an in-plane magnetic field [72] and the characteristic field 

necessary for the suppression of the resonance can be used to study electron-electron 

scattering rates in this system [73]. 

Electron-electrons interactions in DQWs can also be measured through Coulomb drag 

studies [74]. In Coulomb coupled DQWs with electrically isolated QWs, a frictional drag 

voltage is induced in one QW when a current is passed through the other. The voltage 

results from momentum transfer due to Coulomb scattering between electrons in the 

different QWs. This phenomenon was first observed in a 2D-3D system [75] and has since 
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been observed in electron-electron [74] and electron-hole [76, 771 DQWs and in normal 

metal-superconducting f h  structures [78]. 

Finally, several other structures on DQWs have been theorized and fabricated. These 

include antidot arrays [79], quantum dots [80], and 1D surface superlattices [Sl, 821. The 

work on DQWs continues to increase due to the promise of new devices from these 

structures and due to the new phenomena that may be observed in them. 
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3. EXPERIMENTAL DETAILS 

This chapter discusses the experimental details of this work. Section 3.1 lists 

samples used and their basic characteristics. Sample processing is described in section 

and finally section 3.3 describes the measurement systems used in this work. 

3.1 SamDles 

Eight closely-coupled DQW samples were used in this work. All of the samples 

symmetric (QWs of equal width) but they are somewhat out-of-balance at zero gate b 

Table 3.1 lists the sample characteristics, the sample geometry, and the chapter in which 

measurements are discussed. The densities were determined by performing FFTs on 

versus 1IBl as discussed in section 2.1.8. The mobilities are for both QWs in parallel I 

TABLE 3.1. Sample parameters. For &AS, the measured values were obtained from 
the anticrossing features, (b) the minimum density difference as a functioi 
gate bias. 

Sample 

A 

B 

C 

D 

E 

F 

G 

H 

150 / 25 

100 135 

1501 15 

125 I 10 

1501 15 

139 I 28 

1501 15 

150 I 25 

nl 

1.4 

1.2 

0.7 

2.2 

1 .o 
1.9 

1 .o 
1.4 

n2 

1.5 

1.2 

0.9 

0.0 

1.9 

2.4 

1.9 

1.5 

CLtotal 

( io3 cm*Ns> 

244 

90 

40 

215 

3 10 

740 

3 10 

244 

AS AS 

meas. 
~ 

1.1" 

1.8" 

3 -0" 
--- 

2.3b 

1.5' 

2.3' 

1.1" 

neV) 

theor. 

1.4 

2.0 

3.4 

7.6 

2.1 

1.5 

2.1 

1.4 

Geometry 

H 

H 

H 

H 

H 

VdP 

QPC 

QPC 

Chapte 
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no gate bias. The measured ASAS were determined from the minimum density difference 

as a function of gate bias or from the anticrossing features as discussed in Chapter 4. The 

theoretical ASAS were determined from a self-consistent Hartree calculation. Finally, the 

geometry is the channel geometry resulting from processing, where H is a Hall bar, VdP is 

a Van der Pauw square and QPC is a quantum point contact. The various geometries will 

be discussed in more detail later in this chapter. 

3.2 Sample Processing 

The purpose of processing is to define the conducting channel geometry, make ohmic 

contacts to the electron layers, and make Schottky gates. Standard semiconductor 

processing techniques are used in the fabrication of these samples. Details on GaAs 

processing may be found in Reference 1831. The steps necessary to fabricate a Hall bar are 

discussed in detail in the next few paragraphs. Then slight variations of these steps are 

discussed for the fabrication of Van der Pauw squares, quantum point contacts, and 

quantum wires. 

The first step in fabricating a Hall bar is to define the conducting channel. Photoresist 

(PR) is spun (5 kRPM for 30 sec.) on a 5 x 9 mm sample and soft baked on a hot plate at 

90°C for 90 seconds. Next the PR is exposed with UV light for 3.3 seconds with the 

conducting channel part of the sample covered by a mask. The PR is then developed in 

developer (1:5 400k:H20) for 60 seconds. The developer removes the exposed PR, while 

the unexposed PR remains on the sample surface as shown in Fig. 3.l(a). An oxygen 

plasma descum at 5 W for 90 seconds at 650 mTorr is used to remove any organic material 

in the exposed areas. Next the exposed semiconductor material is etched with phosphoric 

acid (1:4:45 H3P04:H202:H20) for 90 seconds (etch rate = 50 8, / sec) to remove the 

conducting layers. The PR protects the layers under it and, after the PR is removed in 

acetone, a bar-shaped mesa, with conducting layers in it, remains. 
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0 h mic Contact (Ge-Au- Ni-Au) 

Schottky Gate (Cr-Au) 

Fig. 3.1 Schematic top view (left column) and cross-sectional view (right column) 
of Hall bar during the various processing steps. (a) Mesa step before 
etching; (b) contact step before lift-off; (c) gate step before lift-off; and (d) 
finished sample. 
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. The next step is to make ohmic contact to the conducting layers. Again PR is spun on 

the sample and baked on a hot plate. Then a mask with small openings at the ends of the 

arms of the Hall bar is aligned to the Hall bar and the PR is exposed with U V  light through 

these holes. The PR is developed to remove the exposed PR as shown in Fig. 3.l(b). A 

plasma descum is done again to clean up the corners of the holes and a light etch is done in 

20: 1 H20:"40H for 30 seconds to remove the native oxide on the exposed surface of the 

sample. The sample is then blown dry and immediately placed in the vacuum evaporator 

before the oxide can form again. Next, metal is evaporated over the entire sample and the 

PR is then removed in acetone. Metal on top of the PR is removed with the PR; while 

metal remains on the semiconductor surface. This process is known as lift-off and the right 

side of Fig. 3.l(b) shows the cross-section of the sample before the metal is lifted-off. The 

PR must be thicker than the metal and must have a side-wall profile that is vertical or has an 

over-hang so that the metal on the PR and that on the semiconductor are not connected. 

For ohmic contacts to n-type GaAs, fours layers of metal are used: Ge (270 A), Au 

(540 A), Ni (140 A), and Au (2000 A) in that order. After the lift-off process is complete, 

the metal is annealed in an infrared rapid thermal annealer (RTA) at 420 T for 90 seconds. 

The anneal causes the Ge and first layer of Au to diffuse into the semiconductor while the 

Ni acts as a barrier to prevent the top layer of Au from diffusing. The top layer of Au acts 

as a contact pad for soldering wires to the ohmic contact after sample fabrication is 

complete. 

The final fabrication step is to make a Schottky gate for changing the sample electron 

density during experiments. A lift-off process is used in this step also. PR is spun and 

baked, and then exposed using a gate mask that is aligned to the previous levels. The PR is 

developed to open holes where the gate metal is desired as shown in Fig. 3.l(c). A 

descum and oxide etch are done before evaporating Ti (250 A) and Au (2000 A) onto the 

sample. The PR and unwanted metal are then lifted-off. The Ti is used to help the Au stick 

to the semiconductor surface. Fig. 3.l(d) shows the completed Hall bar. 
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3 - 5 m m  ___) 

Ohmic Contacts 

Fig, 3.2 Top view and cross-sectional view of Van der Pauw square. 

Van der Pauw squares are easier to process because only ohmic contacts are needed. A 

Van der Pauw square is just a small, roughly square piece of semiconductor with ohmic 

contacts diffused into the corners as shown in Fig. 3.2. The metal used is typically In or 

WSn that is put on the comers with a small soldering iron, or alternatively small cylindrical 

slices of WSn wire that are placed on the comers with a pair of tweezers. After the metal is 

placed on the comers, it is diffused into the semiconductor using a thermal anneal. The 

anneal is done on a hot plate at 420" C for 5 minutes with 85% N2 / 15% H2 gas flowing 

over the sample. For high magnetic field experiments, the ohmic contacts must hang over 

the corners of the sample; otherwise, a Corbino-type geometry is inadvertantly produced 

and electrons in their cyclotron orbits will circle the contacts but not go into them [84]. 

Gates can also be deposited on the sample, but in the repesent work they are not used on 

the Van der Pauw squares. The fabrication of Van der Pauw squares is simpler than Hall 

35 



bars, but Van der Pauw squares have several drawbacks that will be discussed in the next 

section. 

Quantum point contacts and quantum wires are similar to Hall bars, except the gate is 

very short with a tiny opening in it as shown in Fig. 3.3. This geometry is known as a 

split gate and the opening between the gates is less than 1 pm wide. The split gates are 

used to deplete the electron layers beneath them; leaving a very short, narrow conducting 

channel connecting two large reservoirs. The difference between quantum point contacts 

Conducting Channel 

Depletion Regions 

Schottky Gate (Cr-Au) 

Ohmic Contact (Ge-Au-N i-Au) 

Fig. 3.3 Left: Top view of a quantum point contact (upper gates) and quantum wire 
(lower gates). Right: cross-sectional view of these devices showing a 
schematic of the approximate depletion region and the resulting conducting 
channel. 
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and quantum wires is the channel length, where quantum wires are longer than quantum 

point contacts The operation of quantum point contacts, which results in the quantization 

of the longitudinal resistance even at B = 0, and quantum wires will be discussed in detail 

in Chapter 6.  The mesa etch and ohmic contact evaporation and anneal are the same for 

these devices as they are for Hall bars. The gate processing is slightly different because the 

opening between them is too small to defme using optical lithography. Instead, electron 

beam lithography is used to define the gates because it has a much better resolution than 

optical lithography [20]. 

3.3 Exoerimental Setup 

The experiments were performed in a pumped 3He system with a base temperature T = 

0.3 K and a 15 Tesla superconducting magnet . There are two main areas of concern in the 

experimental setup. The fist is the measurement circuit, where here standard lock-in 

measurement techniques were used and will be discussed in section 3.3.1. The influence 

of the sample geometry will also be discussed in that section. The second area of concern 

is the orientation of the magnetic field with respect to the sample, where the various 

experiments require different magnetic field orientations. The different methods used to 

achieve these orientations are discussed in section 3.3.2. 

3.3.1 Measurement Circuit 

The measurement circuit must accurately measure Rxx and Rxr while using a 

sufficiently small excitation that the conduction electrons in the sample remain near 

equilibrium. In theory, this is accomplished by using an excitation that is on the order of 

kBT = 26 pV for T = 0.3 K, where kB is Boltzmann’s constant. In practice, measurements 

are done at different excitation voltages and the highest voltage at which the results are 
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unaffected by the excitation is identified. Performing the measurements at equilibrium 

ensures that the Fermi surface concept can be used to analyze the results and that hot 

electron effects do not have to be considered. The wires from the instruments to the sample 

in the cryostat have a resistance of roughly 300 S Z ,  which can be comparable to the sample 

resistance at B = 0. To remove this lead resistance from the measurements, all of the 

measurements are done using four terminals. As shown in the schematic of Fig. 3.4, a 

small current is passed between two terminals at the ends of the Hall bar and a voltage is 

measured across two other terminals of the Hall bar. The current is generated by adding a 

large ballast resistor (= 10 - 100 MQ) in series with the Hall bar and applying Vi, = 1 V 

across this circuit. If the ballast resistor is much larger than the other resistances in the 

circuit ( = 10 - 20 kQ at high B ) ,  nearly all of the input voltage is dropped across the 

ballast resistor and the current through the sample is independent of the sample resistance. 

The signal to noise ratio is increased by using phase sensitive detection. In this 

technique, an A.C. voltage at a frequency fief is used as the input voltage Vi,. fief is 

typically in the range 5 - 100 Hz and is not a multiple of 60 Hz to avoid picking up 60 Hz 

line noise. The response of the sample at fief is then measured in-phase with the input 

voltage. Noise signals at frequencies other thmfref are rejected and voltages smaller than 

0.1 pV can be measured even when much larger noise signals are present. Using this 

technique, small voltage drops across the sample can be accurately measured while keeping 

the sample at equilibrium. In this case, the current can be = 10 - 100 nA and is determined 

by the values of Vi, and the ballast resistor. The 10 WZ resistor is used to measure the 

current flowing through the sample. Vi, is generated with a lock-in amplifier and all of the 

voltages are measured with lock-in amplifiers referenced to Vi,. The outputs from the lock- 

in amplifiers are measured with DMMs which are, in turn, read by a computer over the 

GPIB bus. This allows the data to be easily saved and analyzed on computer. 

Hall bars are the standard geometry used in measurements on 2DEGs because they 

allow the accurate measurement of both Rx3: and Rw The number of squares (S  = WW) of 
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. the electron channel is defined as the ratio of the channel length (L) to width (W) and, for 

Hall bars, the number of squares can be accurately determined. Knowing the number of 

squares and Rxr allows the calculation of the sample mobility. In Van der Pauw squares, 

on the other hand, the number of squares is not well defined and thus it is more difficult to 

determine the mobility from the measurement of Rm In Van der Pauw squares, Rm is 

measured by flowing current between the two contacts onone sideofthesample and 

measuring the resistance along the opposite side. Due to fringing fields, S is not well- 

I M I  
I 

Fig. 3.4 Schematic diagram of the measurement circuit with the Hall bar being tested. 
Vi, is the input A.C. signal, VG is the D.C. gate bias, and the other voltages are 
measured in-phase with the input signal. Only the sample is in the low-T 
cryostat. 
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defined and is given by [85] S = ln(2)/(n$), where f is a correction factor for non-square 

samples andf= 1 for a square sample. A more accurate determination of Rxr is possible by 

repeating this measurement for each side of the sample. Rxr can not be independently 

measured with this technique; however, the combination of RV and Rxx can be measured 

by flowing current through opposite comers of the sample and measuring resistance 

between the other two comers. 

3.3.2 Magnetic Field Orientation 

The experiments or this thesis require several different magnetic field components 

ranging from parallel (BII)  to the plane of the QWs to perpendicular ( B i )  to the plane and 

different angles between these two extremes. The sample is mounted on a stage that can be 

rotated from parallel to perpendicular to the magnetic field. First the rotation system will be 

described and then the rotation schemes for the different experiments will be discussed. 

The rotation system was manufactured by Oxford Instruments and consists of a 

stepper motor outside the cryostat that turns a rod which extends into the cryostat and has a 

rotating mechanism at its end. The rotating mechanism is a Swedish rotator which consists 

of a spiral gear at the end of the rotating rod and a disk with gear teeth around its 

circumference as shown in Fig. 3.5. The sample is mounted on the disk along with a Hall 

probe that measures B i  only. A second Hall probe is mounted on a stationary platform 

near the sample to measure BT. These Hall probes are the only way for the computer to 

determine the angle of the sample. The angle can also be visually read from an analog 

display on the stepper motor with a resolution of 0.1" but an accuracy of only = 0.5". 

However, this display cannot be read by the computer and so is useful only for 

experiments in which a single, fixed angle is required. 

The stepper motor is controlled with the rotator control box which can be run either 

manually or via a computer equipped with a signal generator board. Manual control gives 
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n rotator stepper 
con t ro I motor cryostat U box I / 

agnet 
computer with 

\ 

Rotating Stage Y 

Fig. 3.5 Schematic of the rotation system with a blow-up of the rotating sample holder 
and magnetic field components. 
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a constant rotation rate, whereas computer control can give a variable rate. The signal 

generator board must be capable of producing both a D.C. voltage and a 5 V p-p square 

wave signal. The D.C. voltage determines the direction of rotation while the frequency of 

the square wave determines the rotation rate of the sample. Each pulse of the square wave 

signal rotates the sample an infinitesimal angle (A@ << 0 . 1 O )  and thousands of pulses are 

necessary to rotate the sample a measurable amount. However, with the signal generator 

board used here, the computer cannot count the number of pulses output by the signal 

generating board. 

This leaves two methods for computer-controlled rotation to a specific angle or by a 

specific amount. The frrst is to use the Hall probes to measure the angle and rotate to a set 

angle. This method suffers from overshoot due to delays in the system. Back rotation at a 

slower rate can compensate for this but oscillation about the set point is a possibility which 

reduces the sample hold time at the base temperature. The other method uses a timed 

rotation at a given rate. Using this method, the sample can be reliably rotated by angles on 

the order of 0.1 O .  

Basic characterization of the samples requires only B l ,  while Bll only is used in the 

experiments of Chapters 4 and 6. These are easily achieved in a single magnetic field and 

rotation is typically done manually in these cases. One of the experiments of Chapter 4 

requires a large BII with a small Bi-component. This is achieved by rotating the sample 

manually to the desired angle. However, for the experiments of Chapter 5,  a constant BII  

with changing BI is desired. Achieving this is difficult in a single magnetic field and two 

methods for doing this are discussed next. 

In the first method, BT is swept at a constant rate and the sample is simultaneously 

rotated at a variable rate determined by a feed-back loop so as to keep the measured BII  

constant. Bli could be held constant within +0.003 and -0.011 T [86]. The rotation 

resulted in heating due to friction and for these measurements the sample temperature was T 

= 0.5 +_ 0.2 K. The rotating mechanism eventually failed due to poor gear design and was 



replaced with a new mechanism from the manufacturer. However, the new mechanism had 

more friction and thus sample heating became a problem for this method and it could no 

longer be used reliably. Several measurements were done using this technique and but will 

not be discussed due to the higher quality data obtained using the second technique. 

The other rotation method was inspired by Boebinger et aL's work [553. In this 

technique, the angle is held constant while BT is swept and Rn and Rv are recorded. 

When the sweep is complete, 0 is changed by a small mount ( < c- 0.1") and, after the 

sample recools to the base temperature, another BT sweep is done. While Boebinger et al. 

used only 50 different angle in their experiment, our use of the independently mounted Hall 

probes allowed us to use several hundred angles, achieving much greater resolution. 

Between scans the sample was rotated sufficiently slowly to keep the sample temperature 

below = 1 K. After the series of scans is complete, traces of Rxr and RV for constant B I ~  

can be extracted from the data. To change the sample's angle, timed rotation at a constant 

rotation rate of = 0.1" per minute was used. When the sample was nearly parallel to the 

magnetic field, where B i  is relatively small and Rn oscillates rapidly, a small A0 c- 01." 

was used. While for 8 = 45" and beyond a A0 as large as c- 0.5" was used. 
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4. DOUBLE QUANTUM WELLS IN PARALLEL MAGNETIC FIELDS 

This chapter describes electron transport experiments in DQWs subject to in-plane 

magnetic fields only. Previous experiments performed on DQWs subject to BII include 

measuring the in-plane conductance (GII) in small BII [55], studying the v = 1 state in tilted 

magnetic fields [46], and also studying tunneling between the two QWs as a function of BII 

[63 - 651. However, there is no previous work in which GII is experimentally studied as a 

function of large BII .  For this work, the theory and experiments went hand-in-hand. Lyo 

predicted that GI would exhibit one sharp feature as a function of B I I  [87]. However, in 

our experiments, two features were observed [88] and after modifying his theory, Lyo was 

able to accurately reproduce the experimental results [3 I]. Next, the electron effective mass 

was measured as a function of Bll[86,89,90] and Lyo was able to reproduce these results 

also [91]. For the sake of clarity, Lyo’s theoretical work on Gll(B11) is presented in the first 

section followed, in the second section, by our experimental work. The last section 

discusses the experimental measurement and theoretical calculation of the electron cyclotron 

effective mass as a function of B I I .  This work is exciting because, as will be seen in the 

next section, BII distorts the Fermi surface, giving it multiple components, whose sizes and 

occupancies are tunable with BII. 

4.1 Anticrossinp of Dispersion Curves 

In a DQW with the direction of current flow parallel to BII ,  electrons moving within 

each QW will not feel a Lorentz force ( = -evd x B) because they are moving parallel to 

the magnetic field. However, during a tunnel event, electrons are moving perpendicular to 

the magnetic field and thus experience a Lorentz force, which gives them a momentum 

boost. Fig. 4.1 schematically shows electron motion in a DQW with the current parallel to 

B I I .  Boebinger et aE. [55] showed that the main effect of BII  on a DQW is a linear 
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Fig. 4.1 Schematic depicting electron motion in DQW with the current parallel to B I I .  
The black circles represent electrons in the top QW and the gray circles 
represent electrons in the bottom QW. The open circle shows an electron that 
has tunneled from the top QW to the bottom QW. 

transverse shift in the canonical momentum Ak of electrons in one QW relative the other, 

where the amount of shift is given by Ak = edBll/fi. d is the distance between the two 

electron layers, which is typically determined from the distance between the two QW 

wavefunction maxima. Boebinger et al. [55] also showed that the resulting dispersion 

curve is slightly distorted at low Bil and Lyo extended this work to the case of high BII [3 11. 

The following analysis of DQWs subject to BII closely follows Lyo's work with some 

details added. For this work, BII is in the x-direction, y is the other in-plane direction, and 

z is perpendicular to the QW planes. The current can be run in either the x- or y-direction 

and the difference between these two variations will be discussed. 

The kinetic energy in the direction of Bll is E, = (tzk,)2/2m* and the Hamiltonian for the 

y- and z-directions is given by [3 11 
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where for simplicity, an isotropic mass (m* = 0.067me = m * G A )  is used for both the 

QWs and the barriers and I = (fi/eB11)2 is the magnetic length. The confinement potential 

(V(z)) is the superposition of the QW potentials Vi (2) for QWl and V2(z) for QWZ. This 

Hamiltonian can, in general, be diagonallized numerically. However, only approximate 

solutions using a tight-binding solution, similar to that presented in Chapter 2, will be 

considered here. The narrow QW approximation will be used; meaning only the lowest 

subband in each QW will be considered. 

The basis functions, q l ( z )  and (P~(z ) ,  used in the tight-binding solution are the field- 

free ground subband eigenfunctions of the isolated single QWs. These subbands have 

eigenvalues €1 and &2, respectively. The tight-binding solution yields eigenvalues [3 13 

where S = (91 1%) and the matrix elements are given by 

Hnm = &m{(Pn'(Pm) + ((PnKz'(Z)l(Pm) + ((PnlVB(Z>~(Pm) (n, m=19 2). (4.4) 

The prime on the subscript m indicates that 1' = 2 and 2' = 1, VB(Z) is the potential due to 

the magnetic field and is given by A2/Zrn*(ky-zf~)2, and H i 2  = H21 is assumed. 

The dispersion curve resulting from this calculation for a structure similar to sample A 

at high BII is shown as a three-dimensional plot in Fig. 4.2 [92]. As can be seen, the two 

QW dispersion curves are shifted with respect to each other in the ky-direction. However, 

rather than crossing, the two QW dispersion curves anticross and a partial energy gap 

opens in the ky-direction. In the k,&rection, the dispersion remains parabolic. The 
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Fig. 4.2 Three-dimensional view of the dispersion curve of a closely coupled DQW 
subject to an in-plane magnetic field. 

anticrossing results in a non-circular, multi-component Fermi surface consisting of an inner 

lens-shaped orbit and an outer peanut-shaped orbit when the chemical potential p is above 

the energy gap. The point at the bottom of the gap is a saddle point, i.e., its dispersion has 

positive curvature in the k,-direction and negative curvature in the ky-direction. The 

distortions in the dispersion result in distortions in the density of states (DOS), the Fermi 
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velocity and the electron effective mass. In particular, the DOS logarithmically diverges at 

the saddle point, as will be discussed shortly. 

Fig. 4.3 shows the ky-dispersion (column a) and DOS (column b) at three values of BII 

for a balanced DQW with d = 110 A, w = 60 A, and VI  = V2 = 280 meV. The dashed lines 

are for the case where tunneling is turned off and the DQWs are uncoupled. The solid lines 

are for coupled DQWs where tunneling is allowed. The upper panel is for 2311 = 0 T, where 

the two uncoupled parabolas sit on top of one another. Coupling between the two QWs 

causes these two parabolas to repel one another and form the symmetric and antisymmetric 

states, as discussed in Chapter 2. The DOS is constant for each subband as expected. 

Themiddle panel of Fig. 4.3 shows the case of BII = 6 T, where the two QWs have 

shifted with respect to one another and the energy gap has formed. Away from the 

anticrossing, the dispersion is similar to the uncoupled QWs and electrons are in QW 

states. While near the anticrossing, electrons occupy both QWs and are in the symmetric 

and antisymmetric states. The DOS shows sigmficant distortions due to the distortions in 

the dispersion curve. At high energy, when both Fermi surface orbits are occupied, the 

total density of states is constant, but the DOS for each orbit varies slightly. As the energy 

is decreased, the lens orbit becomes de-occupied and just below 5 meV it is totally empty 

and the DOS shows a step decrease at this point. As the energy is further decreased, the 

saddle point is approached and the DOS has a logarithmic singularity. 

The lower panel is for BII = 9 T and shows that as Blr is increased the energy gap 

moves to higher energy. In practical cases, the energy is constant at p., and increasing BII 

increases the size of the peanut orbit, decreases the lens orbit, and moves the energy gap 

and the corresponding features in the DOS to higher energy. The gap can be moved up so 

that p. resides in the gap and the resulting Fermi surface consists of only the peanut orbit. 

Further increasing Bll, moves the gap above p and the dispersion becomes two uncoupled 

parabolic branches which have a constant DOS. 
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Fig. 4.3 Calculated dispersion curve (a) and density of states (b) for a balanced 
DQW structure at three different magnetic fields. top: BII = 0 T; middle: 
BII  = 6 T; lower: BII = 9 T. 
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Another feature of Fig. 4.3 is that the energy gap remains roughly constant with B I I .  

From equation 4.2, we see that the energy gap EG is given by do/( 1-S2), which is = 40 
because S = 0.0 1 and S2 << 1. For balanced DQWs at BII = 0 T, EG = ASAS and it can be 

shown from equations 4.2 - 4.4 that EG = 2[((plIV2l<pl) - (cpllV1l<p2)]. This approximation 

also holds for Bli f 0 and therefore, EG = ASAS at all B11 for balanced DQW. Also, the 

minimum energy gap always occurs half way between the two displaced parabloids, which 

is defined here as kr = 0. 

The situation is slightly more complicated for unbalanced DQWs and is shown in Fig. 

4.4 for three characteristic values of Bil. This calculation is for a DQW with w = 150 A, 
t = 25 A, Vi = 280 meV, and V2 = 278 meV, corresponding closely to sample A with VG = 

-0.1 V [88]. The upper panel again shows BII = 0 T. In this case, EG = ( E I , ~ ~  + 

AS AS^)'^ [3 11, where E1,2 = IE1 - €21 and the same definition of ASAS is used as above. 

The middle panel shows the case where BII = 0.7 T and the two uncoupled Fermi circles 

touch tangentially on the inside. The two curves anticross, but an energy gap does not 

form and the total DOS is unchanged, although the individual subband DOS change 

slightly. This behavior is known as a type I anticrossing [31]. In the lower panel (Bll = 

7.5 T), the uncoupled circles touch tangentially on the outside and the energy gap has 

formed. The anticrossing in this case is known as a type II anticrossing. The energy gap 

has decreased and becomes EG = ASAS. For this unbalanced DQWs, the gap does not 

occur midway between the two parabloids (ky = 0), but occurs at ky = le7 m-', with the 

gap approaching ky = 0 as BII increases. The DOS is similar to the balanced DQW case, 

except that at low energy there is a step decrease when one QW becomes de-occupied 

before the other QW. 

Lyo [31] calculates the in-plane conductance Gll(B11) in the relaxation-time 

approximation. (Another group later calculated the conductivity using Boltzmann kinetic 

equations [93] with similar results.) In the direction of applied electric field u=E/IEI, 
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Fig. 4.4 Calculated dispersion curve (left column), density of states (middle column), 
and Fermi surfaces (right column) for an unbalanced DQW structure at three 
characteristic magnetic fields. top: BII = 0 T; middle: BII = 6 T where the 
uncoupled Fermi circles touch tangentially on the inside; lower: BII = 9 T where 
the uncoupled Fermi circles touch tangentially on the outside. 

where 
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for delta-potential impurities (surface roughness or short-range impurity potentials), Vk = 

A-IVkEk, Ek = Ex&) + E+(kY), k includes imphcitly the indices k for the upper and lower 

energy branches, A is the cross-sectional area of the QWs, and f'k is the energy derivative 

of the Fermi function. Here N' is the total number of static scattering centers randomly 

I .2 

1 .I 

1 .o 

0.9 

n l  = % = I .5 x I 01 1 cm-2 I '  

0.8 - 1 I I I i I I I I 

0 2 4 6 8 10 

Fig. 4.5 Calculated as a function of Bil for a symmetric DQW similar to sample A at 
VG = 0 V. Three different ratios of scattering times in the upper zu and lower 
q branches are shown. The arrows indicate positions of the maximum and 
minimum when the Hartree potential is included. 
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distributed in the x-y directions but distributed in a certain probability distribution in the z- 

direction. Vkx represents the matrix element of the potential from an impurity at z = zi and 

has a slow momentum dependence through B-induced ky-sublevel mixing. The anflar 

brackets in equation 4.6 denote the average over the impurity distribution. Lyo obtains 

%-'(E) = nV'NlD(&) by ignoring the momentum dependence of Vkx =VI where D(E) is the 

DOS including spin. 

Fig. 4.5 shows an evaluation of equation 4.5 [88] for w = 150 A, t = 25 A, and nl = 

n2 = 1.5 x 10" cm-2, corresponding to sample A at VG = 0 V. Three different ratios of the 

scattering times in the upper (2,) and lower (q) energy branches are shown. GII(B~I)  shows 

two sharp features at high B I I .  The first is a maximum and corresponds to the lens orbit 

moving above p. When the lens orbit is occupied there is significant scattering into low 

velocity states in this subband. As the lens moves above p, the scattering rate suddenly 

decreases and a maximum occurs in GI!. The second feature is a minimum that occurs 

when the saddle point reaches p. The DOS at the saddle point has a logarithmic divergence 

and these states have zero velocity, thus increasing the scattering rate and causing a 

minimum in GI. There are no distinct features at the type I anticrossing, as expected. The 

calculation uses the QW center-to-center distance for d (= 175 A). However, electron- 

electron interactions will push the two electron layers away from one another, causing d to 

increase. In a self-consistent Hartree calculation, the effective d is increased from 175 A to 

195 A. The positions of the features using the increased d are indicated by the arrows in 

Fig. 4.5. 

The velocity vk is equal to h-lVk&k, where for parabolic dispersion, this reduces to 

vk = (hk,/m*)x + (hk,/m*)y. Here, the velocity is proportional to the wavevector. Far 

from the anticrossing, the DQW dispersion is parabolic and this expression holds. Fig. 4.6 

shows the velocity for a symmetric DQW, with the effects of the anticrossing ignored. As 

can be seen, electrons on the lens have a much lower velocity, and thus cany less current, 

than electrons on the peanut orbit. As BII increases and the size of the lens decreases, the 
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Fig. 4.6 Plot of the magnitude and direction of vk as a function of wavevector 
superimposed on the Fermi surface. The velocity of electrons on the lens is 
much smder than that on the peanut orbit. Also, The y-components of Vk are 
seen to be larger than the x-components. 

velocity of electrons on the lens orbit will decrease correspondingly. This graphically 

shows how the lens orbit suppresses the conductance when it is occupied and the nature of 

the conductance peak that occurs whenthe lens moves above the chemical potential. 

4.2 Experimental Observation of An ticrossing 

In the previous section, the theoretical framework for these experiments is presented. 

Next, the experimental measurement of the in-plane conductance as a function of in-plane 



magnetic field is presented, with comparison to Lyo's calculations. After that, the density 

dependence of the in-plane conductance is examined and a method for measuring A s ~ s  is 

described. 
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Fig. 4.7 Measured C;l as a function of BII for samples A, B, and C. The dark arrows 
indicate where the uncoupled Fermi circles touch tangentially on the outside. 
The definitions of Bmid and AB are shown in gray on sample B. 
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4.2.1 In-Plane Conductance as a Function of In-Plane Magnetic Field 

The in-plane conductance of Hall bars on samples A, B, and C was measured as a 

function of in-plane magnetic field and gate bias [88]. Fig. 4.7 shows Gl~(Bll) for these 

samples. As can be seen, all three show the features due to the edges of the energy gap 

crossing the chemical potential. The features are smaller and rounded compared to theory 

due to damping. For sample A, the maximum appears at Bmax c- 5.8 T, followed by a 

sharp minimum at Bmin c- 6.4 T. The calculated Gil, including corrections due to the 

Hartree potential (see Fig. 4.3, gave values of B-,min = 6.0 T and 7.0 T, which are in 

excellent agreement with the measured data. The arrows in Fig. 4.7 indicate the field at 

which the two uncoupled Fermi circles touch tangentially on the outside, where BII = 

ed(kl+k2)/h and k,,; = 2xn1,2. These are very close to the mid-point between the two 

features (&id). This point is discussed in more detail below. As will be seen in the 

second half of this section, when the top QW is depleted, is weakly dependent on B I ~  

and is monotonic for BII < 14 T. This indicates that the features are due to inter-QW 

interactions. Also, these features can not be due to the formation of cyclotron orbits within 

the individual QWs which are semiclassically expected when BII  > 4h/ew2 (= 12 T for 

sample A). 

The above results were obtained for an angle 0 = 0" between BII  and the direction u of 

the applied electric field E. A large anisotropy is expected in C;l with 0 due to the highly 

anisotropic Fermi surface [93], which causes anisotropy in the (u vk)' factor in equation 

(4.5). The origin of this anisotropy can be seen from a plot of the velocity vk as a function 

of wavevector and superimposing it on a graph of the Fermi surface, as is done in Fig. 4.6. 

As can be seen in the figure, the velocity components in the y-direction are much larger 

than the velocity components in the x-direction. Therefore, the (u Vk)' factor is larger 

when the electric field is perpendicular to BII, which results in a larger conductance for this 

orientation. The angular dependence of Gl1 is investigated using a piece of sample B that is 
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processed with a Hall bar that has several arms at different angles. The inset of Fig. 4.8 

shows the modified Hall bar along with the directions of E and 2311. Because these 

measurements were all done on the same sample, the residual B l  due to angular offset was 

equal for all of these measurements and was kept below 0.005 T [ S I .  Fig. 4.8 shows the 

results of these measurements for all four angles used [88]. As expected, GII shows a large 

degree of anisotropy. The size of the anticrossing features for 6 = 90" are nearly a factor of 

three larger than for 0 = 0". At a point just below BII = 4 T, the conductances for all four 
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Fig. 4.8 Normalized of sample B at four different angles 8 between the direction u of 
the electric field and B I I .  The inset shows the modified Hall bar to investigate 
the angular dependence of the anticrossing features. The directions of Bll and E 
are also shown. 
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angles used are equal to each other, indicating that G is independent of angle at this point 

P41. 

4.2.2 Gate Bias Dependence of In-Plane Conductance 

This subsection discusses the gate bias dependence of the anticrossing features. Fig. 

4.9 shows the anticrossing features for several values of top gate bias VG for sample A 

with 8 = 0" [88]. The mid-point between the features is defined as Bmid and the separation 

is AB = Bmin - Bm as indicated in Fig. 4.7. As VG decreases, both features move to 

lower BII (ie.,  Bmid decreases), with Briar moving more rapidly than Bmin (k, AB also 

increases). The strength of the features also decreases rapidly when VG < -0.25 V and the 

features essentially disappear when the top QW is depleted at VG = Vdepl = -0.29 V, as 

shown in the inset of Fig. 4.9. To a first approximation, negatively biasing VG linearly 

decreases the top QW density nl while leaving the bottom QW density a2 unchanged. This 

approximation is good when the DQW is unbalanced, however, it breaks down for 

strongly coupled DQWs which are near balance. As VG decreases, the bottom of the top 

QW dispersion curve is raised relative to the bottom of the other QW dispersion, thus 

reducing the size of the top QW Fermi surface. This means a smaller k-space shift (Ak = 

edBll/h) is needed to cause the two uncoupled Fermi surfaces to touch tangentially on the 

outside as sketched in Fig. 4.10. Thus the features appear at lower BII with decreasing VG. 

The increase of AB with decreasing BII is not as easily described with a physical picture. 

The gate bias dependence of B m d  and AB for all three samples are shown in Fig. 4.1 1 and 

next a simple model accounting for this dependence is developed [88]. 

We first model the gate dependence of Bmid using simple theory. Bmid occurs when p 

is at the center of the energy gap and the two uncoupled QW Fermi surfaces touch 

tangentially on the outside, where Ilk = kl + k2. Using k1,2 = (2m~1,2) '~ ,  a1 = cG/e(vG - 

Vdepl), and assuming that n2 is constant, this model gives 
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Fig. 4.10 Sketch of the uncoupled Fermi circles at two different VG showing 
the Ak necessary to move the middle of the energy gap to the 
chemical potential. 

where CG = &/d, is the capacitance per unit area between the gate and top QW. For 

convenience, a constant permittivity equal to the GaAs permittivity & = 13.1Eo is used, 

where Eo is the permittivity of free space. d, is the distance from the gate to the top QW 

and is the calculated from the samples' growth structures. Vdepi is obtained from gate 

scans at B = 0 as shown in the inset of Fig. 4.9 and n2 is obtained from measurements in 

B i  with the top QW depleted. Fits to equation 4.7 using d as the only adjustable parameter 

are shown in Fig. 4.11. The values for d obtained in this manner show relatively good 

agreement with values for d obtained from self-consistent Hartree calculations which give d 

= 195,140, and 180 A for samples A, B, and C, respectively. 

A similar, somewhat more complicated model is developed for AB = Bmin - Bma.  

Bmax and Bp,in occur when the top and bottom edges of the energy gap are at p. At Bma,  

the uncoupled Fermi circles overlap as shown in Fig. 4.12(a) and Mmax = (kl - M I )  + 
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(k2 - Ak2). At Bmin, they are slightly separated Show in Fig. 4.12(b) and Akmin = 

(kl + Akl)  + (k2 + Ak2). Fig. 4.12(c) shows a schematic of the dispersion curve at the 

anticrossing and shows the definition of Ak which is obtained from M/Ak = &.Gk. &/dk 

is the slope of the uncoupled dispersion curve and is evaluated as h2k/m*. Using Bpnin,- 

p\ / / AE=EG/2 
slope = &/ak x--------- 

/ \  

\ 
/ \ where E = #k2/2rn* / 

Fig. 4.12 Sketch of the Fermi surfaces and the Ak necessary for (a) the top of the 
energy gap to be at the chemical potential, (b) the bottom of the energy gap 
to be at the chemical potential. (c) Sketch of the dispersion curve and the 
quantities used to calculate AB. 

63 



Fits to equation 4.8 using values of d obtained from the fit of equation 4.7 and with EG as 

the only adjustable parameter are shown as dash-dotted lines in Fig. 4.1 1. This gives 

values Of EG = 1.1, 1.8, and 3.0 meV, respectively for samples A, B, and C ,  which are in 

fair agreement with the values of EG = 1.4, 2.0, and 3.4 meV obtained from the Hartree 

calculations. The assumptions made to obtain equation 4.8 breakdown for larger EG, as 

seen by the larger discrepancy for sample C. 

4.3 Measurement of Electron Cvclotron Effective Mass 

The above experiments showed that the in-plane magnetic field causes changes in the 

in-plane conductance that are the result of distortions in the density of states due to 

distortions in the DQW dispersion curve. One would expect to see distortions as a function 

of Bll in other properties that depend on the dispersion curve or Fermi surface. One such 

quantity is the electron effective mass m*. In one sense, the effective mass can be viewed 

as being inversely proportional to the curvature of the dispersion curve. For the lens orbit 

near the energy gap, a small m* is expected due to the sharp curvature here (see Fig. 4.2). 

For both branches far from the energy gap, m* is expected to be equal to the GaAs 

effective mass m * ~ d ~  = 0 . 0 6 7 ~ ~ ~ .  The situation is more complicated at the saddle-point 

where E&, k,,) has negative curvature in the k,,-direction and positive curvature in the kr 

direction. The purpose of the following experiment is to measure m* as a function of B I I .  

The Fermi surface area in k-space can also be determined from this experiment and is 

discussed at the end of this section. 
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4.3.1 Experiment 

The effxtive mass is measured by adding a small perpendicular (BI> component of 

magnetic field to BII and analyzing the resulting magnetoresistance oscillations as a function 

of temperature. With small 231 and at lower temperatures, the Landau levels are fairly 

narrow and the overlap between adjacent Landau levels is relatively small. Therefore, the 

magnetoresistance oscillations have a large amplitude. For the same BL, as the temperature 

is raised, the Landau levels are thermally broadened, which increases the overlap between 

adjacent Landau levels and causes the oscillation amplitude to decrease. This thermal 

broadening is proportional to m*T [95]. Thus, oscillations from subbands with small m* 

persist to higher T than oscillations from subbands with large m*. 

The experiments were done with the sample mounted at a small, fixed angle 8 from 

parallel to the magnetic field, where 8 = 2S0, 3.0°, and 3.5" were used [89,90]. This gave 

a large, changing BII (= BT cose) and a small, changing B_L (= BT sine). The fact that B i  

was changing simultaneously with BII was dealt with in the analysis and had negligible 

effects on the outcome of the experiment. The sample temperature was held constant 

during each BT -sweep and several sweeps were done at temperatures ranging from 0.5 K 

to 3.0 K. The sample temperature was monitored using a calibrated germanium resistor. 

Measurements could have been done to obtain a constant Bij and changing BI as described 

in Chapter 3, however, this method requires hundreds of BT sweeps for each temperature. 

The total process would take several months. The issue here is not the time required but 

the stability of the sample. Over the period of several months, the sample density would be 

likely to change by roughly &lo%, thereby making an accurate determination of m* 

impossible. This technique has subsequently been used to measure smal l  mass deviations 

as a function of Bli in single 2DEGs [96,97]. 

Fig. 4.13(b) shows the resulting magneto-resistance oscillations for sample A at 8 = 

3.0" and T = 0.5 K. Due to the simultaneously changing BII and B_L, the SdH oscillations 
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Fig. 4.13 (a) Sketch of the Fermi surfaces for the different BII  regions. (b) Magneto- 
resistance oscillations of sample A at 8 = 3.0" and T = 0.5 K, (c) AR resulting 
from (b), (d) anticrossing features for 8 = 0". Curve (d) was subtracted fiom 
(b) to get curve (c). The gray lines highlight the anticrossing features. 
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are mixed with the anticrossing features and to partially remove this mixing, AR(B11, 6=3O) 

= R(&, 0 = 3 O )  - R(B11, O=Oo) was analyzed. Fig. 4.13(c) and (d) show AR(B11, 0) and 

R(B11, O=Oo), respectively. The main difference between R(BII ,  6) and AR(B11, 6) occurs 

near the anticrossing as shown by the gray lines in Fig. 4.13. 

The data can be divided into three regions: low, intermediate and high B I I .  Fig. 

4.13(a) shows a sketch of the Fermi surface for each of these regions. At low BII  ( < = 6 

T), the oscillations are uniform and have a single period, indicating that a single Fermi 

surface orbit is contributing to the oscillations. In this range of Bll, both the lens and 

peanut orbits are occupied but because the lens is much smaller than the peanut, it is the one 

contributing to the oscillations. In the peanut orbit, electrons are unable to traverse the 

entire orbit without scattering, and therefore the peanut orbit has a negligible contribution to 

the SdH oscillations. In the intermediate Bll region (from BII = 6 to = 6.5 T), only the 

peanut orbit is present. At the transition from low to intermediate B I I ,  both the amplitude 

and period of the oscillations change significantly, indicating that the Fermi surface and 

also m* are going through drastic changes. The oscillations here are much weaker because 

the peanut is so large. In the high Bll region (above BII = 6.5 T), the two Fermi circles have 

separated and the oscillations have a single period even though the Fermi surface has two 

components. This is because the Fermi circles are roughly the same size. 

Fig. 4.14 shows AR versus BII for several different temperatures for sample A at 6 = 

3" [89,90]. As stated previously, the mass is determined from the temperature dependence 

of the amplitude of the oscillations. The oscillations the low BII region persist to higher 

temperatures than the oscillations in other regions, indicating that the thermal broadening of 

the Landau levels is smaller, and thus m* is lower in this region. In the anticrossing, there 

are only a couple of weak oscillations whose amplitudes decrease rapidly with increasing 

T ,  indicating a larger m*. At high BII ,  the dispersion curve is again parabolic and m* is 

expected to be equal to m* G*. 

67 



The ScW oscillations for a single Fermi surface orbit are described by the Ando 

formula, which, after converting from conductance to resistance, is [95] 

where 6R(T) is the amplitude of an oscillation, Ro is the resistance at BT = 0, XT = 

21r~k~T/ho, ,  oc = eBl/m, ,  and 'C is the total scattering time. The sXT/sinh(sXT) factor 

accounts for the thermal broadening. The amplitude is calculated from Fig. 4.14 by 

linearly interpolating between two adjacent minimum to get the resistance minimum at the 

BI  where the oscillation maximum occurs and then subtracting the minimum resistance 

from the maximum resistance. This can be done for all maxima and it can also be done 
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Fig. 4.14 Plot of AR(B11,O = 3.0") for several T. Oscillations below BII = 5.9 T persist 
to higher T, indicating a lower m* in this region. The vertical arrow at 5.1 T 
indicates one B l  at which m* is calculated. 
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using two maxima and a minimum. Alternatively, a line can be fit to the maxima and 

another line fit to the minima and the difference between these two lines can be obtained for 

the BJ. of interest. In this way, the mass can be determined quasi-continuously as a 

function of Bii. When B i  is sufficiently small that o,z is of order unity, the higher order 

terms (s > 1) become negligible, and the SdH oscillations become single period, small in 

amplitude, and sinusoidal in shape. This clearly describes the data in Fig. 4.14, 

particularly at low Bit. The oscillations in this data are strongly sinusoidal and never exceed 

15% of the background. 
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Fig. 4.15 Ratio of oscillation amplitudes versus temperature at 8 = 3.0". Dashed (dash- 
dotted) lines show fits of equation 4.10 to BII = 8.49 T (5.09 T) data for 
several mass values, with the best fits giving m* = 0.070 me (0.025 me). 
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When higher-order terms are negligible, equation 4.9 can be simplified. The ratio of 

the oscillation amplitude at temperature T to the amplitude at base temperature To is then 

given by [ 191 

(4.10) 

where p = 2n2k~m*/he. When the ratio of amplitudes at a given B_L is plotted versus 

temperature, m* is used as a fit parameter in the expression above. Two typical fits to 

equation 4.10 are shown in Fig. 4.15 189, 901. The quality of the fits is quite good and 

provides further justification for using this method to determine m* and also for neglecting 

the higher order terms in equation 4.9. The mass obtained for BII = 8.49 T is 0.070 me 

which is very close to m * ~ d ~ ,  as expected. However, m* at Bll = 5.09 T is 0.025 me 

which is roughly a factor of three lower than m*Gds. The fits yield an error of roughly 

lo%, except for the range = 5.9 T < BII < = 6.5 T, where the mass changes substantially 

between adjacent SdH extrema, yielding errors of roughly 20%. 

A summary of the measured m* versus BII for all three angles used [89, 901 is shown 

in Fig. 4.16 along with a theoretical calculation of m* [91]. Below BII = 2.7 T, the 

oscillations at higher T were too weak to accurately determine m*. Near Bll = 2.7 T, m* = 

0.5 me, which is considerably lower than rn*Gds .  As BII is increased, the size of the lens 

and its mass decrease, reaching m* = 0.021 me when the lens disappears at BII = 5.9 T. 

After this point, the mass increases rapidly to m* = 0.099 me approximately when the 

saddle-point crosses the chemical potential. As stated previously, the error in the measured 

mass in the anticrossing region is quite high. However, the measured mass here is 

sigruficantly larger than m * ~ d ~ .  As BII is further increased, m* drops and rapidly 

converges to m * ~ a ~  near Bli = 7 T and remains approximately constant after that, as 

expected. 

70 



0.133 ~ m- A e = 3.00 

0.1 00 
o e = 3.50 

0.067 

0.033 

4 
I 

Lb 

I 

r 
0.000 ' I I 

1 I I I I I I 

2.0 

3 1.5 
Y 
\ 

1 .o 3 
c)* 
P 
v) 
D 

0.5 

0.0 
0 2 4 6 8 10 

Fig. 4.16 Summary of measured m* versus Bli for all three angles 6 used. The solid line 
is the theoretical calculation of m* for the dominant Fermi surface orbit and the 
dotted line is the peanut m* where it is not the dominant orbit. 

4.3.2 Comparison with Calculated Effective Mass 

Theoretically, the mass for each Fermi surface orbit is given by m* = (h2/2n;)aS/d&, 

where S is the area of the orbit in k-space, and & is the electron energy at the Fermi surface 

[Sl]. The k-space area of each orbit as a function of energy is obtained from the dispersion 

curve calculated using the tight-binding method earlier in this chapter. This expression can 

be rewritten as m* = m * ~ d ~ p ( & ) / p ~  for 2D structures, where p(&) is the contribution to 

the DOS per spin from the orbit under consideration, po = m*A/(2n;h2) is the DOS per spin 

of a 2D parabolic dispersion curve, andA is the area of the QWs. This equation shows that 

the effective mass is directly related to the DOS. 
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I The results of this calculation for sample A are shown as the solid line in Fig. 4.16. 

For Bll = 0 T, both the lens and peanut orbits have m* = m * ~ d ~  because the dispersion 

curve is not distorted at such low BII. As Bll increases, the lens mass decreases and the 

peanut mass increases. For BII < = 6 T, the lens dominates and there is excellent agreement 

between the calculation and the experimental data. When p is in the energy gap (= 6.0 < BII 

< = 6.5 T), only the peanut orbit is occupied. However, an accurate measurement of the 

peanut m* was not possible with this sample because there are only a couple of weak 

oscillations in this Bil range. After the two Fermi circles have separated (Bll > = 6.5 T), 

both the theoretical and measured effective masses return to m * ~ d ~ .  

4.3.3 Peanut Orbit Mass Measurement 

To accurately measure the peanut effective mass, the mass measurements were 

repeated on sample D, which has a ASAS large enough that the lens orbit is not occupied at 

any BII and only the peanut orbit is occupied for a large range of Bll [98]. . This means that 

there are many SdH oscillations from which to accurately measure m* for the peanut orbit. 

This sample has w = 125 A and t = lo& which results in a calculated ASAS = 7.6 meV. 

ASAS for this sample could not be measured because the antisymmetric state is not 

occupied at B I ~  = 0 due to the large ASAS. Above BII = 12 T, the energy gap moves above 

the chemical potential and the Fermi surface then consists of two uncoupled circular orbits. 

Fig. 4.17(a) shows the magnetoresistance of sample D at an angle 8 = 0" at base 

temperature. The broad maximum near Bll= 12 T occurs when the saddle-point reaches the 

chemical potential. However, there is no resistance minimum indicating the lens orbit 

moving above the chemical potential. This shows that the lens is not occupied at any Be 

and only the peanut orbit is present for Bil < = 12 T. Fig. 4.17(b) shows AR of this 

sample at an angle 8 = 10" for several different temperatures. These oscillations are 

uniform and have a single period, indicating that a single Fermi surface orbit is contributing 
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Fig. 4.17 Plot of (a) R(Bl1,6 = Oo) and (b) AR(B11, 8 = loo) versus BII for sample D at 
several T. In (b), the vertical arrows at 4.3 and 9.3 T indicate the B l  at which 
m* is calculated. Inset: Ratio of oscillation amplitudes versus temperature for 
the two values of B i  indicated. 

to the oscillations. The inset to Fig. 4.170) shows fits to equation 4.10 at BII = 4.3 T and 

= 9.3 T. The fits to this data are also of very good quality and result in m* = 0.067 me and 

0.1 13 me, respectively. 

A summary of m* versus BII for sample D is shown in Fig. 4.18. Below BII = 2 T, 

the oscillations were too weak to determine m*. For 2 T < BII e = 4.5 T, m* = m * ~ d ~ .  It 
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Fig. 4.18 Measured m* versus Bu for the peanut orbit of sample D. 

is difficult to determine why the mass is unchanged in this region. This may be due to a 

small value of d (= 125 A -t- 10 A), which then requires a larger value of BII to distort the 

Fermi surface. In the range 4.0 T e Be < 11.9 T, m* increases dramaticdy and 

monotonically, reaching = 0.1 1 me at BII = 10 T. Mass measurements could not be done 

for Bli > 12 T, where the two circles have separated and the mass returns to ~ * G A ~ ,  

because the magnet could not reach the high magnetic fields required. A theoretical 

calculation of the effective mass for this sample has not been done, however, the measured 

peanut mass shows the monotonic increase seen in the calculated peanut mass of sample A. 

Due to these similarities, good agreement between the theoretical and experimental data is 

expected. 
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4.3.4 Fermi Surface Area 

Finally, it is possible to determine the dominant orbit's k-space area from the period of 

the magneto-resistance oscillations [27], The area in k-space is given by A = 

(27re/h)[A( l/Bd]-' and A( UBI) is the oscillation period, which is the spacing between 

resistance peaks in 1/Bl. The inverse of the period is plotted as a function of BII in Fig. 

4.19 for sample A. The conversion to k-space area is shown on the right vertical axis of 

the figure. As BII is raised, the data shows that the area of the lens orbit decreases, as 

expected. There are not enough oscillations when p is in the energy gap (5.9 T < BII < 6.5 

T) to determine the orbit area. For 2311 > 6.5 T, the area is clearly much larger than the lens 
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Fig. 4.19 Plot of the inverse of the peak spacings in 1/Bi as a function of Bli for the three 
angles used for sample A. [A(l/BI>]-' is proportional to the orbit area in k- 
space which is shown on the right vertical axis. 
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area and appears to be constant within S O %  error. There is considerable scatter in this 

range because the DQW was not fully in-balance and therefore, the two circle orbits have 

slightly different areas. 

- 4.4 Chapter Summaq 

This chapter examined the effect of dispersion curve distortions on transport in double 

quantum well samples. The chapter started with a description of the dispersion curve 

distortions that result from an in-plane magnetic field. Next, calculations of the in-plane 

conductance were presented. This work was done by Ken Lyo and was published in 

reference [3 11. After that, measurements of the conductance as a function of in-plane field 

were described. Two features were observed in the conductance and, after a slight 

modification to his theory, Lyo was able to reproduce these features theoretically. Using 

the gate bias dependence of these features, ASAS could be extracted from this data. The 

experimental results were published in reference [88]. The last part of the chapter describes 

the experimental measurement and theoretical calculation of the electron cyclotron effective 

mass as a function of in-plane field. The mass was measured by analyzing the temperature 

dependence of the magnetoresistance oscillations when a perpendicular magnetic field was 

also applied to the sample. A mass as low as 1/3 the GaAs effective mass was measured. 

There was excellent agreement between the measured and calculated masses. These were 

the first mass measurements done on this distorted dispersion curve and the results were 

published in references [86, 89, 901. The calculations were done by Ken Lyo and these 

results were published in reference [9l]. 
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5. DOUBLE QUANTUM WELLS IN TILTED MAGNETIC FIELDS 

In this chapter, DQWs subject to tilted magnetic fields are studied. The only previous 

work on DQWs subject to large tilted magnetic fields studied the v = 1 quantum Hall state 

at different tilt angle [46]. This work investigated many-body Coulomb interactions 

between electrons in different layers. The present work focuses on the magnetoresistance 

at slightly lower B i ,  where v = 4 - 14. This work, for the first time, investigates the 

evolution of Landau levels as the Fermi surface is controllably changed. Magnetic 

breakdown, which is tunneling through k-space from one Fermi surface orbit to another, is 

also studied in this experiment. The in-plane field again distorts the dispersion curve; while 

the perpendicular magnetic field causes Landau level formation and magnetoresistance 

oscillations for each branch of the Fermi surface. First the experimental results are 

presented and discussed in terms of the shifted Fermi circles. Then it will be shown that 

magnetic breakdown is occurring in the DQW samples studied. Next, a semiclassical 

calculation of the Landau level positions is performed to help explain the data, and finally, 

the Fourier power spectra of the data will be presented and also explained in terms of the 

shifted Fermi circles. 

5.1 Mametoresistance Versus B I I  and BI 

The magnetoresistances of samples E and F and the Hall resistance of sample E were 

measured as a function of Bll and Bl[99, 1001 using the multiple scan technique described 

in Section 3.2.2. For this experiment, approximately nine hundred BT sweeps were done 

at different angles over the course of six weeks. This resulted in data in the ranges 0.0 T < 

BII < 9.25 T and 0.0 T < B i  < 5.5 T, however, analysis of the data for B i <  1.5 T will be 

emphasized. Fig. 5.1 shows a schematic representation of the BT sweeps as a function of 



Fig. 5.1 Schematic representation of the BT sweeps with the sample mounted at 
different angles 8. The solid lines represent resistance data as a function of BII  
and BI for each BT sweep. The dashed lines are slices where resistance versus 
BJ- traces at constant BII are extracted. 

Be and B i  for several BT sweeps with the sample mounted at different angles 9. The solid 

lines represent resistance data obtained in each BT sweep. The dashed lines show slices at 

constant BII  where values of resistance and BA are obtained for each scan and then 

compiled to form a trace of resistance versus B i  at a constant value of B I I .  Traces of 

resistance versus BII with constant B l  can also be extracted. 

Fig. 5.2(a) shows one of these slices, where Rn and Rxy versus BA at a constant BII  = 

4.5 T for sample E was extracted from the raw data. This B11 is large enough to cause the 

lens and peanut orbits to form. SdH oscillations, with beating present, are clearly seen in 

the data. The Fermi surface orbits causing these oscillations can be identified by the 

frequencies of the oscillations in UBI. The frequency is proportional to the k-space area 
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Fig. 5.2 (a) Rxr and Rxr versus B l  at constant Bjj = 4.5 T for sample E. Oscillations 
from the lens and peanut orbits can be identified at low B l .  (b) Rxlc versus Bit 
at constant B_L = 0.35 T for sample E. The large oscillations result as Landau 
levels in the lens orbit are depopulated with increasing BII. 

of the Fermi surface component. Therefore, orbits of different sizes can be distinguished 

from one another. 

At low B l ( <  = 0.3 T), low frequency oscillations from the lens orbit are visible. As 

B i  increases, small, high frequency oscillations from the peanut orbit are seen 

superimposed on the lens oscillations. The peanut oscillations are weak because the peanut 

orbit is large and only a few electrons traverse the entire orbit before scattering. At even 
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higher B i ,  the data exhibits significant beating and the orbits contributing to the oscillations 

can not be determined visually. At high B l ,  plateaus can be seen in Rxy corresponding to 

the minima in Rxr. The broadest plateau occurs for v = 10. In Fig. 5.2(b), Rxx is plotted 

versus BII at a constant B l =  0.35 T for sample E. As BII increases, the lens orbit becomes 

smaller and the Landau levels in the lens depopulate. As this happens successive Landau 

levels from the lens cross p resulting in maxima in Rn. The peanut orbit becomes larger 

and more populated with increasing BII  resulting in small, high frequency oscillations that 

occur as more Landau levels in the peanut orbit become occupied. Due to its size, the 

peanut oscillations are weak and can be seen superimposed on the lens oscillations. 

A more complete picture of the evolution of the Landau levels with Bll and B l  is 

possible by plotting the data on contour plots. Fig. 5.3 shows gray-scale plots of Rxx 

versus BII and B l  for sample E (Fig. 5.3(a)) and sample F (Fig. 5.3(b)). The lines are the 

results of a semiclassical calculation of the Bll, B l  positions of the Landau levels, which 

will be discussed later. The numbers in part (b) label Landau levels Ne = 0 and 1 in the 

lens, and Np = 4,5, and 6 in the peanut. The measurements were done in two sets; BII < 

4.0 T and BII > 4.0 T. A slight discontinuity in the data can be seen at BII = 4.0 T. The 

discontinuity shows that the sample changed slightly during the measurements but the 

quality of the data else where shows that the sample was stable through the majority of the 

measurements. The data in Fig 5.3 can be divided into three distinct BIi-regimes: low, 

intermediate and high BII .  The dispersion curve and Fermi surface for each of these BII  

regimes are sketched in Fig. 5.4. For sample E, the data span all three regimes: high BII ( > 

7.5 T), intermediate (6.0 T < BII e 7.5 T), and low Be ( < 6.0 T). For sample E, only the 

low BII ( < 9.0 T) and part of the intermediate BII ( > 9.0 T) regimes are present, due to the 

higher electron density in this sample . 

The high Bit regime occurs when p is below the energy gap and the two QW Fermi 

circles have separated (Fig. 5.4(c)). Here, the measured Rxx is relatively independent of Bll 

(Fig. 5.3), resulting in a set of vertical high resistance ridges that occur when Landau levels 
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Fig. 5.3 (a) and (I?) show I?? versus Bit and B l  fox samples E and F, respectively. 
The cross-hatchirig indicates regions where data was not obtained, The Bll 
regimes are shown 011. the left. The lines show the results of a calculation 
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from the circle orbits cross p. The ridges are vertical because changing BII  only changes 

the separation between the two Fermi circles but does not change the shape of the Fermi 

surface. There is some beating in the oscillations because the DQW is slightly out of 

balance and the two circles have different areas, thus they produce oscillations with slightly 

lens peanut 
\ I 

low Bll regime 

intermediate 51 regime 

00 
high 811 regime 

Fig. 5.4 Sketches of the dispersion curves and Fermi surfaces for the three BII  
regimes. The upper panel contains de f~ t ions  of the relevant energies. 
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different frequencies. In the intermediate BII regime, p is in the energy gap and only the 

peanut orbit is present (Fig. 5.4(b)). The data here (Fig. 5.3) consist of a set of vertical 

ridges with several wiggles in it. The main part of the ridges is the result of magnetic 

breakdown in which electrons tunnel through k-space across the neck of the peanut and 

remain on the QW circle orbits. Magnetic breakdown will be discussed in more detail 

below. The circle orbits are smaller than the peanut orbit and thus produce stronger 

oscillations. The wiggles on the ridges result when Landau levels from the peanut coincide 

with Landau levels from the circle orbits. 

The oscillations in the low-BII regime show much more complex beating and depend 

strongly on BII (Fig. 5.3). In this regime, p is above the energy gap and both the lens and 

peanut orbits are occupied (Fig. 5.4(a)). A set of high resistance ridges can be seen 

running from the upper left to the lower right in both parts of Fig. 5.3. These ridges are 

due to the Landau levels from the lens orbit coinciding with p and are seen as the large 

oscillations in Fig. 5.2. The depopulation of the lens Landau levels with increasing BII is 

due to two effects. First, the lens Fermi energy (E l )  decreases with increasing BII roughly 

as the square of BII [31], where El is shown in Fig. 5.4(a). Second, the energy spacing 

(Mi = ehBi/m*e) between the lens Landau levels also increases due to the decrease in the 

lens effective mass (m*l) arising from the distorted dispersion [89 - 911. 

A second weaker set of high resistance ridges can also be seen in Fig. 5.3, running 

from the lower left to the upper right. These ridges are clearly seen in part (a) but are 

difficult to see in part (b). This set of ridges is due to the peanut orbit Landau levels 

crossing p. These are much weaker because the peanut is so large that relatively few 

electrons can complete it without scattering. These ridges are the small oscillations seen in 

Fig. 5.2. While the peanut Fermi energy (Ep) (see Fig. 5.4(a)) remains nearly constant 

with B I I ,  the peanut Landau level spacing (A& = ehBl/m*p) decreases due to an 

increasing effective mass ( n ~ * ~ ) ,  thus causing more peanut Landau levels to become 

occupied. 
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Sharp peaks in the resistance occur when Landau levels from the lens and peanut 

orbits cross at p. In the data of sample F, a series of peaks forming lines running from the 

lower left to the upper right with a smaller slope than the peanut Landau levels can be 

clearly seen. These peaks are the intersection points of the lens and peanut Landau levels, 

as is shown by the semiclassical calculation which will be discussed later. The alternating 

strength of these rows of peaks is due to a beating of the oscillations from the lens and 

peanut orbits with oscillations from circular orbits that result from magnetic breakdown, 

which is discussed below. 
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Fig. 5.5 Rxy.versus BII and B i  for sample E. Plateaus appear as white regions and dark 
regions are rapidly changing Rv. Several filling factors, determined from Rxy 
are shown at the top of the plot. 
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The Hall resistance of sample E is plotted on a contour plot as a function of Bli and B l  

in Fig. 5.5. Plateaus in Rxr appear as white regions in the plot and correspond to minima 

in Rm The v = 10 and 16 plateaus are nearly independent of Bli, indicating that these result 

from magnetic breakdown. Other plateaus show beating as a function of B I I ,  which result 

from crossings of the lens and peanut Landau levels. 

5.2 Mametic Breakdown 

A third set of ridges and valleys, running vertically, can be seen in Fig. 5.3 at slightly 

higher BI. These features appear in sample F at lower B l  than in sample E. This set of 

ridges is caused by magnetic breakdown [loll, in which electrons tunnel through k-space 

between the lens and peanut orbits to form circular orbits corresponding to the individual 

QWs. The magnetic breakdown is weak at low B i ,  but becomes stronger as B i  is 

increased, as expected. This increase in breakdown is due to the fact that as electrons are 

confined to tighter real space orbits by B i ,  the uncertainty in their real space positions is 

decreased. The uncertainty in their momenta thus increases correspondingly, enabling 

tunneling when it becomes comparable to the gap in k-space separating the different Fermi 

surface orbits [27]. 

The concept of magnetic breakdown was first proposed in 1961 to explain the giant 

orbit observed by Priestley in the de Haas-van Alphen effect (oscillating magnetization as a 

function of magnetic field) in magnesium [ 1011. Since then magnetic breakdown has been 

observed in several metals and a few semiconductors [lo2 - 1041. Magnetic breakdown in 

semiconductors was first observed in metal-oxide-semiconductor structures on vicinal 

planes of silicon [lo31 and was later observed in similar structures on vicinal planes of 

indium antiminide [104]. In these structures, the valley-valley degeneracy is lifted when 

the bulk band structure is projected onto the vicinal surface. This results in a dispersion 

curve similar to that of Fig. 4.2, except that the two parabloids making up the dispersion 
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curve are always of equal size. More recently, magnetic breakdown was observed in 

periodically modulated 2DEGs, where the modulation potential causes the cyclotron orbit to 

drift in the direction perpendicular to the direction of modulation [105]. Also, Boebinger et 

aZ. [55] observed deviations from semiclassical behavior in DQWs subject to small tilted 

fields and Hu and MacDonald E561 later attributed this to magnetic breakdown. 

In semiclassical magnetic breakdown theory, the probability P of breakdown 

occurring is given by P = exp(-Bu/BI), where Bo is the breakdown field and is given by 

Bo = (rn*/eh)E&& where m* is the effective mass of the circular orbit [ 101, 1061. For 

samples E and F this gives Bo = 0.45 T and 0.15 T, respectively. This qualitatively agrees 

with the data in that vertical ridges in Rn appear at lower B i  in sample F. Hu and 

MacDonald performed a quanturn mechanical treatment of DQWs in tilted magnetic fields 

and obtained the expression [56] 
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Fig. 5.6 Breakdown fields Bo for samples E and F calculated using the expression 
from Hu and MacDonald [56]. 
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where Ak = edBllfi as in Chapter 4, kr; = (2m)”’, and m* = m * ~ h .  This treatment is 

vdid only when p is above the energy gap and b the lens and peanut orbits are present. 
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Fig. 5.6 shows the results of this calculation for samples E and F as a function of BII .  At 

the minima, this expression agrees fairly well with the semiclassically predicted Bo and also 

agrees in the fact that the lower &AS sample has a lower predicted Bo. Unfortunately, Bo 

can not be accurately determined from the experimental data. 

Contour plots of Rn versus Bit and BI with B l  extending to higher values than in 

Fig. 5.3 are shown in Fig. 5.7 for samples E and F. This plot shows that at higher B I ,  

where magnetic breakdown is expected to be nearly complete, Rm is nearly independent of 

2311 in sample E and for high BII in sample F. The data for sample F is somewhat strange 

because the ridge for the Nt = 0 Landau level in the lens extends to at least B i  = 3.5 T and 

the ZVj = 1 lens Landau level extends to B i  = 2 T. This is not expected because with 

nearly complete magnetic breakdown there should be no features resulting from the lens or 

peanut orbits. Also, these ridges for sample F extend to higher B l  than the corresponding 

ridges in sample E. This is surprising because magnetic breakdown is expected to be 

stronger in sample F. 

One final point on magnetic breakdown concerns the electron orbits in real space when 

the sample is subject to tilted magnetic fields. In the dispersion curves of Fig. 5.4, we see 

that at Hey, far from the anticrossing, the dispersion is parabolic, indicating that it is single 

QW-like. Thus, electrons at high lkyl are localized in one QW or the other; while electrons 

near the anticrossing at ky = 0 are delocalized across both QWs. With applied BII and 231, 

electrons on the peanut orbit at -ky start in the left QW. As they approach ky = 0, they 

occupy both QWs simultaneously, and when they proceed to +ky, they are in the right QW. 

Fig. 5.8 shows a schematic of this tunneling from left QW to right QW as electrons 

traverse the peanut orbit in real space. The situation is similar for the lens, except that -ky 

corresponds to the right QW and +ky corresponds to the left QW. When magnetic 

breakdown occurs, electrons remain on one circular orbit and thus no longer tunnel in real 

space from one QW to the other, as shown in Fig 5.8. 
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Fig 5.8 Schematic of the electron trajectories in real space for the cases of (a) no 
magnetic breakdown, and (b) magnetic breakdown occurring. 

5.3 Semiclassical Calculation of Landau Levels 

Next we turn to the semiclassical calculation of the BII, BL values at which the lens and 

peanut Landau levels cross p. The original intent of this calculation was to verify the 

positions of the peanut Landau level resistance ridges and to provide a more quantitative 

test of our model. In the experimental data, the Landau levels are well-formed and a 

semiclassical treatment is not expected to be very accurate. This implies that a full quantum 

mechanical treatment is necessary to accurately reproduce the essential features of the data. 
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However, the semiclassical calculation agreed surprisingly well with the data. (A full 

quantum mechanical treatment also reproduced the data very well [ 1071.) As previously 

stated, in Fig. 5.3(b), a series of peaks forming lines running from the lower left to the 

upper right with a smaller slope than the peanut Landau levels can be clearly seen. These 

lines can easily be mistaken for the peanut Landau levels and the results of this calculation 

show that they definitely are not the peanut Landau levels. 

The Landau level positions are found by solving the Landau level energy relation El ,p 

= (NQ + 1/2) h o i , p ( B ~ ~ ,  B I ) ,  with spin splitting ignored [99]. Et is the BII-dependent 

Fermi energy of the lens orbit, and Ep is the Fenni energy of the peanut orbit, which is 

taken as a constant here. These energies are shown on the dispersion curve sketches of 

Fig. 5.4. N j S  = 0, 1, 2, ... are the Landau level indexes and C O ~ , ~ ( B I I ,  B l )  = 

eBl/m*e ,p(Bll) are the cyclotron frequencies for the lens and peanut orbits, respectively. 

Solutions to this equation are obtained by fixing Nis and BII ,  then finding the B l  which 

makes this relation an equality. This method assumes that each F e d  surface orbit is well- 

described by a constant m* at each BII and also that Els are constant with BI. 

The masses rn*e9(Bll) and the lens Fermi energy Et are obtained from the BII- 

dependent dispersion curve, which is calculated following Lyo’s method [3 13 presented in 

Section 4.1. This calculation is done for BII in the range 0 - 9.5 T with a 0.1 T interval. 

Lyo used square QW potentials and their resulting wavefunctions as the basis in a tight- 

binding calculation. However, for closely coupled DQWs, this overestimates A s  AS 

because, in real structures, band bending pushes the electrons to the outsides of the QWs, 

resulting in less coupling between the QWs. To obtain more accurate values of ASAS, 

band bending is artificially introduced by giving the bottoms of the QWs a non-zero slope, 

as shown in Fig. 5.9(a) for sample E. The slope was chosen to give an accurate ASAS and 

was also compared to results from self-consistent Hartree calculations to ensure that the 

slope was reasonable. At BII = 0 T, the measured AE = 3.2 meV while the calculated is 3.7 

meV and at BII = 5 T, the calculated ASAS = 2.1 meV compared to the measured ASAS = 

\ 
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(a) Plot of the QW potentials and wavefunctions used to calculate the 
dispersion curve for sample E. (b) Resulting dispersion curve for BII = 0 T 
(solid lines) and BII = 5 T (dashed lines). 
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Fig. 5.10 Calculated m* as a function of BII for the various 
Fermi surface components of sample E. 

2.3 meV. The lens Fermi energy Et (see Fig. 5.4) is calculated as a function of BII directly 

from the dispersion curve and also the calculated dispersion curves are used in subsequent 

calculations of the electron effective masses of the lens and peanut orbits. 

Next, the lens and peanut effective masses as a function of B11 me calculated from the 

dispersion curves following Lyo [91] as presented in Section 4.3.2. Here the mass is 

given by m* = (h2/27r)dS/&, where S is the area of the orbit in k-space, and & is the 

electron energy at the Fermi surface. The results of this calculation are shown in Fig. 5.10 

for the different Fermi surface orbits. 

The results of the semiclassical calculation are the black lines in Fig. 5.3 and, as can be 

seen, the calculation reproduces the ridges in the experimental data very well. The sharp 
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Rxr peaks correspond closely with the calculated intersection points of the lens and peanut 

Landau levels. In sample F, these peaks form rows that appear to be the peanut Landau 

levels. However, as the calculation shows, these are rows of intersection points of lens 

and peanut Landau levels. The calculation’s unusual behavior near Bit = 7.5 T for sample 

E is due to the saddle-point in the peanut dispersion branch, where m*P diverges 

logarithmically and an infinite number of peanut Landau levels become occupied if Ep = 

constant is assumed. Although this approximation must break down at the saddle-point, 

Rxr is somewhat higher along B ~ I  = 7.5 T. 

- 5.4 Fourier Power Spectra of R,, Versus U B I  

To further support the explanation for the Rxr data as a function of 2311 and 231, the 

Fourier power spectra of the data versus l /Bi  are computed [86]. These are computed 

using the LabVIEW graphical programming language and the LabVIEW fast Fourier 

transform (FFT) subprogram which applies the split-radix algorithm to compute the FlT 

[108]. As stated in Section 5.1, with Bit = constant, the oscillations in 11B~ are periodic 

with a frequency that is proportional to the orbit’s area in k-space. The Fourier power 

spectra should then give distinct peaks for the lens and peanut orbits, and also for the 

circular orbits that result from magnetic breakdown. 

Fig. 5.11 shows Fourier power spectra of the data of sample F at BII = 2.0 T and 4.5 

T, which are computed with BI in the range 0.1 - 1.2 T. Several peaks can be identified 

in the data. There is a low fi-equency peak from the lens orbit at f = 3.3 T at Bil = 2.0 T, 

which moves to lower frequency (f - 1.9 T at Bit = 4.5 T) with increasing B ~ I  due to the 

decreasing area of the lens orbit. A small peak for the peanut orbit appears at f - 6.1 T at 

2311 = 2.0 T, and moves to higher frequency (f- 8.6 T) as BII increases, because of the 

increasing area of the peanut orbit. The lens peak is much stronger than the peanut peak 

because more electrons can traverse the lens without scattering due to its smaller size. Two 
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Fig. 5.11 Fourier transforms of Rxx versus for sample F at (a) BII = 2.0 T and (b) 
Bll = 4.5 T. The various peaks are identified by the symbols near them. The 
lens (peanut) peak moves to lower (higher) Fourier frequency with increasing 
2311, as expected. 

intermediate frequency peaks (f= 4.4 T and 5.0 T) can also be seen and the frequencies of 

these peaks are approximately independent of BII. These are from the circle orbits that 

result from magnetic breakdown. Because the dispersion is parabolic for the circle orbits, 

the Fourier frequency can be converted to density, where n = (2e/hlf. This gives nl = 2.2 

x lo1' cm-2 and n2 = 2.5 x 10" cm-*, which agrees very well with the BII = 0 T densities 

measured for this sample which are nl = 2.1 x 10" cm-2 and a2 = 2.4 x 10" cm-2. 

To get a clearer picture of how these orbits evolve with BII, Fig. 5.12 shows gray- 

scale contour plots of the Fourier power spectra plotted versus BII for sample E and F. The 
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solid lines are guides to the eye, highlighting the ridges from the lens, peanut, and circle 

orbits. For both samples, the lens peak moves to lower frequency with increasing BII and 

the peanut peak moves to higher frequency. The two intermediate frequency peaks are due 

to magnetic breakdown and they remain relatively unchanged with BII. These peaks change 

frequency a little at very low BII as the system changes from a gap hE c- (E1,22 + AS AS^)'^ 

to a system with energy gap AE c- ASAS [31]. This reduction of the energy gap decreases 

the difference in the areas of the two circle orbits. For balanced DQWs, the difference in 

areas goes to zero and a single intermediate frequency peak would be observed. The 

intemediate frequency peaks also have a slight drift to higher frequency with increasing BII 

due to a slight distortion of the shape of the individual QW circle orbits caused by BII [96, 

971. The magnetic breakdown peaks are more clearly seen in sample F which has a higher 

probability of magnetic breakdown than sample E. In sample E, the circle orbit peaks are 

clearly seen in the high Bu regime where the two Fermi circles have separated and can also 

be seen in the intermediate BII regime, where magnetic breakdown occurs across the neck 

of the peanut orbit. Several small ridges occur due to aliasing and composite orbits [ 1031 

that occur when electrons traverse multiple orbits, such as the lens plus a circle or the 

peanut plus the lens. These ridges are highlighted by dotted lines in the figure. The 

aliasing occurs due to the relatively small number of oscillations found in the data, a small 

amount of noise in the data, and also from a small background slope in the data. 

The Fourier frequencies of the various orbits can also be calculated from the k-space 

area of the Fermi surface orbit. The frequency is given by f = 1/(27Q2(h/e)A, where A is 

the k-space area of the orbit. The areas of the circle orbits are obtained from the densities at 

BII = 0 T and are used along with Ak = edBll/h to geometrically calculate the areas of the 

lens and peanut orbits. Again, a d slightly larger than the QW center-to-center spacing is 

used to account for band bending. In these calculations d = 175 A is used for both 

samples. The results of this calculation are shown in Fig. 5.13 for samples E and F. The 

agreement between the measured and calculated frequencies is very good for sample F and 
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Fig. 5.13 Plot of the Fourier frequencies of the Fermi surface orbits of samples (a) E 
and (b) F versus BII. The symbols are the measured frequencies, the dashed 
lines are the measured BII = 0 T circle orbit frequencies, and the solid lines 
are the geometrically calculated frequencies for the lens and peanut orbits. 
Sketches of the Fermi surfaces for different values of Bli are also shown. 
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for the lens orbit of sample E. The error for the peanut orbit of sample E is quite large and 

is probably due to the fact that the distortions in the circles due to the energy gap were 

ignored in the calculation. Including this effect would increase the frequencies of the 

peanut orbit and decrease the frequencies of the lens orbit. The changes would be very 

small for sample F because ASAS is relatively small, but could be much larger for sample E 

because its ASAS is fairly large. 

The Rxx versus BII and BI data, and, in particular, the Fourier power spectra of this 

data, clearly show that magnetic breakdown is occurring in both samples. However, a 

determination of the breakdown field Bo is not possible with these measurements. One 

possible method for determining Bo with this data is to compute the Fourier power over 

small ranges of l/Bl and then to identify the range in which peaks for the circle orbits 

appear. However, this involves computing the Fourier power for data sets with only a 

couple of oscillations, which results in large errors and low sensitivity. This method was 

tried and no meaningful peaks appeared in the power spectra. Other methods for analyzing 

this data to determine Bo can be envisaged, but they seem doomed to failure for the same 

reasons that the method presented here failed. Other possible experimental approaches to 

this problem will be presented in Chapter 7. 

5,5 Chapter Summary 

In this chapter, the evolution of the Landau levels with changes in the dispersion curve 

were investigated. The dispersion was continuously and controllably distorted by changing 

the in-plane magnetic field, while the Landau level spacing was changed by varying the 

perpendicular magnetic field. Experimentally, the magnetoresistance was mapped by 

measuring the resistance as a function of BT with the sample mounted at different angles. 

For this work, approximately nine hundred Bpsweeps were done. Previously, 

measurements at low Bit with changing BI were performed and the results compared with 
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semiclassical theory [55]. Deviations from semiclassical behavior were later attributed to 

magnetic breakdown [56]. However, in that work, BII was too low for the energy gap to 

form and the results were plotted as single traces only, not as contour plots. In the present 

work, plotting the data on contour plots showed the evolution of the Landau levels from the 

lens and peanut orbits and also from the circle orbits that resulted from magnetic 

breakdown. A semiclassical calculation of the Landau level positions as a function of BII 

and B_L showed good agreement with the data. These results were published in references 

[99, 1001. Contour plots of the Fourier power spectra showed BII-dependent peaks for the 

lens and peanut orbits. BII-independent peaks, which occur due to magnetic breakdown, 

were also observed 
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6. ONE-DIMENSIONAL STRUCTURES ON DOUBLE QUANTUM WELLS 

One-Dimensional and quasi-one-dimensional structures on single 2DEGs have been 

extensively studied over the last 15 years [log]. Ballistic transport and truly 1D behavior 

has been observed in quantum point contacts (QPCs), which have channel lengths (L) that 

are much shorter than the electron mean free path ( e )  [13]. In these devices, electrons 

traverse the channel without scattering. Diffusive transport has been observed in longer 

structures (referred to as quantum wires in this work) where the channel length is longer 

than the mean h e  path [log]. Electrons in these devices suffer elastic scattering within the 

channel. However, this scattering does not destroy the phase coherence and quantum 

interference effects can be observed in these devices. The phase coherence length is the 

characteristic length scale in these devices. This chapter discusses two experiments 

involving 1D structures on double quantum wells. There has been very little work in this 

area, most likely due to diffculties in fabricating samples, which will be discussed below. 

Our experimental work has focused on QPCs and short quantum wires subject to in-plane 

magnetic fields. 

6.1 Ouantum Point Contacts on DOWs 

Our discussion of QPCs begins with a description of QPCs on single 2DEGs. There 

has been much work on QPCs on single 2DEGs and several reviews of these structures 

have been written [13, 1091. A brief review of the experimental results and theoretical 

explanations for these results is given below. The steps for fabricating these devices and 

the device geometry were discussed in Section 3.2. 

In QPCs defined using the split gate technique (upper left inset of Fig. 6.1), the QPC 

forms when the 2DEG under the gates is depopulated as a negative bias is applied to the 



dimensional when more than one subband is occupied and transport through it is ballistic. 

Electrons are confined in z-direction by the growth structure, they are confined in the y- 

direction by the split gates, and they are free to move along the x-direction only. The 

confimement in the y -  and z-directions results in 1D subbands with energy En(@ = En + 
h2#/(2m*) where En is confinement energy of the n-th subband, k is the wave vector for 

propagation along the x-direction, and m* = ~ * G A  [13]. The number N of occupied 

subbands at EF is the largest integer such that EN < EF. The transport is ballistic because 

the length (L e = 1 pm) of the channel is much shorter than the mean free path (t = TVF = 

hp(27~n~)”~/e = 10 pm) [33] and therefore, electrons do not scatter within the channel. 

Experimentally, QPCs exhibit a conductance (G) that is quantized in steps of 2e2/h as a 

function of gate bias (VG) [ 1 10, 11 13. The conductance is given by G = [R(VG) - Rb1-l 

where R(VG) is the measured resistance and Rb is a background series resistance that is 

taken as a different constant = 400 l2 for each device. The idealized conductance for a QPC 

is sketched in Fig. 6.1. Each 1D subband contributes 2e2/h to the conductance and the 

steps occur as the 1D channels are depopulated as VG is made more negative. The energy 

at the bottom of the constriction (Ec) is greater than the energy in the wide 2DEG regions 

and increases as VG is made more negative [ 131. This reduces the electron density in the 

constriction from the bulk density ns roughly by a factor (EF - E,)/EF. The reduction in N 

is due both to a decrease in the channel width (W) and to the increase in Ec.  The accuracy 

of quantization is only about 1%, partially due to the background resistance which can not 

be accurately determined, while in the quantum Hall effect, the quantization has an accuracy 

of about lo4 % [20]. Both the degree of flatness of the plateaus and the sharpness of the 

transitions between them vary among devices with identical design, indicating that the 

detailed shape of the electrostatic potential defining the QPC is important [13]. 

To understand the source of the conductance quantization, we calculate the current per 

unit energy interval injected into a subband. The current is injected into the channel within 

a narrow range 6p above EF into the N 1D subbands. The current per unit energy is the 
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product of the group velocity and the 1D density of states [ 131. The group velocity is v, = 

A-'dE,(k)/dk, and the density of states, including spin, is pn = (.rCdE,(k)/dk)-'. From this 

we see that the product of v, and p, is independent of both energy and subband index. 

Indeed, the product is even independent of the form of the dispersion relation E&). The 

injected current is therefore equally shared by all of the occupied subbands with each 

subband carrying a current = ev,pn6p = (2e/h)6p and thus the conductance of each 

subband is G = 1/(6p/e) = 2e2/h. This result can also be obtained using the Landauer- 

Biittiker formalism as is done in Reference [13]. The 1D dispersion curve for a QPC with 

three occupied subbands is sketched in Fig. 6.2. The states that carry the net current 

through the QPC are indicated by the shaded box on the +k side of the dispersion curve, 
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Fig. 6.1 Sketch of the conductance G versus gate voltage VG for a quantum point 
contact on a single 2DEG. The upper left inset shows a top view of the split 
gates and the lower right inset shows a cross-sectional view of the sample 
showing the gates and their depletion regions. 
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where the height of the box is 6p. The dispersion curve for each subband crosses EF at 

two points known as Fermi points (one each at kk,), indicated by vertical arrows in the 

figure. Thus, G can be viewed as having a contribution of 2e2/h from each pair of Fermi 

points. 

QPCs on coupled DQWs are expected to behave similar to QPCs on single 2DEGs, 

where each occupied subband contributes 2e2/h to the total conductance. For the DQW 

case, there will be two channels, each with an integer number (N1,2) of occupied 

subbands. The two channels are in parallel so their conductances will add and the total 

conductance will exhibit steps of 2e2/h when subbands in either channel are depopulated. 

- k X  +kX 

Fig. 6.2 Sketch of the 1D dispersion curve of a QPC with three subbands occupied. 
The shaded box indicates 6p and the states that carry the net current. The 
dashed line indicates the Fermi energy and the vertical arrows show the Fermi 
points of the n = 1 subband. 
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When a magnetic field (BII) is applied in the growth plane (x, y-plane) and perpendicular to 

the conducting channel (in the y-direction), the 1D dispersion curves in each QW will shift 

in the kxdirection with respect to one another, and, for coupled QWS, they will anticross, 

similar to the 2D case. When the magnetic field is applied parallel to the conducting 

channel (x-direction), the dispersion curves will shift in the ky-direction and they will not 

cross and the transport will be unchanged. 

When one subband is occupied in each QW, the conductance is expected to have step 

increases and decreases as a function of BII  as the number of subbands changes due to the 

anticrossing moving through EF. Fig. 6.3 shows a schematic of the dispersion curve, and 

EF1 

EF2 

EF3 

Fig. 6.3 

- k X  +kX 

Sketch of the 1D dispersion curve for a QPC formed on a DQW with an 
applied in-plane magnetic field. Each QW has one subband occupied. The 
conductance for three different values of EF are shown. 
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the corresponding conductance, for different values of EF at constant BII .  For high EF 

(&I; above the energy gap) and low EF (Em; below the energy gap), both subbands are 

occupied and the conductance is 2(2e2/h), while at intermediate EF ( E n ;  in the energy gap) 

only the lower subband is occupied and the conductance drops to 2e2/h [ 1 121. In real 

devices, EF is constant and Bil is increased to move the energy gap to higher energy. In 

that case, E F ~  corresponds to low BII where the Fermi energy is above the energy gap and 

two subbands are occupied. As 2311 is increased, the conductance drops when the energy 

gap reaches EF ( E n  in the figure) and only one subband is occupied, and at still higher BII, 

the conductance increases when the energy gap moves above EF (EF3 in the figure) and 

two subbands are again occupied. 

The goal of our experiments on QPCs on DQWs is to verify these predictions of step 

increases and decreases in the conductance of these devices as a function of Bit. In the first 

attempt, QPCs were made on sample G, which is from the same wafer as sample E of 

Chapter 5. Four QPCs were fabricated on this sample; two with a 0.5 pm separation 

between the split gates and the other two with a 0.7 pm separation. Of these devices, two 

had the conducting channel parallel to 2311 and, in the other two, it was perpendicular to BII. 

Fig. 6.4(a) shows a plot of the four-terminal resistance (R)  versus gate voltage (VG) 

for low VG for the 0.5 pm device with current perpendicular to Bil. The top QPC forms at 

VG = -0.3 V, as indicated in the figure. No features are seen on the scale used in the 

figure, however, on an expanded scale, a change of slope is seen near VG = -0.3 V. Also, 

from gate scans on Hall bars on other samples from this wafer, the top QW depletion 

voltage is known to be = -0.3V. The resistance changes very little at this point because the 

channel is fairly wide and thus has a low resistance and the bottom QW is still very low 

resistance. As VG is decreased, there are no steps seen in the resistance from subbands 

being depopulated. This is because the steps are washed out by the low resistance of the 

bottom QW. A sharp rise in resistance below VG = -0.5 V occurs as the bottom QW is 

being depleted. Near VG = -0.65 V, the bottom QW is depleted under the gates and the 
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bottom QPC has formed. From VG = -0.65 V to -1.4 V, the number of subbands in both 

QPCs is decreasing, but because so many subbands are occupied, the steps in R can not be 

resolved. At VG = -1.4 V, the top QPC becomes too narrow for subbands to be occupied 

in it and it pinches-off. The change in slope at this point indicates that the top QPC is 

pinching-off here. 

Fig 6.4(b) and (c) show the slope of the conductance (dG/dVG) and the conductance, 

respectively, for this device as a function of VG at more negative gate bias. The 

conductance is given by G = 1/(R - 0.4 WZ), where Rb = 0.4 kQ was chosen such that the 

plateaus appear at integer values of 2e2/h. The change in slope that occurs when the top 

QPC pinches-off is clearly seen in Fig. 6.4(c). At more negative bias (VG < -2.0 V), steps 

in G can be seen. The lowest plateau corresponds to five occupied subbands in the bottom 

QPC. The derivative of G shown in Fig. 6.4(b) has values at the plateaus in G 

and these minima can be seen as high as VG = -1.5 V, even though true plateaus can not be 

seen in G at these gate biases. The data in Fig. 6.4 indicates that when both QPCs are 

occupied, the top QPC has fewer occupied subbands, and is thus much narrower, than the 

bottom QPC. This is partly due to screening of the electric field by electrons in the top 

QW. The widths of the two QPCs are shown schematically in the inset of Fig. 6.4(c). 

Due to the large difference in the widths of the two QPCs, the anticrossing in the ID 

dispersion is not expected to be seen because the total dispersion is extremely complicated 

with one subband occupied in the top QPC and many subbands occupied in the bottom 

QPC. 

A second QPC sample was fabricated using a slightly different technique to give the 

two QPCs the same widths. These devices were fabricated on sample H, which is from the 

same wafer as sample A of Chapter 4. Four devices with the same geometries and 

separation between gates as those of sample G were fabricated. The difference between the 

two samples is that after e-beam resist is patterned and developed, the gate areas of this 

sample were etched to a depth of = 730 A in phosphoric acid (1:4:495 H~PO~:HZOZ:H~O). 
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Fig. 6.5 Schematic of sample H after etching and depositing the gates. 

After the etch, the resist was left on the sample and the gate metal was evaporated on to the 

sample and lifted off. 

Fig. 6.5 shows a schematic of the sample after the gate metal was deposited. The etch 

was deep enough to remove the top layer of dopants (see typical growth structure in Fig. 

2.1). After the etch, the QWs under the gates are depleted because the dopants above them 

were etched away and aIso because the surface is pinned at roughly 0.8 eV above the Fermi 

energy. 

Fig. 6.6(a) shows the resistance of sample H as a function of VG for a 0.5 pm device 

with the current parallel to BII. The resistance is higher near VG = 0 V in this sample than 

in sample G. This indicates that at least the top QPC and possibly the bottom QPC are 

formed by the gate etch. Fig 6.6(b) shows the measured conductance which was obtained 
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Fig. 6.6 (a) Resistance and (b) conductance of sample H as a 
function of VG. Weak plateaus can be seen in (b). 

using Rb = 0.5 kSZ. Extremely weak plateaus can be seen in this data but, because the 

plateaus are so weak, it is difficult to be confident in the choice of Rb. Due to the 

uncertainty of Rb and the weakness of the plateaus, it is also difficult to identify the number 

of subbands occupied. In measurements of as a function of BII  (not shown), the 

110 



anticrossing of the 1D dispersion curve was not seen. We believe this is because the 

plateaus in the conductance are so weak. 

The ideal sample for these experiments would have split gates defined on both the top 

surface and on the back surface of the sample. This would allow independent control of 

the QPC widths in each QW. However, the substrates on typical samples are = 600 pm 

thick and they can be thinned to only = 50 pm before they become too fragile to work with. 

Large-area back gates have been made on such thick substrates but VG = -100 V is 

necessary to deplete the bottom QW [60]. Even though back gates can be made on these 

substrates, the substrates are much too thick to allow definition of QPCs with back gates. 

The problem is that sharp features defined by the gates become rounded and slightly 

distorted in the depletion region under the gate. Thus, the QPCs made on these thick 

substrates would become very long and the plateaus would be washed out. 

To overcome this problem, we have developed a technique to make back gates that are 

as little as = 0.4 pm from the bottom QW [61]. This technique is known as B A S E  

(Epoxy-Bond And Stop-Etch) and has been used to make samples with large-area back 

gates. In this technique, frrst the mesa, ohmic contacts, and large-area top gates are 

processed. Next, alignment marks are defined with optical lithography, etched to a depth 

of = 0.5 pm, and filled with metal. The top e-beam defined split gates are aligned to these 

marks. Now the sample is epoxied, face down, on a host substrate and the sample 

substrate itself is thinned to = 50 pm. The rest of the sample substrate is etched away in a 

selective etch that stops on the AlGaAs buffer layer (see Fig. 2.1). This leaves a smooth 

surface with the etched alignment marks protruding from the surface. The sample now 

consists of = 0.5 pm of epitaxial layers epoxied to the host substrate. The back e-beam 

defined split gates are aligned to the etched alignment marks and finally via holes are etched 

to make contact to the ohmic contacts and the top gates. Fig. 6.7 shows a cross-sectional 

view of the completed sample. Using this technique, the top and back split gates should be 

accurately aligned to each other and should provide the independent control of the top and 
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Fig. 6.7 Cross-sectional view of QPC sample after processing using the EBASE 
technique. 

bottom QPCs that is necessary to make this experiment successful. This technique has 

been successfully used to fabricate samples with large area back gates, which have been 

used to make independent contact to the top and bottom QWs [61]. At the time of writing, 

a QPC sample was being fabricated using this technique. 

6.2 Short Ouantum Wires on DOWs 

Quantum wires on single 2DEGs have also received considerable attention in the last 

decade [109], with effects such as universal conductance fluctuations and Aharonov-Bohm 
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oscillations being studied. Tunneling from quantum wires to 2DEGs has been studied in 

both single 2DEGs [ 1131 and in DQWs [68]. Coupled quantum wires on DQWs, on the 

other hand, have received very little theoretical attention [ 1 14, 1 151 and no experimental 

attention that we are aware of. 

In short quantum wires formed on DQWs and subject to a magnetic field (BII)  parallel to 

the growth plane and perpendicular to the direction of current flow, Lyo has predicted a 

gigantic enhancement of the conductance may be observed [ 1 141. For the conductance 

enhancement to occur, the quantum wires must be fairly narrow and have nearly equal 

widths so that only the lowest subband in each quantum wire is occupied, similar to the 

QPCs in the last section. The magnetic field again shifts the 1D dispersion curves of each 

quantum wire with respect to each other. Due to coupling, these curves anticross and an 

energy gap opens, as sketched in Fig. 6.8. 

The conductance enhancement occurs due to a suppression of the intra-wire back 

scattering. In coupled quantum wires, the scattering rate is proportional to 

I (<pn(z) I VI <p,(z)) 1 *, where qn,,(z) are the isolated QW wavefunctions, n,m = 1,2 index 

the isolated QWs and Vis the confinement potential [114]. When the Fermi level is outside 

the energy gap (EFI in Fig. 6.8), the dominant back scattering (indicated by dashed lines) 

occurs within a single quantum wire. Here, the intra-wire scattering has a rate that is 

proportional to I (cpn(z) I VI <pn(z)) I 2, and is therefore fairly large. The inter-wire back 

scattering (indicated by solid lines), on the other hand, is much weaker because its rate is 

proportional to 1 (<pn(z) I VI <pm(z)) I 2, where n f m. This scattering rate is much smaller 

due to the smaller overlap between cpn(z) and cpm(z). When the Fermi level is in the energy 

gap (Em in Fig. 6.8), the intra-wire scattering is suppressed and only the weak inter-wire 

back scattering is possible. Due to the suppressed back scattering, the conductance 

increases by several orders of magnitude when the Fermi level is in the energy gap. 
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The quantum wires and QPCs have very similar dispersion curves but are predicted to 

behave very differently. The main physical difference between these devices is the channel 

length. In the QPCs, L is much shorter than the mean free path ( e )  and the transport is 

ballistic. While in the quantum wires, L must be => .t to see the conductance enhancement, 

since there must initially be intra-wire scattering in order to see its suppression by adding 

BII. In typical DQW samples, .t = 5 p. Due to the requirement of comparable widths of 

the top and bottom quantum wires, the EBASE technique must be used for these samples. 

This technique also allows the widths to be varied so the wires can be tuned to have only 

\ 
QWI A QW2 

-kX +kX 

Fig. 6.8 Sketch of the ID dispersion curve of the coupled quantum wires in Bll. The 
lines indicate back scattering between the Fermi points which are shown as 
dots. The dashed lines are offset in energy for clarity. The +,- signs indicate 
slopes of the dispersion and the numbers 1,2 indicate which QW the 
wavefunction resembles. 
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one subband occupied. The samples could also be fabricated using in situ low energy 

gallium ion beam damage to define the wires [116, 801. However, the wires fabricated 

using this technique are not tunable. At the time of writing, quantum wire samples for this 

experiment are in the process of being fabricated using the EBASE technique. 
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7. SUMMARY AND FUTURE WORK 

Over the last several years interest in double quantum wells 'has been increasing 

rapidly. Much of this interest stems from the additional degree of electronic freedom, 

found in DQWs that is not present in single 2DEGs. The present work has focused on 

electron transport in double quantum wells subject to magnetic fields applied parallel to the 

QWs. The first part of this chapter summarizes the experiments done in this thesis and 

highlights the main conclusions drawn from this work. The second part of the chapter 

suggests future experiments that could be done using double quantum wells. 

7.1 Summarv of Work ComDleted 

The samples used in this work are all closely coupled DQWs, most with ASAS = 1 - 3 

meV and one extremely closely coupled sample with ASAS = 7.6 meV. The experiments 

that were done can be divided into three groups: (1) distortions in the dispersion curve and 

Fermi surface caused by BII ,  (2) formation of Landau levels and magnetic breakdown on 

this distorted dispersion curve due to the addition of B i ,  and (3) related transport 

phenomena in 1D structures on DQWs subject to BII. 

In the first group of experiments, the in-plane conductance of closely coupled DQWs 

is measured as a function of Bll. Two sharp features are observed in the conductance: first 

a maximum, followed closely by a minimum. These results are in excellent agreement with 

calculations by Lyo. These features occur as the edges of a partial energy gap in the 

dispersion curve cross the chemical potential. The energy gap results from an anticrossing 

of the individual QW dispersion curves that are shifted with respect to one another by B I I .  

The distortions in the dispersion curve cause deviations in the density of states, Fermi 

velocity, and electron effective mass. The evolution of the features with gate bias can be 

used to determine ASAS. We also investigated the anisotropy of the features in 91 with 
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respect to the direction of the electric field. The theory of Vasko and Raichev [93] showed 

good agreement with the measured data. Finally, the electron effective mass of the 

dominant k-space orbit was measured by adding a small perpendicular component of 

magnetic field to the in-plane field and analyzing the resulting magnetoresistance 

oscillations. For one sample, the dominant orbit was the smaller lens-shaped orbit, which 

exhibited an m* much less than ~ * G A ~ ,  while in another specially designed sample, only 

the peanut-shaped orbit was present, which exhibited an m* much greater than WZ*GA~. 

Again, there was excellent agreement between the experiment and calculations by Lyo. 

The second set of experiments examined the resistance of two closely coupled DQW 

samples as a function of both BII and B I .  In this work, Bli shifted the QW dispersion 

curves causing the energy gap to form and BJ. caused Landau level forrnation and 

magnetoresistance oscillations for each branch of the Fermi surface. We observed three 

separate sets of Landau levels corresponding to three different types of Fermi surface 

orbits. The first set comes from the smaller, lens-shaped orbit, which has a low effective 

mass and becomes less populated with increasing B I I .  The second set comes from the 

larger, peanut-shaped orbit, which has a high effective mass and becomes more populated 

with increasing BII .  As a result, sweeping Be induces multiple crossings of the Landau 

levels from the two orbits at the chemical potential. The third set of Landau levels, which 

are independent of B I I ,  result from magnetic breakdown of the Fermi surface. Magnetic 

breakdown occurs when electrons tunnel in k-space between the peanut and lens orbits to 

form circular orbits corresponding to the separate uncoupled QWs. A semiclassical 

calculation of the Landau level spectrum, taking into account the BII-dependence of both the 

mass and Fermi energy of each orbit, shows excellent agreement with the data. Finally, the 

Fourier spectra of the data as a function of 1/B1 for constant B11 further supports the lens 

and peanut model of the Fermi surface. 

The last set of experiments investigated one-dimensional structures on closely coupled 

double quantum wells. The goal of these experiments was to see the effects of an 
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anticrossing of the 1D dispersion curves as a function of in-plane magnetic field. The 

structures studied were quantum point contacts. Here, a step decrease in conductance is 

expected when the chemical potential is in the energy gap followed by a step increase when 

the gap moves above the chemical potential. We also studied short quantum wires, where a 

conductance enhancement is predicted when the chemical potential is in the energy gap due 

to a strong suppression of back scattering. QPCs were fabricated using top surface 

depletion gates only. This resulted in a very narrow QPC in the top layer and a very wide 

QPC in the bottom layer. Thus the top QPC has a very low conductance and the bottom 

QPC has a very high conductance and, in retrospect, it is not surprising that the 

conductance steps were not observed in these samples. A technique to fabricate samples 

with split-gates on both the top surface and on the bottom surface has been developed, but 

the fabrication of samples using this method has not yet been completed. Samples for the 

coupled quantum wire experiments are also presently undergoing fabrication using this 

method. 

-Suggestions for Future Work 

With improvements in epitaxial growth techniques and sample processing techniques 

(EBASE, FIB, etc.), the amount of research in coupled double quantum wells will continue 

to increase. There is a wide variety of work that can be done in this system, including 

device development, extensions to the work of this thesis, and experiments in other areas 

involving DQWs. 

Two possible device applications for DQWs are as quantum tunneling transistors and 

far-infrared (FIR) detectors. One proposed transistor is the double electron layer tunneling 

transistor (DELTT) [16]. In this device, electrons are injected into one QW, tunnel into the 

second, and are collected, while a gate is used to control the tunneling by moving the DQW 

in or out of balance. Independent ohmic contact to the top and bottom QWs are essential 
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for this device to work and they can be fabricated using the EBASE technique. Prototypes 

have been demonstrated with peak-to-valley ratios of 50: 1 [ 161. 

An FIR detector utilizing photon-assisted tunneling from one QW to the other can also 

be envisioned. Again top and back gates are used to give independent contact to the two 

layers. A source/drain bias is applied across the device which raises the upper QW 

dispersion curve above that of the bottom QW and above the Fermi energy. When the 

bottom QW absorbs a photon of appropriate energy, the photon completes the energy and 

momentum conservation and allows an electron to tunnel to the top QW which contributes 

to the tunneling current. The frequency response of this device would be narrow band 

because the dispersion curves are surface parabloids and not volume parabloids as in the 

3D case. The absorption energy is also tunable either by changing the bias on a control 

gate or by changing the source/drain bias. 

One possible extension of the present work is to continue studying magnetic breakdown 

in DQWs in tilted fields. For this work to be successful, a technique for measuring the 

breakdown field Bo must be developed. If Bo can be accurately measured as a function of 

Bli, meaningful comparison with existing theory on magnetic breakdown in DQWs will be 

possible. One possibility is to use the data of Chapter 5 and develop a method for 

computing the Fourier power over different intervals of B i  and seeing where magnetic 

breakdown sets in. Another possibility is to vary the Fermi energy with the sample in fixed 

BII and B l .  As the Fermi energy is lowered, oscillations in the resistance occur as Landau 

levels in the various orbits are depopulated, similar to results in other systems [ 103, 1041. 

The difficulty with DQWs is that a top gate only varies the density of the top QW and thus 

distorts the DQW dispersion curve. For DQWs, top and back gates will have to be biased 

together to change the electron densities of both QWs while keeping them in balance and 

preserving the shape of the dispersion curve. Performing gate sweeps at constant BII and 

different values of B i  should allow an accurate determination of Bo. The B A S E  
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technique is ideal for fabricating samples with back gates close to the bottom QW for this 

experiment. 

Other possible extensions of the present work are experiments on 1D structures on 

DQWs. The present work showed that top and back gates are needed for experiments on 

QPCs and quantum wires in DQWs, and that the EBASE technique will work very well for 

fabricating these samples. The experiments described in Chapter 6 could be performed, 

along with a variety of experiments to explore the coupling between the 1D subbands. 

Finally, other areas involving DQWs can be explored. One area that is getting more 

experimental attention is coupled electron-hole systems on DQWs. Theorists have been 

working on this subject for more than 20 years [117 -1191 where excitonic ground states 

and excitonic superfluidity have been predicted. 
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