Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

by G. P. Flach Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808

M. K. Harris

R. A. Hiergesell

A. D. Smits

K. L. Hawkins

DOE Contract No. DE-AC09-96SR18500

.

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

WSRC-TR-98-00285 Rev. 0

Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina (U)

Gregory P. Flach, Mary K. Harris, Robert A. Hiergesell, Andrew D. Smits

and Kelley L. Hawkins

September 1998

Prepared by: Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-96SR18500

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Printed in the United States of America

Prepared For U.S. Department of Energy And Westinghouse Savannah River Company

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina (U)

Gregory P. Flach, Mary K. Harris, Robert A. Hiergesell, Andrew D. Smits

and Kelley L. Hawkins

September 1998

Prepared by: Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-96SR18500 Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina (U)

Authentication and Approvals:

las

Gregory P. Flach, WSRC

Mary K. Harris, WSRC

1. Timpecelle L'aut !!

Robert A. Hiergesell, WSRC

Andrew D. Smits, SAIC

illes L. Hawkins

Kelley L. Hawkins, SAIC

9/21/98 Man Crow for JGS

Joette G. Sonnenberg, Manager

9/21/98

Date

1 21 /93

Date

Date

9/21/98

Date

Date

9/21/98

Date

ABSTRACT

A regional groundwater flow model encompassing approximately 100 mi² surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the *General Groundwater Strategy for Reactor Area Projects* by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1998. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

MODEL SUMMARY

The current groundwater flow model for C, K, L, and P reactor areas simulates groundwater flow within the area bounded to the north by Upper Three Runs, to the west by the Savannah River, to the south by Steel Creek and Meyers Branch, and to the east by a line between McQueen Branch and Par Pond. Vertically the model extends from ground surface to the top of the Meyers Branch confining system. The model confirms that groundwater flow in upper aquifers at the Savannah River Site is recharge driven, with streams intercepting flow from higher elevations. The underlying Gordon aquifer is strongly influenced by and discharges to the Savannah River and Upper Three Runs. Nearly all recharge within the CKLP reactor region discharges to streams within or bounding the same area, usually the nearest stream, with the balance entering the Gordon aquifer. Simulated flow directions agree with the conceptual model of groundwater flow. Model calibration targets include groundwater recharge estimates, stream baseflow data and estimates, and water level measurements from more than 1000 wells. Model conductivity values in the Gordon aquifer and confining units are set directly to prior estimates based on field data. For the Upper Three Runs aquifer unit, conductivity values are defined through calibration to the groundwater flow and hydraulic head targets.

The chosen areal grid is 70,000 feet on a side, with a horizontal resolution of 500 square feet. The grid consists of 140 elements along each horizontal axis. The vertical resolution varies depending on hydrogeologic unit and terrain/hydrostratigraphic surface variations. The top surface of the mesh conforms to the ground surface. The bottom surface of the mesh coincides with the bottom of the Gordon aquifer unit. Interior node layers conform to the other stratigraphic surfaces. The "upper" aquifer zone of the Upper Three Runs aquifer includes the vadose zone and is represented by 3 finite-elements in the vertical direction. The "lower" aquifer zone of the Upper Three Runs aquifer contains 2 finite-elements. while the "tan clay" confining zone of the Upper Three Runs aquifer is represented by a single model element. The Gordon confining unit and Gordon aquifer unit are each assigned to one element, for a total of 8 vertical elements from ground surface to the bottom of the Gordon aquifer. The three-dimensional mesh is therefore $140 \times 140 \times 8$ with 156,800 elements or $141 \times 141 \times 9$ with 178,929 nodes. The finer vertical resolution in the "upper" zone of the Upper Three Runs aquifer is containing transport analyses.

Horizontal conductivity in the Gordon aquifer is set to 35 ft/day based on the extensive field data from wells at the SRS and in the region surrounding the site. The vertical conductivity of the Gordon confining unit is set to 10^{-4} ft/day in accordance with field measurements. Conductivity values within Upper Three Runs aquifer zones are set through model calibration to measured water levels. Horizontal conductivity in the "lower" and "upper" aquifer zones is nominally 5.6 ft/day, and varies from 1.6 to 9.6 ft/day. Vertical conductivity for the "tan clay" confining zone is nominally 4×10^{-3} ft/day, and varies between 4×10^{-4} and 4×10^{-2} ft/day. The ratio of horizontal to vertical conductivity is assumed to be 100 to 1. Approximate soil characteristic curves are adopted for the vadose zone in the numerical model. An effective porosity value of 25% is assumed when computing the pore velocity field.

TABLE OF CONTENTS

ABSTRACT	iii
MODEL SUMMARY	iii
LIST OF FIGURES	vii
APPENDICES	xi
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Modeling Objective and Approach	2
1.3 Description of the Study Area	3
2.0 HYDROGEOLOGIC DATA AND CONCEPTUAL MODEL	9
2.1 SRS Geology	9
2.2 SRS Hydrostratigraphic Units and Properties	9
2.2.1 Meyers Branch Confining System	12
2.2.2 Floridan Aquifer System	12
2.2.2.1 Gordon Aquifer2.2.2.2 Gordon Confining Unit2.2.2.3 Upper Three Runs Aquifer	13 14 15
2.3 Hydrogeology	17
2.3.1 Water Table	17
2.3.2 Gordon Aquifer Potentiometric Surface	18
2.3.3 Hydraulic Head Targets	18
2.4 Groundwater Recharge and Discharge	20
2.5 Conceptual Model of Groundwater Flow	21
2.6 Hydrologic Properties	22
2.6.1 Soil Characteristic Curves	23
2.6.2 Effective (Kinematic) Porosity	24
2.6.3 Specific Storage	26
3.0 GROUNDWATER FLOW MODEL DEVELOPMENT	69
3.1 Code Selection and Description	69
3.2 Model Configuration and Mesh	69
3.3 Boundary Conditions	70
3.4 Material Properties	72
3.5 Calibration Process	72

4.0 GROUNDWATER FLOW MODEL RESULTS	
4.1 Calibration results	
4.2 Nominal Simulation	
4.3 Uncertainty Analysis	
5.0 SUMMARY AND RECOMMENDATIONS	
6.0 REFERENCES	

LIST OF FIGURES

1-1	Location of the Savannah River Site and Model Area	4
1-2	Location of Groundwater Basins at the Savannah River Site	5
1-3	Location of Major Streams and Rivers in Model Area. Model Boundary Shown in Red.	6
2-1	Comparison of Lithostratigraphic and Hydrostratigraphic Units at SRS	23
2-2	Conceptual Hydrostratigraphic Model	24
2-3	Hydrostratigraphic Cross-Sections	25
2-4	Altitude-Contour Map of the Top of the Meyers Branch Confining System	26
2-5	Altitude-Contour Map of the Top of the Gordon Aquifer	27
2-6	Isopach Map of the Gordon Aquifer	28
2-7	Altitude-Contour Map of the Top of the Gordon Confining Unit	29
2-8	Isopach Map of the Gordon Confining Unit	30
2-9	Altitude-Contour Map of the Top of the "Lower" Aquifer Zone	31
2-10	Isopach Map of the "Lower" Aquifer Zone	32
2-11	Altitude-Contour Map of the Top of the "Tan Clay" Confining Zone	33
2-12	Isopach Map of the "Tan Clay" Confining Zone	34
2-13	Topographic Surface of the "Upper" Aquifer Zone	35
2-14	Water Table Map of CKLP Model Area	36
2-15	Location of Stream Baseflow Measurements for 1998 Field Study	37
2-16	Water Table Map for C Reactor Area	38
2-17	Water Table Map for K Reactor Area	39

LIST OF FIGURES (continued)

2-18	Water Table Map for L Reactor Area	40
2-19	Water Table Map for P Reactor Area	41
2-20	Gordon Potentiometric Surface in the CKLP Model Area	42
2-21	Map of Live (Perennial) Stream Reaches as Determined by Field Observations	43
2-22	Approximate Soil Characteristic Curves	44
3-1	Plan View of Model Domain and Finite-Element Mesh	54
3-2	Typical Cross-Sectional Slice through Finite-Element Mesh	55
3-3	Top Surface Boundary Conditions	56
3-4	Boundary Conditions for Gordon Aquifer Between the Top and Bottom Nodal Layers	57
3-5	Boundary Conditions for Upper Three Runs Aquifer Between the Top and Bottom Nodal Layers	58
4-1	Simulated Versus Measured Head for Each Aquifer Zone	63
4-2	Head Residuals in the Gordon Aquifer	64
4-3	Head Residuals in the "Lower" UTR Aquifer Zone	65
4-4	Head Residuals in the "Upper" UTR Aquifer Zone	66
4-5	Horizontal Conductivity in the Gordon Aquifer (Element Layer 1)	67
4-6	Vertical Conductivity in the Gordon Confining Unit (Element Layer 2)	68
4-7	Horizontal Conductivity in the Lower Half of the "Lower" UTR Aquifer Zone (Element Layer 3)	69
4-8	Horizontal Conductivity in the Upper Half of the "Lower" UTR Aquifer Zone (Element Layer 4)	70

.

LIST OF FIGURES (continued)

٠

4-9	Vertical Conductivity in the "Tan Clay" Confining Zone (Element Layer 5)	71
4-10	Horizontal Conductivity in the Lower Third of the "Upper" UTR Aquifer Zone (Element Layer 6; Transmissive Zone in K-Area)	72
4-11	Horizontal Conductivity in the Middle Third of the "Upper" UTR Aquifer Zone (Element Layer 7; AA Horizon in K-Area)	73
4-12	Horizontal Conductivity in the Upper Third of the "Upper" UTR Aquifer Zone (Element Layer 8; A Horizon in K-Area)	74
4-13	Horizontal Conductivity Along a Cross-Section Through K-Area	75
4-14	Simulated Hydraulic Head in the Gordon Aquifer	76
4-15	Simulated Hydraulic Head in the "Lower" UTR Aquifer	77
4-16	Simulated Hydraulic Head in the "Upper" UTR Aquifer	78
4-17	Simulated Hydraulic Head in the Aquifer Zone Containing the Water Table	79
4-18	Simulated Water Table Elevation	80
4-19	Simulated Flow Directions in the Gordon Aquifer	81
4-20	Simulated Flow Directions in the "Lower" UTR Aquifer	82
4-21	Simulated Flow Directions in the "Upper" UTR Aquifer	83
4-22	Simulated Seepage Faces	84
4-23	Simulated Rates of Recharge and Discharge	85
4-24	Example Particle Tracing Results	86
4-25	Water Balance	87

LIST OF TABLES

2-1	Summary of Permeability Measurements	. 45
2-2	Base Flow Estimates Based on Hydrograph Separation of USGS Gauging Station Data	47
4-1	Calibration Summary for Groundwater Flow Targets	. 88
4-2	Calibration Summary for Hydraulic Head Targets	. 89
4-3	Calibration Summary for Hydraulic Conductivity	. 90
4-4	Summary of Uncertainty Cases	. 91
4-5	Calibration Summary for Uncertainty Cases	92

APPENDICES

APPENDIX A DATA COLLECTION AND HYDROGEOLOGIC MODEL METHODOLOGY

APPENDIX B HYDROSTRATIGRAPHIC DATA

- B-1 Locations of Sites within the Model Area
- B-2 Hydrostratigraphic Boundaries
- B-3 Summary of 2-Dimensional grids

APPENDIX CPERMEABILITY DATA

- C-1 Permeability Values Recorded from Pumping Tests
- C-2 Permeability Values Recorded from Slug Tests
- C-3 Permeability Values Recorded from Laboratory Tests

APPENDIX D DATA REFERENCES

APPENDIX E STREAM BASEFLOW DATA AND ESTIMATES

- E-1 Stream Base Flow Estimates Based on USGS Gauging Station Data
- E-2 Summary of Stream Baseflow and Water Table Work Conducted in Support of the R-Reactor and K-Reactor Groundwater Modeling Efforts (SRT-EST-98-110)
- APPENDIX F HYDRAULIC HEAD TARGET AND RESIDUAL DATA
- APPENDIX G UNCERTAINTY ANALYSIS

This Page Intentionally Left Blank

.

1.1 Background

The Savannah River Site (SRS) is a U.S. Department of Energy (DOE) facility occupying 300 square miles within Aiken, Barnwell, and Allendale counties in southwestern South Carolina (Figure 1-1). The SRS was set aside in 1950 as a controlled area to produce nuclear materials for national defense. The DOE and its contractors are responsible for the operation of the SRS. Westinghouse Savannah River Company (WSRC) is currently contracted to manage and operate the site.

The SRS operated five reactors to produce special radioactive materials during the Cold War period. R Reactor was the first production reactor to go on-line, achieving criticality in December 1953. P Reactor achieved criticality in February of 1954, followed by L Reactor in August 1954, K Reactor in October 1954, and C Reactor in March 1955. The reactors produced primarily plutonium-238, plutonium-239, and tritium for uses related to national defense, but also generated special isotopes for non-defense research, medical uses, and space programs. These special isotopes included cobalt-60, polonium-210, uranium-233, curium-244, and californium-252.

The past disposal practices associated with SRS reactor operations created waste units within and adjacent to the five reactor areas. Reactor area waste units include seepage basins, Bingham pump outage pits, burning/rubble pits, rubble piles, acid/caustic basins, coal pile runoff basins, and coal ash basins. WSRC (1997) provides a detailed discussion of these waste units.

The reactor areas lie within five major drainage systems (groundwater basins). These include the Fourmile Branch, Pen Branch, Steel Creek, Lower Three Runs and Upper Three Runs groundwater basins (Figure 1-2). SRS facilities are normally situated on well-drained, topographically high areas (divides) which separate the groundwater basins. This arrangement commonly places the waste units associated with a reactor within both of the adjacent groundwater basins. For example, L-Reactor waste units lie within the Pen Branch and Steel Creek groundwater basins and P-Reactor waste units lie within the Steel Creek and Lower Three Runs groundwater basins.

1.2 Modeling Objective and Approach

The primary objective of this modeling effort is to establish a regional groundwater flow model to encompass the waste units associated with C, K, L, and P reactor areas. The R-Reactor waste units are addressed in previous modeling efforts (HydroGeoLogic, 1997, 1998) and are not included in this report.

This model will provide a basic understanding of the groundwater flow behavior for these areas on a regional scale. This capability is important because of the various groundwater flow directions in the near surface aquifers and deeper semi-confined to confined aquifers, and enables tracking of contaminant plumes from the source to surface discharge potentially as far as the Savannah River and Upper Three Runs. The reactor areas model has been constructed to assist in scoping characterization and remedial activities by providing a common base for the subsequent smaller scale transport and remedial/feasibility models for each of these areas. In addition, waste units that are in close proximity to one another can be addressed comprehensively to look at the possibility of commingled plumes and the effects of one waste unit on the other.

The model is designed to meet the planning objectives described in Section 4.2 of the *General Groundwater Strategy for Reactor Area Projects* (WSRC, 1997). The model incorporates all available data from geological and hydrological field characterizations into a project database that can be easily updated as additional field measurements are taken. This is consistent with the interactive approach described in WSRC (1997). The model will be able to incorporate new data as it is collected, providing quick and cost-effective updates. The model can be evaluated to determine whether the available information is adequate to address a remediation issue. If not, the model can assist in determining what types of data are needed and from where they should be collected.

The reactors groundwater flow model uses EarthVision[®] proprietary software to calculate two-dimensional grids, maps, and cross-sections of hydrostratigraphic surfaces. The groundwater flow modeling is performed using the Flow And Contaminant Transport (FACT) code. The FACT code is a finite-element code developed by the Savannah River Technology Center (SRTC) (Hamm and others, 1997).

1.3 Description of the Study Area

The SRS is centered 22.5 miles southeast of Augusta, Georgia. approximately 100 miles from the Atlantic Coast within the Upper Atlantic Coastal Plain Physiographic Province. The Savannah River forms the southwest boundary of the SRS (Figure 1-1). The SRS is situated on the Aiken Plateau of the Atlantic Coastal Plain at an approximate elevation of 300 feet above mean sea level (ft msl). Overall, the plateau has a highly dissected surface and is characterized by broad inter-fluvial areas with narrow, steep-sided valleys. Local relief can attain 280 feet (Siple, 1967). The Aiken plateau is generally well-drained, although many poorly drained sinks and depressions exist.

The model area, herein referred to as the C, K, L, and P Groundwater Model Area (CKLP GWMA) comprises approximately 100 square miles within the central and southern portions of the Savannah River Site. The CKLP GWMA has low to moderate topographic relief and is drained by perennial and intermittent streams (Figure 1-3). The CKLP GWMA is bounded to the north by Upper Three Runs, to the west by the Savannah River, to the south by Steel Creek and Meyers Branch, and to the east by a line between McQueen Branch and Par Pond (Figure 1-3). Upper Three Runs forms the northern boundary of the study area with an average elevation of 150 ft msl., the Savannah River forms the western boundary with an average elevation of 85-90 feet msl., and Steel Creek and Meyers Branch forms the south-southeastern boundary with elevations ranging from 100 to 105 ft msl. Beyond the headwaters of Meyers Branch, the southern boundary extends southeast to Par Pond south of P Area. There is no single natural drainage at the eastern margin of the area. A line running southeast from McQueen Branch, through the headwaters of Fourmile Branch, to Par Pond (Figure 1-3) defines an eastern boundary.

Figure 1-1. Location of the Savannah River Site and Model Area.

Figure 1-2. Location of Groundwater Basins at the Savannah River Site

Figure 1-3. Location of Major Streams and Rivers in Model Area. Model Boundary Shown in Red.

6

2.1 SRS Geology

The SRS lies within the Atlantic Coastal Plain, a southeast-dipping wedge of unconsolidated and semi-consolidated sediment that extends from its contact with the Piedmont Province at the Fall Line to the edge of the continental shelf. The sediment ranges from Late Cretaceous to Miocene in age and comprises layers of sand, muddy sand, and mud with minor amounts of calcareous sediment (Fallaw and Price, 1995). The Coastal Plain sediment rests unconformably on Triassic-aged sedimentary rock of the Dunbarton Basin and Paleozoicaged crystalline rock of the Appalachian orogen.

The Pen Branch Fault (PBF) offsets basement rock and Late Cretaceous to Tertiary-aged sediment beneath the CKLP GWMA (Figure 1-1). Seismic studies and stratigraphic correlation indicate that the Pen Branch Fault is a sub-vertical growth fault with down-to-the-northwest movement sense. The PBF probably represents reactivation of a border fault in the basement rock along the north margin of the Dunbarton Basin (Snipes and others, 1993; Stieve and Stephenson, 1995).

2.2 SRS Hydrostratigraphic Units and Properties

The hydrostratigraphy of the SRS has been the subject of several different classification schemes. This report incorporates the hydrostratigraphic nomenclature currently established for the SRS region by Aadland and others (1995), who present a thorough review and description of the units. Figure 2-1 correlates the hydrostratigraphic nomenclature with the local lithostratigraphy as defined by Fallaw and Price (1995). This report addresses the up-dip part of the Floridan aquifer system and the top of the Meyers Branch confining system as defined by Aadland and others (1995).

The conceptual hydrostratigraphic model depicted on Figure 2-2 and the cross-sections in Figure 2-3 illustrate the relationship between the hydrostratigraphic units, the topography, and the recent alluvial material deposited in the Savannah River valley. The lateral and vertical extent of the hydrostratigraphic units and the recent alluvium are very important hydrologically. The topography is a major factor in controlling the distribution of surface water and the configuration of the water table. Major tributaries of the Savannah River incise the hydrostratigraphic units down to the "tan clay" confining zone and, to a lesser extent, to the "lower" aquifer zone of the Upper Three Runs aquifer. The Savannah River and Upper Three Runs cut down into the Gordon aquifer. The depth to which the streams and river

incise underlying hydrostratigraphic units is an important factor in the localized and regional flow systems in the study area. Leeth and Nagle (1996) performed a series of borings along the Savannah River in the vicinity of SRS to determine the shallow subsurface geology of the Savannah River. Their results were used as a guide in determining the lateral and vertical extent of the alluvium in the CKLP GWMA. The thickness of the recent alluvial material in the river valley varies, and attains a maximum thickness of approximately 50 ft (Leeth and Nagle, 1996). Figures 2-2 and 2-3 depict the conceptual hydrostratigraphic model used for the CKLP GWMA and illustrate the extent to which the Savannah River has incised the hydrostratigraphic units. The Savannah River has cut down to the Gordon aquifer at the northern and southern ends of the valley but does not incise the Meyers Branch Confining System within the model area. This relationship of the alluvial valley to the hydrostratigraphic units is also illustrated in Figure 2-1.

The following sections describe the lithologic characteristics along with the configuration of the tops and thickness of the hydrostratigraphic units mapped for this study. It should be noted that the tops of the hydrostratigraphic units correspond closely with recognized unconformities in the SRS region (Fallaw and Price, 1995). All of the altitude contour maps have patterns that are consistent with the south-southeast dip of the Coastal Plain strata in this region (Fallaw and Price, 1995). Isopach contours indicate variability in thickness, which is related to the varying degrees of erosion at the unconformable surfaces and structural relations with the Pen Branch Fault. Both the altitude contour maps and isopach maps have been constructed to depict down cutting and deposition of recent alluvial material by the Savannah River. All of the maps exhibit contour patterns that reflect the variability in data density across the area.

The project database includes permeability data from aquifer pumping tests, borehole permeability tests (slug tests), and laboratory tests of core samples from locations within the CKLP GWMA. Table 2-1 presents a summary of the permeability data collected for this study. The summary incorporates only data from locations that have hydrostratigraphic boundaries established as part of this study. Statistical calculations were made using averaged values from multi-well pumping tests and the average values from wells with results from both rising and falling-head slug tests.

Appendix A presents a summary of the data collection and modeling methods that were utilized for this investigation. Appendix B presents locations of data points, hydrostratigraphic boundaries, and a summary of the two-dimensional grids calculated from the boundaries. Appendix C presents permeability data from locations within the model area. Appendix D lists source documents for the data presented in Appendices B and C and summarized in Table 2-1.

2.2.1 Meyers Branch Confining System

The Meyers Branch confining system (MBCS) defines the base of the Floridan aquifer system in the study area. In the CKLP GWMA, the top of the MBCS is delineated by the laterally continuous, dense, gray to black, clay and sandy clay of the Lang Syne Formation of the Black Mingo Group (Figure 2-1) (Aadland and others, 1991 and 1995).

The configuration of the top of the MBCS is illustrated with altitude contours in Figure 2-4. The MBCS exhibits a relatively gentle dip in a south-southeast direction. Vertical offset along this unit is approximately 40 feet along the PBF. The Savannah River has not incised the MBCS.

Laboratory tests of 38 undisturbed samples taken from the MBCS indicate vertical permeability ranges from 4.26E-06 to 3.40E-01 feet per day (ft/day)(Table 2-1). Tests of 27 undisturbed samples yield horizontal permeability values that range from 1.1E-05 to 1.5E+00 ft/day within this unit. These data show an arithmetic mean of 1.39E-02 ft/day for vertical permeability and 8.63E-02 ft/day for horizontal permeability. and a geometric mean of 2.47E-04 ft/day for vertical permeability and 5.52E-04 ft/day for horizontal permeability. The standard deviation is 5.65E-02 for vertical permeability and 3.12E-01 for horizontal permeability.

2.2.2 Floridan Aquifer System

The Floridan Aquifer System overlies the MBCS and includes the Gordon aquifer, Gordon confining unit, and Upper Three Runs aquifer within the CKLP GWMA (Figure 2-1). Groundwater maintains a downward component of flow from the Upper Three Runs aquifer into the Gordon aquifer. The Upper Three Runs aquifer is recharged primarily by precipitation (Hiergesell, 1998a).

2.2.2.1 Gordon Aquifer

The Gordon aquifer constitutes the basal unit of the Floridan aquifer system beneath the CKLP GWMA and is the lowermost unit characterized in this report (Figure 2-1). Within the study area, the Gordon aquifer includes loose sand and clayey sand of the Congaree Formation and, where present, the sandy parts of the underlying Fourmile Branch and Snapp Formations (Figure 2-1), (Harris and others, 1990; Aadland and others, 1991 and 1995). The sand within the Gordon aquifer is yellowish to grayish orange and is sub- to well-rounded, moderately to poorly sorted, and medium- to coarse-grained. Pebbly layers and zones of iron and silica cemented sand are common. Interbeds of light tan to gray clay up to three feet in thickness are rare. The Gordon aquifer contains a small amount of sporadically distributed calcareous sediment. Stringers of clay less than 6 inches in thickness are common near the base of this unit.

The configuration of the top of the Gordon aquifer is illustrated in Figure 2-5. An isopach map is presented in Figure 2-6. The Gordon aquifer exhibits the same structural pattern as the MBCS with a regional dip to the south-southeast. Vertical offset along this unit is approximately 40 feet along the PBF. The thickness of this unit is variable, ranging from approximately 60 feet to 160 feet. This variability is believed to be related to structural relations with overlying and underlying units and the presence of unconformities above and below the unit. In addition, the Gordon aquifer is incised along the Savannah River primarily in the vicinity of the PBF and along Upper Three Runs (Figure 2-5).

Laboratory tests of 23 undisturbed samples taken from the Gordon aquifer indicate vertical permeability ranges from 3.12E-06 to 3.62E+01 ft/day (Table 2-1). Tests of 24 undisturbed samples yield horizontal permeability values that range from 2.06E-05 to 3.26E+01 ft/day within this unit. These data show an arithmetic mean of 1.66E+00 ft/day for vertical permeability and 5.25E+00 ft/day for horizontal permeability and a geometric mean of 7.73E-04 ft/day for vertical permeability and 1.05E-02 ft/day for horizontal permeability. The standard deviation calculated from these data is 7.54E+00 ft/day for vertical permeability and 1.12E+01 ft/day for horizontal permeability.

Results from 47 slug tests conducted on wells screened within the Gordon aquifer indicate permeability ranges from 5.00E-03 to 3.32E+01 ft/day (Table 2-1). The arithmetic mean from these data is 3.78E+00 ft/day and the geometric mean is 9.81E-01 ft/day. The standard deviation calculated from these results is 6.15E+00 ft/day. The permeability results were averaged for wells with both rising and falling-head tests.

Thirteen pumping tests performed on wells screened within the Gordon aquifer indicate permeability ranges from 8.20E-01 to 1.43E+02 ft/day (Table 2-1). The arithmetic mean is 2.92E+01 ft/day and the geometric mean is 1.04E+01 ft/day. The standard deviation calculated from these results is 3.92E+01 ft/day. Aadland and others (1995) present additional information on pumping tests conducted within the Gordon aquifer.

2.2.2.2 Gordon Confining Unit

The Gordon confining unit (GCU) separates the Gordon aquifer from the Upper Three Runs aquifer. This unit is commonly referred to as the "green clay" in previous SRS literature and includes sediment of the Warley Hill Formation (Figure 2-1). The unit comprises interbedded silty and clayey sand, sandy clay and clay. The clay is stiff to hard and is commonly fissile. Glauconite is a common constituent and imparts a distinctive greenish cast to the sediment, hence the informal name of "green clay" given to this unit. Zones of silicacemented sand and clay are present within the GCU in some cores taken from the GSA. In the vicinity of the CKLP GWMA, the GCU includes some calcareous sediment and limestone, primarily calcarenaceous sand and clayey sand with subordinate calcarenaceous clay, micritic clay, and sandy micrite and limestone.

The GCU dips toward the south-southeast, increasing from approximately 10 feet to 80 feet in thickness (Figures 2-7 and 2-8). The southeastward thickening is primarily due to an increase in the quantity of fine-grained calcareous material within this unit beneath the southern half of the study area. The GCU is incised along the Savannah River to the north and south of the PBF and also incised along the southern boundary of Upper Three Runs (Figure 2-7).

Laboratory tests of 41 undisturbed samples taken from the GCU indicate vertical permeability ranges from 1.14E-06 to 4.27E-01 ft/day (Table 2-1). Tests of 25 undisturbed samples yield horizontal permeability values that range from 5.40E-06 to 1.22E-01 ft/day within this unit. These data show an arithmetic mean of 1.20E-02 ft/day for vertical permeability and 1.06E-02 ft/day for horizontal permeability and a geometric mean of 1.15E-04 ft/day for vertical permeability and 1.62E-04 ft/day for horizontal permeability. The standard deviation calculated from these data is 6.68E-02 ft/day for vertical permeability and 3.09E-02 ft/day for horizontal permeability. Aadland and others (1995) discuss leakance estimates derived from multiple well pumping tests.

2.2.2.3 Upper Three Runs Aquifer

The Upper Three Runs aquifer (UTRA), as defined in this report. includes all strata from the ground surface to the top of the Gordon confining unit. The UTRA includes the informally named "upland" unit, Tobacco Road Sand, Dry Branch Formation, Clinchfield Formation, and Santee Limestone (Figure 2-1). For the purposes of hydrostratigraphic analysis, the UTRA aquifer is often locally divided into informal "lower" and "upper" aquifer zones separated by the "tan clay" confining zone (Figure 2-1).

<u>"Lower" Aquifer Zone</u>. The "lower" aquifer zone (LAZ) of the UTRA beneath the CKLP GWMA consists of the dominantly fine-grained, well-sorted sand and clayey sand of the Santee Formation and parts of the Dry Branch Formation beneath the "tan clay" confining zone (Figure 2-1). The bulk of the carbonate sediment beneath the CKLP GWMA is contained within the Santee and lower part of the Dry Branch and is included in the LAZ. Descriptions of drill core indicate that the carbonate sediment in this vicinity has a siliciclastic component, and consists of calcarenaceous sand, micritic sand, shelly sand, and minor amounts of sandy calcarenite and shelly limestone.

The altitude-contour map and isopach for the LAZ are presented in Figures 2-9 and 2-10. The configuration of the top of the LAZ is similar to the GCU. The thickness of the LAZ ranges from approximately 30 feet to 110 feet. The variability is attributed primarily to erosion on the overlying and underlying unconformities. The LAZ is deeply incised by the Savannah River and Upper Three Runs within the model area (Figure 2-9).

Laboratory tests of 33 undisturbed samples taken from the LAZ indicate vertical permeability ranges from 4.54E-06 to 3.42E+00 ft/day (Table 2-1). Tests of 31 undisturbed samples yield horizontal permeability values that range from 1.59E-05 to 1.11E+01 ft/day within this unit. These data show an arithmetic mean of 1.77E-01 ft/day for vertical permeability and 6.45E-01 ft/day for horizontal permeability and a geometric mean of 2.82E-03 ft/day for vertical permeability and 1.02E-02 ft/day for horizontal. The standard deviation calculated from these data is 6.19E-01 ft/day for vertical permeability and 2.03E+00 ft/day for horizontal permeability.

Results from 25 slug tests conducted within the LAZ indicate permeability ranges from 1.30E-01 to 2.44E+01 ft/day (Table 2-1). The arithmetic mean from these data is 3.90E+00 ft/day and the geometric mean is 1.67E+00 ft/day. The standard deviation calculated from these results is 6.09E+00 ft/day.

Three pumping tests of wells screened within the LAZ indicate permeability ranges from 1.23E+00 to 2.10E+00 ft/day (Table 1). The arithmetic mean is 1.67E+00 ft/day and the geometric mean is 1.63E+00 ft/day (Table 1). The standard deviation calculated from these results is 4.35E-01 ft/day.

<u>*"Tan Clay" Confining Zone.*</u> The "tan clay" confining zone (TCCZ) of the UTRA is equivalent to the "tan clay" zone referred to in previous SRS reports. The "tan clay" confining zone includes sediment of the Dry Branch Formation (Figure 2-1). The zone contains light-yellowish tan to orange clay and sandy clay interbedded with clayey sand and sand. Clay layers are dispersed vertically and horizontally throughout the confining zone and are probably not laterally continuous over distances greater than 100 to 200 feet (Harris and others, 1990; Aadland and others, 1991).

The configuration of the top of the TCCZ is illustrated in Figure 2-11 and an isopach map of the unit is presented in Figure 2-12. The configuration of the top of the TCCZ is very similar to that of the underlying LAZ. The thickness of the TCCZ ranges from approximately 10 feet to 20 feet. The TCCZ is deeply incised by the Savannah River, Upper Three Runs, Fourmile Branch, and Steel Creek and Meyers Branch within the model area (Figure 2-11).

Laboratory tests of 37 undisturbed samples taken from the TCCZ indicate vertical permeability ranges from 3.70E-08 to 9.66E-02 ft/day (Table 2-1). Tests of 24 undisturbed samples yield horizontal permeability values that range from 1.45E-05 to 1.70E-01 ft/day within this unit. These data show an arithmetic mean of 4.62E-03 ft/day for vertical permeability and 8.49E-03 ft/day for horizontal permeability and a geometric mean of 5.93E-05 ft/day for vertical permeability and 2.60E-04 ft/day for horizontal permeability. The standard deviation calculated from these data is 1.91E-02 ft/day for vertical permeability and 3.47E-02 ft/day for horizontal permeability.

<u>"Upper" Aquifer Zone</u>. The "upper" aquifer zone (UAZ) of the UTRA includes all strata from the ground surface to the top of the "tan clay" confining zone. The UAZ includes the "upland" unit, Tobacco Road Sand, and part of the Dry Branch Formation (Figure 2-1). The UAZ characterized by sand and clayey sand with minor interbeds of clay. The sediment within the "upland" unit is commonly very dense and clayey and often contains gravely sand.

The top of the UAZ is represented by the present-day topographic surface (Figure 2-13). As with the underlying units, the UAZ has been heavily influenced by the incision of the Savannah River, Upper Three Runs, and other major tributaries within the model area.

Permeability results from eleven laboratory tests taken from undisturbed samples in the UAZ indicate vertical permeability ranges from 9.20E-05 to 2.77E+01 ft/day (Table 2-1). Tests of twelve undisturbed samples yield horizontal permeability values that range from 2.24E-04 to 6.04E+00 ft/day within this unit. These data show an arithmetic mean of 2.68E+00 ft/day for vertical permeability and 1.21E+00 ft/day for horizontal permeability and a geometric mean of 1.04E-02 ft/day for vertical permeability and 6.19E-02 ft/day for horizontal permeability. The standard deviation calculated from these data is 8.31E+00 ft/day for vertical permeability and 2.24E+00 ft/day for horizontal permeability.

Results from twelve slug tests conducted within the UAZ indicate permeability ranges from 1.40E-01 to 1.22E+01 ft/day (Table 2-1). The arithmetic mean from these data is 1.88E+00 ft/day and the geometric mean is 7.36E-01 ft/day. The standard deviation calculated from these results is 3.46E+00 ft/day.

Results from one multi-well pumping test performed on a well screened within the UAZ indicate permeability is at least 5.16E+01 ft/day (Table 1). The test included 4 observation wells with permeability results. These results were averaged to obtain one permeability value.

2.3 Hydrogeology

2.3.1 Water Table

The water table aquifer is contained within the UTRA and includes all saturated material from the water table to the top of the GCU. The water table aquifer is commonly divided into the informal UAZ and LAZ, separated by the TCCZ. For this report, no distinction is made for the upper and lower zones because the majority of well data is from the upper zone as there are very few wells screened in the lower part of the water table aquifer within the model area at this time. A water table map of the reactor areas model domain is shown in Figure 2-14.

The configuration of the water table is tightly controlled by the local topography and drainage system. Wells are scarce in the reactors area with the majority of the wells located around the reactor facilities. Therefore, for this project a study was conducted to characterize stream baseflow and supplement water table configuration along Indian Grave Branch and the upper part of Pen Branch within the model domain (Figure 2-15; Appendix E), (Hiergesell, 1998b,c). Water level measurements were obtained from selected wells along with careful

examination of flowing reaches of the headwater segments of the streams. The water table map (Figure 2-14) was further refined with this data.

In addition to the regional water table map for the area, Figures 2-16 through 2-19 illustrate the water table configuration in C, K, L, and P reactor areas. For further discussion of the water table in the reactor areas the reader is referred to (Hiergesell, 1988a).

2.3.2 Gordon Aquifer Potentiometric Surface

The Gordon aquifer is the lowermost aquifer of interest in this study and represents the basal unit of the Floridan aquifer system in the CKLP GWMA (Figure 2-1). Figure 2-20 illustrates the Gordon aquifer potentiometric surface in the model domain. Data is limited for the Gordon aquifer in the CKLP GWMA. The Gordon aquifer discharges to the Upper Three Runs valley to the north-northwest and to the Savannah River valley to the west-southwest.

2.3.3 Hydraulic Head Targets

In addition to constructing potentiometric maps for conceptual understanding of groundwater flow and boundary condition specification (e.g. Figures 2-14 and 2-20). hydraulic head data are valuable model calibration targets. Because steady-state groundwater flow is the focus of this effort, long-term, time-averaged head data are of most interest as model calibration targets. The primary source of uncertainty in mean water level is transient fluctuation in individual readings that are on the order of a few feet. Surveying errors, measurement errors, etc. are generally very small in comparison.

Water level data for most wells at the SRS are available from the Geochemical Information Management System (GIMS), which can be accessed through the Savannah River Information Network Environment (ShRINE). The data are also published in periodic well inventory and monitoring reports; see Environmental Protection Department and Exploration Resources, Inc. (1996a, b) for example. GIMS archives data obtained through a groundwater monitoring program administered by the Environmental Monitoring Section (EMS) of the Environmental Protection Department (EPD). The GIMS database is known to contain erroneous entries. Outliers were identified as single readings that deviated from the average value by more than 20 ft and eliminated. With the remaining data, the sample standard deviation of the mean value was computed as (Walpole and Myers, 1978, section 5.5)

$$s_{m} = \frac{s}{\sqrt{n}} = \frac{1}{\sqrt{n}} \times \left[\frac{1}{n-1} \sum_{i=1}^{n} (h_{i} - \overline{h})^{2}\right]^{1/2}$$

Mean values with an uncertainty exceeding 3 ft at 95% confidence $(2s_m > 3 \text{ ft})$ were eliminated, with the idea that uncertainty in a hydraulic head target should not exceed the calibration goal. Previous models covering relatively small areas of the SRS have generally achieved a root-mean-square residual of 3 ft (e.g. Camp Dresser & McKee, 1989; GeoTrans, 1992; Flach and Harris, 1997). Given the large scale and coarse resolution anticipated for CKLP model, a calibration goal of 3 ft may be too low. Sample standard deviations could not be computed for wells with a single reading, and the single reading was accepted as the target for steady-state flow calibration.

Valuable data from wells not included in the EMS monitoring program are also available. The Environmental Science and Technology Department (ES&TD) has monitored the Pseries wells and other SRS wells for several years (Hiergesell, 1998). Water level data are also available from Environmental Restoration Department (ERD) documents, such as the RFI/RI/BRA for the CMP Pits (WSRC, 1996). These data supplement the head targets derived from the GIMS database.

Appendix F includes the resulting list of hydraulic head targets. Each well was assigned to the appropriate hydrostratigraphic unit as defined by the grids presented in section 2.2. Category 1 includes wells screened within the Gordon aquifer, category 2 includes those within the "lower" UTRA, and category 3 includes those within the "upper" UTRA. Wells screened into or across the Gordon confining unit or across the "tan clay" confining zone are assigned to category 4 (other). Within the model domain, there are 124 Gordon aquifer targets, 356 "lower" UTRA targets, 658 "upper" UTRA targets, and 65 indeterminate targets.

2.4 Groundwater Recharge and Discharge

Groundwater flow in upper aquifers at the Savannah River Site is driven by recharge, with streams intercepting flow from areas of higher groundwater elevations (Figures 2-14 and 2-20). Nearly all recharge within the CKLP model area discharges to streams within or bounding the same area, usually the nearest stream. For this type of groundwater flow system, recharge and discharge estimates, coupled with head measurements and confining unit leakance estimates, define the overall horizontal conductivity values of upper aquifers required to calibrate a numerical flow model. Because conductivity data at the model scale are typically non-existent, groundwater flow estimates are important model calibration targets.

At least three independent investigations of surface groundwater recharge have been performed in or near the SRS. Parizek and Root (1986) conducted a detailed hydrologic budget study of the McQueen Branch basin. They estimated average recharge for the basin at 15.6 in/yr. Parizek and Root (1986) computed this value by dividing the total volumetric rate of recharge by the total basin area. The average recharge rate excluding seepage/wetland areas would therefore be somewhat larger. Hubbard (1984, 1986) conducted a multi-year lysimeter study at the SRS burial grounds in the General Separations Area and measured an average recharge of about 16 in/yr for grass cover. Based on lysimeters with small pine trees growing within them, Hubbard (1986) estimated recharge to be 6 in/yr for forested areas. Hubbard (1986) also reported that Denehy and McMahon (1985) measured 15 in/yr of recharge at the Chem-Nuclear site in Barnwell, South Carolina. Parizek and Root (1986) and Looney and others (1987) report that Cahill (1982) estimated recharge to be about 15 in/yr at the Low Level Radioactive Solid Waste Burial Site near Barnwell, South Carolina (Chem-Nuclear). It is unclear from the literature cited here whether the Denehy and McMahon

Nuclear). It is unclear from the literature cited here whether the Denehy and McMahon (1985), and Cahill (1982) studies are related, apart from being conducted at the same location.

From these studies, the average recharge over the Savannah River Site is estimated to be about 15 in/yr. The average rate excluding groundwater discharge areas would be somewhat higher. This estimate may be high due to a bias toward analysis of developed areas that tend to be less forested and flatter. The data for forested conditions are difficult to reconcile. Hubbard (1985) estimated recharge at 6 in/yr for forested areas. On the other hand, the vegetation of McQueen Branch basin studied by Parizek and Root (1986) study was 85% evergreen and deciduous forest, and produced an estimate of nearly 16 in/yr. The average of these two estimates is 10 in/yr. Considering that the area of interest in this study is relatively undeveloped and heavily forested, perhaps a reasonable range to consider for groundwater flow modeling sensitivity studies is 10 to 16 in/yr.

To support this and subsequent modeling efforts in the C, K, L and P areas, stream base flow was estimated by analyzing U. S. Geological Survey (USGS) stream gauging station data (Cooney and others, 1998, for example) and measuring stream flow rate under low flow conditions (Hiergesell, 1998b, 1998c). The USGS data provide large-scale estimates of base flow. Complementing these estimates, Hiergesell (1998b, 1998c) measured base flow for small streams. Appendix E-1 presents the data of Hiergesell (1998). Appendix E-2 describes the simple hydrograph separation techniques that were used to estimate the long-term average rate of groundwater discharge to large-scale stream reaches within the CKLP reactor area.

The results are summarized in Table 2-1. Hiergesell (1998b, 1998c) also estimated the point of effluence along small streams and refined an ARC/INFO USGS coverage of live stream reaches, as illustrated by Figure 2-21.

The Steel Creek, Pen Branch and Fourmile Branch base flow estimates may be the most reliable calibration targets. For Meyers Branch and Upper Three Runs, there is added uncertainty in the fraction of base flow that can be attributed to the modeled area. Overall, the base flow calibration targets may have an uncertainty of 15 to 25% (Appendix E). The Steel Creek base flow estimate is negative and indicates a losing reach, reflecting artificial flow to L-Lake to maintain a historic level of 190 ft msl.

2.5 Conceptual Model of Groundwater Flow

From Figure 2-14, groundwater flow in the Upper Three Runs aquifer is seen to be driven by recharge, with nearby streams intercepting flow from higher elevations. The underlying Gordon aquifer is strongly influenced by the Savannah River and Upper Three Runs, which appear to completely drain the aquifer and function as no-flow lines (Figure 2-20). Except for reactor area outfalls and the lower portion of L Lake, surface water bodies gain from groundwater discharge. Aadland and others (1995, Plate 17) gives the leakance of the Crouch Branch confining unit (of the Meyers Branch confining system) as roughly 3×10⁻⁶ day⁻¹, which corresponds to 0.13 in/yr for every 10 ft of head difference. The head difference across the Crouch Branch confining unit is centered near zero (Aadland and others, 1995, Figure 30). Flow across the unit is therefore a small fraction of total recharge, and could probably be neglected. A representative leakance coefficient for the Gordon confining unit in the study area appears to be roughly 10^{-5} day⁻¹ (Aadland and others, 1995, Plate 13). The head difference across the Gordon confining is highly variable due to large variation in the water table. Supposing a head difference of 50 ft for example, the Darcy velocity through the unit would be 2.2 in/yr or 15% of surface recharge. Therefore, groundwater flow in the Gordon aquifer appears to be influenced significantly by recharge from the overlying UTR aquifer, and lateral flow into the model domain, mainly from the east. L-Lake and Par Pond are major lakes that have an important influence on nearby groundwater flow (Figure 2-14). The Site Utilities Department well database on ShRINE indicates that no more than three producing wells are screened in the Gordon aquifer (905-136G, 905-126G, and 905-103G). These wells serve small facilities and have a maximum capacity of 25 gpm or less. Considering that actual usage would be much lower, the impact of these wells is insignificant at the regional scale. The impact of the Pen Branch fault on confining unit leakance is uncertain.

Solute groundwater contamination originating in the C, K. L or P areas is expected to be confined to the Upper Three Runs and Gordon aquifers. Most surface recharge discharges to the nearest stream, with the balance entering the Gordon aquifer. As groundwater in the Gordon aquifer flows toward the Savannah River or Upper Three Runs, the gradient between the Crouch Branch and Gordon aquifers becomes upward ensuring ultimate discharge to the Savannah River or Upper Three Runs. Contamination is not expected to enter the Crouch Branch aquifer.

2.6 Hydrologic Properties

In addition to the unit-specific hydraulic conductivity data discussed above, soil characteristic curves, effective porosity, and specific storage data are needed for model development. The steady-state hydraulic head and Darcy velocity fields in the saturated zone are affected only by horizontal and vertical hydraulic conductivity, making these remaining properties less critical to model development. Soil characteristic curves (capillary suction and relative permeability as a function of water saturation) affect the flow solution in unsaturated regions. Effective porosity affects groundwater "particle" tracing results, which rely on the pore velocity field. Specific storage affects transient flow only, and then only in confined aquifer systems for practical purposes. Characterization data available for defining these hydraulic properties in the model are identified below. Given the general scarcity and uncertainty in the data, generic estimates to be applied model-wide are appropriate.

2.6.1 Soil Characteristic Curves

Relative permeability and capillary suction head as a function of water saturation are referred to as soil characteristic curves. These relationships are difficult to measure accurately, and testing is expensive. Very little data are available for SRS unconsolidated sediments. O'Brien & Gere (1991) obtained a small set of water retention (capillary suction versus saturation) data for M-Area sediment samples. The data have been plotted by Flach and others (1996, Figures 11 and 12). Yu and others (1993) obtained both relative permeability and water retention data for remolded GSA sediments to be used for Environmental Restoration construction projects. Recently, Amidon (1996) obtained water retention data forounds Complex. According to Looney and others (1987), Gruber (1981, 1983) and Parizek and Root (1986) measured soil water content in the vadose zone and suggested the average water content is approximately 30% (water volume/total volume). Given the scarcity of the data and lacking a specific need for accurate vadose zone modeling in a regional scale model, a

simplified approach for defining soil characteristic curves is taken as shown in Figure 2-22. The curves are chosen to align with data for sandy sediments as opposed to clayey sediments (see Flach and others (1996), Figures 11 and 12). These "pseudo-soil" characteristic curves are adequate for transporting water and contaminants through the vadose zone to the water table, provided detailed, accurate information about the unsaturated zone is not needed. The most important aspect of these curves is the assumed residual saturation value (40%), which has the strongest effect on average vadose zone saturation. Groundwater travel times through the vadose zone are affected by saturation through pore velocity.

2.6.2 Effective (Kinematic) Porosity

Aadland and others (1995, p. 44) analyzed laboratory data from 83 selected sediment samples taken from various low permeability beds within the Upper Three Runs aquifer. For 28 "clayey to very clayey, often silty, sand" samples the total porosity averaged 40%. For 55 "sandy, often silty clay, and clay" samples, the average total porosity is 41%. Aadland and others (1995, Table 3) also calculated the total porosity of the sandy portions of the Upper Three Runs aquifer using the Beard and Weyl (1973) method, and arrived at an average total porosity of 35%. For the Gordon aquifer, the result is 34% (Aadland and others, 1995, Table 7). More recently, Smits and others (1997) compiled a database of porosity measurements for the General Separations Area. The arithmetic average of these values, mostly from low permeability samples, is 45%. From these data and analyses, total porosity in aquifer zones appears to average about 40%.

An "effective" porosity value, smaller than the total porosity, is commonly used for transport simulations and particle tracing related to contaminant migration. As discussed by De Marsily (1986, Chapter 2), two types of porosity are commonly and unfortunately referred to as "effective porosity". The first is specific yield or drainage porosity of an unsaturated soil, ω_d , and the second is kinematic porosity of a saturated medium, ω_c . Section 2.3.3 of De Marsily (1986) summarizes which porosity (total included) to use for which application. For saturated-zone particle tracing and transport simulations, the kinematic porosity is appropriate and the focus of effective porosity discussions in this report.

An effective porosity can be used to account for regions of relatively immobile water, ranging from grain-sized "dead-end" pores to macro-scale clay intervals, which do not effectively participate in contaminant transport. The presence of immobile water does not necessarily dictate the use of an effective porosity (De Marsily, 1986, p. 259). If the solute contaminant perfectly penetrates the immobile water (K'=1, C'=C in De Marsily (1986)) (or there is no
immobile water), then total porosity is appropriate (ω). On the other hand, if a model block contains sub-regions of immobile water that a solute will not penetrate (K'=0, C'=0), then a lower, "effective" porosity is appropriate (kinematic, ω_c).

Effective porosity can be estimated by assuming that only the largest scale regions of relatively immobile water are not effectively penetrated by contaminant. At smaller scales, contaminant is able to effectively diffuse into regions of immobile water. Macro-scale regions of immobile water can reasonably be defined as sediment intervals with more than 25% mud. For the General Separations Area, 32% of the nearly 40,000 ft of sediment core contains greater than 25% mud, based on analysis of the lithologic data compiled by Smits and others (1997). This suggests that as low as 68% of a typical aquifer is effectively available for contaminant transport, and that effective porosity is approximately 25% (68% of 40% total porosity). This estimate may be a conservative (low) estimate for effective for conductivity intervals. This value is consistent with the recommendations of Looney and others (1987, p. 39), who recommend assuming an effective porosity range of approximately 25% to 40%.

2.6.3 Specific Storage

Specific storage is relevant only to transient flow simulations, and therefore has no effect on the steady-state results presented in later sections. Specific storage is defined by (Freeze and Cherry, 1979, p. 59)

$$S_s = \rho g(\alpha + \eta \beta)$$

where

Ss	specific storage
ρ	density of water (~1000 kg/m ³)
g	gravitational acceleration (9.8 m/s ²)
α	compressibility of porous medium
η	total porosity
β	compressibility of water $(4.4 \times 10^{-10} \text{ m}^2/\text{N})$

Compressibility ranges from 10^{-6} to 10^{-8} m²/N for clay and from 10^{-7} to 10^{-9} m²/N for sand (Freeze and Cherry, 1979, Table 2.5). Assuming a nominal compressibility value of 5 x 10^{-8} m²/N and a total porosity of 40% yields 1.5×10^{-4} ft⁻¹ for specific storage.

Figure 2-1. Comparison of Lithostratigraphic and Hydrostratigraphic Units at SRS

Figure 2-3. Hydrostratigraphic Cross-Sections

Figure 2-6. Isopach Map of the Gordon Aquifer

Figure 2-8. Isopach Map of the Gordon Confining Unit

Figure 2-10. Isopach Map of the "Lower" Aquifer Zone

Figure 2-12. Isopach Map of the "Tan Clay" Confining Zone

Figure 2-13. Topographic Surface of the "Upper" Aquifer Zone

Figure 2-15. Location of Stream Baseflow Measurements for 1998 Field Study

,

Figure 2-16. Water Table Map for C Reactor Area

Figure 2-17. Water Table Map for K Reactor Area

Figure 2-18. Water Table Map for L Reactor Area

Figure 2-19. Water Table Map for P Reactor Area

Figure 2-20. Gordon Potentiometric Surface in the CKLP Model Area

Figure 2-21. Map of Live (Perennial) Stream Reaches as Determined by Field Observations

Figure 2-22. Approximate Soil Characteristic Curves

متحققه التصمير برار

	Laboratory	Tests (ft/day)	Slug	Pumping
Hydrostratigraphic Unit	Vertical	Horizontal	Tests (ft/day)	Tests (ft/day)
"upper" aquifer zone				
Number of Results	11	12	12	1
Minimum	9.20E-05	2.24E-04	1.40E-01	5.16E+01
Maximum	2.77E+01	6.04E+00	1.22E+01	-
Arithmetic Mean	2.68E+00	1.21E+00	1.88E+00	-
Geometric Mean	1.04E-02	6.19E-02	7.36E-01	-
Standard Deviation	8.31E+00	2.24E+00	3.46E+00	-
"tan clay" confining zone				
Number of Results	37	24	0	0
Minimum	3.70E-08	1.45E-05	-	-
Maximum	9.66E-02	1.70E-01	-	-
Arithmetic Mean	4.62E-03	8.49E-03	-	-
Geometric Mean	5.94E-05	2.60E-04	-	-
Standard Deviation	1.91E-02	3.47E-02	-	-
''lower'' aquifer zone				
Number of Results	33	31	25	3
Minimum	4.54E-06	1.59E-05	1.30E-01	1.23E+00
Maximum	3.42E+00	1.11E+01	2.44E+01	2.10E+00
Arithmetic Mean	1.77E-01	6.45E-01	3.90E+00	1.67E+00
Geometric Mean	2.82E-03	1.02E-02	1.67E+00	1.63E+00
Standard Deviation	6.19E-01	2.03E+00	6.09E+00	4.35E-01
Gordon Confining Unit				
Number of Results	41	25	0	0
Minimum	1.14E-06	5.40E-06	-	-
Maximum	4.27E-01	1.22E-01	-	-
Arithmetic Mean	1.20E-02	1.06E-02	-	-
Geometric Mean	1.15E-04	1.62E-04	-	-
Standard Deviation	6.68E-02	3.09E-02	-	-

Table 2-1. Summary of Permeability Measurements

	Laboratory	Tests (ft/day)	Slug	Pumping	
Hydrostratigraphic Unit	Vertical	Horizontal	Tests (ft/day)	Tests (ft/day)	
Gordon Aquifer					
Number of Results	23	24	47	13	
Minimum	3.12E-06	2.06E-05	5.00E-03	8.20E-01	
Maximum	3.62E+01	3.26E+01	3.32E+01	1.43E+02	
Arithmetic Mean	1.66E+00	5.25E+00	3.78E+00	2.92E+01	
Geometric Mean	7.73E-04	1.05E-02	9.81E-01	1.04E+01	
Standard Deviation	7.54E+00	1.12E+01	6.15E+00	3.92E+01	
Meyers Branch Confining Sy	stem				
Number of Results	38	27	1	0	
Minimum	4.26E-06	1.11E-05	3.55E+01	-	
Maximum	3.40E-01	1.50E+00	-	-	
Arithmetic Mean	1.39E-02	8.63E-02	-	-	
Geometric Mean	2.47E-04	5.52E-04	-	-	
Standard Deviation	5.65E-02	3.12E-01	-		

Table 2-1.	Summar	y of Pe	ermeabili	:y M	leasurements (Continued)
------------	--------	---------	-----------	------	----------------	------------

Stream reach	Estimated base flow (cfs)	Estimated fraction of reach within CKLP model	Base flow target (cfs)
Meyers Branch (headwaters to Road 9)	9.5	1/3	3.2
Steel Creek (above Road B to Road A; includes L-Lake)	-2.2	1	-2.2
Pen Branch (headwaters to Road A13; includes Indian Grave Branch)	13.3	1	13.3
Fourmile Branch (headwaters to Road A12)	14.1	1	14.1
Upper Three Runs (Road C to Road A)	8.9	1/2	4.5

.

Table 2-2.Base Flow Estimates Based on Hydrograph Separation of USGS Gauging
Station Data

3.0 Groundwater Flow Model Development

The process used to transform the hydrogeologic data and conceptual model into a numerical groundwater flow is presented in this section.

3.1 Code Selection and Description

The Subsurface Flow and Contaminant Transport (FACT) code was selected for numerical flow simulations. FACT is a variably saturated, three-dimensional, finite-element groundwater flow and solute contaminant transport code developed by the Savannah River Technology Center (SRTC) (Hamm and others, 1997). FACT version 1.0 is an outgrowth of the SAFT3D code developed jointly by HydroGeoLogic, Inc. and SRTC (Huyakorn and others, 1991). Other distinguishing features of FACT include efficient memory management and numerical algorithms that make large grids feasible, and user-friendly boundary conditions. For example, the combination recharge/drain boundary condition automatically determines whether a surface node should receive recharge or be discharging groundwater, based on the head solution. The software has been extensively verification and validation (V&V) tested, and successfully used to model other areas of the SRS. The reader is referred to the FACT User's Manual for a more thorough description of the code (Hamm and others, 1997). FACT was selected primarily because

- the variably saturated formulation enables explicit modeling of the vadose zone, which may be important for subsequent modeling of contaminant transport or remedial actions using the present model or a derivative
- the code meets the software Quality Assurance requirements of 1Q, 20-1 and E7, 2.32 (discontinued)
- 3) the authors have a strong working knowledge of the code
- 4) the source code is available.

3.2 Model Configuration and Mesh

As described in section 2.5, groundwater recharge over the greater CKLP GWMA is thought to potentially travel as deep as the Gordon aquifer before discharging to the Savannah River, Upper Three Runs, or tributary. Therefore contamination originating from C, K, L and P reactor facilities is expected to be confined to the Upper Three Runs and Gordon aquifer units between Upper Three Runs on the north, Steel Creek/Meyers Branch on the south, the

Savannah River on the west, and an eastern line running from McQueen Branch to Par Pond. As shown in Figures 3-1 and 3-2, these are the boundaries chosen for the CKLP model. The rivers and streams bordering the selected domain also provide natural no-flow boundary conditions according to the conceptual model, and further motivation for choosing model boundaries as shown in Figure 3-1.

The chosen areal grid is 70,000 ft on each side, with a resolution of 500 square feet(Figure 3-1). The mesh resolution is a compromise between the need to resolve topographic features that drive groundwater flow in the UTR aquifer, and computer memory, run-time, and storage limitations. There are 140 elements along the east-west and north-south model coordinate The vertical resolution varies depending on hydrogeologic unit and stratigraphic axes. variations (Figure 3-2). The top surface of the mesh conforms to the ground surface. The bottom surface of the mesh coincides with the bottom of the Gordon aquifer unit. Interior node layers conform to the other stratigraphic surfaces. The "upper" aquifer zone of the UTR aquifer unit is represented with 3 finite-elements in the vertical direction. The vadose zone is included in the model. The "lower" aquifer zone contains 2 finite-elements while the "tan clay" confining zone separating the aquifer zones is modeled with a single element. The Gordon confining and aquifer units each contain one element, for a total of 8 vertical elements from ground surface to the bottom of the Gordon aquifer. The three-dimensional mesh size is therefore $140 \times 140 \times 8 = 156,800$ elements or $141 \times 141 \times 9 = 178,929$ nodes. The finer vertical resolution in the "upper" UTR aquifer zone is designed to support subsequent contaminant transport analyses. Within K area, the 3 element layers in the "upper" UTR aquifer zone also conform to the transmissive zone, AA horizon, and A horizon/vadose zone, in a manner consistent with a recent model for the K Burning/Rubble Pit (KBRP) facility (HSI GeoTrans, 1998).

3.3 Boundary Conditions

The entire top surface of the mesh is assigned a combination recharge/drain boundary condition, except for the area covered by L Lake and Par Pond (Figure 3-3). This FACT code option automatically specifies a recharge boundary condition for nodes with a computed head below ground elevation, and a drain boundary condition for nodes with a computed head above ground surface, which is physically correct. The reader is referred to the FACT code manual for detailed information on how this boundary condition is numerically implemented in FACT (Hamm and others, 1997). Surface drain coefficients are set to 1.0 day⁻¹ model wide. The selected drain coefficient is sufficiently large to ensure that computed head will be only slightly greater than ground elevation in discharge areas. Streams and rivers can be

represented with the FACT recharge/drain boundary condition, instead of general head or river boundary condition, because they are gaining according to the conceptual model. For gaining surface bodies, the FACT recharge/drain, general head, river, and drain boundaries all function as drains and are equivalent. The maximum local recharge rate is generally specified as 12.5 in/yr based on model calibration (to be discussed), which is consistent with the estimated range of 10 to 16 in/yr for recharge developed in section 2.4. Over the General Separations Area, recharge is set to 15 in/yr to reflect site-specific estimates of 15 in/yr recharge, less than average forest cover, and to be consistent with Flach and Harris (1997). However, recharge is set to 1.5 in/yr for capped areas within the Burial Ground Complex (E area).

The entire bottom surface of the mesh is assigned a general head boundary condition to account for flow into or out of the model domain across the Crouch Branch confining unit (Meyers Branch confining system). A leakance coefficient of $3 \times 10^{-6} d^{-1}$ is assumed based on Aadland and others (1995, plate 17). This value is supported by a scoping SRTC regional flow model for which model calibration indicates the leakance should be about $5 \times 10^{-6} d^{-1}$ (Hiergesell, 1997). Head distribution in the Crouch Branch aquifer is also taken from Aadland and others (1995, plate 45). General head boundary conditions are also specified for L Lake and Par Pond. L Lake is assumed to have a constant pool of 190 ft and a drain coefficient of $1000 d^{-1}$. The drain coefficient is large enough that the lake and underlying aquifer have the same head along their boundary. Par Pond is similarly modeled as having a constant pool of 200 ft and drain coefficient of $1000 d^{-1}$. Process water outfalls are not modeled because these features are too small to effectively resolve with a 500-ft finite-element size.

Boundary nodes between the top and bottom surfaces of the mesh are assigned either a noflow or prescribed head boundary condition. Consistent with the conceptual model, boundary nodes underlying major streams and rivers are assigned no-flow boundary conditions because no groundwater is assumed to cross beneath these features. No-flow boundary conditions are also specified in the vadose zone. Where no-flow boundary conditions are inappropriate in the saturated zone, head is prescribed consistent with the potentiometric maps presented in Figures 2-14 and 2-20. For the Gordon aquifer, the result is no flow conditions along the west (Savannah River) and north (Upper Three Runs) boundaries, and prescribed head along the east and south boundaries as shown in Figure 3-4. For the Upper Three Runs aquifer, head is prescribed from the headwaters of McQueen Branch south to Par Pond, and from the headwaters of Meyers Branch east to Par Pond (Figure 3-5). Elsewhere, no flow boundary conditions are specified for this unit.

3.4 Material Properties

Horizontal conductivity in the Gordon aquifer is set to 35 ft/day based on the extensive field data from both on and off the Savannah River Site reviewed in section 2.2.2.1 and by Aadland and others (1995). The vertical conductivity of the Gordon confining unit is set to 10^{-4} ft/day in accordance with the field data summarized in section 2.2.2.2 and by Aadland and others (1995). Conductivity values in the Upper Three Runs aquifer unit are set through model calibration to well water level data, according to the procedure described in the next section. The ratio of horizontal to vertical conductivity is assumed to be 100:1 model wide. The approximate soil characteristic curves shown in Figure 2-22 are adopted for the numerical model. An effective porosity value of 25% is assumed for the purpose of computing a pore velocity field that may be used later for particle tracing. The assumed porosity value is consistent with the general recommendation of Looney and others (1987, p. 39). However, the value does not affect the steady-state head and Darcy velocity solutions, or set precedence for subsequent transport simulations. For specific storage a nominal value of 10^{-4} ft⁻¹ is input to the FACT code, and would only be important for transient flow simulations within a confined aquifer.

3.5 Calibration Process

Groundwater recharge and discharge estimates, monitoring well water level data, large-scale measurements of hydraulic conductivity, previous modeling efforts, and a general knowledge of groundwater flow directions and timing were used as targets for calibrating the CKLP flow model. The main parameters selected for calibration adjustment are recharge, horizontal conductivity in UTR aquifer zones and vertical conductivity in confining zones, because the model is sensitive to these parameters, and each has significant uncertainty. Other input parameters have less impact on the steady-state flow results and/or lower uncertainty, and were set to their initial best-estimate value throughout calibration. For example, horizontal conductivity in the Gordon aquifer is relatively well known from extensive field-scale tests conducted both on and off the Savannah River Site. Therefore, the horizontal conductivity of the Gordon aquifer can be set to 35 ft/day, and essentially held fixed during model calibration. The overall calibration procedure involves 4 sequential, steps:

- 1) Set model recharge to a value consistent with the prior estimate, and such that simulated discharge agrees with prior baseflow estimates.
- 2) Adjust Gordon confining unit vertical conductivity to achieve agreement with measured head in the Gordon aquifer, while still agreeing with prior estimates.
- 3) Simultaneously adjust horizontal conductivity in the "lower" and "upper" UTR aquifer zones (assumed equal) and "tan clay" vertical conductivity to achieve agreement with head data in these zones.
- 4) Add zonal variation to UTR aquifer unit conductivity values as needed to achieve better agreement with head targets.

In practice, the above procedure is iterated during calibration. The model is most sensitive to recharge, as this parameter drives groundwater flow according to the conceptual model (section 2.5). As discussed in section 2.4, average recharge is thought to lie within the range of 10 to 16 in/yr. Taking the best-estimate value as the mid-point of the range, 13 in/yr, the uncertainty would be plus or minus 25%. The uncertainty of stream base-flow targets ranges from $\pm 15\%$ to 25% (Appendix E). In step 1, equal weight is given to satisfying recharge and discharge targets because these data have similar reliability.

Next in importance is leakance through the Gordon confining unit, which is adjusted in step 2. Groundwater flow in the Gordon aquifer is controlled by recharge through the Gordon confining unit, flow across the east and south model boundaries, and horizontal conductivity. Because the head boundary conditions and horizontal conductivity are relatively well known for this unit, Gordon confining unit vertical conductivity is adjusted to achieve agreement with head targets.

With recharge and Gordon confining unit vertical conductivity fixed through steps 1 and 2, horizontal conductivity in UTR aquifer zones and "tan clay" vertical conductivity become the next calibration parameters. The model is sensitive to these parameters, which are highly uncertain relative to other factors (e.g. boundary conditions). Zonal variation is invoked as a last resort to achieving adequate agreement with head targets. Zonal variation in recharge is not considered because uncertainty is greater in the prior conductivity estimates.

The goal of the calibration process is to achieve as good of agreement with prior targets as possible, without resorting to unjustifiable zonal variation in conductivity or other parameters. A lower estimate for achievable calibration accuracy is the uncertainty level in

the target data. That is, one should not expect to match calibration targets better than the "noise" level in the data. As discussed in section 2.3.3, head targets that are a result of time averaging have a "2-sigma" uncertainty less than or equal to 3 ft, with most being well below 3 ft (Appendix F). However, there are also a significant number of one-time head readings that have much larger uncertainty, typically ± 5 ft, that inflate average uncertainty. The recharge and stream base flow targets have an uncertainty of roughly $\pm 25\%$ (section 2.4; Appendix E). Previous models covering portions of the SRS have generally achieved a rootmean-square head residual of 3 ft or so (e.g. Camp Dresser & McKee, 1989; GeoTrans, 1992; Flach and Harris, 1997). Given the large scale, coarse mesh resolution, and relative uniformity of the conductivity field desired in the present model, a calibration goal of 3 ft may be too low, especially for the more heterogeneous aquifer zones. A reasonable calibration goal for the largest head residual is sometimes defined as 5-10% of the total head variation in the modeled system. For the Gordon aquifer, the total variation is about 120 ft (Figure 2-20) suggesting a calibration goal of 6 to 12 ft for the maximum residual. For the Upper Three Runs aquifer, the total variation is about 330 ft (Figure 2-14) for a calibration goal of 16 to 33 ft.

Figure 3-2. Typical Cross-Sectional Slice Through Finite-Element Mesh

Figure 3-4. Boundary Conditions for Gordon Aquifer Between Top and Bottom Nodal Layers

SJ

4.0 GROUNDWATER FLOW MODEL RESULTS

4.1 Calibration results

Table 4-1 summarizes the calibration results for groundwater flow targets. The maximum rate of local recharge is set to 12.5 in/yr in the FACT recharge/drain boundary condition. except for the General Separations Area (Section 3.3). The modeled rate is 17% lower than the prior estimate of 15 in/yr, but very close to the midpoint of the uncertainty range (13 in/yr). Based on total area, which includes the Savannah River flood plain and other wetland areas, the average recharge rate is 9.7 in/yr. Excellent agreement is observed for Meyers Branch, Pen Branch and Fourmile Branch base flow. Simulated base flow to Upper Three Runs between Road C and Road A is 53% higher than the prior estimate. A possible explanation is that Upper Three Runs receives significantly more base flow from the south side (model side), due to significantly steeper terrain and aquifer head gradients compared to the north side. The prior estimate is based on the assumption that base flow should be partitioned equally to each side. Another possibility is that the prior estimate has much larger uncertainty than estimated, because it results from taking the difference of two nearly equal flow rates (Appendix E). Or, the model may simply have an undetected bias. A large discrepancy is noted for the combined baseflow from Steel Creek and L Lake. The data suggests a large net loss of 2.2 ft³/s for this reach. While the model predicts L Lake to be losing at a rate of 0.3 ft³/s, Steel Creek gains at a rate of 4.1 ft³/s for a net gain of 3.8 ft³/s. The reason for the discrepancy is unclear. Like Upper Three Runs, the Steel Creek base flow estimate is the result of averaging small differences between large flows, and could have more uncertainty than initially thought. The small portion of Par Pond within the model domain is simulated to be gaining, as would be expected for an area away from the dam. Overall, calibration goals for groundwater flow are met. The most notable exception is base flow to Steel Creek/L Lake.

Table 4-2 summarizes the calibration results for hydraulic head targets. Figure 4-1 graphically compares simulated head with measured head for each aquifer zone. Figures 4-2 through 4-4 illustrate the spatial distribution of head residuals. Appendix F contains a detailed listing of head residual information. Agreement is excellent in the Gordon aquifer, except for 4 double-digit outliers. At TNX Area, the simulated heads for TBG-5B and P-26A are 15 to 18 ft low, while the residual at nearby XSB-1A is only -2.5 ft. The scale of the model appears to be too large to reproduce the sudden change in head in this area. In K Area, simulated head at P-25B is 15 ft low. A possible explanation is that the Gordon aquifer is experiencing high recharge through the Pen Branch Fault. Northeast of P-25B, the residual

for PW-83N is +11 ft. Here the large discrepancy may be due to the target value being a single reading that is not reflective of the long-term average water level. The average Gordon aquifer residual is biased low by 1.3 ft, mainly due to the very low residuals at TBG-5B and P-26A. In the "lower" UTR aquifer zone, the largest residuals (~30 ft) are located in the General Separations Area along the steep slopes adjacent to Upper Three Runs. The coarse resolution of the mesh may be hindering the ability of the model to reproduce gradients in this area. Flach and Harris (1997) also experienced difficulty in matching heads in this area. Significantly low values are also observed south and west of F Area near Fourmile Branch, and within H Area proper. Significantly high values are seen at the CMP Pits and in C Area. Maximum absolute value residuals in the "upper" aquifer zone of the UTRA are much smaller in magnitude compared to the "lower" zone. Predicted heads are systematically low west of F Area, and high in C Area. The average residuals in the "lower" and "upper" UTR aquifer zones show almost no bias (Table 4-2). The root-mean-square head residuals meet the overall calibration goals set in Section 3.5.

Table 4-3 summarizes the calibration results for hydraulic conductivity. Figures 4-5 through 4-12 show variation in conductivity for each model layer in plan view. Horizontal conductivity is shown for transmissive zones, and vertical conductivity for confining zones. Figure 4-13 illustrates a typical north-south vertical slice, in this case passing through K Area. The calibrated values are consistent with field data (Section 2.2) and previous groundwater flow models (e.g. HSI GeoTrans, 1998, Figure 4-6; HydroGeoLogic, 1998 (draft), Table 6.5; Flach, 1998, Table 4; Flach and Harris, 1997; GeoTrans, 1993, Table 4.1; GeoTrans, 1992, Table 3.6; Camp Dresser & McKee, 1989, Table 3-3).

4.2 Nominal Simulation

Figures 4-14 through 4-16 illustrate simulated hydraulic head averaged over the entire thickness of the Gordon aquifer and "lower" and "upper" UTR aquifer zones. Simulated head in the aquifer zone containing the water table is shown in Figure 4-17, and Figure 4-18 illustrates simulated water table elevation. For comparison to Figure 4-15, see Figure 2-20 which shows the Gordon potentiometric surface as based on measured water levels. The estimated water table based directly on head data is shown in Figure 2-14, and can be compared to Figures 4-15 through 4-18. Figures 4-19 through 4-21 illustrate flow directions that are vertically averaged over the entire thickness of the aquifer zones. Figure 4-22 shows simulated seepage faces, and Figure 4-23 illustrates rates of recharge and discharge. Figures 4-22 and 4-23 can be compared to Figure 2-21, which is based on field observations.

Example particle tracing results are shown in Figure 4-24. A water balance for the model is depicted in Figure 4-25.

4.3 Uncertainty Analysis

Uncertainty in the nominal model can be estimated by varying the input parameters within their uncertainty range, and in a correlated manner such that agreement with calibration targets is preserved as much as possible. The nominal model is sensitive to recharge, which drives overall groundwater flow in this system, and Gordon confining unit (GCU) vertical conductivity (K_v), which controls recharge to the Gordon aquifer (equal to leakance from the Upper Three Runs aquifer). Both of these input parameters have significant uncertainty. Table 4-4 summarizes four variations of these two parameters within their estimated range of uncertainty. For each uncertainty case, the model is recalibrated to maintain agreement with the prior targets by adjusting conductivity values in the Upper Three Runs aquifer, and Gordon aquifer if necessary. Table 4-5 summarizes the calibration results for each sensitivity case.

Uncertainty cases 1 and 2 involve recharge perturbations of $\pm 20\%$, except over the General Separations Area which is left unaltered at 15 in/yr. As seen in Table 4-5, the results for cases 1 and 2 show equivalent agreement to hydraulic head targets compared to the nominal or base case. For higher recharge (case 1), predicted base flows are biased high for Pen Branch and Fourmile Branch, the most reliable targets. For lower recharge (case 2), simulated base flows are low for these streams. Horizontal conductivities in the "upper" and "lower" UTRA aquifer zones were adjusted by $\pm 20\%$ to compensate for the $\pm 20\%$ variations in recharge for cases 1 and 2, respectively. The resulting Kh values for the uncertainty cases remain well within the data range. No changes were made to the Gordon aquifer unit horizontal conductivity, or vertical conductivity in confining units/zones.

Uncertainty cases 3 and 4 involve Gordon vertical conductivity increases and decreases by a factor of 5. For these cases, adjustment to Gordon aquifer unit horizontal conductivity in addition to UTRA Kh was required to maintain agreement with head targets to the extent possible. Despite model recalibration, uncertainty cases 3 and 4 show significantly poorer agreement to calibration targets compared to the nominal case. For higher Gordon confining unit leakance, head residuals are large, and Pen Branch and Fourmile Branch base flows are significantly biased low. Horizontal conductivities for both the Gordon and UTR aquifers are barely credible. For lower Gordon confining unit leakance, head residuals are similar to the base case, and uncertainty cases 1 and 2. Simulated base flows for Pen Branch and Fourmile

Branch base flows are biased high. Reasonable horizontal conductivities are obtained for the UTR aquifer. However, the Gordon aquifer horizontal conductivity is significantly low compared to field data.

More detailed information about each uncertainty analysis case is presented in Appendix G. In the appendix, model results in various forms are reproduced for each uncertainty case for comparison to the nominal results (Figures 4-1 through 4-12, 4-14 through 4-18, and 4-22 through 4-24). Of particular interest are the particle tracing results presented in Figures G-1-20, G-2-20, G-3-20 and G-4-20. For variations in recharge (Figures G-1-20 and G-2-20), the simulated groundwater paths are similar to the nominal results (Figure 4-24). The largest deviation occurs for the pathline leaving the northeast corner of the P-area. Although time markers are not shown in these figures, groundwater travel times also vary roughly proportional to the recharge variation. The variations in Gordon confining unit leakance considered in uncertainty cases 3 and 4 produce significant changes to simulated groundwater flow paths (Figures G-3-20 and G-4-20). For increased leakance, groundwater form reactor areas migrates deeper, typically to the Gordon aquifer, and discharges to surface far from the facilities (Figure G-3-20). For decreased leakance, groundwater remains more shallow, typically above the Gordon aquifer, and discharges to nearby stream reaches.

The uncertainty results presented so far are generic. For specific applications of the model, additional uncertainty analysis should be performed, tailored to the sub-region and output parameter(s) of interest. For example, uncertainty cases 5 and 6 shown parenthetically in Table 4-4 would be useful for investigating uncertainty in plume migration, because they effectively provide upper and lower bounds on horizontal flow rates. Similarly, effective porosity should be considered for groundwater travel time and transport uncertainty analysis, because pore velocity is inversely proportional to this parameter. Specifically, transport sensitivity runs should include total porosity for an upper estimate (\sim 40%), and a conservative (low) estimate for effective porosity (\sim 25%).

Figure 4-2. Head Residuals in the Gordon Aquifer

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure 4-14. Simulated Hydraulic Head in the Gordon Aquifer

Simulated hydraulic head in "lower" UTR aquifer zone

Figure 4-15. Simulated Hydraulic Head in the 'Lower'' UTR Aquifer

Simulated hydraulic head in "upper" UTR aquifer zone

Figure 4-16. Simulated Hydraulic Head in the 'Upper' UTR Aquifer

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Flow component (cfs)	Entire model	UTR aquifer	Gordon aquifer
Recharge	+79.9694	+78.3983	+1.5711
Seepage	-80.7454	-64.3827	-16.3627
In flows (head BCs)	+104.9055	+0.5450	+104.3605
Out flows (head BCs)	-106.6514	-2.2367	-104.4148
L Lake	+0.2734	+0.2734	N/A
Par Pond	-0.1225	-0.1225	N/A
Gordon c.u. leakage	N/A	-12.4745	+12.4745
Meyers Br. c.s. leakage	+2.3717	N/A	+2.3717
Net total flow	+0.0007	+0.0003	+0.0003

•

			Model value	
			(in/yr for recharge; ft ³ /s otherwise)	
Flow target	Prior estimate	Range or Uncertainty		Difference
Surface recharge	15 in/yr	10 – 16 in/yr	12.5 max. local (9.7 based on total area)	-17%
Meyers Branch base flow (headwaters to Road 9)	3.2	±20 – 25%	2.9	-9%
Steel Creek base flow (above Road B to Road A; includes L-Lake)	-2.2 (losing reach)	±20 - 25%	3.8 (drain BCs: +4.1 gen. head BCs: -0.3)	+6 ft ³ /s
Pen Branch base flow (headwaters to Road A13; includes Indian Grave Branch)	13.3	±15-20%	14.7	+11%
Fourmile Branch base flow (headwaters to Road A12)	14.1	±15-20%	14.0	-1%
Upper Three Runs base flow (Road C to Road A)	4.5	±20 - 25%	6.7	+49%
L Lake	-	-	-0.3 (losing lake)	-
Par Pond (portion within model)	-	-	0.1	-

Table 4-1. Calibration Summary for Groundwater Flow Targets

Measure (ft)	Gordon aquifer	"lower" UTR aquifer	"upper" UTR aquifer	Overall
RMS difference	3.9	6.7	5.1	5.64
Avg. difference	-1.3	0.3	0.2	-
Median difference	-0.9	0.6	0.0	-
Avg. ldifferencel	2.0	5.3	3.8	-
Max. difference	-18	-34	+16	-

 Table 4-2.
 Calibration Summary for Hydraulic Head Targets

Hydrostratigraphic Unit	Nominal K _h (ft/day)	Range	Nominal K _v (ft/day)	Range
Gordon aquifer	35	_	K _h /100	-
Gordon confining unit	K _v ×100	-	10-4	-
"lower" UTR aquifer zone	5.6	5 to 1.6	K _h /100	K _h /100
"tan clay" UTR confining zone	K _v ×100	K _v ×100	4×10-3	4×10 ⁻² to 4×10 ⁻⁴
"upper" UTR aquifer zone	5.6	9.6 to 1.6	K _h /100	K _h /100
Transmissive zone – K area	8	-	K _h /100	-
AA horizon – K area	5	-	K _h /100	-
A horizon and above – K area	1	-	K _h /100	-
Alluvium	30	-	K _h /100	-

٠

Table 4-3. Calibration Summary for Hydraulic Conductivity

Table 4-4. Summary of Uncertainty Cases

GCU Kv

Recharge	5×10 ⁻⁴ ft/day	10 ⁻⁴ ft/day	2×10 ⁻⁵ ft/day
15 in/yr	-	Case 1	(Case 5)
12.5 in/yr	Case 3	Nominal	Case 4
10 in/yr	(Case 6)	Case 2	-

Calibration measure	Nominal	Case 1	Case 2	Case 3	Case 4
Overall RMS head residual (ft)	5.6	5.8	5.5	9.5	5.7
Gordon aquifer RMS head residual (ft)	3.9	3.3	3.5	3.6	3.6
"lower" UTRA RMS head residual (ft)	6.7	6.9	6.5	12.5	6.9
"upper" UTRA RMS head residual (ft)	5.1	5.3	4.9	7.9	5.0
Meyers Branch base flow residual (cfs)	-0.3	0.3	-0.9	-1.7	0.0
Steel Creek base flow residual (cfs)	6.0	6.8	5.2	4.3	6.0
Pen Branch base flow residual (cfs)	1.4	4.5	-1.8	-5.0	3.2
Fourmile Branch base flow residual (cfs)	-0.1	2.4	-2.8	-7.0	2.6
Upper Three Runs base flow residual (cfs)	2.2	2.5	1.8	7.1	0.1
Nominal "lower" UTR aquifer zone, Kh (ft/day)	5.6	6.7	4.5	0.84	7.6
Nominal "tan clay" UTR confining zone, Kv (ft/day)	4×10-3	4×10-3	4×10-3	4×10 ⁻²	2×10 ⁻³
Nominal "upper" UTR aquifer zone, Kh (ft/day)	5.6	6.7	4.5	0.84	7.6
Nominal Gordon aquifer unit, Kh (ft/d)	35	35	35	88	12

.

Table 4-5.Calibration Summary for Uncertainty Cases
5.0 SUMMARY AND RECOMMENDATIONS

Important attributes of the baseline CKLP model are:

- the present baseline model is current with available reactor characterization data through Spring 1998. All the characterization data has been incorporated into a project database that can be easily updated as additional field data is obtained.
- aquifer zones are sub-divided by several vertical mesh layers
- model preprocessing has been fully automated using the *make* software language
- both the vadose and saturated zones are simulated in the model
- groundwater flow beneath the model boundaries are simulated to the top of the Meyers Branch confining system
- the alluvial valley has been included in the model to realistically illustrate the extent to which the Savannah River has incised the hydrostratigraphic units. The Savannah River has cut down to the Gordon aquifer at the northern and southern ends of the valley but does not incise the Meyers Branch confining system within the model area.
- the model is based on the FACT code

Important implications of the CKLP model:

- the model meets the planning objectives of the *General Groundwater Strategy for Reactor Area Projects* (WSRC, 1997) by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives across ERD programs
- the CKLP groundwater flow model provides a good understanding of the groundwater flow regime for these reactor areas on a regional scale. The model is suited to assist in scoping characterization and remedial activities by providing a common base for the subsequent finer scale transport and remedial/feasibility models for each of these areas.
- the model has been constructed to incorporate new data as it is collected, providing quick and cost-effective updates.

Recommendations for future refinements to the CKLP model are:

- additional head data are needed for the Upper Three Runs aquifer above and below the "tan clay" confining zone on a regional scale to provide data away from the reactor facilities
- pump tests in non-contaminated areas are needed for each reactor area in order to provide direct, field scale, conductivity measurements. In addition, previous conductivity measurements derived from slug tests and pump tests should be reviewed to determine data quality and validity of the measurements.
- baseflow measurements should be completed during the 1999 fiscal year.
- a field survey and walk-down of the NPDES outfalls is recommended in order to assess the elevation of these drainages and how deep they have incised the hydrostratigraphic units due to process water flows since the 1950s.
- evaluate high and low head residual areas for both UTR and Gordon aquifers by looking at both hydrostratigraphy and well screen intervals.
- utilization of mathematical optimization algorithms such as the new FACT/Data Fusion Modeling code to improve and automate model calibration. The software also provides better estimates of model uncertainty, which is desirable for regulatory applications.
- Additional documentation on data preprocessing algorithms and software.

6.0 REFERENCES

Aadland, R. K., Gellici, J. A., and Thayer, P. A., 1995. *Hydrogeologic Framework of West-Central South Carolina*. Report 5, Water Resources Division. South Carolina Department of Natural Resources, Columbia, SC.

Aadland, R. K., Harris, M. K., Lewis, C. M., Gaughan, T. F., and Westbrook, T. M., 1991. Hydrostratigraphy of the General Separations Area, Savannah River Site (SRS), South Carolina. WSRC-RP-91-13, Westinghouse Savannah River Company, Aiken, SC 29808.

Amidon, M. B., 1996. Re: Geotechnical Report (U), memorandum to G. Flach dated May 13.

Beard, D. C., and Weyl, P. K., 1973. "Influence of Texture on Porosity and Permeability of Unconsolidated Sand", American Association of Petroleum Geologists Bulletin, V. 57, p.
349-369.

Cahill, J. M., 1982. *Hydrology of the Low Level Radioactive Solid Waste Burial Site and vicinity near Barnwell, South Carolina, United States Geological Survey Open File Report* 82-863.

Camp Dresser & McKee, 1989. Numerical Simulation of Groundwater Flow and Contaminant Transport at the K, L, and P Areas of the Savannah River Site, Aiken, South Carolina, Final Report, prepared for Westinghouse Savannah River Company.

Cooney, T. W., Drewes, P. A., Jones, K. H., Gissendanner, J. W., and Church, B. W., 1998. Water Resources Data – South Carolina, Water year 1997, Volume 1, U. S. Geological Survey Water-Data Report SC-97-1.

De Marsily, G., 1986. *Quantitative Hydrogeology, Groundwater Hydrology for Engineers*, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.

Denehy, K., and McMahon, P., 1985. *Hydrologic and Micrometeorological Data for an Unsaturated Zone Flow Study at a Low-Level Radioactive Waste Burial Site, Barnwell, South Carolina*, U. S. Geological Survey Open File Report OF85-476.

Environmental Protection Department and Exploration Resources, Inc., 1996a. Environmental Protection Department's Well Inventory (U), ESH-EMS-960488. Westinghouse Savannah River Company, Aiken, SC 29808. Environmental Protection Department and Exploration Resources, Inc., 1996b. *The Savannah River Site's Groundwater Monitoring Program; Second Quarter 1996* (U), ESH-EMS-960057. Westinghouse Savannah River Company, Aiken, SC 29808.

Flach, G. P. and Harris, M. K., 1997. Integrated Hydrogeological Model of the General Separations Area (U), Volume 2: Groundwater Flow Model (U), WSRC-TR-96-0399, Rev. 0, Westinghouse Savannah River Company, Aiken, SC 29808.

Flach, G. P., 1998. Impact of F- and H-Area Pump-Treat-Reinject Remediation Systems on the Old Radioactive Waste Burial Ground (U), SRT-EST-98-154.

Freeze, R. A., and Cherry, J. A., 1979. Groundwater, Prentice-Hall, Inc.

GeoTrans, 1992. Groundwater flow model of the General Separations Area, Savannah River Site, prepared for Westinghouse Savannah River Company, Project no. 3017-003.

GeoTrans, 1993. Groundwater Model Calibration and Review of Remedial Alternatives at the F- and H-Area Seepage Basins, WSRC-TR-93-384, Westinghouse Savannah River Company, Aiken, SC 29808.

Gruber, P., 1981. A Hydrology Study of the Unsaturated Zone Adjacent to a Radioactive-Waste Disposal Site at the Savannah River Plant, Aiken, South Carolina, M.S. Thesis, Geology Department, University of Georgia, Athens, GA.

Gruber, P., 1983. "A Hydrology Study of the Unsaturated Zone Adjacent to a Radioactive-Waste Disposal Site at the Savannah River Plant, Aiken, South Carolina", *Role of Unsaturated Zone in Radioactive and Hazardous Waste Disposal*, J.W. Mercer, P.S.C. Rao, and I.W. Marine (editors), An Arbor Science Publishers, Ann Arbor, MI.

Hamm, L. L., Aleman, S. E., Flach, G. P, and Jones, W. F., 1997. Subsurface Flow and Contaminant Transport Documentation and User's Guide (U), WSRC-TR-95-0223, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, SC. 29808.

Harris, M. K., Aadland, R. K., and Westbrook, T. M., 1990. "Lithological and Hydrological Characteristics of the Tertiary Hydrostratigraphic Systems of the General Separations Area, Savannah River Site, South Carolina". *Savannah River Region: Transition Between the Gulf and Atlantic Coastal Plains, Proceedings of the Second Bald Head Island Conference on Coastal Plains Geology*, University of North Carolina at Wilmington, pp 68-73.

Hiergesell, R. A., 1997. Personal communication, January 6, 1997.

Hiergesell, R. A., 1998a. *Regional Water Table Coverage of the Savannah River Site*. WSRC-TR-98-00045, Rev. 0, Westinghouse Savannah River Company. Aiken, SC 29808.

Hiergesell, R. A., 1998b. Summary of Stream Baseflow and Water Table Work Conducted in Support of the R-Reactor and K-Reactor Groundwater Modeling Efforts. Westinghouse Savannah River Company Inter-Office Memorandum, SRT-EST-98-110.

Hiergesell, R. A., 1998c. *Transmittal of Stream Baseflow Measurement Data*, Westinghouse Savannah River Company Inter-Office Memorandum, SRT-EST-98-197.

HSI GeoTrans, 1998. Groundwater Flow and Solute Transport Modeling Report; K-Area Burning/Rubble Pit and Rubble Pile, WSRC-TR-98-5052. Westinghouse Savannah River Company, Aiken, SC 29808.

Hubbard, J. E., and Emslie, R. E., 1984. Water Budget for the SRP Burial Ground Area, DPST-83-742.

Hubbard, J. E., 1986. An Update on the SRP Burial Ground Area Water Balance and Hydrology, DPST-85-958.

Huyakorn, P. S., Panday, S., and Birdie, T., 1991. Subsurface Analysis Finite Element Model for Flow and Transport in 3 Dimensions, Version 1.3, Documentation and User's Guide, prepared for Westinghouse Savannah River Company.

HydroGeoLogic, Inc., 1997. *Groundwater Flow Model for the R-Reactor Area (U)*. WSRC-OS-97-00006, Revision 0, HydroGeoLogic, Inc., Herndon, VA, 81 pp.

HydroGeoLogic, Inc., 1998. Groundwater Flow and Contaminant Transport for the R-Reactor Seepage Basins (U), HydroGeoLogic, Inc., Herndon, VA.

Leeth, D. C. and Nagle, D. D., 1996. "Shallow Subsurface Geology of Part of the Savannah River Alluvial Valley in the Upper Coastal Plain of Georgia and South Carolina", *Southeastern Geology*, v. 36, no. 1, pp. 1–14.

Looney, B. B., Grant, M. W., and King, C. M., 1987. *Estimation of Geochemical Parameters for Assessing Subsurface Transport at the Savannah River Plant*, DPST-85-904.

O'Brien & Gere Engineers, Inc., 1991. *M Area Post-Test Characterization Geotechnical Testing*, File: 4998.007 #2.

Parizek, R. R., and Root, R. W., Jr., 1986. Development of a Ground-Water Velocity Model for the Radioactive Waste Management Facility, Savannah River Plant, South Carolina, DPST-86-658.

Siple, G. E., 1967. *Geology and Ground Water of the Savannah River Plant and Vicinity*, *South Carolina*, U.S. Geological Survey Water Supply Paper 1841.

Smits, A. D., Harris, M. K., Hawkins, K. L., and Flach, G. P., 1997. Integrated Hydrogeological Model of the General Separations Area (U), Volume I: Hydrogeologic Framework (U), WSRC-TR-96-0399, Westinghouse Savannah River Company, Aiken, SC, 118 pp.

Snipes, D. S., Fallaw, W. C., Price, V., Jr., and Cumbest, R. J., 1993. "The Pen Branch Fault: Documentation of Late Cretaceous-Tertiary Faulting in the Coastal Plain of South Carolina", *Southeastern Geology*, v. 33, no. 4, pp 195-218.

Stieve, A. and Stephenson, D., 1995. "Geophysical Evidence for Post Late Cretaceous Reactivation of Basement Structures in the Central Savannah River Area", *Southeastern Geology*, v. 35, no. 1, pp 1-20.

Walpole, R. E. and R. H. Meyers, 1978, *Probability and statistics for engineers and scientists*, 2nd edition, MacMillan, New York.

WSRC, 1996. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Chemicals, Metals, and Pesticides Pits (U), WSRC-RP-96-0012, Revision 1, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1997. General Groundwater Strategy for Reactor Area Projects, WSRC-RP-97-435, Revision 0, Westinghouse Savannah River Company, Environmental Restoration Division, Aiken, SC, 29808.

Yu, A. D., C. A. Langton and M. G. Serrato, 1993. *Physical Properties Measurement Program* (U), WSRC-RP-93-894, Westinghouse Savannah River Company, Aiken, SC 29808.

APPENDIX A. DATA COLLECTION AND HYDROGEOLOGIC MODEL METHODOLOGY

Hydrogeologic Data Collection

Data utilized in this analysis include coordinates and elevations of SRS and off-site wells, geophysical logs, drill-core descriptions, and results from permeability. The study included collecting permeability data from the recent and historical literature. These data originate from the results of different types of tests. These include aquifer pumping tests, borehole permeability ("slug") tests, and laboratory tests performed on undisturbed samples.

Project Database

The project database used for the C, K, L, and P groundwater model area (CKLP GWMA) is designed to support groundwater modeling conducted by the Environmental Sciences Section (ESS) of the Savannah River Technology Center (SRTC) such as that described in Flach, and Harris (1997). The scope of the groundwater modeling project database (GWMPD) for the CKLP GWMA includes the area bounded by Savannah River Site (SRS) local grid coordinates 10,000 to 85,000 North and 0 to 100,000 East.

The primary function of GWMPD is to record and report hydrogeologic parameters within the context of their spatial position and hydrostratigaphic assignment. The database is designed to accommodate geologic, geotechnical, geophysical, and stratigraphic data from any type of sampling location (site type). Current site types include soil borings, wells, and cone-penetrometer test (CPT) sites. Hydrogeologic data fall within three main categories: 1) field data collected during drilling and sampling; 2) Field analyses of borehole and aquifer permeability; and 3) laboratory analyses of core and undisturbed samples. The GWMPD also records "subjective" data such as stratigraphic analyses ("picks" for unit boundaries) in addition to the "objective" measurements described above.

The database is compiled in Paradox[®] software and incorporates a relational structure which defines unique data locations (sites) by their coordinates and elevations. The sites are used as the key field by which different types of data are related. The unique site identifiers allow multiple data types to be associated with a single data site. The database is constructed so that revisions made to the "subjective" data (hydrostratigraphic "picks") are documented. The database records and dates each revision to the picked boundaries, and automatically regenerates updated output files for re-loading into EarthVision[®]. This aspect of the database

facilitates data evaluation and revision. and provides a means by which to maintain a history of the "subjective" data set.

The GWMPD maintains a bibliographic record of all documents reviewed and summarized for data which are incorporated into the database. The database also records whether the documents serve as original sources for the data they contain, or summarize data extracted from previous reports. For example, a report that lists permeability values for undisturbed samples and includes copies of the laboratory reports in an appendix would be considered a "source" document. Similarly, a report that tabulates slug test results from several wells as average hydraulic conductivity values, and does not provide the test parameters or details of the individual analyses would be considered a "summary" document for those slug test results.

Data Qualification

Boundaries or "picks" for hydrostratigraphic units beneath the CKLP GWMA were established by the same method used in WSRC-RP-96-0399 for the General Separations Area (Smits and others, 1997). Because the CKLP GWMA includes the GSA modeling area, the picks were used to correlate hydrostratigraphic boundaries from within the GSA to cores in the remainder of the model area. The GWMPD uses the hydrostratigraphic nomenclature described in Aadland and others (1995). A rigorous Quality Review of the data was performed, comparing the core descriptions and geophysical logs with the list of unit boundaries. Geologists made refinements to these boundaries to ensure internal consistency between the unit boundaries and the lithology of the hydrostratigraphic units.

Hydrostratigraphic horizons include tops of the "tan clay" confining zone (TCCZ), "lower" aquifer zone (LAZ), Gordon confining unit (GCU), Gordon aquifer (GAU), and the Meyers Branch Confining System (MBCS).

Hydrogeologic Model

Hydrostratigraphic Methods

Hydrostratigraphic unit boundaries for the CKLP GWMA are based on the recent hydrostratigraphic analysis of the GSA (Smits and others, 1997). Because the CKLP GWMA includes the GSA modeling area the hydrostratigraphic picks were used to correlate the hydrostratigraphic boundaries on the cores in the remainder of the model area. Boundaries are determined through evaluation of:

<u>Geophysical data</u>. Gamma-ray logs in combination with resistivity logs are used to evaluate the potential confining properties of the strata. In general, low resistivity and high gamma-ray values indicate clay-rich sediment that impedes the flow of ground water.

<u>Core description data</u>. Core descriptions are used (in conjunction with the geophysical logs) to select boundaries between confining and transmissive units. Percentage of mud and estimated porosity are the primary criteria used. If core recovery is good, the foot-by-foot description is an excellent tool for determining the vertical extent of a confining or transmissive lithology.

The database was used to prepare a hydrogeologic model of the CKLP GWMA. The model was constructed with EarthVision[®] software. EarthVision[®] processes sets of spatial and property data by calculating minimum-tension grids to contour a "best fit" of the data. The grids can contour data in 3 dimensions (x,y,z), such as the top of a geologic unit. as twodimensional grids, or contour data in 4-dimensions: x,y,z, and a "property." An example of a property might be the variation of the percentage of mud within a geologic unit. Only 3 dimension hydrogeologic modeling was performed for this study.

Two-Dimensional Grid Calculation

Data for hydrostratigraphic unit tops were exported from the Paradox[®] database into EarthVision[®]. After minor format changes, the data was processed by an algorithm, producing a two-dimensional grid of the unit top surface. The two-dimensional grids were calculated so as to incorporate effects of the Pen Branch Fault. The off-set is assumed to be a consistent, vertical displacement along the trace of the fault. The south side of the fault is displaced up relative to the north side.

The EarthVision[®] model utilizes digitized x,y,z data for all U.S. Geological Survey topographic coverage of the GSA. The data was processed in the same manner as the data for the unit boundaries to produce a grid representing the topography of the study area. The high density of data points in this data set produced a two-dimensional grid of exceptional accuracy and detail. This grid was then used in subsequent grid calculation to determine the extent of the hydrostratigraphic units that crop out in the study area.

Geologic Structure Builder

Altitude-Contour Maps

Altitude-contour maps were constructed for each hydrostratigraphic unit and zone discussed in Section XXX using the two-dimensional grids calculated from the scattered data for the unit tops. The maps are plotted using the *Contour and Basemap* module of EarthVision[®]. Contour intervals are chosen by individual data sets so as to convey the information clearly and concisely, but virtually any level of detail is possible. An effort was made to keep the contour interval to within one-tenth of the range of the z-values. This serves to minimize the number of contour lines, yet generally maintains a level of detail suitable for interpretation of the map.

Isopach Maps

Two-dimensional grids of unit thickness (isopach grids) were calculated by first comparing the two-dimensional grids of the unit base and unit top with the two-dimensional grid of the topography. Isopach maps of vertical unit thickness were calculated from comparison of the two-dimensional grids of the unit base and unit top. A value was then written to the corresponding nodes of the resultant grid (the isopach grid) equal to the vertical distance between the base and upper surface of the unit.

The resultant two-dimensional isopach grids were contoured using EarthVision[®] in the same fashion as the structure-contour maps.

REFERENCES

Aadland, R. K., J. A. Gellici, and P. A. Thayer, 1995. *Hydrogeologic Framework of West-Central South Carolina*, State of South Carolina Department of Natural Resources, Water Resources Division Report 5.

Flach, G. P., and M. K. Harris, 1997. *Integrated Hydrogeological Model of the General Separations Area, Volume 2: Groundwater Flow Model* (U), WSRC-TR-96-0399, Rev. 0, Westinghouse Savannah River Company, Savannah River Site, Aiken, SC, 29808.

Smits, A. D., M. K. Harris, K. L. Hawkins, and G. P. Flach. 1997. Integrated Hydrogeological Model of the General Separations Area, Volume 1: Hydrogeologic Framework (U), WSRC-TR-96-0399, Rev. 0, Westinghouse Savannah River Company. Savannah River Site, Aiken, SC, 29808.

Appendix 1	Appendix B-1: Locations of Sites within the Model Area											
	SRS	SRS	Surface									
	Northing	Easting	Elevation	1								
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference [*]								
BGO-1D	73737.9	58779.3	293	WSRC. 1996d								
BGO-3A	75561.7	58806.8	288.7	WSRC. 1996d								
BGO-3D	75351.3	58809.2	290.8	WSRC. 1996d								
BGO-5C	76476.9	58794.5	294.2	WSRC. 1996d								
BGO-6A	76487.2	58316.8	283.8	WSRC. 1996d								
BGO-6B	76553.24	58346.46	284.5	WSRC, 1996d								
BGO-8A	76569	57618.3	281.3	WSRC. 1996d								
BGO-9AA	76975.69	57371.94	282.8	WSRC. 1996d								
BGO-10A	76805.18	57050.92	299.1	WSRC. 1996d								
BGO-10AA	76997.88	56990.54	298.8	WSRC. 1996d								
BGO-12A	76804.63	56250.68	311.4	WSRC. 1996d								
BGO-14A	76377.54	55838.32	300.2	WSRC, 1996d								
BGO-16A	75756.95	56194.15	302.8	WSRC. 1996d								
BGO-18A	75599.89	56699.67	292.9	WSRC, 1996d								
BGO-20AA	74953.76	57114.81	280.88	Rust, 1996								
BGO-21D	74688.53	57470.66	. 283	WSRC, 1996d								
BGO-23D	74238.09	58132.96	287	WSRC, 1996d								
BGO-25A	76158.5	55668.08	294.7	WSRC, 1996d								
BGO-26A	76144.6	55014.2	285.1	WSRC, 1996d								
BGO-27C	75666.3	54671.4	273.9	WSRC, 1996d								
BGO-29A	75560	54103.5	262.1	WSRC, 1996d								
BGO-31C	74978	54816.2	271.1	WSRC, 1996d								
BGO-33C	74479.7	55681.4	277.4	WSRC. 1996d								
BGO-35C	73953.9	56545.7	271.4	WSRC, 1996d								
BGO-37C	73498.2	57279.2	284.3	WSRC, 1996d								
BGO-39A	73572.52	57821.93	293.7	WSRC, 1996d								
BGO-41A	76469.52	55403.69	298.3	WSRC, 1996d								
BGO-42C	76404.71	55522.27	295.9	WSRC, 1996d								
BGO-43AA	77066.01	56268.64	312.2	WSRC, 1996d								
BGO-44AA	76757.02	57880.51	283.3	WSRC, 1996d								
BGO-45A	75830.03	54550.14	276.9	WSRC, 1996d								
BGO-46B	75012.1	54444.65	263.4	WSRC, 1996d								
BGO-47A	74728.83	54914.04	264.8	WSRC, 1996d								
BGO-48C	74599.64	55124.38	274.7	WSRC, 1996d								
BGO-49A	73902.78	56205.08	269.1	WSRC, 1996d								
BGO-50A	75201.16	54179.77	253.5	WSRC. 1996d								
BGO-51AA	74113.1	57867	287.2	WSRC, 1996d								
BGO-52AA	74638	57178.1	281.6	WSRC, 1996d								
BGO-53AA	76065	55431.5	288.9	WSRC. 1996d								
BGT-1	76700.6	59178.4	282.9	WSRC, unknown								
BGT-2	76957.6	59607.2	276.4	WSRC, unknown								
BGT-3	77197.6	60045.9	275 7	Rust, 1996								
BGT-4	77437.6	60484 5	259.2	WSRC, unknown								
1	1	1		1								

ppendix B-1: Locations of Sites within the Model Area (Continued											
	SRS Northing	SRS Easting	Surface Elevation	_							
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference ¹							
BGT-5	77677.6	60924.1	225.7	Rust. 1996							
BGT-6	77254.8	58746.7	282.2	WSRC. unknown							
BGT-7	77717.8	58935.7	276.4	WSRC. unknown							
BGT-8	78161.5	59118.6	249.3	WSRC. unknown							
BGT-9	78642.3	59316.7	226	Rust. 1996							
BGT-10	79104.6	59507.2	215.2	WSRC. unknown							
BGT-11	79566.9	59697.7	222.5	Rust. 1996							
BGT-12	77291.2	58045.9	284.2	WSRC. unknown							
BGT-13	77488.9	58074	287.8	WSRC, unknown							
BGT-14	77984	58143.4	280.7	WSRC. unknown							
BGT-15	78479.2	58212.8	277.5	WSRC. unknown							
BGT-16	78974.1	58283.5	250.7	WSRC. unknown							
BGT-17	79469.7	58350	240.7	WSRC. unknown							
BGT-18	79965.3	58416.5	216.5	Rust. 1996							
BGT-20	80956.4	58549.6	159.5	Rust. 1996							
BGT-21	77280.7	56952.5	294.2	WSRC, unknown							
BGT-22	77860.3	56970.3	281	Rust. 1996							
BGT-23	78279.7	56997	270	WSRC. unknown							
BGT-24	78779.2	57019.2	265.8	WSRC, unknown							
BGT-25	79278.7	57041.4	264.8	WSRC. unknown							
BGT-26	79778.2	57063.7	250.2	WSRC, unknown							
BGT-27	80277.7	57085.9	256.9	WSRC. unknown							
BGT-28	80777.2	57108.1	258.3	Rust. 1996							
BGT-29	81276.7	57130.4	243	WSRC, unknown							
BGT-30	81726.3	57150.4	219	WSRC. unknown							
BGT-31	77229	56189.8	308.76	WSRC. unknown							
BGT-32	77791.4	56121.1	310.12	WSRC, unknown							
BGT-33	78404.5	56037.2	290.42	WSRC. unknown							
BGT-34	78803.9	56027.5	286.76	WSRC. unknown							
BGT-35	79305.8	55929.9	267.73	WSRC, unknown							
BGT-36	79801.9	55867.5	261.36	WSRC. unknown							
BGT-37	80298	55805	251.6	WSRC, unknown							
. BGT-38	80870.5	55733	240.14	WSRC, unknown							
BGT-39	81290.2	55680.3	241.88	WSRC. unknown							
BGT-40	77297.2	55644.4	332.32	WSRC, unknown							
BGT-41	77734.8	55490.1	328.37	WSRC, unknown							
BGT-42	78240.7	55313.1	310.92	WSRC. unknown							
BGT-43	79655.9	54816	277.08	WSRC. unknown							
BGT-44	80127.7	54650.4	276.2	WSRC. unknown							
BGT-45	80461.7	54533.1	285.28	WSRC. unknown							
BGT-46	76714.3	55355	310	WSRC. unknown							
BGT-47	77051.85	54986.57	317.32	Rust, 1996							
BGT-48	77135.7	54895.1	314.33	WSRC, unknown							
L			• • • • • • • • • • • • • • • • • • • •								

<u>B-2</u>

WSRC-TR-98-00285.	Rev. 0, Hyc	lrogeological a	and Groundwa	ter M	odel for (C. K. L.	and P Area	S
Appendi	ix B-1: L	ocations of a	Sites within	the	Model	Area ((Continu	ed)
^ <u>`</u>		000	ana		0			1

oendix B-1: Lo	ocations of S	lites within	the Model	Area (Continue
	SRS	SRS	Surface	
	Northing	Easting	Elevation	1
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference
BGT-49	76203.9	54946.3	297.26	WSRC. unknown
BGT-50	76359.3	54756.2	296.27	WSRC, unknown
BGT-51	75519.8	54505.7	272.64	WSRC, unknown
BGT-53	75837.68	53422.04	278.25	Rust, 1996
BGT-54	75941.7	52889.1	279.96	WSRC, unknown
BGT-56	73521.2	56265.8	262.94	WSRC. unknown
BGT-57	73268.5	56104.2	259.35	WSRC, unknown
BGT-58	73406.9	57399.6	285.76	WSRC. unknown
BGT-59	72802.6	57123.2	281.88	WSRC. unknown
BGT-60	73120.6	58057.2	291.42	WSRC. unknown
BGT-61	72911.77	58490.09	284.3	Rust. 1996
BGT-62	72854.4	58608	282.03	WSRC, unknown
BGT-63	73319.4	59146.3	293.67	WSRC, unknown
BGT-63A	73646.4	58768.1	290.79	WSRC, unknown
BGT-64	73013.7	59500	283.25	WSRC, unknown
BGT-66	74476.6	60033.7	244.04	WSRC, unknown
BGT-67	74443.06	60426.74	242.03	Rust. 1996
BGX-1A	76831.89	58590.35	289.1	WSRC, 1996d
BGX-2B	77203.4	58256.5	289.2	WSRC. 1996d
BGX-4A	77879.2	57215.6	288.8	WSRC. 1996d
BGX-7D	. 78349.3	58312.8	277.1	WSRC. 1996d
BGX-9D	76936	59522.1	277.4	WSRC. 1996d
BGX-11D	75300.7	59581.4	273.8	WSRC. 1996d
BRR-1D	77365.2	50588.2	293.8	WSRC, 1996d
BRR-3D	77398.3	50203.5	289.5	WSRC, 1996d
BRR-6B	77054.6	51100	293.9	WSRC, 1996d
BRR-7B	77575.4	50707.5	289.6	WSRC. 1996d
BRR-8B	77634.7	50116.5	276.7	WSRC. 1996d
CCP-1A	66659.2	46981.3	287.1	WSRC, 1996d
CFD-1	55486.64	54875.37	268.8	WSRC. 1994
CFD-5	55769.51	54803.57	257.8	WSRC, 1994
CFD-18	56297.09	54935.66	248.3	WSRC, 1994
CMP-30B	51729.8	53166.9	286.5	WSRC. 1996d
CMP-32B	52220	54052.8	251.7	WSRC. 1996d
CPC-1	66855.77	47183.78	285.1	WSRC, 1996d
CRP-5DR	68549.1	44515	274.6	WSRC, 1996d
CRP-9D	69156.7	44243.2	268.4	WSRC, 1996d
CSD-4D	63143.8	50058.9	306.5	WSRC, 1996d
FAC-1SB	78138	55243	312.2	WSRC, 1992b
FCH-1	79488.82	52843.11	316.8	WSRC. 1993
FCH-2	78500	52599.59	288.7	WSRC. 1993
FCH-3	78059.22	52087.22	307.2	WSRC, 1993
FCH-4	77514.56	52021.03	297.5	WSRC, 1993

pendix B-1: Locations of Sites within the Model Area (Continue										
	SRS	SRS	Surface							
	Northing	Easting	Elevation							
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference						
FCH-5	76992 12	51667.65	284.2	WSRC 1993						
ECU 6	76410.33	51245 7	201.5	WSRC 1003						
FUW-1MC	76165.3	51354.4	291.5	WSRC 1996d						
FIW-7MA	75930.8	51184 5	290.5	WSRC, 1996d						
FNB-1A	80154.5	54288.8		WSRC, 1996d						
FNB-3A	80557.2	54116.6	282.2	WSRC, 1996d						
FSB-1TA	75649.1	51658.3	275.4	WSRC. 1996d						
FSB-PC	74090.2	50140	230.8	WSRC, 1996d						
FSB-PD	74549.2	49849.81	252.6	WSRC. 1996d						
FSB-76A	76131.9	51391.6	291.5	WSRC. 1996d						
FSB-78A	74757.7	50172.8	270.5	WSRC, 1996d						
FSB-79A	73664.5	50149.6	216.1	WSRC, 1996d						
FSB-87A	75601.7	50115.8	285.6	WSRC. 1996d						
FSB-89C	75553.2	51345.2	279.1	WSRC, 1996d						
FSB-91C .	75213.3	50953.5	277	WSRC. 1996d						
FSB-93C	74897.3	50458.3	274	WSRC. 1996d						
FSB-95C	74971.7	50016.7	281.8	WSRC, 1996d						
FSB-96A	74882.2	49778.7	277.7	WSRC. 1996d						
FSB-97A	75171.2	49965.7	283.8	WSRC. 1996d						
FSB-98A	75389.8	50121.6	280.7	WSRC. 1996d						
FSB-99A	75675.6	50314.8	285.3	WSRC. 1996d						
FSB-100A	75534.4	50958.4	283.8	WSRC. 1996d						
FSB-101A	75719	51191.3	282.9	WSRC. 1996d						
FSB-112A	74231.4	48809.1	227	WSRC. 1996d						
FSB-113A	74167.5	51068.1	221.3	WSRC, 1996d						
FSB-114A	75297.4	52046.6	250	WSRC, 1996d						
FSB-115C	72515.5	49736	205.8	WSRC. 1996d						
FSB-116C	72725.5	50645.9	200.5	WSRC, 1996d						
FSB-120A	75538.9	49175.7	278	WSRC. 1996d						
FSB-121C	75155.7	48413.1	254.4	WSRC, 1996d						
FSB-122C	73881.8	48195	216	WSRC. 1996d						
FSB-123C	74566.7	51750.5	236.3	WSRC, 1996d						
GAPWR-TW-1	51036.5	1544.1	219	Falls, 1998						
HAA-1TA	69892.2	62953.3	290.2	WSRC. 1996d						
HAA-2AA	70925.4	61285.1	291.4	WSRC. 1996d						
HAA-3AA	71488	60201.9	274.5	WSRC. 1996d						
HAA-4AA	72223.2	61929.6	299.2	WSRC. 1996d						
HAA-6AA	71441	63860.2	279.8	WSRC. 1996d						
HC-12A	73187	59504	287.3	WSRC. 1996d						
HCA-4AA	72513.7	62942.5		WSRC. 1996d						
HCH-1	72796.38	60923.42	284	WSRC. 1993						
HCH-2	72519.61	60091.79	270.9	WSRC, 1993						
HCH-3	71998.82	59917.33	264	WSRC. 1993						

<u> </u>	SRS	SRS	Surface	
	Northing	Easting	Elevation	
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference
		l		
HCH-4	72449.59	59139.93	269.9	WSRC, 1993
HCH-5	71810.36	59331.53	255	WSRC, 1996d
HIW-IBD	72564.6	58342.2	275.8	WSRC, 1996d
HIW-IMC	72500	58471.8	272.3	WSRC, 1996d
HIW-7A	73249.7	56753	276.3	WSRC, 1996d
HIW-2MC	73226.4	56698.4	269	WSRC, 1996d
HIW-4MC	73160.1	56570.1	263.4	WSRC, 1996d
HIW-5MC	73557.9	56498.9	266.1	WSRC, 1996d
HMD-1C	78731.7	56973.3	262.7	WSRC. 1996d
HMD-2C	79665.8	57269.7	259.3	WSRC. 1996d
HMD-3C	79578.7	57745.2	257.2	WSRC. 1996d
HMD-4C	79160.4	58188.5	248.5	WSRC. 1996d
HPC-1	70395.4	62493.6	293.5	WSRC, 1996d
HPT-1A	74847.1	60587	232.9	WSRC, 1996d
HPT-2A	75061.8	60200.5	257.8	WSRC, 1996d
HSB-PC	72119.31	55650.03	227.8	WSRC. 1996d
HSB-TB	72394	58696.1	267.1	WSRC, 1996d
HSB-65A	72436.2	58436	270.7	WSRC. 1996d
HSB-68A	71526.9	56892.1	247.4	WSRC, 1996d
HSB-69A	71549.4	56465.1	234.1	WSRC. 1996d
HSB-83A	71648.6	58606.1	234.9	WSRC. 1996d
HSB-84A	71586.2	56359.1	226.7	WSRC. 1996d
HSB-85A	73791.9	58943.4	292.1	WSRC. 1996d
HSB-86A	72520.2	55985.9	260	WSRC. 1996d
HSB-101C	72001.9	58604.4	256.3	WSRC. 1996d
HSB-103C	71593.9	58323.6	245.2	WSRC. 1996d
HSB-104C	71376.8	58082.6	245.5	WSRC. 1996d
HSB-105C	71447.3	57883.8	247.2	WSRC. 1996d
HSB-106C	71720.9	57651.5	250.7	WSRC. 1996d
HSB-107C	71698.5	57432	259.3	WSRC, 1996d
HSB-109C	71684.8	56895.6	259.4	WSRC. 1996d
HSB-110C	71779.3	56680.7	253.4	WSRC, 1996d
HSB-111C	71919.4	56501.9	253.7	WSRC, 1996d
HSB-112C	72156.4	56417.4	252.6	WSRC. 1996d
HSB-113C	72312.3	56160.4	258.7	WSRC, 1996d
HSB-115C	72653.2	56043.2	266.8	WSRC, 1996d
HSB-117A	72733.6	55170.1	234.8	WSRC. 1996d
HSB-118A	72696.4	55775.6	245	WSRC. 1996d
HSB-119A	73082.5	56100.2	254.8	WSRC. 1996d
HSB-120A	73395.1	56431.9	266	WSRC. 1996d
HSB-121A	72024.8	57389.6	272.3	WSRC. 1996d
HSB-122A	72195.9	57747.4	269.4	WSRC, 1996d
HSB-123A	72189.8	58124.8	263.6	WSRC. 1996d

Appendix B-1: Locations of Sites within the Model Area (Continued) SRS Surface SRS Northing Easting Elevation (ft m.s.l.) Reference¹ Well ID (**ft**) (ft) 58514.6 263.9 WSRC. 1996d 72199.6 HSB-124A 71472.4 58787.7 238.3 WSRC. 1996d HSB-132C 57365.4 231.5 WSRC, 1996d HSB-139A 71127.4 56535.4 234 WSRC, 1996d 70050.3 HSB-140A 252.6 WSRC, 1996d HSB-141A 71213.6 59168.7 201.6 WSRC, 1996d HSB-142C 73119 53505.3 220.1 WSRC, 1996d 73738.2 52773.2 HSB-143C 233.6 WSRC, 1996d 71892.1 56200.5 HSB-144A 71098.9 57769 233.7 WSRC, 1996d HSB-145C 249.5 WSRC. 1996d 70478.9 58454 HSB-146A 248.9 WSRC. 1996d HSB-148C 70151.5 55344.2 211.6 WSRC, 1996d 72997.9 54014.9 HSB-151C 54346.7 212.1 WSRC, 1996d 72012 HSB-152C 274.6 WSRC, 1996d HSL-6AA 72692.6 60555.7 286.7 WSRC, 1996d 72729.4 HSL-8AA 61113.8 302.4 Harris, 1997 77284.4 75391.1 IDB-2A IDP-3A 85104.3 3778.11 282.2 WSRC, 1996d 203.2 WSRC, 1996d IDQ-3A 80553.7 35854 53197.8 42588.1 260.2 Harris, 1997 KAC-9D 45365.4 51352 239.8 WSRC, 1996d LAC-5DL 239.8 WSRC, 1996d LAC-6DL 45272.8 51188.1 239.4 WSRC, 1996d 51118.4 LAC-7DL 45097.1 234 WSRC. 1996d 51300.9 45096.6 LAC-8DL 230 WSRC, 1996d 50866 44987 LCO-5A LCO-5DL 44974.5 50887.5 230.3 WSRC, 1996d 243.4 WSRC, 1996d 45586.1 51380.6 LCO-8DL 168.4 WSRC. 1991e 83162.5 46137.5 LFW-10SB 282.5 WSRC, 1996d LWN-1SB 68131.9 33690.8 LWN-2SB 66548.6 34739.1 231 WSRC. 1996d 245.7 WSRC, 1996d 32092.1 LWN-3SB 66900.2 248.1 WSRC, 1996d 45998.8 LWR-2SB 71766 249.1 WSRC, 1996d LWR-3SB 71243.3 47068.9 293.8 WSRC, 1996d 70051.6 46749.6 LWR-4SB 45406.62 238.2 WSRC, 1996d 71658.83 LWR-9SB 62170.7 56819.9 303.7 WSRC, 1996d M121A 327.5 WSRC, 1996d 75121.9 MWD-1A 69592.8 335.9 WSRC, 1996d 70856.2 NPN-1A 66632.1 54032.6 261.6 Amidon, 1995 74967.5 OFS-1SB 257.5 Amidon, 1995 OFS-2SB 74671 53848 258.1 Amidon, 1995 74270 54579 OFS-3SB 258.7 Amidon, 1995 OFS-4SB 73874 55188

73623

35600

OFS-5SB

P-13TA

54298

60000

228.7 Amidon, 1995

252.4 WSRC, 1996d

Appendix B-1: Locations of Sites within the Model Area (Continue											
•	SRS	SRS	Surface								
	Northing	Easting	Elevation	· · ·							
Well ID	(ft)	(ft)	(ft m.s.l.)	Reference							
	·										
P-14TA	72444.9	76439.6	294.4	WSRC. 1996d							
P-18TA	67578.5	47652.7	296.9	WSRC. 1996d							
P-19TA	55295.9	60034.6	297.4	WSRC. 1996d							
P-20TA	56094.1	76768.1	287.7	WSRC. 1996d							
P-21TA	24674.6	40739.2	207	WSRC. 1996d							
P-22TA	20593.4	73555.3	215.4	WSRC. 1996d							
P-23TA	48063.3	30931.3	181.5	WSRC, 1996d							
P-24TA	43096.2	66565.2	313.3	WSRC. 1996d							
P-25TA	52493.6	42261	265.1	WSRC. 1996d							
P-26TA	71958.6	18051.5	152.2	WSRC. 1996d							
P-27TA	70382	64022.9	274.1	WSRC. 1996d							
P-28TA	79284.3	55441.1	285.6	WSRC. 1996d							
PBF-3	58766.62	60380.36	316.65	Harris. 1997							
PBF-4	58148.66	29985.13	208.1	Harris. 1997							
PBF-5	53591.29	30319.43	240.6	Harris. 1997							
PBF-6	55621.75	12814.48	92.5	Harris, 1997							
PBF-7	55420.69	59568.97	285.42	Harris, 1997							
PBF-8	55744.48	59812.89	292.01	Harris. 1997							
PPC-1	42727.22	66137.83	313.3	Harris. 1997							
RCP-1A	56968.1	74238.3	294.8	WSRC. 1996d							
RSF-1	58505.3	74869.4	300.8	WSRC. 1996d							
RSF-2	57670.4	74628.6	300.3	WSRC, 1996d							
RSF-3	57621.4	75206.7	304.8	WSRC, 1996d							
SDS-21	78951	67087	251	WSRC. 1993b							
SDS-22	76887	66304	283	WSRC. 1993b							
SSW-1	71223.25	33206.83	311.3	WSRC. 1989							
SSW-2	72230.42	28236.98	167.3	WSRC, 1996d							
SSW-3	70517.63	40532.31	178.7	WSRC. 1989							
T18N1A	57015.7	45553.2	258.4	WSRC. 1996d							
T18S1A	46111.5	43897.6	233.5	WSRC. 1996d							
T18W1A	48773.1	40275.2	244.4	WSRC. 1996d							
USGS-MP	98367.1	-8045.7	245	Falls, 1998							
VG-1	11543.5	17064.2	156.6	Bechtel, 1982							
VG-7	28828.3	5392.8	250.6	Bechtel, 1982							
VG-8	-12412.6	22580.5	103.7	Bechtel, 1982							
YSC-1A	78039.9	65438.93	268.9	WSRC, 1996d							
YSC-1C	78186.24	65855.46	272.5	WSRC, 1996d							
YSC-2A	78311.53	66100.08	281.7	WSRC, 1996d							
YSC-3SB	77680	65920	277	WEGS. 1990							
YSC-4A	77050.08	65883.5	287.5	WSRC, 1996d							
YSC-5A	74295.9	67134.9	273	WSRC, 1996d							

1---

Notes:

Арг	pendix B-1: Lo	ocations of s	Sites withir	the Model	Area (Continue	d)
		SRS	SRS	Surface		
	Well ID	(ft)	(ft)	(ft m.s.l.)	Reference ¹	

ft - feet

ft m.s.l. - feet above mean sea level

1 - Detailed description of references in Appendix D

. .

.

		Appen	dix $B-2$: Hydi	rostrat	igraph	ic Bou	ndarie	S		
		TC	CZ	LA	Z	GC		GA	U Densh (fi	MB	CS
Well ID	Surface	Elev. (ft	Depth (ft	Elev. (ft	Depth (ft	Elev. (ft msl)	Depth (It	Elev. (It msl)	Depth (It	Elev. (II msl)	
	(ft m.s.l.)		0.g.i.)	111.5.1.)	0.g.1.)	m.s.r. <i>)</i>	0.5.1.)	m.s.r.,	0.5.1.7	111.511.7	o.g,
											L
	200.7	100	01	100	100	121	150	122	167	11	218
BGO-3A	288.7	198	91			151	1,10	1			
BGO-5C	294.2	218	70	201	93	121	162	120	161		
BGO-6A	283.8	210	/+	195	02	121	105	120	167		
BGO-6B	284.5	203	82	192	93	137	140	12.2	162	<u>.</u>	
BGO-8A	281.3	213	08	199	82	130	151	120	101		
BGO-9AA	282.8	224	59	211	12	1.35	148	172	158		
BGO-10A	299.1	209	90	207	92	131	168	124	1/5		
BGO-10AA	298.8	219	80	207	92	130	169	126	173		ļ
BGO-12A	311.4	199	112	186	125	137	1/4	132	179		
BGO-14A	300.2	220	80	212	88	133	107	127	173		
BGO-16A	302.8	196	107	183	120	131	1/2	120	1//		<u>├</u> ───┤
BGO-18A	292.9	194	99	199	94	151	102	120	107	13	228
BGO-20AA	280.9	206	15	194	8/	123	130	114	107	4.5	2.10
BGO-25A	294.7	212	83	201	94	138	157	128	107		
BGO-26A	285.1	219		203	00	155	132	129	1.50		
BGO-27C	273.9	199	13	192	02	121	120	112	1 10		<u> </u>
BGO-29A	202.1	190	72	185	83	124	150	11.5	147		
BCO-31C	271.1	200	73	100	86						
BCO-35C	271.4	200	67	191	7.1						
BG0-37C	271.4	199	85	191	93						
BGO-39A	204.5	204	90	202	92	113	181	102	192	29	265
BGO-41A	298.3	217	81	208	90	138	160	131	167		
BGO-42C	295.9	216	80	209	87						
BGO-43AA	312.2	195	117	187	125	135	177	127	185		
BGO-44AA	283.3	222	61	199	84	131	152	120	163		
BGO-45A	276.9	207	70	201	76	134	143	130	147		
BGO-46B	263.4	199	64	193	70	128	135	126	137		
BGO-47A	264.8	198	67	190	75	131	134	125	140		
BGO-48C	274.7	198	77	192	83						
BGO-49A	269.1	201	68	192	77	119	150	115	154		
BGO-50A	253.5	194	60	184	70	133	121	129	125		
BGO-51AA	287.2	205	82	194	93	107	180	93	194	32	255
BGO-52AA	281.6	207	75	197	85	125	157	116	166	18	264
BGO-53AA	288.9	223	66	216	73	138	151	132	157	29	260
BGT-1	282.9	222	61	208	75						
BGT-2	276.4	213	63	198	78	ļ		<u> </u>	ļ	ļ	<u> </u>
BGT-3	275.7	212	64	198	78	143	133	141	135	65	211
BGT-4	259.2	213	46	204	55	149	110				
BGT-5	225.7	214	12	206	20	154	72	146	80	72	154
BGT-6	282.2	218	64		ļ	ļ	ļ	ļ			
BGT-7	276.4	212	64	199	77		1			<u> </u>	
BGT-8	249.3	221	28	217	32	149	100	1	02	61	142
BC1-9	226.0	210	16	205		149		1+1	83		102
BGT-10	215.2	201	14	194		156	29		08		1 155
BGT-11	222.5	ND	ND	223		151	1 12	1-46	<u> </u>	80	1 100
BGT-12	284.2	225	59	214			 		 		
BCI-13	287.8	224		216				<u> </u>			
BUI-14	280.7	213	60	209		150	1.10			<u> </u>	
DUI-13	211.3	209	09	201	·····	150	120				
10G1-10	250.7	11	1	1	J	1. 151	1 100	<u>'I</u>	1	J	

•

WSRC-TR-98-00285, Rev. 0. Hydrogeological and Groundwater Model for C. K. L. and P Areas

Appendix B-2: Hydrostratigraphic Boundaries (Continued)											
		TC	CZ	L	Z	GC	CU	GA	U	MBCS	
Well ID	Surface	Elev. (ft	Depth (ft	Elev. (ft	Depth (ft						
	Elevation	m.s.i.)	D.g.I.)	m.s.i.)	0.g.i)	111.5.1.)	0.g.i.)	111.5.1.)	0.g.1.)	111.5.1.)	0.g 1.7
	(11 11.5.1.)										
									_		
BGT-17	240.7					150	91				
BGT-18	216.5	abs.	abs.	217	0	162	55	147	70	55	162
BGT-20	.159.5	abs.	abs.	abs.	abs	151	9	140	20	70	90
BGT-21	294.2	223	71	216	78						
BGT-22	281.0	231	50	216	65	126	155	114	167	53	228
BGT-23	270.0	216	54	210	60						
BGT-24	265.8	227	39	220	-46						
BGT-25	264.8	229	36	224	-41						
BGT-27	256.9	217	40	207	50	152	105				
BGT-28	258.3	216	42	194	64	156	102	150	108	-18	210
BGT-29	243.0	219	24	215	28						
BGT-30	219.0				<u>_</u>	147	72	141	78		
BGT-31	308.8	220	89	215	94						ļ
BGT-32	310.1	237	13	234	/6						ļ
BGT-33	290.4	239	51	223	67						
BGT-34	286.8	228	59	218	69						
BGT-35	267.7	217	51	212	50	1.10	112				
BGT-36	261.4	220	35	215	40	148	113				
BGT-37	251.6	222	30	215	37	133	119				
BO1-40	332.3	209	123	203	129	1.10	170	1 12	186	. <u> </u>	
BU1-41	320.4	224	104	219	103			14-	100		
BU1-42	310.9	205	77	219	76						
BUT-43	277.1	203	12	201	67						
BG1-44	270.2	214	62	209		150	125		1		
BCI-45	285.3	218	07	209	105	130	155	125	185		
BGT-40	310.0	213	97	203	105	134	170	123	189		
BCT 18	317.3	214	105	209	107		100		107		
BCT 10	207.3	217	75	207	83	135	162	126	171		
BGT-50	296.3	221	75	214	82	132	16-	124	172		
BGT-50	270.5	193	80	186	87						
BGT-53	278.3	200	78	191	87	120	158	109	169	32	246
BGT-54	280.0	205	75	196	84						· · · ·
BGT-56	267.9	187	81	175	88	<u> </u>			<u> </u>		
BGT-57	259.4	179	80	169	90		-				<u> </u>
BGT-58	285.8	192	94	190	96	112	174	103	183		
BGT-59	281.9	182	100	173	109			<u> </u>	1		
BGT-60	291.4	186	105	176	115						
BGT-61	284.3	184	100	178	106	108	176	101	183		
BGT-62	282.0	. 190	92	176	106						
BGT-63	293.7	195	99	189	105						
BGT-63A	290.8	198	93	194	97						
BGT-64	283.3	195	88	188	95	123	160				
BGT-66	244.0) 195	49	188	56						
BGT-67	242.0	186	57	17-	69	135	107	128	115	27	215
BGX-1A	289.1	211	78	198	91	132	157	127	162		
BGX-2B	289.2	216	5 73	198	91	140	149	127	162		<u> </u>
BGX-4A	288.8	225	64	213	76	130	159	124	165		
BGX-7D	277.1	225	52	220	57	157	120	144	133		
BGX-9D	277.4	207	70	202	2 75	139	138	131	146		

1 55

	Appen	aix B-4	x B-2: Hydrostraugraph			The Boundaries (Continued						
	ļ	TC	CZ	LA	Z	GC		GA		MB	CS	
Well ID	Surface	Elev. (ft	Depth (ft	Elev. (ft	Depth (ft	Elev. (It	Depth (It	mel	Depin (It	msl)	Depin (II	
	Elevation (ft m c l)	m.s.l.)	b.g.i.)	m.s.i.)	0.g.i.)	m.s.i.)	0.g.i.i	111.5.1.7	0.g.i.)	111.5.1.)	0.5.1.7	
	(11 11.5.1.)											
											,	
BGX-11D	273.8	193	81	177	97	126	148	117	157			
BRR-ID	293.8	195	99									
BRR-3D	289.5	208	82	194	96							
BRR-6B	293.9	178	116	166	128	123	171	108	186			
BRR-7B	289.6	202	88	190	100	135	155	122	168			
BRR-8B	276.7	205	72	200	77	131	146	126	151			
CCRIA	287.1	176	112	162	125							
CED-1	267.1	188	81	179	90	111	158	107	162	-45	314	
	208.8	180	78	173	85	03	165	89	169	28	230	
CFD-3	237.0	167	81	175	99	97	105	90	158		253	
CHD-18	240.5	210	77	107	90	95	197	87	200	-10	297	
CMP-30D	280.5	210	35	202	50	100	152	93	159			
CIVIP-32B	201.7		120	156	120	96	192	87	199		294	
	203.1	100	120	1.00	106	106	1/0			 		
CRP-SDR	2/4.0	163	105	113 1	100	0.1	107	92	177	<u> </u>		
CKP-9D	208.4	103	105	143.4	123					╂────		
CSD-4D	300.5	130	137	217	173	1.10	163					
FAC-ISB	312.2	224	102	202	9.5	147	105	126	191	67	250	
FCH-1	310.0	214	103	102	02	1.12	1/3	120	159	58	231	
FCH-2	200.7	213	100	197	111	142	147	131	176	59	248	
FCH-3	207.5	197	100	190		170	170	121	170	+2	256	
FCH-4	297.3	197	88	107	93	120	155	128	156	36	248	
FCH-5	204.2	190	103	191	110	121	168	120	171	25	267	
FCH-0	291.3	107	103	10_	100	121	172					
FIW-IMC	293.3	190	103	10.	100	121	172	117	17.1			
FIW-2MA	290.3	208	7.1	202	80	151	170	138	145			
ENIR 3A		200	71	202	75	146	136	140	142	<u> </u>		
ESP DC	230.8	161	70	157	7.1							
ESD ITA	250.0	101	8.1	187	88	117	158	115	160	24	251	
FSD-TTA	213.4	abs	ahs	ahs	ahs	121	171	117	175			
ESD 70A	271.5	163	108	1.17	121	105	166	100	171	+		
F3D-70A	270.3	103	100	147	57	103	113	100		18	198	
FSB-79A	210.1	1/3	4.5	104	52	10,5	11.0	100	110			
FSB-87A	285.6	176	110	173	113	115		109	1//	<u> </u>		
FSB-89C	279.1	186	93	180	99		<u> </u>	 	ļ			
FSB-91C	277.0	168	109	161	116	-		ļ			<u> </u>	
FSB-93C	274.0	160	108	151	123		<u> </u>	<u> </u>				
FSB-95C	281.8		108	158	124	100	160	101	177	,		
FSB-96A	2/7.7			104	124	109	109	101	177	7	<u> </u>	
FSB-97A	283.8	16.	121	152	132		173	107	177	<u> </u>		
FSB-98A	280.7	172	109	160	121	109	1/2	107	1/-	<u>}</u>		
FSB-99A	285.3	3 178	107	173	112				173	<u></u>		
FSB-100A	283.8	8 185	99	183	101	118	160		1/0	<u> </u>		
FSB-101A	282.9	191	92	183	100		16-		10/	<u>'</u>		
FSB-112A	227.0	164	63	144	83	103	12-	98	129	4		
FSB-113A	221.3	3 178	3 43	171	5(109	<u>112</u>	104	117	/ 22	2 199	
FSB-114A	250.0	178	3 72	2 173	77	11-	136	110	140	リ		
FSB-115C	205.8	3 181	25	165	i <u>4</u> 1	101	105	86	120) (5 200	
FSB-116C	200.1	5 176	5 25	171	30	2			ļ			
FSB-120A	278.0	181	97	165	i <u>11</u> .	3 112	2 160	6 110	168	3		
FSB-121C	254	4 17.	8 81	162	91	2						

continued) J. D 3. II.J 4. . .

the second s

سيستشقط ويساسب والمراديات

	Appen	Appendix D-2: Hydrostratigraph		ine Boundaries (Continued				,			
		TC	CZ	LA	Z	G	CU	GA	U	MB	CS
Well ID	Surface Elevation (ft m.s.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.gl)
FSB-122C	216.0	164	52	148	68	104	112				
FSB-123C	236.3	183	53	172	64						_
GAPWR-TW-1	219.0	151	68	143	76	87	132	55	164	-31	250
HAA-ITA	290.2	208	83	204	86	117	173	110	181		
HAA-2AA	291.4	190	102	186	106	125	167	119	173	.30	262
НАА-ЗАА	274.5	191	84	179	96	128	147	123	152	10	265
HAA-4AA	299.2	202	97	194	106	125	175	119	181		
НАА-6АА	279.8	210	70	183	97	125	155	120	160	23	257
HC-12A	287.3	195	92	190	97						
HCA-4AA	308.6	234	75	230	79	124	185	117	192		
HCH-I	284.0	202	82	187	97	135	149	126	158	18	266
НСН-2	270.9	196	75	180	91	131	140	123	148	0	271
HCH-3	264.0	197	67	179	85	130	134	123	141		
НСН-4	269.9	193	77	183	87	123	147	114	156	1	
HCH-5	255.0	192	63	180	75	123	132	119	136	-10	265
HIW-IBD	275.8	205	71								
HIW-IMC	272.3	187	86	180	93	· -					
HIW-2A	276.3	202	75	195	81	116	160	110	166		
HIW-2MC	269.0	199	70	194	76	1					
HIW-4MC	263.4	197	66	190	73	112	151				
HIW-5MC	266.1	184	82	178	88						
HMD-IC	262.7	229	34	226	37	139	124	127	136		
HMD-2C	259.3	222	37	216	-43	143	116	138	121		
HMD-3C	257.2	223	34	218	39	154	103	149	108		
HMD-4C	248.5	224	25	220	29	153	96	1-11	108		
HPC-1	293.5	195	99	188	106	116	178	110	184	28	266
HPT-1A	232.9	ND	ND	NÐ	ND	119	114	115	118	53	180
HPT-2A	257.8	ND	ND	ND	ND	121	137	118	140	57	201
HSB-PC	227.8	188	40	178	50						
HSB-TB	267.1	207	60	199	68	110	157	106	161	9	258
HSB-65A	270.7	204	67	199	72	119	152	113	158		
HSB-68A	247.4	198	49	193	54	116	131	110	137		
HSB-69A	234.1	187	47	181	53	115	119	112	122		
HSB-83A	234.9	195	40	188	-47	114	121	104	131	12	223
HSB-84A	226.7	205	22	181	46	119	108	111	116		
HSB-85A	292.1	204	88	200	92	126	166	119	173	ļ	
HSB-86A	260.0	185	75	178	82	112	148	109	151		
HSB-101C	256.3	195	61	189	67	<u> </u>		ļ			
HSB-103C	245.2	195	50	181	64		<u> </u>				
HSB-104C	245.5	194	52	185	61	ļ	<u> </u>		<u> </u>		
HSB-105C	247.2	190	57	183	64		ļ	ļ		ļ	
HSB-106C	250.7	192	59	184	67					ļ	
HSB-107C	259.3	199	60	191	68	<u></u>					
HSB-109C	259	203	56	189	70	<u> </u>	ļ				<u> </u>
HSB-110C	253	192	61	188	65	<u> </u>	<u> </u>			ļ	<u> </u>
HSB-111C	253.7	188	66	172	82	·	 		<u> </u>	ļ	
HSB-112C	252.6	191	62	186	67	<u> </u>		<u> </u>	<u> .</u>	<u> </u>	
HSB-113C	258.7	188	71	174	85	'		<u> </u>			ļ
HSB-115C	266.8	209	58	197	70	1	<u> </u>		1		ļ
IHSB-117A	234.8	SII 216	ı 19	n 192	43 43	ij 123	6J 112	ij 117	1 118	1	1

Appendix B-2: Hydrostratigraphic Boundaries (Continued)

	Appen	dix B-2	2: Hyd	rostrat	igraph	ic Bou	ndarie	s (Con	tinued)	
		TC	CZ	Lá	AZ	GC	CU	G	AU In i a	ME	BCS
Well ID	Surface Elevation	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.g.l.)	Elev. (ft m.s.l.)	Depth (ft b.gl)
	(ft m.s.l.)		0.5,	,	0.9,	,	u.g.u.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		l									
	245.0	107	42	172	72	110	126		121		
HSB-118A	245.0	183	02	1/5	/2	119	120	11-+	1.51	,	
HSB-119A	254.8	213	+2	195	00	112	140	111	1++		
HSB-120A	266.0	203	63	196	/0	112	154	110	150		
HSB-121A	272.3	197	/5	184	88	113	159	109	103		
HSB-122A	269.4	188	81	1//	92	110	159	108	101		
HSB-123A	263.6	190	08	180	/8	114	150	108	150		
HSB-124A	263.9	abs.	abs.	abs.	abs.	118	1+0				
HSB-132C	238.3	103	/5	158	80	110	112	115	117		
HSB-139A	231.5	190	42	1/9	53	119	113	115	117		
HSB-140A	234.0	194	40	181	53		123	105	129		
HSB-141A	252.6	181	72	167	86	119	1.54	- 113	140		
HSB-142C	201.6	abs.	ads.								
HSB-143C	220.1	198	22	179	41						
HSB-144A	233.6	186	48	179	55	109	125	104	130		
HSB-145C	233.7	184	50	175	59						
HSB-146A	249.5	174	76	163	87	119	131	112	138		
HSB-148C	248.9	187	62	171	78						
HSB-151C	211.6	193	19	183	29						
HSB-152C	212.1	198	14	186	26						
HSL-6AA	274.6	174	101	169	106	126	149	121	154	9	266
HSL-8AA	286.7	193	94	186	101	137	150	129	158		
IDB-2A	302.4	245	57	228	74	142	160	138	16-4	-13	316
IDP-3A	282.2	190	92	182	100	161	121	140	142	73	209
IDQ-3A	203.2	abs.	abs.	203	0	132	71	124	79	55	148
KAC-9D	260.2	170	91	159	102	95	165	89	171		
LAC-5DL	239.8										
LAC-6DL	239.8										
LAC-7DL	239.4										
LAC-8DL	234.0	207	27	196	38						
LCO-5A	230.0	150	80	141	89	78	152	66	164		
LCO-5DL	230.3										
LCO-8DL	243.4										
LFW-10SB	168.4	abs.	abs.	abs.	abs.	abs.	abs.	168	0	44	124
LWN-ISB	282.5	162	121	151	132	132	151	119	164		
LWN-2SB	231.0	168	63	151	80	90	141	82	149		220
LWN-3SB	245.7	165	81	156	90	96	150	89	157	12	234
LWR-2SB	248.1	177	71	167	81	146	102	131	117	17	231
LWR-3SB	249.1	178	72	162	88	95	154	86	163	12	238
LWK-4SB	293.8	178	116	165	129	104	190	96	198	⁷	287
LWR-9SB	238.2	179	59	161	77	110	128	108	130		ļ
M121A	303.7	155	149	139	165	89	215	74	230	-5	309
MWD-1A	327.5	218	110	211	117	133	195	130	198	22	306
NPN-IA	335.9	235	101	224	112	110	226	105	231	2	334
OFS-1SB	261.6	196	66	186	76	129	133	126	136		
OFS-2SB	257.5	198	60	188	70	125	133	121	137		
OFS-3SB	258.1	196	62	185	73	125	133	120	138		
OFS-4SB	258.7	196	63	192	67	127	132	122	137		
OFS-5SB	228.7	189	40	178	51	122	107	117	112		
P-I3TA	252.4	108	144	86	167	32	220	10	243	-103	355
P-14TA	294.4	213	81	203	92	139	155	131	163	26	269

.

.

							MBCS				
		Flay (ft	CZ Danth (ft	Elev (ft	Denth (ft						
Well ID	Elevation (ft m.s.l.)	m.s.l.)	b.g.l.)	m.s.l.)	b.g.l.)	m.s.l.)	b.g.l.)	m.s.l.)	b.g.l.)	m.s.l.)	b.g.l.)
D 19TA	206.0	175	122	167	130	91	206	86	211	-17	314
P-181A	290.9	1/5	102	107	123	120	178	111	181	-56	353
P-191A	297.4	193	10.5	1/4	12.	8.1	201	75	213	-10	298
P-201A	287.7	101	127	134	130	10	160	7.,	221	115	322
P-211A	207.0	99	108		114	+0	100	-24	201		-'
P-22TA	215.4	158	57	14/	69	37	178	-19	234	-91	300
P-23TA	181.5	140	42	129	33	89	9.5	38	211		251
P-24TA	313.3	193	121	181	132	115	198	99	214	-40	254
P-25TA	265.1	145	120	1.36	129	100	165	95	1/1	15	200
P-26TA	152.2			152	0	71	81	65	8/	14	1.58
P-27TA	274.1	180	94	169	105	129	145	127	14/	49	223
P-28TA	285.6	215	71	211	75	141	145	133	153	6-1	222
PBF-3	316.7	138	179	137	180	79	238	50	267	-23	.540
PBF-4	208.1	153	55	129	79	66	142	41	167	-32	240
PBF-5	240.6	153	88	143	98	103	138	78	163	6	235
PBF-6	92.5	abs.	abs.	abs.	abs.	abs.	abs.	93	0	-2	95
PBF-7	285.4	184	101	174	111	118	168	114	172	-55	340
PBF-8	292.0	196	96	173	119	114	178	110	182	-44	336
PPC-1	313.3	187	126	168	145	120	193	106	208	-56	370
RCP-1A	294.8	152	143	140	155	83	212	78	217		
RSF-1	300.8	153	148	144	157						
RSF-2	300.3	172	128	163	137						
ŘŠF-3	304.8	140	165	129	176						
SDS-21	251.0	205	47	199	53	163	89	1-18	104		ļ
SDS-22	283.0	191	93	188	96	1-19	134	138	145		
SSW-1	311.3	195	116	175	136	126	185	123	188	12	300
SSW-2	167.3	abs.	abs.	167	0	109	59	96	72	-10	177
SSW-3	178.7	139	40	134	45	89	90	84	95	L	
TI8NIA	258.4	135	123	121	138	82	177	74	185	-12	270
TI8SIA	233.5	137	97	124	110	96	138	71	163	+	238
T18W1A	244.4	164	81	139	106	94	150	84	160	-26	270
USGS-MP	245.0	178	67	172	73	133	112	113	132	80	165
VG-I	156.6	60	97	47	110	-1	158	-80	237	-198	355
VG-7	250.6	105	146	90	161	39	212	-32	283	-123	374
VG-8	103.7	24	80	6	98	-38	142	-117	221	-239	343
YSC-1A	268.9	210	59	199	70	159	110	154	115	69	200
YSC-IC	272.5	215	58	213	60	164	109	157	116		
YSC-2A	281.7	220	62	215	67	162	120	151	131		
YSC-3SB	277.0	211	66	205	72	149	128	140	137		
YSC-4A	287.5	223	65	214	74	160	128	145	143	87	201
YSC-5A	273.0	221	52	209	64	136	137	128	145		

Appendix B-2: Hydrostratigraphic Boundaries (Continued)

Notes:

TCCZ - Tan Clay Confining Zone

LAZ - Lower Aquifer Zone

GCU - Gordon Confining Unit

GAU - Gordon Aquifer Unit

MBCS - Meyers Branch Confining System

ft m.s.l. - feet above mean sea level

ft b.g.l. - feet below ground level

Blank field indicates unit not penetrated

ND - Unit boundary not delineated

abs. - Unit absent

App	endix C-1.	Permeabili	ity Values	Recorded fr	om Pumping Tests	(Continued)
Pumped Well	Observation Well	Test Interval Top (ft b.g.l.)	Test Interval Bottom (ft b.g.l.)	Permeability (ft/day)	Analysis Method	Reference ¹
FSB-PC	FSB-25PC	75.1	125.0	0.80	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-50PC	75.1	125.0	1.40	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-79C	75.1	125.0	3.00	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-100PC	75.1	125.0	2.10	Aqetsolv (Hantush leaky)	WSRC, 1995b
FSB-PC	FSB-103C	75.1	125.0	3.60	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-106C	75.1	125.0	3.40	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-110C	75.1	125.0	1.20	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PC	FSB-150PC	75.1	125.0	1.30	Aqetsolv (Hantush leaky)	WSRC. 1995b
FSB-PD	FSB-25PD	37.3	81.0	46.40	Aqetsolv (Neuman method)	WSRC. 1995b
FSB-PD	FSB-50PD	37.3	81.0	62.50	Aqetsolv (Neuman method)	WSRC, 1995b
FSB-PD	FSB-100PD	37.3	81.0	48.30	Aqetsolv (Neuman method)	WSRC, 1995b
FSB-PD	FSB-150PD	37.3	81.0	49.20	Aqetsolv (Neuman method)	WSRC. 1995b
FSB-76A	FSB-76A	244.1	254.6	1.29	Jacob Semi- Logarithmic	Woodward-Clyde, 1985a
FSB-78A	FSB-78A	233.0	243.4	0.82	Jacob Semi- Logarithmic	Woodward-Clyde. 1985a
FSB-79A	FSB-79A	181.6	192.0	142.90	Jacob Semi- Logarithmic	Woodward-Clyde. 1985a
FSB-87A	FSB-87A	242.0	252.5	51.02	Jacob Semi- Logarithmic	Woodward-Clyde. 1985a
HPT-1A	DRB-6WW	127.0	178.0	1.47E-04	Hantush-Jacob	CH2M Hill, 1989
HPT-1A	HC-10A	127.0	178.0	1.26E-03	Hantush-Jacob	CH2M Hill, 1989
HPT-1A	HPT-2A	127.0	178.0	2.86E-04	Hantush-Jacob	CH2M Hill, 1989
HSB-PC	HSB-25PC	57.0	110.6	0.90	Hantush-Jacob	WSRC. 1995b
HSB-PC	HSB-50PC	57.0	110.6	1.30	Hantush-Jacob	WSRC, 1995b
HSB-PC	HSB-100PC	57.0	110.6	1.30	Hantush-Jacob	WSRC, 1995b
HSB-PC	HSB-130C	57.0	110.6	1.00	Hantush-Jacob	WSRC, 1995b
HSB-PC	HSB-137C	57.0	110.0	1.10	Hantush Jacob	WSRC, 19956
HOD (CA	Insp-150PC	37.0	110.0	1.20	Isaah Sami	Woodword Clude
H2B-02A	HSB-05A	197.5	208.2	1./4	Logarithmic	1985b
HSB-68A	HSB-68A	189.4	199.9	1.13	Jacob Semi- Logarithmic	Woodward-Clyde, 1985b
HSB-83A	HSB-83A	158.9	169.7	10.48	Logarithmic	1985b
HSB-84A	HSB-68A	150.8	162.0	33.80	Aqtesolv (Non-Leaky	heis)
HSB-84A	HSB-69A	150.8	162.0	17.29	Aqtesolv (Non-Leaky	Theis)

C-1

C-2 WSRC-TR-98-00285. Rev. 0, Hydrogeological and Groundwater Model for C. K. L. and P Areas

Арре	Appendix C-1. Permeability Values Recorded from Pumping Tests (Continued)								
		Test	Test						
		Interval	Interval						
Pumped	Observation	Тор	Bottom	Permeability					
Well	Well	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	Analysis Method	Reference			
HSB-84A	HSB-83A	150.8	162.0	39.72	Aqtesolv (Non-Leaky Th	neis)			
HSB-84A	HSB-86A	150.8	162.0	34.25	Aqtesolv (Non-Leaky Th	neis)			
HSB-84A	HSB-118A	150.8	162.0	39.12	Aqtesolv (Non-Leaky Th	neis)			
HSB-84A	HSB-139A	150.8	162.0	27.88	Aqtesolv (Non-Leaky Th	neis)			
HSB-85A	HSB-85A	221.0	231.0	8.72	Aqtesolv (Non-Leaky Th	neis)			
HSB-86A	HSB-86A	186.1	196.9	5.46	Aqtesolv (Non-Leaky Th	neis)			
HSB-101C	HSB-101C	80.0	90.0	1.68	Hantush and Jacob	Evans, 1991			
					(1955) Leaky Artesian				
					Solution				
YSC-1A	YSC-1A	132.0	192.1	62.00	Cooper-Jacob	WEGS, 1990			
YSC-1A	YSC-1A	132.0	192.1	37.00	Recovery	WEGS. 1990			
YSC-1A	YSC-1A	132.0	192.1	22.00	Theis	WEGS. 1990			
YSC-1A	YSC-1A	132.0	192.1	52.00	WHIP(Recovery)	WEGS. 1990			
YSC-1A	YSC-1A	132.0	192.1	57.00	WHIP(Theis)	WEGS. 1990			
YSC-1A	YSC-4A	132.0	192.1	40.00	Theis Non-Eq.	WEGS. 1990			
YSC-1A	YSC-4A	132.0	192.1	43.00	WHIP(Theis)	WEGS. 1990			
YSC-1A	YSC-4A	132.0	192.1	47.00	WHIP(Recovery)	WEGS. 1990			
YSC-1A	YSC-4A	132.0	192.1	52.00	Recovery	WEGS. 1990			

Notes:

ft b.g.l. - feet below ground level

ft/day - feet per day

1 - Detailed description of references in Appendix D

	Appendix C-2. Permeability Values Recorded from Slug Tests										
	Screen Top	Screen Bottom	Permeability								
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	Solution Method	Test Type	Reference ⁺					
BGO-1D	48	68	0.31	Bouwer-Rice 1976	Falling Head	S&ME. 1988					
BGO-3A	175	185	3.25142	Bouwer-Rice	Rising Head	Amidon. 1995					
BGO-3A	175	185	5.191	Bouwer-Rice	Falling Head	Amidon. 1995					
BGO-3D	51.7	71.8	0.14	Bouwer-Rice 1976	Falling Head	S&ME. 1988					
BGO-5C	101	111	0.13	Hvorslev	Falling Head	S&ME, 1988					
BGO-6A	166.3	176.3	0.77	Hvorslev	Falling Head	S&ME. 1988					
BGO-8A	166	176	0.21	Hvorslev	Falling Head	S&ME. 1988					
BGO-10A	178	188	0.16	Hvorslev	Falling Head	S&ME. 1988					
BGO- 10AA	208	218	0.43	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-12A	195	205	0.005	Hvorslev	Falling Head	S&ME. 1988					
BGO-14A	180.6	190.6	0.04	Hvorslev	Falling Head	S&ME. 1988					
BGO-16A	190.3	200.3	0.15	Hvorslev	Falling Head	S&ME. 1988					
BGO-18A	183.4	193.4	11.98	Hvorslev	Falling Head	S&ME. 1988					
BGO-21D	45.3	65.3	0.79	Bouwer-Rice 1976	Falling Head	S&ME. 1988					
BGO-23D	45	65	1.11	Bouwer-Rice 1976	Falling Head	S&ME. 1988					
BGO-25A	180.6	190.6	0.5	Hvorslev	Falling Head	S&ME. 1988					
BGO-41A	185	195	0.13	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-42C	100	110	0.45	Bouwer-Rice 1976	Falling Head	WSRC, 1992a					
BGO- 43AA	240	250	0.86	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO- 44AA	212	222.1	4.36	Bouwer-Rice 1976	Falling Head	WSRC, 1992a					
BGO-45A	150	160	2.45	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-46B	113	123	2.33	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-47A	168	178	3.07	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-48C	88	98	2.15	Bouwer-Rice 1976	Falling Head	WSRC. 1992a					
BGO-49A	184	194	0.49	Bouwer-Rice 1976	Falling Head	WSRC, 1992a					
BGO-50A	153	163	0.4	Bouwer-Rice 1976	Falling Head	WSRC.					

•

<u>C-4</u>

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for C. K. L. and P Areas endix C-2 Permeability Values Recorded from Slug Tests (Continued)

Appendix C-2. Permeability Values Recorded from Slug Tests (Continued)								
	Screen Top	Screen Bottom	Permeability					
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	Solution Method	Test Type	Reference ¹		

						1992a
BGO- 51AA	248	263.6	0.7762	Bouwer-Rice 1976	Rising Head	Amidon. 1995
BGO- 51AA	248	263.6	1.188	Bouwer-Rice 1976	Falling Head	Amidon. 1995
BGO- 52AA	235	247.8	0.8996	Bouwer-Rice 1976	Rising Head	Amidon. 1995
BGO- 52AA	235	247.8	8.15	Bouwer-Rice 1976	Falling Head	Amidon. 1995
BGO- 53AA	240	250	1.11744	Bouwer-Rice 1976	Falling Head	Rust, 1996
BGX-1A	165	175.02	0.01	Bouwer-Rice 1976	Falling Head	WSRC. 1991a
BGX-2B	142	151.95	0.21	Bouwer-Rice 1976	Falling Head	WSRC. 1991a
BGX-4A	172	182	1.83	Bouwer-Rice 1976	Falling Head	WSRC. 1991a
BGX-7D	63	83.03	20.38	Bouwer-Rice 1976	Rising Head	WSRC. 1991a
BGX-9D	45	65.01	0.36	Bouwer-Rice 1976	Rising Head	WSRC. 1991a
CMP-30B	172.2	195.5	1.1	Bouwer Rice	Rising Head	WSRC. 1996c
CMP-30B	172.2	195.5	1.4	Bouwer Rice	Falling Head	WSRC. 1996c
FSB-89C	113	123	0.524	Hvorslev	Falling Head	WSRC, 1991d
FSB-91C	117.9	127.9	0.141	Hvorslev	Falling Head	WSRC. 1991d
FSB-93C	122	132	5.27	Hvorslev	Falling Head	WSRC. 1991d
FSB-97A	188	198	0.852	Hvorslev	Falling Head	WSRC. 1991d
FSB-101A	180	190	33.2	Hvorslev	Falling Head	Sirrine, 1987
FSB-112A	136	146	1.7	Bouwer-Rice 1976	Rising Head	WEGS. 1991
FSB-113A	130	140	0.62	Bouwer-Rice 1976	Rising Head	WEGS. 1991
FSB-114A	145	155	0.44	Bouwer-Rice 1976	Rising Head	WEGS. 1991
FSB-115C	32	42	0.36	Bouwer-Rice 1976	Rising Head	WEGS, 1991
FSB-116C	30	40	0.69	Bouwer-Rice 1976	Rising Head	WEGS, 1991
FSB-120A	169	179	0.65	Bouwer-Rice 1976	Rising Head	WEGS. 1991
FSB-121C	96	106	11	Bouwer-Rice 1976	Rising Head	WEGS. 1991
FSB-122C	46	56	2.6	Bouwer-Rice 1976	Rising Head	WEGS, 1991
FSB-123C	71	81	6.7	Bouwer-Rice 1976	Rising Head	WEGS.

Арр	Appendix C-2. Permeability Values Recorded from Slug Tests (Continued)									
Well ID	Screen Top (ft b.g.l.)	Screen Bottom (ft b.g.l.)	Permeability (ft/day)	Solution Method	Test Type	Reference ¹				
						1991				
HAA-1TA	310	320	0.548	Bouwer-Rice 1976	Rising Head	WSRC.				
HAA-ITA	310	320	0.786	Bouwer-Rice 1976	Falling Head	WSRC.				
HAA-2AA	252	262	19.858	Bouwer-Rice 1976	Rising Head	WSRC.				
HAA-2AA	252	262	30.6552	Bouwer-Rice 1976	Falling Head	WSRC.				
НАА-ЗАА	258	268	0.3229	Bouwer-Rice 1976	Rising Head	1995a WSRC.				
	258	268	0.504	Bouwer Rice 1976	Falling Head	1995a WSRC				
паа-заа	238	208	0.504	Douwer-Rice 1970		1995a				
HAA-6AA	244	254	0.224	Bouwer-Rice 1976	Rising Head	1995a				
НАА-6АА	244	254	0.2587	Bouwer-Rice 1976	Falling Head	WSRC. 1995a				
HCA-4AA	265	275	13.1717	Bouwer-Rice 1976	Rising Head	WSRC. 1995a				
HCA-4AA	265	275	13.78	Bouwer-Rice 1976	Falling Head	WSRC.				
HSB-69A	141	151	8.79	Hvorslev	Rising Head	WSRC.				
HSB-101C	80	90	4	Hvorslev	Falling Head	WSRC.				
HSB-103C	76	86	3.1	Hvorslev	Falling Head	WSRC.				
HSB-105C	85	95	4.3	Hvorslev	Falling Head	WSRC.				
HSB-106C	82	92	24.4	Hvorslev	Falling Head	WSRC,				
HSB-109C	81	91	0.952	Hvorslev	Falling Head	Sirrine, 1988				
HSB-110C	72	82	0.709	Hvorslev	Falling Head	Sirrine, 1988				
HSB-111C	103	113	1.7	Hvorslev	Falling Head	WSRC.				
HSB-112C	102	112	4.2	Hvorslev	Falling Head	WSRC.				
HSB-113C	97	107	0.992	Hvorslev	Falling Head	Sirrine, 1988				
HSB-117A	140	150	0.16	Hvorslev	Falling Head	WSRC.				
HSB-118A	144	154	12	Hvorslev	Falling Head	WSRC. 1991c				
HSB-122A	85.8	94.8	6.8	Hvorslev	Falling Head	Sirrine, 1988				
HSB-132C	60.2	69.2	0.22	Hvorslev	Rising Head	Sirrine, 1988				
HSB-132C	60.2	69.2	0.22	Hvorslev	Falling Head	Sirrine, 1988				
HSR_130A	12/ /	1/12 /	3.20	Hvorsley	Falling Head	Sirring 1988				
HSB-140A	134.4	145.4	12	Bouwer-Rice 1976	Rising Head	WEGS.				
HSB-141A	162	172	1.9	Bouwer-Rice 1976	Rising Head	WEGS.				

C-6

WSRC-TR-98-00285. Rev. 0. Hydrogeological and Groundwater Model for C. K. L. and P Areas

Арр	Appendix C-2. Permeability Values Recorded from Slug Tests (Continued)										
· · · · ·	Screen	Screen									
	Тор	Bottom	Permeability								
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	Solution Method	Test Type	Reference					
HSB-142C	30	40	0.6	Bouwer-Rice 1976	Rising Head	WEGS.					
					-	1991					
HSB-143C	41	51	2.4	Bouwer-Rice 1976	Rising Head	WEGS.					
		-			E E	1991					
HSB-144A	145	155	0.22	Bouwer-Rice 1976	Rising Head	WEGS.					
					e	1991					
HSB-145C	59	69	0.38	Bouwer-Rice 1976	Rising Head	WEGS.					
						1991					
HSB-146A	154	164	9.4	Bouwer-Rice 1976	Rising Head	WEGS.					
					_	1991					
HSB-148C	80	90	1.8	Bouwer-Rice 1976	Rising Head	WEGS.					
						1991					
HSB-151C	31	41	0.8	Bouwer-Rice 1976	Rising Head	WEGS.					
						1991					
HSB-152C	29	59	0.8	Bouwer-Rice 1976	Rising Head	WEGS.					
						1991					
HSL-6AA	246	266	4.2	Bouwer-Rice 1976	Falling Head	WSRC.					
						1995a					
HSL-6AA	246	266	6.7602	Bouwer-Rice 1976	Rising Head	WSRC.					
						1995a					
LAC-5DL	53.6	63.6	0.61	Bouwer-Rice 1976	Rising Head	WSRC.					
		(2)	1.22	D D: 107(D: · YY 1	1996a					
LAC-6DL	52	62	1.33	Bouwer-Rice 1976	Rising Head	WSRC.					
						1996a					
LAC-7DL	52	62	0.27	Bouwer-Rice 1976	Rising Head	WSRC.					
						1996a					
LAC-8DL	43.6	53.6	0.74	Bouwer-Rice 1976	Rising Head	WSRC.					
	100			D: 107(1996a					
LCO-5A	190	200	0.1	Bouwer-Rice 1976	Rising Head	WSRC.					
	45.4		1.00	D	Distant In 1	1990a					
LCO-SDL	45.4	55.4	4.62	Bouwer-Rice 1976	Rising Head	WSRC.					
L CO ODI				Damma Diag 1076	Dising Hard	1990a					
LCO-8DL	55	65	12.17	Bouwer-Rice 1976	Kising Head	WSKC.					
VSC 1C	65	75	2.4	Bouwer Dice	Rising Wood	WEGS					
	05	15	2.4	Douwer-Nice	Kising Head	1990					

Notes:

ft b.g.l. - feet below ground level ft/day - feet per day 1 - Detailed description of references in Appendix D

Appendix C-3. Permeability values Recorded from Laboratory Tests									
	Interval	Interval	Permeability-	Permeability-					
	Тор	Bottom	vertical	horizontal	D.c				
Well ID	(ft b.g.l.)	(It b.g.l.)	(II/day)	(II/day)	Reference				
BGO-3A	162	164	1.14E-05	2.10E-05	Amidon. 1995				
BGO-3A	266.1	267	1.40E-04	2.30E-04	Amidon, 1995				
BGO-9AA	62	63.5	5.68E-05	2.07E-04	WSRC, 1992				
BGO-9AA	137.4	137.7	1.38E-01	1.00E-01	Core Laboratories, 1995				
BGO-9AA	142	142.3	2.27E-02	2.69E-02	Core Laboratories, 1995				
BGO-9AA	158.7	158.8	3.49E-01	2.08E-02	Core Laboratories. 1995				
BGO-9AA	222	223.5	7.67E-05	1.76E-03	WSRC. 1992a				
BGO-10A	220	221.5	3.12E-06	5.96E-05	WSRC. 1992a				
BGO-20AA	268	270	4.26E-06	1.22E-02	RIJST. 1996				
BGO-39A	280.5	282.5	1.36E-03	6.53E-03	RUST, 1996				
BGO-377	88	90	9.66E-02	8.52E-04	WSRC 1992a				
PCO 414	164		2.84E-05	3 69F-04	WSRC 1992a				
BCO 43AA	104	100	8 80E 06	2.44E-05	WSRC 1992a				
BGO-43AA	226	227.5	3.41E-02	2.44E-03	WSRC, 1992a				
BGO-44AA	220	76.8	5.41E-02	2.30E-01	WSRC, 1992a				
BGO-45A	1.44	145	3.40E-03	1.10E-03	WSRC, 1992a				
BGO-45A	144	145	2.04E-04	1.20E-04	WSRC, 1992a				
BGO-47A	145.5		3.41E-03	5.08E-03	WSRC, 1992a				
BGO-49A	/5		3.70E-08	5.20E-05	WSRC, 1992a				
BGO-STAA	298	299.75	2.27E-05	1.11E-05	Amidon, 1995				
BGO-53AA	265	267	2.2/E-05	2.84E-05	RUSI. 1990				
BGT-9	72	/4	8.24E-04	1.70E-03	RUST. 1996				
BGT-9	80	82	8.24E-04	3.12E-03	RUST, 1996				
BGT-11	70	71	3.12E-04	9.90E-04	RUST, 1996				
BGT-11	179.8	179.8	1.16E-04	1.22E-04	RUST, 1996				
BGT-18	175	177	5.96E-05	1.56E-04	RUST. 1996				
BGT-18	192	194	1.99E-03	4.54E-03	RUST. 1996				
BGT-22	55	57	5.68E-06	3.12E-05	RUST. 1996				
BGT-22	165	167	8.52E-04	1.85E-02	RUST, 1996				
BGT-22	275	276	3.41E-05		RUST. 1996				
BGT-28	207.3	208.7	7.10E-05	7.10E-04	RUST. 1996				
BGT-47	108	109	2.84E-03		RUST, 1996				
BGT-47	178	179	5.68E-03	1.68E-02	RUST, 1996				
BGT-53	88	90	5.11E-05	1.70E-05	RUST, 1996				
BGT-53	314	315.6	1.42E-05	1.33E-05	RUST, 1996				
BGT-61	102	104	1.42E-05	4.26E-05	RUST, 1996				
BGT-61	178	179.1	7.67E-06	8.52E-06	RUST. 1996				
BGT-67	57	59	6.82E-02	3.41E-03	RUST. 1996				
BGT-67	112	113	7.67E-05	1.16E-05	RUST. 1996				
BGX-1A	80	82	3.41E-06	2.53E-05	WSRC. 1991a				
BGX-2B	75	77	4.26E-06	1.99E-05	WSRC, 1991a				
BGX-2B	156	156.8	1.85E-05	3.98E-05	WSRC. 1991a				
BGX-4A	65	67	8.24E-06	1.70E-05	WSRC. 1991a				
BGX-7D	123	124.5	6.53E-05		WSRC, 1992a				

pendix C-3. Permeability Values Recorded from Laboratory Tests (Continue										
	Interval	Interval	Permeability-	Permeability-						
	Top	Bottom	vertical	horizontal						
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	(ft/day)	Reference ⁴					
BGX-9D	70	70.8	9.66E-05	3.41E-04	WSRC 1991a					
BGX-9D	102.5	104 5	1 25E-04	4 54E-04	WSRC 1997a					
BGX-11D	94	96	1.14E-03		WSRC 1992a					
BGX-11D	154	156	1.87E-05	9.09E-05	WSRC 1992a					
CPC-1	137.3	137.6	3.42E+00	1.48E+00	Core Laboratories, 1995					
FAC-1SB	170	172	3.12E-05	2.64E-04	WSRC, 1992b					
FCH-1	54.8	56.3	3.69E-02	1.09E-01	WSRC, 1993					
FCH-1	104.8	107.8	2.06E-05		WSRC, 1993					
FCH-1	145.8	146.8	8.78E-04	1.17E-03	WSRC, 1993					
FCH-1	169.8	170.8	1.02E-03		WSRC, 1993					
FCH-1	208.8	211.8	2.07E-05	2.06E-05	WSRC. 1993					
FCH-1	260.3	261.8	7.29E-02		WSRC, 1993					
FCH-2	57.9	59.4	9.46E-05	2.25E-04	WSRC, 1993					
FCH-2	80.1	83.1	2.26E-05		WSRC, 1993					
FCH-2	135.7	138.7	1.94E-05	2.55E-05	WSRC, 1993					
FCH-2	150.1	153.1	2.24E-05		WSRC, 1993					
FCH-2	205.7	208.7	2.38E-05	2.16E-05	WSRC, 1993					
FCH-2	229.4	230.9	1.60E-04		WSRC, 1993					
FCH-3	40.8	41.9	1.46E-04	2.90E-04	WSRC, 1993					
FCH-3	104.8	107.8	6.64E-05		WSRC, 1993					
FCH-3	130.9	132.2	1.52E-03	1.60E-03	WSRC, 1993					
FCH-3	174.8	176	1.55E-03		WSRC, 1993					
FCH-3	199.2	202.2	6.36E-05	6.90E-05	WSRC, 1993					
FCH-3	265.1	266.2	2.05E-04		WSRC, 1993					
FCH-4	33.1	34.7	9.20E-05	2.24E-04	WSRC, 1993					
FCH-4	103.9	106.9	2.98E-05	· · · · · · · · · · · · · · · · · · ·	WSRC, 1993					
FCH-4	120	122.5	1.62E-05	2.11E-05	WSRC, 1993					
FCH-4	174.9	177.4	1.86E-05		WSRC. 1993					
FCH-4	190.5	193.5	2.67E-05	3.27E-05	WSRC, 1993					
FCH-4	262.7	264.3	1.58E-04		WSRC, 1993					
FCH-5	90	93	3.01E-05		WSRC, 1993					
FCH-5	122.2	124.2	1.10E+00	1.52E+00	WSRC, 1993					
FCH-5	160	162	1.31E+00		WSRC. 1993					
FCH-5	191.2	194.2	2.76E-05	3.24E-05	WSRC, 1993					
FCH-5	259	259.5	1.15E-04		WSRC, 1993					
FCH-6	105.7	108.2	1.86E-04		WSRC. 1993					
FCH-6	170.7	171.7	1.11E-03		WSRC, 1993					
FCH-6	268.2	269.7	9.40E-04		WSRC. 1993					
FIW-IMC	104	106	4.30E-05	1.50E-03	AT&E. 1992					
FIW-2MA	103.5	105.5	3.70E-05	2.30E-02	AT&E, 1992					
FIW-2MA	171.2	172	2.10E-05	4.30E-05	AT&E, 1992					
FSB-89C	97	97.7	8.83E-05		AT&E, 1987					
FSB-91C	110	110.7	5.40E-05		AT&E, 1987					

<u>C-8</u>

pendix C-3. Permeability Values Recorded from Laboratory Tests (Continue										
	Interval	Interval	Permeability-	Permeability-						
	Тор	Bottom	vertical	horizontal						
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	(ft/day)	Keference					
FSB-96A	117	119.5		8.43E-04	RUST. 1994					
FSB-96A	172	173	· <u> </u>	1.05E-05	RUST, 1994					
FSB-97A	126.33	127.08	1.15E-04		AT&E, 1987					
FSB-97A	127.5	128.25	1.87E-05		AT&E. 1987					
FSB-101A	166.5	167	3.81E-06		AT&E. 1987					
FSB-114A	138.5	140		5.96E-05	WEGS. 1991					
FSB-120A	168	168.4		8.50E-03	WEGS. 1991					
FSB-122C	70	72	9.00E-04		WEGS. 1991					
HCH-1	55	58	2.28E-01	2.58E-01	WSRC. 1993					
HCH-1	155	156.5	4.32E-02	1.01E-01	WSRC. 1993					
HCH-1	270	273	4.54E-05	5.42E-05	WSRC. 1993					
HCH-2	65	68	1.37E-01	1.79E-01	WSRC. 1993					
HCH-2	145	148	1.47E-04	1.76E-04	WSRC. 1993					
HCH-2	276.3	278	3.12E-04	4.63E-04	WSRC. 1993					
HCH-3	85	88	1.54E-03	2.09E-03	WSRC. 1993					
HCH-3	140	141.5	1.10E-03	1.16E-03	WSRC. 1993					
HCH-3	255	258	4.80E-03	1.10E-02	WSRC. 1993					
HCH-4	80	83	7.10E-05	8.80E-05	WSRC. 1993					
HCH-4	230	231.6	2.52E-04	3.46E-04	WSRC, 1993					
HCH-5	140	142.5	1.23E-01	1.58E-01	WSRC. 1993					
HCH-5	271.6	273.4	2.75E-04	3.24E-04	WSRC, 1993					
HIW-1MC	79	81	5.40E-04	1.40E-02	AT&E. 1992					
HIW-2A	78	80	1.02E-05	1.14E-03	RUST, 1994					
HIW-2A	165	165.4	2.84E-04	3.41E-04	RUST. 1994					
HMD-1C	132	134	1.33E-06	5.96E-06	WSRC. 1991b					
HMD-2C	117	118.6	1.14E-06	5.40E-06	WSRC, 1991b					
HMD-3C	107.3	108.6	1.90E-03	3.41E-03	WSRC. 1991b					
HMD-4C	29	31	9.09E-03	, 7.67E-02	WSRC. 1991b					
HSB-TB	112	112.6	5.30E-01	1.97E-01	Core Laboratories. 199					
HSB-TB	127	127.3	1.40E-01	5.29E-01	Core Laboratories. 199					
HSB-TB	151	151.3	4.00E-02	1.00E-01	Core Laboratories. 199					
HSB-TB	154.4	154.6		1.73E+00	Core Laboratories, 199					
HSB-69A	120	120.8	1.52E-04		AT&E. 1988					
HSB-107C	60.9	62	1.75E-04		WSRC. 1990					
HSB-117A	111.67	112.34	1.81E-03		AT&E, 1988					
HSB-118A	128	129	1.57E-05		WSRC, 1991c					
HSB-119A	141.1	141.5	9.34E-04		WSRC. 1991c					
HSB-120A	155	155.5	2.72E-03		WSRC, 1991c					
HSB-121A	164	165	7.51E-05		WSRC. 1991c					
HSB-122A	65	65.5	7.40E-04		WSRC. 1991c					
HSB-122A	161	161.5	1.79E-05		WSRC. 1991c					
HSB-123A	150.5	151.5	6.69E-04		WSRC. 1991c					
HSB-139A	115	115.6	2.20E-04	1	AT&F 1988					

-

Appendix C-3. Permeability Values Recorded from Laboratory Tests (Continue									
	Interval	Interval	Permeability-	Permeability-					
	Тор	Bottom	vertical	horizontal	D.C				
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	(It/day)	Keierence				
HSB-140A	124	126	1.64E-04		WEGS, 1991				
HSB-146A	131	132	3 40E-04		WEGS, 1991				
HSP 148C	66	68	1.09E-03		WEGS 1991				
	261.25	262 75	3.41E-02		Law Engineering 1988				
IDC-3A	201.25	51	2.04E-04		Law Engineering, 1988				
IDQ-3A	75		7.83E-03		Law Engineering, 1988				
IDQ-3A	172	174	4.83E-05	·	Law Engineering, 1988				
ILCO-5A	18.1	19.9	9.94E-04	3.41E-03	WSRC, 1996a				
MWD-1A	115.5	116	7.04E-05	2.69E-04	AT&E. 1988				
OFS-1SB	67	68.65	3.41E-05		Amidon, 1995				
OFS-2SB	108	108.3		3.60E-02	Core Laboratories, 1995				
OFS-2SB	114	114.2	7.60E-02	1.32E-03	Core Laboratories, 1995				
OFS-3SB	63	65	6.82E-05	1.70E-01	Amidon, 1995				
OFS-3SB	135	137	4.80E-06	8.00E-06	Amidon, 1995				
OFS-4SB	25.2	25.5		6.04E+00	Core Laboratories, 1995				
OFS-4SB	45	47	6.25E-04	5.40E-03	Amidon, 1995				
OFS-4SB	47.5	47.8		7.50E-01	Core Laboratories, 1995				
OFS-4SB	56	56.3	2.77E+01	5.80E+00	Core Laboratories, 1995				
OFS-4SB	78	78.4		2.17E-01	Core Laboratories, 1995				
OFS-4SB	85.6	86	1.60E-03		Core Laboratories, 1995				
OFS-4SB	98.4	98.75	5.37E-03	1.80E-01	Core Laboratories, 1995				
OFS-4SB	109	109.35	1.89E-01		Core Laboratories, 1995				
OFS-4SB	114.5	115	1.93E-03		Core Laboratories, 1995				
OFS-4SB	126.4	126.7		2.49E+00	Core Laboratories, 1995				
OFS-4SB	135	136.5	1.14E-05	6.53E-05	Amidon, 1995				
OFS-4SB	143	143.3		7.72E+00	Core Laboratories, 1995				
OFS-4SB	167	167.3		2.41E+01	Core Laboratories, 1995				
OFS-4SB	175.7	176		3.18E+01	Core Laboratories, 1995				
OFS-5SB	27	28.9	1.42E+00	1.42E+00	Amidon, 1995				
OFS-5SB	56.5	56.8		1.11E+01	Core Laboratories. 1995				
OFS-5SB	108	108.3	4.27E-01	1.22E-01	Core Laboratories, 1995				
OFS-5SB	108.6	109.6	4.50E-06	1.79E-05	Amidon, 1995				
OFS-5SB	129.5	129.8	3.62E+01	2.92E+01	Core Laboratories, 1995				
OFS-5SB	158.2	159.2		3.26E+01	Core Laboratories, 1995				
P-18TA	180	182	7.60E-05	5.60E-05	Bledsoe, 1987				
P-18TA	261	263	3.90E-02	8.80E-02	Bledsoe, 1987				
P-18TA	410	412	9.00E-05	1.00E-04	Bledsoe, 1987				
P-18TA	643	645	6.80E-05		Bledsoe, 1987				
P-19TA	190	192.9	3.40E-05	7.90E-03	Bledsoe. 1987				
P-19TA	282	283	9.60E-03	9.90E-02	Bledsoe, 1987				
P-19TA	355	358	3.90E-05	5.90E-05	Bledsoe, 1987				
P-19TA	495	497	8.50E-05	6.50E-03	Bledsoe, 1987				
P-19TA	548	550	1.90E-02	7.90E-03	Bledsoe, 1987				

<u>C-10</u>

and the second second second second second

ppendix C-3. Permeability Values Recorded from Laboratory Tests (Continue								
	Interval	Interval	Permeability-	Permeability-				
	Тор	Bottom	vertical	horizontal				
Well ID	(ft b.g.l.)	(ft b.g.l.)	(ft/day)	(ft/day)	Reference			
			1.007.00	1 705 00	DGI 100/			
P-21TA	160	162	1.90E-03	1.70E-02	PSI. 1986			
P-21TA	325	327	3.40E-01	1.50E+00	PSI. 1986			
P-21TA	380	382	5.40E-02	6.80E-01	PSI. 1986			
P-21TA	495	497	6.30E-04	7.70E-04	PSI. 1986			
P-21TA	522	524	1.80E-05	2.80E-05	PSI, 1986			
P-21TA	560	562	9.40E-05	8.50E-05	PSI. 1986			
P-22TA	61	63	4.80E-04	9.70E-04	PSI. 1986			
P-22TA	140	142	3.70E-04	1.90E-04	PSI. 1986			
P-22TA	331	333	1.40E-04	1.20E-04	Bledsoe, 1987			
P-22TA	390	392	1.02E-03		PSI. 1986			
P-22TA	612	614	1.20E-04	2.80E-04	PSI. 1986			
P-23TA	97	99	3.60E-04		Bledsoe, 1987			
P-23TA	185	187	9.60E-05	1.10E-04	Bledsoe, 1987			
P-23TA	224	226	4.20E-05	3.60E-05	Bledsoe, 1987			
P-23TA	301	303	3.40E-05	1.10E-01	Bledsoe, 1987			
P-23TA	361	363	9.60E-04		Bledsoe, 1987			
P-23TA	401	403	1.10E-04	2.40E-04	Bledsoe, 1987			
YSC-1A	65	67	7.38E-05	8.24E-05	WEGS. 1990			
YSC-1A	113.1	113.7	1.48E-04	4.54E-05	WEGS, 1990			
YSC-1C	59	60.9	1.25E-05	5.96E-04	WEGS, 1990			
YSC-1C	113	114.5	2.58E-04	3.98E-05	WEGS, 1990			
YSC-2A	121.8	122.6	2.61E-06	0.00E+00	WEGS, 1990			
YSC-3SB	69	71	1.28E-05	1.45E-05	WEGS, 1990			
YSC-3SB	127	128	4.54E-06	5.11E-05	WEGS. 1990			
YSC-4A	71.3	72	1.73E-03	8.80E-05	WEGS, 1990			
YSC-4A	130.3	130.8	1.82E-03	0.00E+00	WEGS. 1990			
YSC-4A	140	141.1	2.67E-06	0.00E+00	WEGS, 1990			
YSC-5A	54	55	1.62E-05	4.26E-05	WEGS. 1990			
YSC-5A	108.3	108.6	1.16E-04	5.34E-02	Core Laboratories. 1995			
YSC-5A	110.3	110.6	1.43E-01	1.88E-01	Core Laboratories, 1995			

1.59E-05 WEGS, 1990

Notes:

ft b.g.l. - feet below ground level

ft/day - feet per day

YSC-5A

1 - Detailed description of references in Appendix D

136

137

1.39E-03

C-11

Appendix D. References

Albenesius, P. W., Amidon, M. A., and Gaughan, T. F., 1990. HSB 84A Pumping Test. WSRC-TR-90-0313, Westinghouse Savannah River Company, Aiken, SC 29808.

Amidon, M. A., 1995, Burial Ground Complex Field Investigation Preliminary Data Report #1, WSRC-RP-94-1286, Westinghouse Savannah River Company, Aiken. SC 29808.

AT&E, 1987, Laboratory Permeability Test Results "F" Area Seepage Basins Job No. 7781, Report No. 1721, Atlanta Testing and Engineering, Duluth, GA.

AT&E, 1988, Report of Laboratory Testing, Savannah River Plant, Job No. 7778-C, Report No. 3473, Atlanta Testing and Engineering, Duluth, GA.

AT&E, 1992, F&H-Area Seepage Basins Injection Wells/G2049, Soil Laboratory Testing, Job Number 11360, Report Number 63535, Atlanta Testing and Engineering. Duluth. GA.

Bechtel, 1982, Vogtle Electric Generating Plant, Studies of Postulated Millett Fault. Bechtel.

Bledsoe, H.W., 1987, Savannah River Plant Baseline Hydrogeologic Investigation – Phase II, DPST-86-674, E.I. DuPont de Nemours and Company, Savannah River Laboratory, Aiken, SC.

CH2M Hill, 1989, Congaree Aquifer Test Savannah River Site, CH2M Hill, Reston, VA.

Core Laboratories, 1995, Core Analysis Report, Savannah River Site. Core Laboratories. Carrollton, TX.

Evans, E. K. and Parizek, R. R., 1991, *Characterization of Hydraulic Conductivity Heterogeneity in Tertiary Sediments within the General Separations Area*. Pennsylvania State University, Department of Geosciences.

Falls, W. F., 1998, Well Locations and Hydrostratigraphic Picks from USGS Water Resources Investigation Report 97-4245, U. S. Geological Survey, Columbia, SC.

Harris, M. K., 1997, *Locations of SRS Borings*, Electronic file received from M. K. Harris, Westinghouse Savannah River Company, Aiken, SC 29808.

Law Engineering, 1988, Results of Soil Testing, Purchase Order Number: AX0798832, Law Engineering, Atlanta, GA.

PSI, 1986, Monitor Wells Hydrogeologic Study, Phase II, Savannah River Plant, Aiken, South Carolina, Service Subcontract AX-0681729, Professional Service Industries. Inc., Oak Brook, IL.
WSRC-TR-98-00285. Rev. 0, Hydrogeological and Groundwater Model for C. K. L. and P Areas Appendix D. References (Continued)

Rust, 1994, Central Shops Burning/Rubble Pit 631-6G Soil Sampling Report (U). WSRC-RP-94-0382, Rust Environment and Infrastructure Inc., Aiken, SC.

Rust, 1996, Burial Ground Complex Field Investigation Preliminary Data Report #2. WSRC-RP-96-060, Rust Environment and Infrastructure Inc., Aiken, SC.

S&ME, 1988, *Borehole Permeability Analyses Burial Ground Perimeter Wells*, Soil and Materials Engineering, Inc., Columbia, SC 29203.

Sirrine, 1987, F-Area Compliance Monitoring Program Field Permeability Tests. Sirrine Environmental Consultants, Greenville, SC.

Sirrine, 1988, Field Permeability Tests, H-Area Seepage Basins, Sirrine Environmental Consultants, Greenville, SC.

WEGS, 1990, Hydrogeologic Characterization of the Proposed Waste Solidification and Disposal Facility Site, Y-Area, Westinghouse Environmental and Geotechnical Services. Inc., Columbia, SC 29203.

WEGS, 1991, Summary of Well Installations and Aquifer Test Results F and H Seepage Basins Assessment (U), Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC 29203.

Woodward-Clyde Consultants, 1985a, F-Area Seepage Basins Site Assessment Report Part 1: Groundwater, Woodward-Clyde Consultants, Plymouth Meeting, Pennsylvania.

Woodward-Clyde Consultants, 1985b, *H-Area Seepage Basins Site Assessment Report Part 1: Groundwater*, Woodward-Clyde Consultants, Plymouth Meeting, Pennsylvania.

WSRC, 1989, *Deep Corehole Project, Basic Data Report*, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1990, Application for a Hazardous Waste Part B Post Closure Care Permit Volume V, Book 2, Westinghouse Savannah River Company. Aiken, SC 29808.

WSRC, 1991a, Burial Ground Expansion(U) Hydrogeologic Characterization. WSRC-RP-91-0866, Westinghouse Savannah River Company. Aiken, SC 29808.

WSRC, 1991b, Hydrogeologic Characterization Hazardous Waste/Mixed Waste Disposal Facility, WSRC-RP-91-0423, Westinghouse Savannah River Company, Aiken, SC 29808.

D-2

Appendix D. References (Continued)

WSRC, 1991c, RCRA/CERCLA Integration Document for the H-Area Seepage Basins Groundwater Unit, WSRC-RP-91-1019. Westinghouse Savannah River Company. Aiken. SC 29808.

WSRC, 1991d, RCRA/CERCLA Integration Document for the F-Area Seepage Basins Groundwater Unit, WSRC-RP-91-1018, Westinghouse Savannah River Company. Aiken, SC 29808.

WSRC, 1991e, Sanitary Landfill Hydrogeologic Characterization. WSRC-TR-91-0565. Westinghouse Savannah River Company. Aiken, SC 29808.

WSRC, 1992a, Mixed Waste Management Facility and Old Burial Groundwater Monitoring Assessment Well Installations, WSRC-RP-92-0195, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1992b, Hydrogeology of the F-Area and K-Area Acid Caustic Basins. WSRC-RP-91504, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1993, F- and H-Areas Inactive Process Sewer Lines Groundwater Assessment (U). WSRC-RP-93-0532, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1993b, *F- and H-Area Tank Farms Preliminary Characterization Part A: Phase 1 Report*, WSRC-TR-93-197, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1994, *Confirmatory Drilling Project Final Report (U)*, WSRC-RP-94-0136. Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1995a, *H-Area Tank 16 Monitoring Well Installation Field Report*. WSRC-RP-95-0296, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1995b, Summary Report for Aquifer Extraction (Pumping) Test Analyses Aquifer IIB, F&H Area Seepage Basins, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1996a, *RFI/RI Report L-Area Oil and Chemical Basin and L-Area Acid/Caustic Basin*, WSRC-RP-95-0305, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1996b, L- P- and R-Areas Bingham Pump Outage Pits Addendum to the Work Plan for K-Area Bingham Pump Outage Pit, WSRC-RP-96-0173, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1996c, Field Activities Report, Chemicals, Metals, and Pesticides Pits, Monitoring Well Installation (U), WSRC-RP-96-00121, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, 1996d, Environmental Protection Department's Well Inventory (U). ESH-EMS-960488, Westinghouse Savannah River Company, Aiken, SC 29808.

WSRC, unknown, *Hydrostratigraphic Picks for BGT Cores*. Data received from M. Amidon. WSRC, Westinghouse Savannah River Company, Aiken. SC 29808.

Appendix E-1. Stream Base Flow Estimates Based on USGS Gauging Station Data

Groundwater flow in upper aquifers at the Savannah River Site is recharge driven, with streams intercepting flow from higher elevations. Nearly all recharge within the CKLP reactor region discharges to streams within or bounding the same area, usually the nearest stream. For this type of groundwater flow system, recharge and discharge estimates, coupled with head measurements and confining unit leakance estimates, define the overall horizontal conductivities of upper aquifers required to calibrate a numerical flow model. Because conductivity data at the model scale are typically non-existent, stream base flow estimates are important model calibration targets. In this appendix, simple hydrograph separation techniques are used to estimate the long-term average rate of groundwater discharge to certain stream reaches within the CKLP reactor area.

The U. S. Geological Survey has monitored stream flows at numerous locations across the Savannah River Site for decades. The data are published annually for the preceding water year (Cooney and others, 1998, for example), and made available electronically from the United States NWIS-W data retrieval web site (http://h2o-nwisw.er.usgs.gov/nwis-w/US/). Figure E-1 illustrates the location and identification number of each USGS gauging station. Industrial discharges from SRS operations are monitored near outfalls by the USGS. separate from NPDES outfall monitoring conducted by SRS. Figures E-2, E-3 and E-4 show the relationship between USGS and NPDES gauging stations for the General Separations Area/C-Area, K-Area, and L- and P-Areas, respectively.

Given the locations of the USGS gauging stations, regional scale base flows are most easily estimated for the stream reaches and wetland areas enclosed by the polygons depicted in Figure E-5. For example, base flow between the headwaters of Meyers Branch and Road 9 is more conveniently estimated than base flow over the entire reach, because there is not a gauging station on Meyers Branch just above its confluence with Steel Creek. Similarly, base flow will be estimated for portions of Upper Three Runs and Steel Creek. On the other hand, gauging stations are located where Pen Branch and Fourmile Branch enter the Savannah River Swamp, so base flow for the entire drainage can be conveniently estimated.

Figure E-6 is an example hydrograph produced from USGS data for the two gauging stations located on Meyers Branch for water years 1993 through 1996. Station 021973561 is located at Road 9 and station 02197354 monitors the P007 outfall. Discharges to P007 are small relative to the total flow at Road 9. Not surprisingly, the downstream data exhibits a seasonal variation with elevated average flows occurring from late fall through early spring. Over

shorter periods, individual rainfall events are readily observed as a step increase in daily flow followed by an exponential decline. Presumably these peaks are due to direct precipitation, surface runoff and subsurface stormflow, and not reflective of base flow.

Because downstream USGS gauging stations measure total stream flow, the base flow component must be separated from other contributors to a hydrograph of total flow. These include the direct precipitation, surface runoff and subsurface stormflow components mentioned above, as well as process water discharges to outfalls. Shirmohammadi and others (1984) observed that "daily values of precipitation and streamflow are not sufficient for detailed hydrograph analysis using traditional hydrograph separation techniques" and developed an approximate method for partitioning daily total streamflow data. such as that available from the USGS for SRS streams. Hydrograph separation for this project is accomplished with a simplified version of the approach of Shirmohammadi and others (1984). The following steps are applied to the time series of daily total stream flow:

- 1) Compute the average, F_{avg} , of the downstream flow, F
- Subtract outfall flows from the downstream flow leaving "natural" flow components. Fnatural. For Steel Creek and Upper Three Runs, flow entering the polygonal area of interest from upstream is also subtracted.
- 3) Remove the remaining direct precipitation. surface runoff and subsurface stormflow components by creating a "clipped" time series, F_{base flow}, according to

 $F_{base flow} = min[F_{natural}, 1.05 \times max(F_{natural}, previous, F_{avg})]$

 Smooth the base flow component. F_{base flow}, over 4 water years. 1993 to 1996. for easier visualization using a running digital filter:

 $F_{\text{smooth}} = (F_{\text{base flow},i-1} + F_{\text{base flow},i} + F_{\text{base flow},i+1})/3$

 Average the smoothed base flow component, F_{smooth}, over the 4 water years from 1993 to 1996, producing F_{smthavg}.

The third step is based on the assumption that the base flow component responds slowly to rainfall events, and therefore cannot increase very rapidly from one day to the next (5% or less). No restriction on the rate of decrease is imposed. The fourth step does not affect the average computed in the fifth step.

The maximum rate of base flow increase, specified in step 3, was selected according to the recommendations of Linsley and others (1982, chapter 7). As a rule of thumb, the duration of direct runoff following the end of a rainfall is approximately $A^{0.2}$ days, where A is the drainage area in square miles (Linsley and others, 1982, equation 7-4). Pen Branch has a drainage area of 21 square miles resulting in runoff terminating after about 2 days. The drainage area of Fourmile Branch is 22 square miles yielding essentially the same duration. Taking these streams as representative, base flow should typically depart from total flow at the start of a rainfall event and rejoin the total flow after 2 days plus the duration of the rain. The total time of departure would be roughly 2 to 3 days. However, inspection of several individual rainfall events in comparison to the qualitative guidelines of Linsley and others (1982, Figure 7-5) suggests that runoff often lasts longer, sometimes up to roughly 6 days following a heavy rain. The maximum rate of base flow increase was set to 1.05 to yield a 2 to 6 day duration. Figure E-6 shows a sample segment of total and estimated base flow for Meyers Branch.

Applying the above procedure to the appropriate data for each drainage basin yields the results illustrated in Figures E-7 through E-12. In these figures, the upper plots (a) show the reference downstream flow and any outfall or upstream flows. Additional detail on the more significant outfall flow rates is provided by Figures E-13 through E-20. Note that generally outfall and upstream flows form a large component of the downstream flow. The curves (b) at the bottom of Figures E-6 through E-11 show the "base flow", "smooth" and "smthavg" components as defined in steps 3) to 5) above.

Table E-1 summarizes the bottom line results. The appropriate base flow target for CKLP model calibration is gotten by multiplying the base flow estimate for the stream reach by the fraction of the reach contained within the model domain. For Upper Three Runs between Road C and Road A, which lies on the CKLP model boundary, a reasonable assumption is that each side contributes equally. The main branch of Meyers Branch forms a boundary of the model, but a major tributary just south of Dunbarton Road is totally outside the model domain. Overall, perhaps 1/3 of this reach lies within the model. Far more uncertain is the fraction of base flow to the larger Upper Three Runs reach that should be attributed to groundwater from within the model: 1/4 is suggested in Table E-1. The Steel Creek estimate is negative and indicates a losing reach, presumably reflecting artificial flows to L-Lake to maintain the current lake level.

The stated accuracy of the various raw USGS gauging station data is typically "good" (<10% error 95% of the time), "fair" (<15% error 95% of the time) or "poor" (less than "fair"

accuracy) (Cooney and others, 1998, p. 16). Uncertainty in the long-term average flows ultimately used in this analysis are much smaller than uncertainty in a daily flow. Larger contributors to overall uncertainty are biases in the hydrograph separation procedure, and the estimated fraction of the analyzed reach that lies within the model domain. The uncertainty of the results summarized in Table E-1 can be estimated by considering different values for the assumed maximum rate of base flow increase. As shown by Table E-2, the base flow estimates appear to have an uncertainty around plus or minus 10% due to uncertainty in the chosen rate. Biases in hydrograph separation technique might add another 5 to 10%. For example, base flow continues to decrease during flood conditions before ascending. The hydrograph separation technique used here allows baseflow to increase immediately, and might produce slightly high estimates. Some of the model calibration targets contain added uncertainty in the amount that should be partitioned to the model domain. Overall, the baseflow targets may have an uncertainty of 15 to 25%.

References

Cooney, T. W., P. A. Drewes, K. H. Jones, J. W. Gissendanner and B. W. Church, 1998, Water resources data – South Carolina, Water year 1997, Volume 1, U. S. Geological Survey Water-Data Report SC-97-1.

Linsley, R. K. Jr., M. A. Kohler and J. L. H. Paulhus, 1982, Hydrology for engineers. 3rd edition, McGraw-Hill, New York.

Shirmohammadi, A., W. G. Knisel and J. M. Sheridan, 1984, An approximate method for partitioning daily streamflow data, Journal of Hydrology, v74. p. 335-354.

E-6

Figure E-4.

Figure E-5.

Meyers Branch

Day

Figure E-6.

Meyers Branch

Figure E-8.

Figure E-9.

Fourmile Branch 500 02197344 FMB A12 02197338 Site5 02197330 Site1 02197331 H008 021973405 C001 021973426 C004 ł 400 300 Flow (cfs) 200 100 0 1996 1993 199-199: Calendar Year Fourmile Branch Cumulative Cumulative 300 nooth 200 100 Flow (cfs) 0 -100 -200 -300 -400 1995 1993 199 199 Calendar Year

Figure E-10.

Upper Three Runs

Figure E-11.

Upper Three Runs

Flow (cfs)

Figure E-13.

21973405 / C-01

Figure E-14.

21973426 / C-04

2197338 / Site 5 / F-08

E-20 WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for C, K, L, and P Areas

Figure E-17.

Figure E-18.

2197345 / K-18 / K-11

21973525 / L-07

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for C, K, L, and P Areas

E-23

Figure E-19.

2197362 / P-19

Stream reach	Estimated base flow (cfs)	Fraction of reach within CKLP model	Base flow target (cfs)
Meyers Branch (headwaters to Road 9)	9.5	1/3 ?	3.2 ?
Steel Creek (above Road B to Road A; includes L-Lake)	-2.2	1	-2.2
Pen Branch (headwaters to Road A13; includes Indian Grave Branch)	13.3	1	13.3
Fourmile Branch (headwaters to Road A12)	14.1	1	14.1
Upper Three Runs (Tims Branch at Road C/UTR near site boundary/Tinker Creek at Road 8-11 to UTR at Road A)	97	1/4 ??	24 ??
Upper Three Runs (Road C to Road A)	8.9	1/2	4.5

Table E-1.Base flow estimates based on hydrograph separation of USGS gauging station
data.

Stream reach	Estimated base flow for r = 1.025 (cfs)	Estimated base flow for r = 1.05 (cfs)	Estimated base flow for r = 1.10 (cfs)
Meyers Branch	9.2	9.5	9.8
(headwaters to Road 9)	(-3%)		(+3%)
Steel Creek	-2.2	-2.2	-2.2
(above Road B to Road A;	(0%)		(0%)
includes L-Lake)			
Pen Branch	12.3	13.3	14.3
(headwaters to Road A13;	(-8%)		(+8%)
includes Indian Grave Branch)			
Fourmile Branch	13.0	14.1	15.1
(headwaters to Road A12)	(-8%)		(+7%)
Upper Three Runs	91	97	104
(Tims Branch at Road C/UTR near	(-6%)		(+7%)
site boundary/Tinker Creek at			
Road 8-11 to UTR at Road A)			
Upper Three Runs	7.7	8.9	10.1
(Road C to Road A)	(-13%)		(+13%)

Table E-2.Sensitivity of base flow estimates to the assumed maximum rate of daily base
flow increase.

Appendix E-2. Summary of Stream Baseflow and Water Table Work Conducted in Support of the R-Reactor and K-Reactor Groundwater Modeling Efforts, SRT-EST-98-110, Westinghouse Savannah River Company Inter-Office Memorandum from R. A. Hiergesell to R. Falise, January 12, 1997, Westinghouse Savannah River Company, Aiken ,SC, 13 pp.

.

.

This page intentionally left blank

.

SRT-EST-98-110

January 12, 1997

TO: Ron Falise, 730-2B

FROM: R.A. Hiergesell, 773-42A

SUBJECT: Summary of stream baseflow and water table work conducted in support of the R-Reactor and K-Reactor groundwater modeling efforts.

The purpose of this memorandum is to summarize the work that has been done to characterize stream baseflow and the water table configuration in the vicinity of the R-Area and K-Area Reactors. This information provides important measurements which must be used in the groundwater flow model calibration process an the models will be calibrated such that these measurements are adhered to as closely as possible.

Baseflow measurements

۰.

Stream baseflow measurements have been obtained along reaches of Mill Creek, Indian Grave Branch and the upper part of Pen Branch, above the confluence with Indian Grave Branch. At least parts of these drainage basins fall within the model domains for the R-Area and K-Area reactor ground water flow models.

Measurements were obtained at times when streamflow was thought to reflect baseflow conditions. The baseflow component of streamflow is that component derived directly from discharge of the underlying aquifer. At times between significant precipitation events the measured streamflow reflects that portion of streamflow that originates in the aquifer. Following a significant precipitation event we have been waiting 6-8 days for streamflow to recede back to baseflow conditions.

To obtain in-stream flow measurements two types of instruments are used, a cutthroat flume for stream reaches with flow rates less than 0.2 to 0.4 cubic feet/second (cfs) while an instream flow velocity indicator is utilized to acquire stream flow rates greater than approximately 0.4 cfs. The general strategy is to start at the headwaters of a stream and obtain measurements at different stations while working in the downstream direction. If possible, measurements were obtained at the confluence of significant tributary branches of the main stream so that the relative contribution of different tributaries could be quantified. All measurements were obtained within a short a period of time as possible, generally over a period of 1 to 2 days.

For each of the stream basins maps illustrating the ground water basin boundary, the trace of the stream and the position of measurement stations are attached to this memorandum. Also illustrated on each map is the configuration of the water table. Actual labels of water table contours are not illustrated on these maps, however. In addition to these maps, the measurements that were obtained to calculate flow rate at each station are included.

Water table map development

Work has also been conducted to refine the water table configuration maps within the ground water flow model domain areas. This work has involved obtaining water level measurements from selected wells and careful examination of flowing reaches of the headwater segments of streams. Information obtained in this way has been utilized to refine previously existing maps of the water table configuration in the vicinity of the R-Area and the K-Area Reactor. A refined map was utilized as a calibration target for the R-Area ground water model and another refined map will be utilized during calibration when the K-Area mode is developed.

Additional work remains to be done on both of these work components. Additional baseflow measurements will be obtained as the absence of precipitation allows, and a regional water table map for all of the reactor areas is being developed.

•

۰.

Mill Creek Baseflow Measurements

MILL CREEK BASEFLOW

Station 1Mill Creek where Woodward Rd. crosses, upstream side of road.(12/4/97)Approximate UTM Coordinates: 445115E, 3682835N

Flume Mea	surement:	8" throat, fluic	l height=0.5 fl	t., Q=1.06cf	s or 475gmp		
						corrected	
Flowmeter	Measureme	ent			flow vel.	flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	9	0.30	0.01	0.06	0.018
2	1.5	1	12	0.39	0.03	0.08	0.031
3	2.5	1	16	0.52	0.18	0.23	0.121
4	3.5	1	18	0.59	0.40	0.45	0.266
5	4.5	1	11	0.36	0.11	0.16	0.058
						Tot. flow=	0.49

Station 2Along Monroe-Owens Rd. First tributary north of main channel of Mill Creek.(12/4/97)Approximate UTM Coordinates: 444846E, 3683390N

Flume Measurement: 8" throat, fluid height=0.19 ft., Q=0.152cfs or 69gmp

Station 3 Along Monroe-Owens Rd. Second tributary north of main channel of Mill Creek.

(12/4/97) Approximate UTM Coordinates: 444344E, 3683928N

Flume Measurement: 8" throat, fluid height=0.23 ft., Q=0.22cfs or 101gmp

Station 4Main branch of Mill Creek, downstream of first major tributary entering from south.(12/4/97)Approximate UTM Coordinates: 445355E, 3684472N

						corrected	
Flowmeter	Measureme	int			flow vel.	flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	14	0.46	0.16	0.21	0.096
2	1.5	1	15	0.49	0.35	0.40	0.197
3	2.5	1	14	0.46	0.26	0.31	0.142
4	3.5	1	24	0.79	0.34	0.39	0.307
5	4.5	1	22	0.72	0.24	0.29	0.209
6	5.5	1	25	0.82	0.36	0.41	0.336
7	6.5	1	30	0.98	0.40	0.45	0.443
8	7.5	1	26	0.85	0.22	0.27	0.230
9	8.5	1	25	0.82	0.07	0.12	0.098
10	9.25	0.5	20	0.66	-0.02	0.03	0.010
						Tot, flow=	2.07

Station 5 (12/4/97)

•

5 Tributary to Mill Creek, entering from south, just upstream of confluence with Mill Ck.. 7) Approximate UTM Coordinates: 445348E, 3684437N

Flowmeter	Measureme	ent	flow vel.	flow vel.			
Segment	Tape	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	4	0.13	0.06	0.11	0.014
2	1.5	1	10	0.33	0.15	0.20	0.066
3	2.5	1	17	0.56	0.37	0.42	0.234
4	3.5	1	8	0.26	0.04	0.09	0.024
						Tot. flow=	0.34

٦

Flowmeter	Measureme	ent			flow vel.	corrected flow vel.	
Segment	Tape	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	9	0.30	0.38	0.43	0.127
2	1.5	1	20	0.66	0.10	0.15	0.098
3	2.5	1	20	0.66	0.51	0.56	0.367
4	3.5	1	20	0.66	0.79	0.84	0.551
5	4.5	1	15	0.49	0.05	0.10	0.049
6	5.5	1	17	0.56	0.04	0.09	0.050
7	6.5	1	10	0.33	0.35	0.40	0.131
						Tot. flow=	1.37

Main branch of Mill Creek, upstream of first major tributary entering from south. Station 6 Approximate UTM Coordinates: 445318E, 3684317N (12/4/97)

Northernmost trib. to Mill Ck that crosses powerline road, just above entry into Mill Ck. Station 7 (12/4/97) Approximate UTM Coordinates: 445200E, 3684304N

Flowmeter	Measureme	ent	flow vel.	corrected flow vel.			
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
⁻ 1	0.5	1	24	0.79	0.37	0.42	0.331
						Tot. flow=	0.33

Station 8

•

....

•

.

Main branch of Mill Creek, upstream of confluence with northernmost powerline tirbutary (12/4/97) Approximate UTM Coordinates: 445216E, 3684298N

Flowmeter	Measureme	ent			flow vel.	corrected flow vei.	
Segment	Tape	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
· 1	0.5	1	12	0.39	0.04	0.09	0.035
2	1.5	1 •	13	0.43	0.26	0.31	0.132
3	2.5	1	13	0.43	0.38	0.43	0.183
4	3.5	1	14	0.46	0.44	0.49	0.225
5	4.5	1	18	0.59	0.48	0.53	0.313
6	5.5	1	20	0.66	0.35	0.40	0.262
7	6.5	1	20	0.66	0.25	0.30	0.197
						Tot. flow=	1.35
Main branch of Mill Creek, upstream of confluence with 2'nd major trib. from south Approximate UTM Coordinates: 445744E, 3685452N (12/4/97)

Flowmeter	Mossureme	nt			flow vel	flow vel	
1 ionneter		and the second		danth (A)	(8/222)	(4) ===>	0 (-{-})
Segment	Tape	wiain (11.)	depin (cm)	depth (it)	(insec)	(ivsec)	Q (CIS)
1	0.5	1	22	0.72	0.02	0.07	0.051
2	1.5	1	30	0.98	0.06	0.11	0.108
3	2.5	1	40	1.31	0.04	0.09	0.118
4	3.5	1	50	. 1.64	0.12	0.17	0.279
5	4.5	1	48	1.57	0.16	0.21	0.331
6	5.5	1	48	1.57	0.20	0.25	0.394
7	6.5	1	45	1.48	0.22	0.27	0.399
8	7.5	1	43	1.41	0.20	0.25	0.353
9	8.5	1	48	1.57	0.13	0.18	0.283
10	9.5	1	48	1.57	0.11	0.16	0.252
11	10.5	1	56	1.84	0.07	0.12	0.220
12	11.5	1	54	1.77	0.10	0.15	0.266
13	12.5	1	46	1.51	0.04	0.09	0.136
						Tot. flow=	3.19

Station 10 2'nd major tributary to Mill Ck. from south, just upstream from confluence. (12/4/97) Approximate UTM Coordinates: 445899E, 3685493N

rippioxima			00021 0000				
Flowmeter	Measureme	ent			flow vel.	corrected flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	6	0.20	0.24	0.29	0.057
2	1.5	1	6	0.20	0.58	0.63	0.124
3	2.5	1	5	0.16	0.61	0.66	0.108
4	3.5	1	6	0.20	0.78	0.83	0.163
5	4.5	1	7	0.23	0.64	0.69	0.158
6	5.5	1	7	0.23	0.65	0.70	0.161
7	6.5	1	8	0.26	0.55	0.60	0.157
8	7.5	1	8	0.26	0.17	0.22	0.058
						Tot. flow=	0.99

St	atio

•

;

n 11 Main branch of Mill Creek, at USGS station site where "buried cable road" crosses. (12/8/97) Approximate UTM Coordinates: 444821E, 3686806N

						corrected	
Flowmeter	Measureme	ent			flow vel.	flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	19	0.62	0.04	0.09	0.056
2	1.5	1	22	0.72	0.43	0.48	0.346
3	2.5	1	22	0.72	0.54	0.59	0.426
4	3.5	1	22	0.72	0.58	0.63	0.455
5	4.5	1	22	0.72	0.63	0.68	0.491
6	5.5	1	22	0.72	0.70	0.75	0.541
7	6.5	1	22	0.72	0.67	0.72	0.520
8	7.5	1	24	0.79	0.65	0.70	0.551
9	8.5	1	24	0.79	0.58	0.63	0.496
10	9.5	1	25	0.82	0.41	0.46	0.377
11	10.5	1	22	0.72	0.34	0.39	0.282
12	11.5	1	19	0.62	0.41	0.46	0.287
						Tot. flow=	4.83

Station 12 1'st major tributary from east as you proceed upstream from Tinker Ck. Measured (12/8/97) very close to confluence with Mill Creek.

Approximate UTM Coordinates: 445559E, 3686545N

٦

.

:

;

Flowmeter	Measureme	ent	flow vel.	corrected flow vel.			
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	9	0.30	0.23	0.28	0.083
2	1.5	1	12	0.39	0.50	0.55	0.217
3	2.5	1	12	0.39	0.53	0.58	0.228
4	3,5	1	8	0.26	0.16	0.21	0.055
						Tot. flow=	0.58

Station 13Main branch of Mill Creek, just upstream of confluence with 1'st major tributary to enter(12/8/97)Mill Creek from east, as you proceed upstream from Tinker Creek.
Approximate UTM Coordinates: 445534E, 3686510N

						conecteu	
Flowmeter	Measureme	ent			flow vel.	flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
- 1	0.5	1	8	0.26	0.25	0.30	0.079
2	1.5	1	16	0.52	0.34	0.39	0.205
3	2,5	1	19	0.62	0.67	0.72	0.449
4	3.5	1	22	0.72	0.79	0.84	0.606
5	4.5	1	21	0.69	0.85	· 0.90	0.620
6	5.5	1	19	0.62	0.71	0.76	0.474
7	6.5	1	20	0.66	0.71	0.76	0.499
8	7.5	1	20	0.66	0.65	0.70	0.459
9	8.5	1	12	0.39	0.56	0.61	0.240
10	9.5	1	8	0.26	0.27	0.32	0.084
						Tot. flow=	3.71

.

a a ma at a d

Upper Pen Branch Ground Water Basin

PEN BRANCH BASEFLOW

٦

•

.

Station 1 (10/14/97)	Just downstream from Road C, Approx UTM Coord. 441732E, 3676976N Near confluence of easternmost two headwater tributaries Flume Measurement 4" throat width, fluid height=0.2', Q=0.082cfs or 37.3gpm
Station 2 (10/14/97)	Just downstream from Road C, Approx UTM Coord. 441740E, 3676937N Near confluence of easternmost two headwater tributaries Flume Measurement, 4" throat width, fluid height=0.03', Q=0.0019cfs or 0.84gpm
Station 3 (10/14/97)	Just downstream from powerline road, approximately 150 ft. Approx UTM coordinates 441114E, 3676771N Flume Measurement; 4" throat width, height=0.192, Q=0.078cfs or 35gpm
Station 4 (10/14/97)	Just downstream from powerline road, approximately 200 ft. Approx UTM coordinates 441044E, 36767791N Flume Measurement; 4" throat width, height=0.22, Q=0.101cfs or 45.1gpm
Station 5 (10/14/97)	On central headwater tributary of Pen Branch, just upstream of confluence with the headwater branch containing the eastern two headwater tributaries. Approx UTM coordinates 440930E, 36768281N Flume Measurement; 4" throat width, height=0.25, Q=0.13cfs or 58.3gpm
Station 6 (10/14/97)	On westernmost headwater tributary of Pen Branch, just upstream from confluence with the main branch (containing the three eastermost headwater tributaries.) Approx UTM coordinates 440850E, 36767511N Flume Measurement; 4" throat width, height=0.29, Q=0.175cfs or 78.4gpm
Station 7 (10/15/97)	On main segment Pen Branch, approx 780 ft downstream from Sta. 6 Approx UTM coordinates 440523E, 36760281N Flume Measurement; 4" throat width, height=0.38, Q=0.3cfs or 135gpm
:	Flowmeter Measurement
	Segment depth(cm) depth(ft) width(ft) velocity(ft/sec) Q (cfs) 1 8 0.26 1 0.96 0.25 2 10 0.33 1 0.96 0.31 3 9 0.30 1 0.69 0.20 4 9 0.30 1 0.79 0.23 Tot Flow = 1.00
Station 8 (10/15/97)	On lateral tributary to main branch of Pen Branch, close to sta. 7. Approx UTM coordinates 440487E, 36759941N

Approx UTM coordinates 440487E, 36759941N [.] Flume Measurement; 4" throat width, height=0.29, Q=0.175cfs or 78.4gpm

. .

 Station 9
 On main fork of Pen Branch, close to stations 7 and 8, downstream of their confluence

 (10/15/97)
 Approx UTM coordinates 440479E, 36758991N

 Flowmeter Measurement
 Flowmeter Measurement

Segment	depth(cm)	depth(ft)	width(ft)	velocity(ft/s	ec) Q (cfs)
- 1	9	0.30	1	0.08	0.02
2	10	0.33	1	0.31	0.10
3	13	0.43	1	0.52	0.22
4	12	0.39	1	0.39	0.15
5	12	0.39	1	0.5	0.20
6	13	0.43	1	0.52	0.22
7	12	0.39	1	0.21	0.08
8	9	0.30	1	-0.13	-0.04
					Tot Flow = 0.96

 Station 10
 On Pen Branch at Road 6.2, approximately 100 ft downstream from bridge.

 (10/15/97)
 Approx UTM coordinates 440122E, 3674981N

 Flowmeter Measurement
 Flowmeter Measurement

Tape msmt	Segment	depth(cm)	depth(ft)	width(ft)	velocitv(ft/s	ec) O (cfs)	
1 5	1	8	0.26	1	0.22	, ,	an
1.5	1	10	0.20		0.22	0.0	07
2.5	2	10	0.33	1	0.2	0.0	57
3.5	3	9	0.30	1	0.49	0.1	14
4.5	4	10	0.33	1	0.55	0.1	18
5.5	5	8	0.26	1	0.63	0.	17
6.5	6	10	0.33	1	0.52	0.	17
7.5	7	7	0.23	1	0.41	0.0	09
8.5	8	7	0.23	1	0.32	0.0	07
9.5	9	8	0.26	1	0.21	0.0	06
10.5	10	6	0.20	1	0.06	0.0	01
						Tot Flow = 1.6	02

Station 11On Pen Branch at B Road, approximately 75 ft upstream from bridge.(10/15/97)Approx UTM coordinates 439666E, 3673894NFlowmeter Measurement

Tape msmt	Segment	depth(cm)	depth(ft)	width(ft)	velocity(ft/se	ec) Q (cfs)
1.5	- 1	9	0.30	1	0.11	0.03
2.5	2	15	0.49	1	0.26	0.13
3.5	3	14	0.46	1	0.28	0.13
4.5	4	14	0.46	1	0.84	0.39
5.5	5	10	0.33	1	0.87	0.29
6.5	6	10	0.33	1	0.9	0.30
7.5	7	10	0.33	1	0.99	0.32
8.5	8	10	0.33	1	0.82	0.27
9.5	9	9	0.30	1	0.18	0.05
10.5	10	6	0.20	1	0.07	0.01
						Tot Flow = 1.92

.

:

:

.

					velocity	corr. veloci	ty
Segment	Tape	depth(cm)	depth(ft)	width(ft)	(ft/sec)	(ft/sec)	Q (cfs)
⁻ 1	0.5	24	0.79	1	-0.05	0	0.00
2	1.5	26	0.85	1	0.22	0.27	0.23
3	2.5	39	1.28	1	0.9	0.95	1.22
4	3.5	35	1.15	1	0.8	0.85	0.98
5	4.5	33	1.08	1	0.91	0.96	1.04
6	5.5	29	0.95	1	0.88	0.93	0.88
7	6.5	27	0.89	1	0.94	0.99	0.88
8	7.5	26	0.85	1	0.98	1.03	0.88
9	8.5	27	0.89	1	0.87	0.92	0.82
10	9.5	26	0.85	1	0.97	1.02	0.87
11	10.5	26	0.85	1	0.79	0.84	0.72
12	11.5	24	0.79	1	0.59	0.64	0.50
13	12.5	25	0.82	1	0.48	0.53	0.43
14	13.5	30	0.98	1	0.62	0.67	0.66
15	14.5	26	0.85	1	0.66	0.71	0.61
16	15.5	16	0.52	1	0.38	0.43	0.23
						Tot Flow =	10.93

Station 12 On Pen Branch just upstream from confluence with Indinian Grave Branch 12/18/97 Approx UTM coordinates 437922E, 3672243N

•

•

;

.

Indian Grave Branch Baseflow

INDIAN GRAVE BRANCH BASEFLOW

٦

:

-

Station 1	Indian Grave Branch, approximately 100 ft. downstream from road 6.4
(12/18/97)	Approximate UTM Coordinates:437677E, 3675456N

Flowmeter	Measureme	ent			flow vel.	corrected flow vel.	
Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	6	0.20	-0.03	0.02	0.004
2	1.5	1	12	0.39	-0.04	0.01	0.004
3	2.5	1	12	0.39	0.45	0.50	0.197
4	3.5	1	12	0.39	0.40	0.45	0.177
						Tot. flow=	0.38

Station 2Indian Grave Branch about 150 yards downstream from Road B(12/18/97)Approximate UTM Coordinates: 436979E, 3674290N

••							
						corrected	
Flowmeter	Measureme	ent			flow vel.	flow vel.	
Segment	Tape	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
1	0.5	1	7	0.23	0.02	0.07	0.016
2	1.5	1	14	0.46	0.27	0.32	0.147
3	2.5	1	17	0.56	0.56	0.61	0.340
4	3.5	1	20	0.66	0.48	0.53	0.348
5	4.5	1	22	0.72	0.47	0.52	0.375
6	5.5	1	26	0.85	0.36	0.41	0.350
7	6.5	1	30	0.98	0.56	0.61	0.600
8	7.5	1	24	0.79	0.38	0.43	0.339
9	8.5	1	24	0.79	-0.23	0.28	0.220
10	9.5	1	21	0.69	0.18	0.23	0.158
11	10.5	1	16	0.52	0.07	0.12	0.063
12	11.5	1	10	0.33	0.02	0.07	0.023
						Tot. flow=	2.98

Station 3	Indian Grave Branch just above confluence with Pen Branch
(12/18/97)	Approximate UTM Coordinates: 437845E, 3672268N

.,	rippioxima		Addita(00, 401	0402,001220				
	Flowmeter	Measureme	ent			flow vel.	flow vel.	
	Segment	Таре	width (ft.)	depth (cm)	depth (ft)	(ft/sec)	(ft/sec)	Q (cfs)
:	1	0.5	1	6	0.20	0.20	0.25	0.049
	2	1.5	1	9	0.30	0.64	0.69	0.204
	3	2.5	1	12	0.39	1.13	1.18	0.465
	4	3.5	1	16	0.52	1.33	1.38	0.724
	5	4.5	1	16	0.52	1.39	1.44	0.756
	6	5.5	1	20	0.66	1.51	1.56	1.024
	7	6.5	1	20	0.66	1.63	1.68	1.102
	8	7.5	1	17	0.56	1.02	1.07	0.597
	9	8.5	1	14	0.46	0.87	0.92	0.423
	10	9.5	1	12	0.39	0.37	0.42	0.165
							Tot. flow=	5.51

`

This page intentionally left blank

+

•

APPENDIX F. HYDRAULIC HEAD TARGET AND RESIDUAL DATA

Hydraulic Head Targets

Table F-1 summarizes the hydraulic head data available for model calibration. When multiple measurements are available for a given well, the mean water level is shown. Otherwise, the single reading is given. The sample standard deviation of the mean, sample standard deviation of the population, and number of readings follow the target head, where applicable. The "category" column refers to the aquifer zone: 1=Gordon aquifer, 2="lower" UTRA, 3="upper" UTRA, and 4=mixed or other. The average head target has a "2 sigma" uncertainty of ± 0.76 ft, not counting one time readings which inflate the overall average uncertainty.

			Screen	Screen	Mean	Sample				
	SRS Easting	SRS Northing	Bottom	Тор	Head	Std. Dev.	Sample	No. of		
Well ID	(ft)	(ft)	(ft msl)	(ft msl)	(ft msl)	of Mean	Std. Dev.	Meas	Cat	_
BG 26	58809.70	73958.40	210.7	230.7	239.35	0.85	1.20	2	3	
BG 27	58810.00	74356.70	234.4	254.4	240.95	0.85	1.20	2	3	
BG 28	58810.20	74752.00	239.7	259.7	247.10	0.60	0.85	2	3	
BG 29	58809.90	75151.60	231.6	251.6	245.00	0.60	0.85	2	3	
BG 30	58809.10	75550.10	231.7	251.7	237.55	0.05	0.07	2	3	
BG 31	58803.70	75949.90	223.3	243.3	233.70	0.50	0.71	2	3	
BG 32	58803.50	76349.90	226.9	246.9	233.40	0.30	0.42	2	3	
BG 33	58526.00	76479.90	221.2	241.2	232.90	0.30	0.42	2	3	
BG 34	58107.40	76493.60	217.4	237.4	232.85	0.45	0.64	2	3	
BG 35	57726.40	76495.30	228.0	248.0	232.90	0.20	0.28	2	3	
BG 36	57620.30	76747.60	223.3	243.3	232.50	0.60	0.85	2	3	
BG 37	57251.00	76804.90	227.8	247.8	232.85	0.55	0.78	2	3	
BG 38	56851.10	76805.00	225.9	245.9	232.30	0.40	0.57	2	3	
BG 39	56451.30	76804.90	226.0	246.0	231.70	0.50	0.71	2	3	
BG 40	56051.00	76805.10	221.9	241.9	231.40	0.50	0.71	2	3	
BG 41	55868.80	76576.30	221.0	241.0	230.75	0.25	0.35	2	3	
BG 42	55869.50	76178.80	217.1	237.1	230.70	0.60	0.85	2	3	
BG 43	56039.40	75852.50	222.9	242.9	230.50	0.40	0.57	2	3	
BG 51	58599.30	73864.30	221.2	241.2	240.70	-1.00	-1.00	1	3	
BG 52	55524.30	75910.40	223.8	243.8	229.10	0.25	1.25	25	3	
BG 53	55073.90	76157.30	214.7	234.7	228.04	0.31	0.94	9	3	
BG 54	54830.30	75837.90	215.2	235.2	228.42	0.29	1.51	27	3	
BG 55	54590.50	75525.30	214.9	234.9	226.30	0.61	3.19	27	3	
BG 56	54481.90	75206.50	210.9	230.9	225.05	0.27	0.76	8	3	
BG 57	54820.00	75000.40	214.6	234.6	225.27	0.15	0.45	9	3	
BG 58	55162.30	74790.90	218.2	238.2	226.78	0.27	0.81	9	3	
BG 59	55508.30	74593.40	217.7	237.7	229.63	0.39	1.90	24	3	
BG 60	55850.30	74386.30	215.5	235.5	230.55	0.37	1.81	24	3	
BG 61	56360.80	74075.40	225.0	245.0	232.51	0.44	2.16	24	3	
BG 62	56530.90	73971.60	222.5	242.5	233.22	0.44	1.40	10	3	
BG 63	56870.50	73754.50	224.2	244.2	235.24	0.43	1.35	10	3	
BG 64	57212.40	73547.20	227.3	247.3	238.13	0.38	1.21	10	3	
BG 65	57552.70	73340.60	230.9	250.9	235.74	0.42	1.31	10	3	
BG 66	57805.00	73585.00	231.0	251.0	235.20	0.60	1.81	9	3	
BG 67	57902.60	73954.10	224.7	244.7	236.33	0.56	2.88	26	3	
BG 68	58251.50	76553.60	216.5	242.9	232.22	-1.00	-1.00	1	3	
BG 69	58226.20	76553.80	222.2	242.2	232.48	-1.00	-1.00	1	3	
BG 80	57962.60	76596.50	226.2	248.6	232.73	-1.00	-1.00	1	3	
BG 81	57983.00	76621.90	222.9	246.9	227.35	-1.00	-1.00	1	3	
BG 84	57955 40	76695 90	227.2	247 2	232.58	-1.00	-1 00	1	3	

 Table F-1.
 Hydraulic Head Targets for Model Calibration

	Table F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Conti	inued)	
				-					
BG 85	57928.90	76719.00	228.0	248.0	232.55	-1.00	-1.00	1	3
BG 86	57979.40	76721.40	228.0	248.0	232.48	-1.00	-1.00	1	3
BG 87	57951.90	76748.90	226.2	245.8	232.30	-1.00	-1.00	1	3
BG 91	56649.40	78031.30	205.4	235.4	218.57	0.47	1.95	17	4
BG 92	56828.00	79019.60	197.2	227.2	208.80	0.76	3.11	17	2
BG 93	57160.80	79930.80	180.5	210.5	198.85	1.09	4.50	17	2
BG 94	57494.00	80867.20	152.8	182.8	191.12	0.28	1.20	18	2
BG 95	58407.00	80059.90	152.5	182.5	192.79	0.27	1.14	18	2
BG 96	58297.80	79396.30	177.2	207.2	197.66	0.70	2.87	17	2
BG 98	57398.70	77597.90	212.5	242.5	224.46	-1.00	-1.00	1	3
BG 99	58404.10	76904.60	215.9	245.9	232.53	-1.00	-1.00	1	3
BG 100	58899.10	77815.60	203.3	233.3	224.80	-1.00	-1.00	1	3
BG 103	59752.10	77883.60	169.5	199.5	199.79	0.34	1.32	15	2
BG 104	59888.00	77038.80	215.8	245.8	224.79	-1.00	-1.00	1	3
BG 107	60120.10	74803.60	208.3	228.3	235.28	0.35	1.47	18	3
BG 108	59827.90	74383.00	217.3	247.3	238.77	0.31	1.33	18	3
BG 109	59626.10	73926.20	228.4	258.4	240.12	0.35	1.44	17	3
BG 110	59277.20	73354.70	224.3	254.3	241.23	0.51	2.09	17	3
BG 113	59386.00	77410.20	196.4	216.4	217.10	-1.00	-1.00	1	4
BG 115	57884.50	77207.20	198.9	218.9	215.80	-1.00	-1.00	1	4
BG 119	57004.90	77743.70	209.2	229.2	215.37	-1.00	-1.00	1	4
BG 122	56789.70	/8581.10	189.9	209.9	211.22	0.37	1.51	17	2
BG 124	57095.00	77254.00	214.8	234.8	231.82	-1.00	-1.00	1	4
BGO 1D	58779.30	73737.90	225.0	245.0	237.92	0.37	2.78	50	3
BGU 2D	56609.70	74002.90	210.9	230.9	230.00	0.19	0.55	51 15	3
BGO 3C	58806.40	75550 40	178 7	188 7	225.54	0.25	1.02	17	2
BGO 3D	58809.20	75351.30	227.6	247.6	235.46	0.20	1.13	33	3
BGO 3DR	58820.00	75512.30	217.5	237.6	231.77	0.16	0.61	15	3
BGO 4D	58803.70	76150.10	220.6	240.6	231.82	0.31	1.44	21	3
BGO 5C	58794.50	76476.90	183.2	193.2	216.22	0.41	2.75	46	2
BGO 5D	58784.80	76477.50	219.3	239.3	230.40	0.36	2.50	48	3
BGO 6A	58316.80	76487.20	107.5	117.5	159.25	0.09	0.61	50	1
BGO 6B	58346.50	76553.20	139.7	149.7	218.79	0.16	0.94	34	2
BGO 6C	58307.00	76487.10	158.0	168.0	219.97	0.16	1.14	52	2
BGO 6D	58297.10	76487.30	217.2	237.2	231.37	0.11	0.78	53	3
BGO 7D	57917.20	76494.50	220.2	240.2	232.69	0.33	2.30	48	3
BGO 8A	57618.30	76569.00	105.3	115.3	160.96	0.77	2.43	10	1
BGO 8AH	5/61/.50	76598.80	94.6	104.6	160.82	0.22	1.39	40	1
BGO 8C	5/618./0	76579.20	174.3	184.3	224.34	0.32	2.24	48	2
	57017.00	76000.00	220.0 73.8	240.0	252.75	0.48	0.57	49 21	3 1
BGO SAA	57478.90	76811.60	209.2	229.2	230.04	0.10	3.75	52	3
BGO 10A	57050.90	76805.20	111 1	121 1	170.57	1.50	617	17	4
BGO 10A	56990 50	76997 90	80.8	90.8	157 44	0.68	3.62	28	1
	5 57062.90	76906.00	06.5	106.5	159.45	0.00	0.60	20	1
		70000.00	100.0	140.0	130.45	0.10	1.00	00	1
BGO 10D	570/1 10	76902.10	159.0	149.0	219.00	0.25	1.00	20 54	2
BGO 100	57030.60	76805.20	230.5	250.5	231 80	0.13	0.72	9	3
BGO 10D	3 57073.70	76804.80	218.3	238.3	231.49	0.29	1.70	35	3
BGO 11D	56651.30	76805.10	216.3	236.3	230.71	0.39	2.43	38	3
BGO 11D	R 56650.40	76849.30	213.1	233.0	230.11	0.23	0.90	15	4
BGO 12AF	3 56259.90	76803.80	99.3	109.3	157.79	0.11	0.51	22	1
BGO 12A)	56258.00	76834.80	99.5	109.5	157.21	0.19	0.73	15	1
BGO 12C	56241.10	76805.20	153.6	163.6	220.05	0.24	0.77	10	2
BGO 12C	R 56215.20	76806.00	144.0	154.0	221.87	0.22	1.04	22	2
BGO 12C	X 56230.40	76834.50	141.2	151.2	229.96	0.23	0.93	16	2
BGO 12D	56231.10	76805.20	217.8	237.8	231.31	0.21	1.30	38	3
BGO 12DF	R 56214.70	76834.60	212.7	232.8	219.57	0.25	0.96	15	4

T	able F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Cont	inued)	
BGO 13D	55840.00	76805.30	228.5	248.5	231.03	0.90	2.39	7	3
BGO 13DR	55840.40	76824.70	210.3	220.3	230.73	0.23	1.42	39	2
BGO 14A	55838.30	76377.50	109.6	119.6	157.95	0.16	0.59	14	1
BGO 14AB	55788 90	76351.80	96.8	106.8	159.35	0.20	1 18	36	1
BGO 14C	55839.00	76367 70	192.1	202.1	221 36	0.20	3 55	14	2
BGO 14CB	55789.00	76337.80	100.1	202.1	223 55	0.33	1.40	30	2
BGO 14DP	55780 /0	76322 10	218.1	238.1	220.00	0.22	1.40	37	2
BGO 14DA	55765.40	76072.10	210.1	230.1	200.40	0.27	1.05	57	2
BGO 16A	55659.10	75973.50	1025	110 5	160.06	0.20	1.40	01	3
BGO 16AD	56217 10	75757.00	102.5	112.0	160.90	0.22	0.50	22	1
BGO 16P	50217.10	75743.20	105.7	146.0	010.51	0.09	1.05	30	1
	50105.00	75707.50	130.0	140.0	210.14	0.22	1.20	55	2
BGO 10D	56202.10	75751.40	217.3	237.3	230.81	0.10	1.10	52	3
BGO 17D	56399.40	75599.60	204.0	224.0	230.77	0.27	0.82	9	4
BGO 17DR	56407.20	75604.00	216.9	236.9	231.96	0.37	2.08	32	3
BGO 18A	56699.70	75599.90	99.5	109.5	161.04	0.11	0.76	52	1
BGO 18D	56711.20	75600.00	219.6	239.6	231.88	0.17	1.16	49	3
BGO 19D	56997.30	75350.00	196.8	216.8	234.16	0.25	1.29	26	4
BGO 19DR	56800.70	75520.00	196.7	216.7	231.26	0.22	0.87	15	4
BGO 20A	57100.40	74966.40	86.3	96.3	163.56	0.55	2.14	15	1
BGO 20AA	57089.50	74949.80	18.3	28.3	161.48	0.13	0.51	16	4
BGO 20B	57119.80	74951.50	131.0	141.0	226.92	0.24	1.02	18	2
BGO 20C	57106.00	74937.60	174.0	184.0	228.16	0.27	1.08	16	2
BGO 20D	57113.80	74962.20	216.3	236.3	233.91	0.21	1.48	49	3
BGO 21D	57470.70	74688.50	217.7	237.7	234.83	0.24	1.77	55	3
BGO 22D	57817.30	74482.20	194.2	214.2	232.60	0.20	0.94	21	3
BGO 22DR	57831.50	74471.50	219.2	239.2	236.04	0.99	4.30	19	3
BGO 22DX	57770.74	74560.48	217.9	237.9	233.90	0.23	0.73	10	3
BGO 23D	58133.00	74238.10	222.0	242.0	235.84	0.15	1.07	52	3
BGO 24D	58438.80	74012.40	221.0	241.0	236.79	0.15	1.05	52	3
BGO 25A	55668.10	76158.50	104.1	114.1	160.63	0.17	1.16	49	1
BGO 26A	55014.20	76144.60	81.0	91.0	160.92	0.81	4.67	33	1
BGO 26D	55015.20	76128.00	213.4	233.5	227.69	0.22	1.47	46	3
BGO 27C	54671.40	75666.30	154.9	163.9	220.61	0.23	1.48	41	2
BGO 27D	54680.20	75677.30	209.3	229.3	227,41	0.21	1.47	47	3
BGO 28D	54457.90	75348.30	210.1	230.1	226.10	0.22	1.47	46	3
BGO 29A	54103.50	75560.00	102.5	112.5	159.55	0.15	0.96	43	1
BGO 29C	54099.10	75577.80	176.8	186.8	222.83	0.24	1.36	33	2
BGO 29D	54099.40	75592.50	208.5	228.5	226.12	0.25	1.46	35	3
BGO 30C	54512.30	75181.00	178.4	188.4	219.02	0.20	1.35	45	2
BGO 30D	54499.20	75187.70	207.8	227.8	225.48	0.22	1 48	46	3
BGO 31C	54816.20	74978.00	176.4	186.4	225.33	0.23	1 49	44	2
BGO 31D	54841.70	74985 30	211.1	231.1	226 43	0.23	1.10	46	3
BGO 32D	55250 20	74727 00	214.5	234.5	227 47	0.20	1 47	46	3
BCO 33C	55681 40	74470 70	177.8	197.9	22/ 02	0.22	1.76	40	2
DCO 00D	55001.40	74475.70	177.0	107.0	224.50	0.20	1.00	40	2
BGU 33D	55695.40	/4468./0	213.1	233.1	229.91	0.34	2.34	46	3
BGO 34D	56082.60	74228.80	212.7	232.7	232.68	0.26	1.72	45	3
BGO 35C	56545.70	73953.90	161.9	171.9	228.57	0.23	1.50	42	2
BGO 35D	56556.50	73946.00	219.4	239.4	234.51	0.38	2.49	43	3
BGU 36D	56888.10	73743.80	223.3	243.3	236.60	0.35	2.40	46	3
BGO 3/C	5/2/9.20	73498.20	168.8	178.8	229.91	0.23	1.24	29	2
BGO 3/D	57292.90	/3490.80	226.1	246.1	237.87	0.30	2.03	45	3
BGO 38D	57557.50	73329.30	222.3	242.3	235.20	0.25	1.65	45	3
BGO 39A	57821.90	73573.20	84.8	94.8	167.49	0.13	0.47	13	1
BGO 39C	57816.10	73563.30	174.9	184.9	229.34	1.25	4.66	14	2
BGO 39D	57831.00	73583.50	224.7	244.7	234.58	0.50	3.33	44	3
BGO 40D	54638.60	76125.80	216.6	226.5	222.20	0.26	1.55	35	3
BGO 41A	55403.70	76469.50	103.3	113.3	158.32	0.12	0.61	27	1
BGO 42C	55522.30	76404.70	185.9	195.9	223.18	0.25	1.44	32	2

T	able F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Conti	inued)	
DOO 404	50050 40	77061 40	105.0	115.0	150 70	0.24	1 70	26	4
BGO 43A	56253.40	77001.40	105.9	70.0	100.70	0.34	1.72	20	1
BGU 43AA	50208.00	77000.00	170 4	12.2	100.00	0.10	0.90	20	0
BGO 43CH	56237.20	77035.20	1/8.4	100.4	223.21	0.29	1.37	29	2
BGO 43D	56238.80	77056.70	198.2	208.2	231.27	0.25	1.41	32	2
BGO 44A	57851.20	/6/55.20	98.0	108.0	158.40	0.08	0.45	32	1
BGO 44AA	57880.50	76757.00	61.2	/1.3	158.68	0.08	0.44	30	
BGO 44B	57865.80	76755.00	148.1	158.1	221.28	0.31	1.79	33	2
BGO 44C	57894.90	76757.80	190.6	200.6	220.82	0.18	1.01	33	2
BGO 44D	5/910.00	76759.50	223.4	233.4	232.53	0.17	0.95	31	3
BGO 45A	54550.10	75830.00	116.9	126.9	160.72	0.09	0.50	34	4
BGO 45B	54563.60	75840.30	137.0	147.0	218.73	0.43	2.53	34	2
BGO 45C	54577.40	75835.00	190.5	200.5	222.62	0.39	2.29	34	2
BGO 45D	54585.60	75854.30	209.6	229.6	227.70	0.25	1.43	34	3
BGO 46B	54444.70	75012.10	140.4	150.4	217.94	0.20	1.14	31	2
BGO 46C	54433.90	75022.20	178.0	188.0	219.37	0.30	1.72	34	2
BGO 46D	54420.00	75033.80	202.1	212.1	224.96	0.32	1.82	33	4
BGO 47A	54914.00	74728.80	86.8	96.8	162.32	0.08	0.47	32	1
BGO 47C	54933.40	74752.00	178.6	188.6	222.67	0.22	1.25	32	2
BGO 47D	54922.90	74739.70	203.4	213.4	226.27	0.24	1.36	32	4
BGO 48C	55124.40	74599.60	176.7	186.7	223.33	0.22	1.27	33	2
BGO 48D	55121.00	74586.40	202.0	212.0	226.52	0.24	1.38	33	4
BGO 49A	56205.10	73902.80	75.1	85.1	167.18	1.49	4.94	11	1
BGO 49C	56202.20	73917.20	166.0	176.0	227.74	0.29	1.65	33	2
BGO 49D	56198.80	73931.50	218.5	238.5	234.48	0.28	1.51	29	3
BGO 50A	54179.80	75201.20	90.5	100.5	160.09	0.09	0.56	36	1
BGO 50C	54197.00	75190.40	162.5	172.5	218.08	0.40	2.24	32	2
BGO 50D	54209.10	75181.30	208.0	228.0	225.02	0.25	1.41	33	3
BGO 51A	5/841.80	74133.00	/5.1	85.1	165.89	0.26	1.00	15	1
BGO 51AA	5/86/.00	74113.10	29.2	39.2	168.18	0.13	0.48	14	4
BGO 51B	57848.30	74127.70	110.9	126.9	229.39	0.35	1.30	15	2
BGU SIC	57854.40	74123.10	175.1	185.1	230.27	0.30	1.10	15	2
	57000.00	74110.00	220.1	240.1	162 71	0.29	0.46	15	1
BGO 52A	57178 10	74032.00	36.6	46.6	162 94	0.12	0.40	15	1
BGO 528	57180.80	74607 30	126.7	1367	227 /5	0.26	1.02	15	2
BGO 52B	57180.80	74627 30	126.7	136.7	227.45	0.26	1.02	15	2
BGO 52D	57105.00	74622.00	178 7	188.7	227.45	0.20	1.02	15	2
	57195.50	74022.00	010.4	000.7	220.00	0.27	1.00	15	2
BGU 52D	5/201.40	74017.30	219.4	239.4	233.00	0.20	1.10	15	3
BGO 53A	55423.90	76070.80	/8./	88.7	158.95	0.12	0.46	15	1
BGO 53AA	55431.50	76065.00	38.9	48.9 152 E	100.01	0.11	0.42	15	2
BGO 53B	55410.20	76082 50	143.5	193.2	221.27	0.55	1.00	14	2
BGO 53D	55425 50	76056.00	225.3	245.3	229 13	0.26	0.98	14	3
BGX 1A	58590.40	76831.90	114 1	124.1	158 77	0.69	3.77	30	1
BGX 1C	58599 80	76820.00	176.0	186.0	215.82	0.00	1 09	34	2
BGX 1D	58608.60	76809 50	214 7	234 7	229.54	0.10	0.73	35	3
BGX 2B	58256 50	77203 40	137.2	147.2	212 74	0.20	1 19	34	2
BGX 2D	58265.60	77192 40	181 1	191 1	215.22	0.20	1.10	36	2
BGX 3D	57780 10	77577.00	201.6	221.6	214 62	0.39	2.32	35	4
BGX 4A	57215.60	77879.20	106.8	116.8	155.11	0.08	0.45	34	1
BGX 4C	57202.20	77886.20	170.7	180.7	214.48	0.27	1.55	33	2
BGX 4D	57186.20	77893.90	203.8	223.8	215.70	0.27	1.55	34	2
BGX 5D	57308.60	78402.00	195.0	215.0	209.00	0.28	1.65	34	2
BGX 6D	57524.90	78740.10	191.0	211.0	205.73	0.28	1.67	35	2
BGX 7D	58312.80	78349.30	194.1	214.1	205.54	0.27	1.44	29	2
BGX 8DR	58942.50	77589.60	183.1	203.1	205.39	0.21	1.15	31	2
BGX 9D	59522.10	76936.00	212.4	232.4	226.47	0.39	2.31	35	3
BGX 10D	59765.50	76183.30	216.2	236.2	225.41	0.33	1.90	34	3
BGX 11D	59581.40	75300.70	216.7	236.7	235.34	0.22	1.22	31	3

	Table r-1.	riyuraune	neau la	il gets tot	WIUUEI	Canulation	(Con	unueu)	
BGX 12C	59675 30	74427 90	174 1	184 1	234 17	0.51	2 94	33	2
BGX 12D	59674.30	74410.90	223.7	243.7	238.78	0.30	1.80	35	3
BRD 1	29277.70	55860.50	148.9	178.9	167.10	0.30	1.69	32	3
BRD 2	29357.10	56093.30	148.5	178.5	169.27	0.60	3.37	32	3
BRD 3	29538.90	55918.70	158.5	188.5	169.95	0.14	0.44	10	3
BRD 4	29219.20	56060.40	129.1	159.1	165.91	0.36	1.96	30	4
BRD 5D	29252.60	55955.70	148.4	168.4	166.75	0.37	1.84	25	3
BRR 1D	50588.20	77365.20	200.4	220.4	217.15	0.46	2.11	21	3
BRR 2D	50306.30	77431.40	196.1	216.1	215.49	0.47	2.20	22	3
BRR 3D	50203.50	77398.30	197.1	217.1	215.18	0.43	2.06	23	3
BRR 4D	50104.50	77360.50	198.7	218.7	215.10	0.45	2.06	21	3
	50009.00	77062.00	202.1	166.0	214.00	0.43	0.57	20	ა ი
BRR 7RR	50707 50	77575.40	141.6	151.6	204.87	0.20	0.07	2	2
BRR 7C	50698 10	77572.90	175.9	185.9	209.81	0.34	0.00	5	2
BRR 7D	50688.30	77570.70	201.9	221.9	217.88	0.30	0.67	5	3
BRR 8B	50116.50	77634.70	138.7	148.7	204.34	0.38	0.85	5	2
BRR 8C	50125.60	77632.00	182.7	192.7	208.50	0.38	0.84	5	4
BRR 8DR	50142.30	77627.30	204.0	219.0	214.34	0.19	0.33	3	3
CBR 1D	52822.10	60419.50	230.9	250.9	253.45	0.56	2.55	21	3
CBR 2D	52694.00	60368.90	233.8	253.8	252.91	0.53	2.49	22	3
CBR 3D	52627.20	60388.50	234.1	254.1	253.02	0.53	2.51	22	3
CCB 1	46990.10	05438.50	198.4	228.4	220.00	0.72	3.37	22	3
CCB 3	40093.00	65187 50	205.6	220.0	222.00	0.74	4.24	30	3
CCB 4	47181.60	65310.20	211.2	241.2	226.12	0.70	3.96	32	3
CDB 1	45685.50	67514.60	195.7	216.6	213.86	0.55	3.23	35	3
CDB 2	45617.70	67415.30	195.1	216.1	214.92	0.59	3.43	34	3
CMP 8A	54270.20	52671.20	13.7	23.5	182.94	0.30	1.62	29	1
CMP 8B	54280.20	52674.60	156.6	166.6	198.46	0.14	0.76	32	2
CMP 9B	53842.30	51691.60	149.0	159.0	194.72	0.13	0.68	28	2
CMP 10	54006.50	51390.40	188.8	218.8	220.11	0.42	2.06	24	4
CMP 10B	54005.90	51380.70	137.4	147.4	195.01	0.13	0.74	31	2
CMP 10C	53994.30	51402.70	1/9.6	189.6	198.92	0.26	0.51	4	2
	53540.50	51461.30	100.2	215.2	212.03	0.45	2.30	27	4
	53601.90	51450.00	200 5	149.7 220 0	221.20	1.04	0.00	29	2
CMP 12A	53524 60	51949 20	203.5	32 1	181 59	0.36	1.92	29	1
CMP 12B	53517.70	51943.30	148.0	158.0	194.64	0.14	0.76	31	2
CMP 13B	53937.80	51855.50	134.2	144.2	194.67	0.14	0.75	31	2
CMP 14B	52587.30	52376.40	130.0	140.0	194.55	0.12	0.68	31	2
CMP 14C	52579.60	52371.70	185.1	215.1	212.44	0.63	3.29	27	4
CMP 14D	52589.50	52363.50	204.1	224.5	216.16	0.91	2.04	5	3
CMP 15A	52896.80	51357.20	14.2	24.2	180.60	0.31	1.67	29	1
CMP 15B	52904.70	51349.50	145.1	155.1	202.85	0.38	2.20	33	2
CMP 150	52907.80	51301.40	220.0	250.0	239.01	0.69	2.93	18	ა ი
CMP 16C	53856 00	51560 50	215.6	235.6	222 48	0.14	0.75	31	2
CMP 30B	53166.90	51729.80	97.4	107.5	194 72	0.47	0.34	3	2
CMP 30C	53208.20	51718.40	179.5	189.5	210.85	0.20	0.40	4	2
CMP 30D	53202.90	51709.70	211.6	231.6	221.12	1.07	2.62	6	3
CMP 31B	53259.80	52319.10	110.0	120.0	194.41	0.13	0.26	4	2
CMP 32B	54052.80	52220.00	97.7	107.7	195.54	0.15	0.37	6	2
CMP 32C	54061.10	52214.60	185.2	195.2	195.93	0.17	0.34	4	2
CMP 32D	54069.20	52209.20	218.6	228.6	220.90	0.08	0.17	5	3
CRP 1	44372.20	68617.70	187.8	217.8	207.91	0.42	2.28	30	3
CHP 2	44336.40	69043.00	1/1.8	201.8	207.12	0.35	2.02	33	3
CHP 3	44001.00	06.60060	184.0	214.0	207.80	0.52	1.64	10	3

	Table F-1.	Hydraulic	Head 7	Cargets for	Model	Calibration	(Con	tinued)	
CBP 3C	44023 80	68701 60	121 1	131 1	196 71	0.22	0.57	7	2
	44020,00	69602 60	10/ 2	214.2	207.20	0.22	1 00	14	2
	44012.30	69447 40	100 7	214.0	207.39	0.32	1.00	11	3
	44101.20	68525 60	180.7	210.7	207.89	0.49	2.71	31	3
	44527.70	685/0 10	10/ 6	21/6	211 59	0.27	1.65	0 12	2
	44010.00	60011 50	104.0	214.0	211.00	0.40	1.00	12	ა ი
	44017.00	00311.30 60106 70	194.2	214.2	210.00	-1.00	-1.00	1	3
	44001.00	68650 40	100.0	200.0	200.40	0.53	1.75	6	3
	43001.70	69156 70	101.0	211.0	207.03	0.79	1.95	0	3
CRP 10D	43742 70	68999 80	189.5	209.5	207.13	0.40	1.21	5	3
CRP 11D	44164 40	68713 50	193.7	203.6	206.91	0.85	1.00	5	3
CSA 1	50197.00	61808.40	232.0	262.0	243.30	0.65	3.40	27	3
CSA 2	50218.60	61761.80	218.2	248.2	243.73	0.72	3.83	28	3
CSA 3	50173.20	61720.20	218.6	248.6	242.97	0.65	3.41	28	3
CSA 4	50132.70	61781.90	218.4	248.4	242.67	0.65	3.46	28	3
CSB 1A	44974.00	67593.00	194.9	224.9	213.18	0.47	2.39	26	3
CSB 2A	44802.60	67310.20	192.6	222.6	210.49	0.61	3.11	26	3
CSB 3A	44648.30	67385.60	193.0	223.0	210.42	0.53	3.04	33	3
CSB 4A	44618.50	67561.80	188.0	218.0	210.60	0.51	3.07	36	3
CSB 5A	44618.90	67751.60	185.9	215.9	210.66	0.50	2.97	36	3
CSB 6A	44863.80	67812.40	189.8	219.8	211.13	0.54	3.02	31	3
CSD 1D	50170.50	63255.80	238.4	273.4	244.91	0.56	2.68	23	3
CSD 2D	50144.00	63126.20	233.8	258.8	248.86	0.30	1.04	12	3
CSD 4D	50058.90	63143.80	213.5	263.5	243.99	0.64	2.94	21	3
CSD 8D	49903.10	63195.00	226.8	256.8	243.13	0.57	2.68	22	3
CSD 9D	49838.80	63080.90	226.2	256.2	243.22	0.62	2.82	21	3
CSD 10D	49806.50	63094.10	224.5	254.5	243.12	0.62	2.82	21	3
CSD 10D	49/03.90	63956.30	220.9	250.9	242.95	0.65	3.00	21	3
CSD 12D	49937.30	63004.70	224.0	204.0	243.59	0.63	2.87	21	3
CSE 1D	49005.50	62368.60	202.4	202.4	242.42	0.03	2.90	22	3
CSE 2D	50880 70	61053 30	220.2	240.2	240.00	0.17	0.29	3	ა ი
	52484.20	61071 10	200.2	255.2	250.90	0.54	0.40	2	ა ი
CSO 2	52559 00	61114.30	202.0	202.0	251.03	0.07	3.05	25	ა ი
CSR 1	52804.30	64413.10	237.2	267.2	256.06	0.01	3.67	25	3
CSR 3	53229.90	65234.80	238.1	268.1	254.36	0.74	3.83	27	3
CSR 4	53214.40	64412.80	237.6	267.6	256.11	0.74	3.78	26	3
DBP 1	18661.80	66691.40	93.2	123.2	119.77	0.42	2.39	32	2
DBP 2	18407.30	66478.20	84.3	114.3	117.38	0.28	1.64	34	2
DBP 3	18427.50	66775.50	86.4	116.4	120.98	0.38	2.25	35	2
DBP 4	18342.10	66679.60	84.2	114.2	118.93	0.34	1.93	32	2
DBP 5	18605.20	66485.60	96.1	116.1	117.60	0.56	2.03	13	2
DCB 1A	19856.30	64028.50	90.1	120.1	115.24	0.15	0.76	26	2
DCB 2A	20895.20	63436.10	97.4	127.4	124.79	0.24	1.31	29	2
DCB 3A	20899.90	62674.90	96.2	126.2	120.60	0.21	1.11	28	2
DCB 4A	20493.80	62678.80	92.5	122.5	119.15	0.15	0.86	31	2
DCB 5A	20139.80	63126.10	85.9	115.9	118.85	0.15	0.80	30	2
DCB 6	19979.30	64167.90	109.5	129.5	116.77	0.16	0.90	30	2
DCB 0	20036.30	64001.40	108.9	128.9	117.98	0.16	0.87	30	2
	10807 40	6/100 60	07.2	130.3	120.49	0.27	1.48	30	2
DCB 10	19852 30	63803 10	97.5 99.8	110.8	116.60	0.10	1 00	20	2
DCB 11	19248 60	64638 30	106.8	126.8	122.00	0.30	1.59	20	2
DCB 12	18529.80	65150.00	92 0	112 0	109 74	0.50	1.09 0.75	29	2
DCB 13	19235 40	63842 50	102.0	122.0	116 91	0.14	1 50	25	2
DCB 14	19392 40	64909.80	94.6	114.6	109.79	0.23	0.60	7	2
DCB 15	17635.90	64607.40	99.8	119.9	111 55	0.48	2 29	23	2
DCB 16	17611.20	63956.00	100.1	120.1	111.94	0.25	1.32	27	2
DCB 17A	19841.80	64583.20	109.4	119.4	116.60	0.18	0.30	3	2

DCB 17B 19844.70 6458.80 99.2 101.7 116.97 0.17 0.28 3 2 DCB 17C 19864.50 6458.70 67.4 89.9 116.07 0.17 0.29 3 2 DCB 18A 19861.30 66061.80 110.1 120.1 116.17 0.44 0.88 4 2 DCB 18B 19874.50 6404.10 0.77 90.2 112.73 0.38 0.65 3 2 DCB 19B 19895.30 64016.50 101.9 104.4 117.38 0.41 0.71 3 2 DCB 20A 20106.50 63953.00 110.2 110.2 116.50 0.10 0.17 3 2 DCB 20A 20087.40 6395.30 46.2 48.7 114.40 0.10 0.17 3 2 DCB 21A 1984.20 63963.30 46.2 48.7 114.40 0.10 0.17 3 2 DCB 21A 1974.20 639		Table F-1.	Hydraulic	Head Ta	rgets for	Model C	Calibratio	n (Cont	inued))
DCB 17B 19844.70 64588.80 99.2 101.7 116.92 0.17 0.29 3 2 DCB 17C 19845.00 64493.70 87.4 89.9 115.07 0.17 0.29 3 2 DCB 18A 19874.50 64046.10 100.5 103.0 113.32 0.44 0.77 32 DCB 18A 19869.40 64014.00 87.7 90.2 112.73 0.38 0.66 3 2 DCB 19C 19865.30 64015.50 101.9 104.4 117.38 0.41 0.71 3 2 DCB 202 2008.90 65853.10 101.9 120.9 117.17 0.17 0.29 3 2 DCB 202 2008.90 63853.00 0.03 102.2 116.39 0.11 0.17 3 1 DCB 202 20047.00 63943.40 100.1 120.1 116.39 0.41 0.70 3 2 DCB 21A 19864.70 63943.40										
DCB 17C 1001 10 1000 10 1000 10 <t< td=""><td></td><td>19844 70</td><td>64588 80</td><td>99.2</td><td>101 7</td><td>116 92</td><td>0 17</td><td>0.29</td><td>3</td><td>2</td></t<>		19844 70	64588 80	99.2	101 7	116 92	0 17	0.29	3	2
DCB 16A 19801.30 64051.80 110.1 120.1 116.7 0.44 0.28 4 2 DCB 16B 19874.30 640451.00 100.5 103.0 113.32 0.44 0.77 3 2 DCB 19B 19890.30 64021.0 111.9 111.9 119.95 0.38 0.66 3 2 DCB 19B 19895.30 64016.00 101.9 104.4 117.38 0.41 0.71 3 2 DCB 20A 20105.50 63931.00 110.9 110.19 116.50 0.10 0.17 3 2 DCB 20A 20105.50 63934.00 98.4 91.9 116.39 0.10 0.17 3 1 DCB 20A 20087.10 6394.20 94.4 12.30 0.28 0.41 0.70 3 2 DCB 21A 19854.70 6394.14.20 110.21 114.23 0.28 0.44 3 2 DCB 22A 1994.20 63925.30	DCB 17C	19846 50	64593 70	87.4	89.9	116.07	0.17	0.20	3	2
DCB 188 19874.50 6404.50 100.5 103.1 113.1 0.77 3 2 DCB 186 19869.30 6404.10 87.7 90.2 112.73 0.38 0.66 3 2 DCB 196 19890.30 64015.00 101.9 119.17 117.38 0.41 0.77 3 2 DCB 196 19890.30 64015.00 101.9 104.4 117.38 0.41 0.77 3 2 DCB 208 20106.50 63931.00 110.9 120.9 117.17 0.17 0.23 2 DCB 208 20106.50 63935.30 04.2 48.7 114.00 0.10 0.17 3 2 DCB 210 20897.90 63953.30 46.2 48.7 114.00 0.10 0.17 3 2 DCB 212 1984.20 6397.60 108.3 119.8 112.77 0.14 0.29 0.44 3 2 DCB 224 1979.70 63913.10		10881 30	64051 80	110.1	120.1	116.17	0.17	0.20	1	2
DCB 18C 1307.30 01437.10 100.3 110.32 0.74 0.71 0.3 2 DCB 18A 19863.30 64022.10 111.9 121.9 118.95 0.90 1.56 3 2 DCB 19B 19885.30 64022.10 111.9 121.9 118.52 0.38 0.66 3 2 DCB 19C 19879.70 64010.90 89.1 91.6 115.52 0.38 0.66 3 2 DCB 20A 20106.50 63934.30 100.3 102.8 116.50 0.10 0.17 3 2 DCB 20A 20095.10 6394.40 100.1 110.1 120.1 116.83 0.41 0.70 3 2 DCB 21A 19864.70 6394.60 100.8 119.8 0.12 0.44 0.70 3 2 DCB 21A 19864.20 63925.50 83.3 0.06 112.27 0.14 0.29 4 2 DCB 22A 1978.70		10074.50	64031.00	100.5	103.0	113 32	0.44	0.00	3	2
DCB 160 1980.30 6002.10 01.7 30.2 112.73 0.33 0.30 0.35 2 DCB 19B 1980.30 64016.50 101.9 104.4 117.38 0.41 0.71 3 2 DCB 19C 1987.70 64010.80 6931.10 110.9 120.9 117.17 0.17 0.29 3 2 DCB 202 20102.60 63935.30 100.3 102.8 116.50 0.10 0.17 3 2 DCB 202 20087.90 63945.30 46.2 48.7 114.40 0.10 0.17 3 2 DCB 21B 19851.50 63920.00 102.2 104.7 113.41 0.25 0.44 3 2 DCB 22L 19784.20 6397.04 100.9 103.4 112.77 0.14 0.29 4 2 DCB 22L 19787.00 6397.04 100.3 103.4 112.77 0.14 0.31 3 2 DCB 22A 1979.00		19074.30	64040.10	100.5	00.2	110.02	0.44	0.77	2	2
DCB 198 1986.3.0 6402.1.0 111.3 12.1.3 12.3.3 0.3.4 1.7.1 3 2 DCB 19E 1987.3.7.0 64016.5.0 101.9 101.9 12.0.9 117.1 0.17 0.29 3 2 DCB 20A 20105.5.0 63935.3.0 100.3 102.9 117.1 0.17 0.29 3 2 DCB 20A 2008.2.0 63940.4.0 89.4 91.9 116.5.0 0.10 0.17 3 1 DCB 21A 19864.70 63940.4.0 89.4 89.4 114.00 0.10 0.17 3 1 DCB 21A 19864.70 63943.80 100.1 120.1 116.83 0.44 3 2 DCB 22A 1984.2.0 6392.5.0 68.3 90.6 112.93 0.28 0.44 3 2 DCB 22A 1980.7.0 63919.10 109.8 112.77 0.14 0.23 3 1 DCB 22A 19807.0.0 63976		19009.40	64041.40	111 0	90.2	112.75	0.38	1.56	3	2
DCB 19D 1980.3.0 0410.3.0 07.3 10.4.7 11.3.3 0.41 0.71 0.2 2 DCB 20A 20106.5.0 63955.30 100.3 102.8 116.50 0.10 0.17 3 2 DCB 20A 20102.60 63955.30 100.3 102.8 116.50 0.10 0.17 3 2 DCB 20A 20087.90 63953.30 46.2 48.7 114.00 0.10 0.17 3 1 DCB 21A 1984.70 63913.40 100.1 120.1 116.33 0.24 0.44 3 2 DCB 21C 19794.70 63913.10 100.9 103.4 112.77 0.14 0.29 4 2 DCB 22A 19790.70 63913.10 100.9 103.4 112.77 0.14 0.31 5 2 DCB 22A 19784.70 63913.10 105.7 117.71 0.11 0.31 3 2 DCB 22A 19784.70 63876.30 <td>DCD 19A</td> <td>19090.30</td> <td>64022.10</td> <td>101.0</td> <td>104.4</td> <td>117.38</td> <td>0.50</td> <td>0.71</td> <td>3</td> <td>2</td>	DCD 19A	19090.30	64022.10	101.0	104.4	117.38	0.50	0.71	3	2
DCB 20A 1507.3.70 0503.00 031.00 110.9 117.17 0.17.7 0.1		10070 70	64010.00	90.1	01.6	116.52	0.41	0.66	3	2
DDB 200 D2102.60 CB383.30 100.3 102.8 116.50 0.11 0.17 3 2 DCB 200 20088.10 63984.04 89.4 91.9 116.50 0.10 0.17 3 2 DCB 200 20088.10 63940.40 89.4 91.9 116.33 0.41 0.70 3 2 DCB 216 19864.70 63914.80 110.1 120.1 116.83 0.41 0.70 3 2 DCB 216 19864.20 63920.60 109.8 112.95 0.23 0.33 3 2 DCB 221 1979.70 63913.10 100.9 103.4 112.95 0.46 0.81 3 2 DCB 222 19780.70 63876.30 94.1 96.6 108.75 0.10 0.18 3 2 DCB 230 19605.70 63876.30 94.1 96.6 108.74 0.01 0.21 2 DCB 242 19985.40 63318.20 100.2	DCB 20A	20106 50	63031 00	110.0	120.9	117.17	0.38	0.00	3	2
DDB 200 2012 bit 2012 bit 2012 bit 112 bit	DCB 20A	20100.50	63935 30	100.3	102.8	116 50	0.17	0.23	3	2
DCB 200 20087.80 68985.30 46.2 48.7 114.00 0.10 0.17 3 1 DCB 21A 19885.470 63914.40 110.1 120.1 116.83 0.41 0.70 3 2 DCB 21C 19845.40 63922.50 88.3 90.8 112.33 0.28 0.449 3 2 DCB 22C 19784.20 63907.60 63919.10 88.1 90.6 112.25 0.24 0.23 0.39 3 2 DCB 22A 19788.70 63919.10 88.1 90.6 112.25 0.46 0.81 3 2 DCB 23A 19607.00 63870.40 105.7 117.97 0.14 0.31 3 2 DCB 24A 19605.70 63821.60 109.2 118.21 0.01 0.01 2.3 1 DCB 24A 19986.40 63318.70 87.6 90.1 116.27 0.14 0.25 2 DCB 24 19986.40 63318.70 <td>DCB 200</td> <td>20098 10</td> <td>63940 40</td> <td>89.4</td> <td>91.9</td> <td>116.39</td> <td>0.10</td> <td>0.33</td> <td>3</td> <td>2</td>	DCB 200	20098 10	63940 40	89.4	91.9	116.39	0.10	0.33	3	2
DCB 21A 19864.70 63914.80 110.1 120.1 116.33 0.41 0.70 3 2 DCB 21B 19845.20 63925.30 10.2 104.7 113.41 0.25 0.44 3 2 DCB 22A 19749.20 63907.60 109.8 119.8 112.77 0.14 0.29 4 2 DCB 22A 19790.70 63913.10 100.9 110.57 115.7 0.11 0.29 4 2 DCB 22A 19906.70 63916.10 105.7 115.7 111.79 0.14 0.31 3 2 DCB 23A 19606.30 63876.30 94.1 96.6 103.7 115.7 111.19 0.13 0.23 3 1 DCB 23A 19602.20 63806.30 94.1 96.6 103.1 115.21 0.01 0.01 2 2 DCB 24A 19864.0 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 23340.80 <td>DCB 200</td> <td>20030.10</td> <td>63953 30</td> <td>46.2</td> <td>48.7</td> <td>114.00</td> <td>0.10</td> <td>0.00</td> <td>3 3</td> <td>1</td>	DCB 200	20030.10	63953 30	46.2	48.7	114.00	0.10	0.00	3 3	1
DDB 21R 19851.50 6392.00 102.1 103.41 0.25 0.44 3 2 DCB 21C 19949.20 63925.30 88.3 90.8 112.33 0.28 0.49 3 2 DCB 22C 19794.20 63907.60 109.8 119.8 112.37 0.24 0.29 4 2 DCB 22B 19790.70 63913.10 100.9 103.4 112.75 0.23 0.39 3 2 DCB 22B 19707.0 63915.00 88.6 90.6 112.95 0.46 0.81 3 2 DCB 22B 19607.00 63876.30 94.1 96.6 100.75 0.10 0.18 0.31 3 2 DCB 22D 19605.70 633816.20 100.6 103.1 115.47 0.14 0.24 3 2 DCB 242 19863.40 63316.20 100.6 103.1 116.27 0.14 0.24 3 2 DCB 242 2340.40 686438.10 114.7 <td>DCB 21A</td> <td>19854 70</td> <td>63914 80</td> <td>110 1</td> <td>120.1</td> <td>116.00</td> <td>0.10</td> <td>0.17</td> <td>3</td> <td>2</td>	DCB 21A	19854 70	63914 80	110 1	120.1	116.00	0.10	0.17	3	2
DCB 21C 19949.20 63925.30 18.2 10.2 112.93 0.28 0.49 3 2 DCB 22A 19794.20 63907.60 109.8 119.8 112.77 0.14 0.29 4 2 DCB 22C 19780.70 63913.10 100.9 119.8 112.75 0.23 0.39 3 2 DCB 22C 19780.70 63913.10 105.7 115.7 111.79 0.14 0.31 5 2 DCB 23C 19605.70 63862.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 24A 19802.20 63301.60 109.2 119.2 115.47 0.14 0.24 3 2 DCB 24A 19863.10 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 24 19965.40 6568.00 115.3 145.9 143.18 0.44 2.96 4 2 2 2 2 2	DCB 21R	19851 50	63920.00	102.2	104 7	113.41	0.41	0.70	3	2
DCB 22A 19794.20 63907.60 109.8 119.8 112.77 0.14 0.29 4 2 DCB 22B 19790.70 63913.10 100.9 103.4 112.75 0.23 0.39 3 2 DCB 22A 19780.70 63913.10 100.9 103.4 112.75 0.23 0.46 0.81 3 2 DCB 23A 19605.70 63862.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 23D 19605.70 63862.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 24A 19982.10 63316.70 109.2 119.2 115.47 0.14 0.23 3 1 DCB 24A 19982.40 63316.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 2 23404.80 68693.50 115.3 145.3 143.15 0.44 2.26 45 2 DDB 2.26	DCB 21C	19849 20	63925.30	88.3	90.8	112.93	0.20	0.44	3	2
DCB 22B 19790.70 63913.10 100.9 103.4 112.75 0.23 0.39 3 2 DCB 22C 19788.70 63913.10 100.9 103.4 112.75 0.23 0.39 3 2 DCB 22A 19608.70 63876.30 94.1 96.6 108.75 0.10 0.18 3 2 DCB 23A 19605.70 63882.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 23A 19805.70 63890.00 49.1 51.6 111.19 0.13 0.23 3 1 DCB 24A 19823.10 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 24C 19866.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 1 23657.80 68316.00 115.3 145.9 143.15 0.55 3.16 34 2 DCB 1 23340.80 6	DCB 22A	19794 20	63907.60	109.8	119.8	112.00	0.14	0.29	4	2
DCB 22C 19788.70 63919.10 88.1 90.6 112.95 0.46 0.81 3 2 DCB 23A 19608.30 63870.40 105.7 115.7 111.79 0.14 0.31 5 2 DCB 23C 19605.70 63882.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 23C 19605.70 63880.00 49.1 51.6 111.19 0.13 0.23 3 1 DCB 24B 19972.40 63318.20 100.6 103.1 115.21 0.01 0.01 2 2 DCB 24C 19966.40 63315.70 87.6 90.1 118.27 0.14 0.25 3 2 DCB 2 2340.80 68698.00 115.3 145.3 143.18 0.44 2.96 45 2 DCB 3 23633.30 68693.60 115.3 145.3 143.18 0.44 2.96 45 2 DCB 4 23815.60 6	DCB 22B	19790 70	63913 10	100.9	103.4	112 75	0.23	0.39	3	2
DCB 23A 19608.30 63870.40 105.7 115.7 117.79 0.14 0.31 5 2 DCB 23B 19607.00 63876.30 94.1 96.6 108.75 0.10 0.18 3.1 3 2 DCB 23C 19605.20 63802.00 63921.60 109.2 115.47 0.14 0.23 3 1 DCB 23C 19983.10 63321.60 109.2 115.47 0.14 0.24 3 2 DCB 24C 19986.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 1 23567.80 68493.10 114.7 144.7 143.16 0.41 2.74 45 2 DOB 2 23340.80 68568.00 115.3 145.3 143.15 0.55 3.18 34 2 DOB 4 23815.60 125.7 145.7 143.10 0.49 1.85 14 2 DOB 1 23960.70 68811.60	DCB 22C	19788 70	63919 10	88 1	90.6	112.95	0.46	0.81	3	2
DCB 23B 19607.00 63877.30 94.1 96.6 108.75 0.10 0.18 3 2 DCB 23C 19605.70 63882.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 23D 19602.20 6390.00 49.1 51.6 111.19 0.13 0.23 3 1 DCB 24A 19983.10 63321.60 109.2 119.2 115.47 0.14 0.24 3 2 DCB 24C 19966.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 1 23667.80 6438.10 114.7 144.7 143.16 0.44 2.96 45 2 DCB 3 23340.80 66868.00 115.3 145.9 144.316 0.44 2.86 3 2 DCB 4 23815.60 68514.40 109.2 148.3 143.65 0.48 1.81 14 2 DCB 4 23808.76 683	DCB 23A	19608 30	63870 40	105.7	115.7	111.79	0.14	0.31	5	2
DCB 23C 19605.70 63882.50 86.6 89.1 109.02 0.18 0.31 3 2 DCB 23D 19602.20 63900.00 49.1 51.6 111.19 0.13 0.23 3 1 DCB 24A 19983.10 63321.60 109.2 119.2 115.47 0.14 0.24 3 2 DCB 24C 19966.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DCB 1 23567.80 6643.80 115.3 145.3 143.15 0.55 3.18 34 2 DCB 2 2340.80 68568.00 115.3 145.3 143.15 0.55 3.18 34 2 DCB 4 23815.60 68515.80 125.7 145.7 143.10 0.49 1.85 14 2 DCB 1 22660.70 68811.60 128.5 144.31 0.42 0.33 3.6 3 2 DCB 1 223400.80 6844	DCB 23B	19607.00	63876.30	94.1	96.6	108.75	0.10	0.18	3	2
DCB 23D 19602.20 63900.00 49.1 51.6 111.19 0.13 0.23 3 1 DCB 24A 19983.10 63321.60 109.2 119.2 115.47 0.14 0.24 3 2 DCB 24B 19972.40 63315.70 87.6 90.1 115.27 0.14 0.25 3 2 DCB 1 23567.80 68438.10 114.7 144.7 143.16 0.41 2.74 45 2 DOB 2 2330.80 68693.50 115.3 145.3 143.15 0.55 3.18 34 2 DOB 3 23697.0 68315.60 125.7 145.7 143.10 0.49 1.85 14 2 DOB 4 23969.70 68811.60 128.5 148.5 144.10 0.42 0.73 3 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80	DCB 23C	19605.70	63882.50	86.6	89.1	109.02	0.18	0.31	3	2
DCB 24A 1993.10 63321.60 109.2 119.2 115.47 0.14 0.24 3 2 DCB 24B 19972.40 63318.20 100.6 103.1 115.21 0.01 0.01 2 2 DCB 24C 19966.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DOB 2 23340.80 68668.00 115.3 145.5 143.16 0.44 2.96 45 2 DOB 3 23633.30 66935.50 115.9 145.5 143.16 0.55 3.18 34 2 DOB 4 23815.60 68514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 8 23710.40 6849.20 128.3 148.5 144.10 0.42 0.73 3 2 DOB 10 23690.70 6811.60 128.5 148.5 144.10 0.42 0.73 3 2 DOB 11 23409.00	DCB 23D	19602.20	63900.00	49.1	51.6	111.19	0.13	0.23	3	1
DCB 24B 19972.40 63318.20 100.6 103.1 115.21 0.01 0.01 2 2 DCB 24C 19966.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DOB 23567.80 66438.10 114.7 144.7 143.16 0.44 2.96 45 2 DOB 3 23633.30 68693.50 115.9 145.9 143.15 0.55 3.18 34 2 DOB 4 23815.60 66514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 23701.40 68429.20 128.3 148.3 143.25 0.48 1.81 14 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68133.90 103.5 137.6 139.68 0.33 0.58 3 2 D	DCB 24A	19983.10	63321.60	109.2	119.2	115.47	0.14	0.24	3	2
DCB 24C 19966.40 63315.70 87.6 90.1 116.27 0.14 0.25 3 2 DOB 1 23567.80 68438.10 114.7 144.7 143.16 0.44 2.74 45 2 DOB 3 2363.30 68693.50 115.9 145.3 143.15 0.55 3.18 34 2 DOB 4 23815.60 68514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 4 23815.60 68415.80 125.7 145.7 143.10 0.49 1.85 144 2 DOB 8 23710.40 68449.20 128.3 148.3 143.24 0.45 1.67 14 2 DOB 10 2399.70 68315.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 14 2398.78 68450.08 133.1 138.1 140.48 0.38 1.50 16 2 DOB 14 2399.05	DCB 24B	19972.40	63318.20	100.6	103.1	115.21	0.01	0.01	2	2
DOB 1 23567.80 68438.10 114.7 144.7 143.16 0.41 2.74 45 2 DOB 2 23340.80 68666.00 115.3 145.3 143.18 0.44 2.96 45 2 DOB 3 23633.30 68693.50 115.9 145.9 143.15 0.55 3.18 34 2 DOB 7 23485.70 68315.80 125.7 145.7 143.16 0.49 1.85 14 2 DOB 8 23701.40 68442.20 128.3 148.3 143.26 0.44 1.67 14 2 DOB 10 22391.40 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 14 23527.50 6833.60 103.5 108.6 133.6 140.48 0.38 1.50 16 2 DOB 14 23586.10 6813.90 103.5 108.6 141.39 0.19 0.32 3 2 DOB 15 2	DCB 24C	19966.40	63315.70	87.6	90.1	116.27	0.14	0.25	3	2
DOB 2 23340.80 68568.00 115.3 145.3 143.18 0.44 2.96 45 2 DOB 3 2363.30 66633.50 115.9 145.9 143.15 0.55 3.18 34 2 DOB 4 23815.60 68514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 8 23710.40 68429.20 128.3 148.3 143.24 0.48 1.81 14 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 6845.08 133.1 138.1 140.92 0.32 0.56 3 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 14 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 <td< td=""><td>DOB 1</td><td>23567.80</td><td>68438.10</td><td>114.7</td><td>144.7</td><td>143.16</td><td>0.41</td><td>2.74</td><td>45</td><td>2</td></td<>	DOB 1	23567.80	68438.10	114.7	144.7	143.16	0.41	2.74	45	2
DOB 3 23633.30 68693.50 115.9 145.9 143.15 0.55 3.18 34 2 DOB 4 23815.60 68514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 7 23485.70 68315.80 125.7 145.7 143.10 0.49 1.85 14 2 DOB 9 23690.70 68811.60 128.5 148.3 143.24 0.45 1.67 14 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 12 23398.78 68450.08 133.1 138.1 140.48 0.38 1.50 16 2 DOB 14 23527.50 68335.00 102.6 137.6 139.68 0.33 0.58 3 2 DOB 16 23190.80 68133.90 103.5 108.6 141.39 0.19 0.32 3 2	DOB 2	23340.80	68568.00	115.3	145.3	143.18	0.44	2.96	45	2
DOB 4 23815.60 68514.40 109.2 139.2 142.37 0.53 3.06 34 2 DOB 7 23485.70 68315.80 125.7 145.7 143.10 0.49 1.85 14 2 DOB 8 23710.40 68429.20 128.3 148.3 143.25 0.48 1.81 14 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 6813.90 103.5 108.6 141.92 0.20 0.34 3 2 DOB 16 23190.80 6813.90 103.5 108.6 141.92 0.40 0.69 3 2 DOL 1 23568.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2	DOB 3	23633.30	68693.50	115.9	145.9	143.15	0.55	3.18	34	2
DOB 7 23485.70 68315.80 125.7 145.7 143.10 0.49 1.85 14 2 DOB 8 23710.40 68429.20 128.3 148.3 143.65 0.48 1.81 14 2 DOB 9 23690.70 68811.60 128.5 148.5 144.10 0.42 0.73 3 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 12 23398.78 68435.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 14 23527.50 68139.60 110.9 111.9 0.20 0.34 3 2 DOL 1 23586.10 68139.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 <	DOB 4	23815.60	68514.40	109.2	139.2	142.37	0.53	3.06	34	2
DOB 8 23710.40 68429.20 128.3 148.3 143.85 0.48 1.81 14 2 DOB 9 23690.70 68811.60 128.5 148.5 144.10 0.42 0.73 3 2 DOB 10 23291.40 684490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.80 68139.60 110.9 116.0 141.99 0.19 0.32 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 1 54915.50 <td< td=""><td>DOB 7</td><td>23485.70</td><td>68315.80</td><td>125.7</td><td>145.7</td><td>143.10</td><td>0.49</td><td>1.85</td><td>14</td><td>2</td></td<>	DOB 7	23485.70	68315.80	125.7	145.7	143.10	0.49	1.85	14	2
DOB 9 23690.70 68811.60 128.5 148.5 144.10 0.42 0.73 3 2 DOB 10 23291.40 68490.90 128.3 148.3 143.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 12 23398.78 68450.08 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 68133.90 103.5 108.6 141.39 0.19 0.32 3 2 DOB 16 23190.80 68133.90 103.5 108.6 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F AB 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 2 55137.50 <td>DOB 8</td> <td>23710.40</td> <td>68429.20</td> <td>128.3</td> <td>148.3</td> <td>143.65</td> <td>0.48</td> <td>1.81</td> <td>14</td> <td>2</td>	DOB 8	23710.40	68429.20	128.3	148.3	143.65	0.48	1.81	14	2
DOB 10 23291.40 68490.90 128.3 148.3 148.24 0.45 1.67 14 2 DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 12 23398.78 68450.08 133.1 138.1 140.48 0.38 1.50 16 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 68139.60 110.9 116.0 141.92 0.20 0.34 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F AB 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 1 54915.50 77798.80 215.4 236.5 229.05 0.21 0.76 13 3	DOB 9	23690.70	68811.60	128.5	148.5	144.10	0.42	0.73	3	2
DOB 11 23400.80 68445.20 126.7 131.7 140.92 0.32 0.56 3 2 DOB 12 23398.78 68450.08 133.1 138.1 140.48 0.38 1.50 16 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 68133.90 103.5 108.6 141.39 0.19 0.32 3 2 DOL 1 25586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 3 55030.80 77151.20 211.8 231.8 228.49 0.22 0.70 10 3	DOB 10	23291.40	68490.90	128.3	148.3	143.24	0.45	1.67	14	2
DOB 12 23398.78 68450.08 133.1 138.1 140.48 0.38 1.50 16 2 DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 68139.60 110.9 116.0 141.92 0.20 0.34 3 2 DOB 16 23190.80 68133.00 103.5 108.6 141.39 0.19 0.32 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F AB 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 2 55137.50 77798.80 215.4 235.4 228.30 0.23 0.79 12 3 FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 <	DOB 11	23400.80	68445.20	126.7	131.7	140.92	0.32	0.56	3	2
DOB 14 23527.50 68335.00 132.6 137.6 139.68 0.33 0.58 3 2 DOB 15 23189.90 68139.60 110.9 116.0 141.92 0.20 0.34 3 2 DOB 16 23190.80 68133.90 103.5 108.6 141.39 0.19 0.32 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 FAB 1 54915.50 77798.80 215.4 235.4 228.30 0.23 0.79 12 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAC 3 55322.70 78018.30 224.8 254.8 229.11 0.28 1.58 31 3 FAC 4 5472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 <	DOB 12	23398.78	68450.08	133.1	138.1	140.48	0.38	1.50	16	2
DOB 15 23189.90 68139.60 110.9 116.0 141.92 0.20 0.34 3 2 DOB 16 23190.80 68133.90 103.5 108.6 141.39 0.19 0.32 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 FAB 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 3 55030.80 77151.20 211.8 231.8 228.78 0.21 0.70 11 4 FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 <td< td=""><td>DOB 14</td><td>23527.50</td><td>68335.00</td><td>132.6</td><td>137.6</td><td>139.68</td><td>0.33</td><td>0.58</td><td>3</td><td>2</td></td<>	DOB 14	23527.50	68335.00	132.6	137.6	139.68	0.33	0.58	3	2
DOB 16 23190.80 68133.90 103.5 108.6 141.39 0.19 0.32 3 2 DOL 1 23586.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 3 55030.80 77151.20 211.8 231.8 228.78 0.21 0.70 11 4 FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 6 55356.20 <td>DOB 15</td> <td>23189.90</td> <td>68139.60</td> <td>110.9</td> <td>116.0</td> <td>141.92</td> <td>0.20</td> <td>0.34</td> <td>3</td> <td>2</td>	DOB 15	23189.90	68139.60	110.9	116.0	141.92	0.20	0.34	3	2
DOL 1 23585.10 68794.40 109.2 119.2 144.27 0.40 0.69 3 2 F 10 50444.30 75155.30 266.5 276.5 270.35 1.25 1.77 2 3 F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 1 54915.50 77798.80 215.4 235.4 228.30 0.23 0.79 12 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 FAC 3 55322.70 78018.30 224.8 254.8 229.11 0.28 1.58 31 3 FAC 4 55472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91	DOR 16	23190.80	68133.90	103.5	108.6	141.39	0.19	0.32	3	2
F 10 50444.30 75153.30 260.3 270.3 270.35 1.25 1.77 2 3 F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 1 54915.50 77798.80 215.4 235.4 228.30 0.23 0.79 12 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 3 55030.80 77151.20 211.8 231.8 228.78 0.21 0.70 11 4 FAC 3 55322.70 78018.30 224.8 254.8 229.11 0.28 1.58 31 3 FAC 4 55472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 6 55335.50 78129.00 216.2 236.2 220.71		23586.10	08/94.40	109.2	119.2	144.27	0.40	0.69	3	2
F 18A 50108.00 74170.20 194.4 204.4 203.79 1.24 3.71 9 3 FAB 1 54915.50 77798.80 215.4 235.4 228.30 0.23 0.79 12 3 FAB 2 55137.50 77470.10 216.5 236.5 229.05 0.21 0.76 13 3 FAB 3 55030.80 77151.20 211.8 231.8 228.78 0.21 0.70 11 4 FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 FAC 3 55322.70 78018.30 224.8 254.8 229.11 0.28 1.58 31 3 FAC 4 55472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 5 55355.50 78129.00		50444.30	75155.50	200.0	270.3	270.35	1.20	1.//	2	3
FAB154915.507/798.80215.4235.4228.300.230.79123FAB255137.5077470.10216.5236.5229.050.210.76133FAB355030.8077151.20211.8231.8228.780.210.70114FAB454759.7077584.60214.2234.2228.490.220.70103FAC355322.7078018.30224.8254.8229.110.281.58313FAC 455472.9078223.80207.8237.8228.520.261.45313FAC 555241.3077960.30214.0234.0224.910.603.18283FAC 655335.5078129.00216.2236.2220.710.834.17253FAC 755366.2078123.40215.7235.7223.181.035.57293FAC 855366.0078090.90216.0236.0227.170.733.91293FAC 9C55339.3078030.50197.4207.4217.420.280.6352FAC 10C55298.4078119.70200.2210.2217.420.280.6352FAC 12C55266.4078047.20198.0208.0217.550.280.6352FAC 11C55231.9078100.30201.4211.4 <td< td=""><td>F 18A</td><td>50108.00</td><td>74170.20</td><td>194.4</td><td>204.4</td><td>203.79</td><td>1.24</td><td>3.71</td><td>9</td><td>3</td></td<>	F 18A	50108.00	74170.20	194.4	204.4	203.79	1.24	3.71	9	3
FAB255137.5077470.10216.5236.5229.050.210.76133FAB355030.8077151.20211.8231.8228.780.210.70114FAB454759.7077584.60214.2234.2228.490.220.70103FAC355322.7078018.30224.8254.8229.110.281.58313FAC455472.9078223.80207.8237.8228.520.261.45313FAC555241.3077960.30214.0234.0224.910.603.18283FAC5P55314.8078175.70225.7235.7229.980.380.7643FAC655335.5078129.00216.2236.2220.710.834.17253FAC 755366.2078123.40215.7235.7223.181.035.57293FAC 855366.0078090.90216.0236.0227.170.733.91293FAC 9C55339.3078030.50197.4207.4217.420.280.6352FAC 10C55298.4078119.70200.2210.2217.420.280.6352FAC 11C55231.907810.30201.4211.4217.490.280.6352FAC 12C5526.4078047.20198.0	FAB 1	54915.50	77798.80	215.4	235.4	228.30	0.23	0.79	12	3
FAB 355030.8077151.20211.8231.8228.780.210.70114FAB 454759.7077584.60214.2234.2228.490.220.70103FAC 355322.7078018.30224.8254.8229.110.281.58313FAC 455472.9078223.80207.8237.8228.520.261.45313FAC 555241.3077960.30214.0234.0224.910.603.18283FAC 655335.5078129.00216.2236.2220.710.834.17253FAC 755356.2078123.40215.7235.7223.181.035.57293FAC 855366.0078090.90216.0236.0227.170.733.91293FAC 9C55339.3078030.50197.4207.4217.420.280.6352FAC 10C55298.4078119.70200.2210.2217.420.280.6352FAC 11C55231.9078100.30201.4211.4217.490.280.6352FAC 12C5526.4078047.20198.0208.0217.550.280.6352FAC 12C5526.4078047.20198.0208.0217.130.301.74333FBP 1A51080.7078893.00161.8191.8206.670.382.14 <t< td=""><td>FAB 2</td><td>55137.50</td><td>77470.10</td><td>216.5</td><td>236.5</td><td>229.05</td><td>0.21</td><td>0.76</td><td>13</td><td>3</td></t<>	FAB 2	55137.50	77470.10	216.5	236.5	229.05	0.21	0.76	13	3
FAB 4 54759.70 77584.60 214.2 234.2 228.49 0.22 0.70 10 3 FAC 3 55322.70 78018.30 224.8 254.8 229.11 0.28 1.58 31 3 FAC 4 55472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 5 55241.30 77960.30 214.0 236.2 220.71 0.60 3.18 28 3 FAC 6 55335.50 78129.00 216.2 236.2 220.71 0.83 4.17 25 3 FAC 6 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 <td>FAB 3</td> <td>55030.80</td> <td>77151.20</td> <td>211.8</td> <td>231.8</td> <td>228.78</td> <td>0.21</td> <td>0.70</td> <td>11</td> <td>4</td>	FAB 3	55030.80	77151.20	211.8	231.8	228.78	0.21	0.70	11	4
FAC 3 53322.70 76010.30 224.8 234.8 229.11 0.26 1.36 31 3 FAC 4 55472.90 78223.80 207.8 237.8 228.52 0.26 1.45 31 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 5P 55314.80 78175.70 225.7 235.7 229.98 0.38 0.76 4 3 FAC 6 55335.50 78129.00 216.2 236.2 220.71 0.83 4.17 25 3 FAC 7 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.63 5 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2	FAB 4	54/59.70	77019 20	214.2	234.2	228.49	0.22	0.70	10	3
FAC 4 55472.50 70223.80 207.8 237.8 226.32 0.20 1.43 51 3 FAC 5 55241.30 77960.30 214.0 234.0 224.91 0.60 3.18 28 3 FAC 5P 55314.80 78175.70 225.7 235.7 229.98 0.38 0.76 4 3 FAC 6 55335.50 78129.00 216.2 236.2 220.71 0.83 4.17 25 3 FAC 7 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.57 4 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2		55322.70	78222 80	224.0	204.0	229.11	0.20	1.30	21	3
FAC 5 53241.30 77300.30 214.0 234.0 224.51 0.00 3.16 26 3 FAC 5P 55314.80 78175.70 225.7 235.7 229.98 0.38 0.76 4 3 FAC 6 55335.50 78129.00 216.2 236.2 220.71 0.83 4.17 25 3 FAC 7 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.63 5 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 <td></td> <td>55972.30</td> <td>77060.20</td> <td>207.0</td> <td>237.0</td> <td>220.02</td> <td>0.20</td> <td>2.10</td> <td>20</td> <td>2</td>		55972.30	77060.20	207.0	237.0	220.02	0.20	2.10	20	2
FAC 5F 55314.60 76175.70 225.7 235.7 229.96 0.36 0.76 4 5 FAC 6 55335.50 78129.00 216.2 236.2 220.71 0.83 4.17 25 3 FAC 7 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.63 5 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 <td></td> <td>55241.00</td> <td>70175 70</td> <td>214.0</td> <td>204.0</td> <td>224.31</td> <td>0.00</td> <td>0.76</td> <td>20</td> <td>2</td>		55241.00	70175 70	214.0	204.0	224.31	0.00	0.76	20	2
FAC 0 55555.50 76125.00 210.2 230.2 220.71 0.03 4.17 25 3 FAC 7 55356.20 78123.40 215.7 235.7 223.18 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.63 5 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2 <td></td> <td>55514.00 EESSE EN</td> <td>70170.70</td> <td>220.1</td> <td>200.1 006 0</td> <td>223.30 220 71</td> <td>0.30 A DO</td> <td>0.70 17</td> <td>4 25</td> <td>ა ი</td>		55514.00 EESSE EN	70170.70	220.1	200.1 006 0	223.30 220 71	0.30 A DO	0.70 17	4 25	ა ი
FAC 7 55550.20 76125.40 215.7 235.7 225.16 1.03 5.57 29 3 FAC 8 55366.00 78090.90 216.0 236.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.57 4 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2		22332.20	70129.00	210.2	230.2	220.1 I 222 10	0.03	4.17	20 20	ა ი
FAC 9C 55330.00 76030.50 210.0 230.0 227.17 0.73 3.91 29 3 FAC 9C 55339.30 78030.50 197.4 207.4 217.42 0.28 0.57 4 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2		00000.20	78000 00	210.7	200.1 226 0	223.10 227 17	1.03	0.0/ 2.01	29 20	ა ი
FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 10C 55298.40 78119.70 200.2 210.2 217.42 0.28 0.63 5 2 FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2	FAC OC	22200.00	78030.30	107 /	200.0	261.11	0.73	0.57	29 A	5 9
FAC 11C 55231.90 78100.30 201.4 211.4 217.49 0.28 0.63 5 2 FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2	FAC 100	55559.30 55208 10	78110 70	200.2	207.4	217.42	0.20	0.07	** 5	2
FAC 12C 55226.40 78047.20 198.0 208.0 217.55 0.28 0.63 5 2 FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2	FAC 110	55231 00	78100 30	200.2	211 4	217.42	0.20	0.00	5	2
FAL 2 53757.40 78231.90 206.6 238.0 217.13 0.30 1.74 33 3 FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2	FAC 12C	55201.00	780/7 20	102.0	208.0	217.45	0.20 0.29	0.00 0 62	5	2
FBP 1A 51080.70 78893.00 161.8 191.8 206.67 0.38 2.14 32 2		53220.40	78221 00	206.6	200.0	217.33	0.20	1 7/	33	2
	FBP 1A	51080 70	78893.00	161.8	191.8	206 67	0.38	2 14	32	2

.

	Table F-1.	Hydraulic	Head Ta	rgets for	Model C	Calibration	n (Cont	inued)	
	50504.40	70711 40	107.1	167 1	101 50	0.49	0.71	22	0
FBP 2A	50534.10	79711.40	137.1	107.1	191.59	0.40	2.71	32	2
FBP 3A	50913.40	79838.90	141.0	1/1.0	194.10	0.47	2.79	30	2
FBP 4	51368.20	79320.00	165.2	195.2	212.35	0.34	1.93	32	2
FBP 5D	510/3.90	/9193.80	192.6	212.6	205.23	0.41	1.53	14	4
FBP 6D	50547.10	79672.90	178.3	198.3	194.77	0.55	2.20	16	2
FBP 7D	50878.90	79805.70	183.2	203.2	194.09	0.28	0.68	6	2
FBP 8D	51386.40	79291.80	172.8	192.8	207.08	0.49	1.82	14	2
FBP 9D	51074.00	79565.10	177.9	197.9	200.29	0.71	2.54	13	2
FBP 11D	50767.90	79099.30	192.0	212.1	203.03	0.15	0.41	7	4
FBP 12D	51165.70	78932.30	182.1	202.1	208.42	0.45	1.58	12	2
FBP 13D	50694.10	79748.90	172.7	192.7	194.94	0.91	3.51	15	2
FC 1A	53115 10	79664 50	96.7	101 7	143 51	-1.00	-1.00	1	1
FC 1B	53115.00	79672 40	151.8	156.8	210 78	-1.00	-1.00	1	2
	53115 10	70680 10	183.0	188.9	214.00	-1.00	-1.00	1	2
	52114 50	70699.20	217.2	222.2	203.63	-1.00	-1.00	1	2
	53114.00	79000.30	217.2	265	175 17	-1.00	1.00	1	1
	57620.00	70720.00	21.0	20.5	175.47	-1.00	-1.00	1	4
FC 3B	57629.90	/8/2/./0	61.2	66.2	150.63	-1.00	-1.00	1	1
FC 3C	57639.00	78728.00	121.0	126.0	151.80	-1.00	-1.00	1	
FC 3D	57647.90	/8/28.40	165.9	170.9	206.43	-1.00	-1.00	1	2
FC 3E	57655.50	78728.80	185.7	190.7	205.33	-1.00	-1.00	1	2
FC 3F	57663.20	78729.10	205.1	210.1	206.25	-1.00	-1.00	1	2
FC 4A	53896.50	82242.50	-28.0	-23.0	173.31	-1.00	-1.00	1	4
FC 4B	53901.30	82249.00	76.1	81.1	140.96	-1.00	-1.00	1	1
FC 4C	53905.90	82255.40	116.3	121.3	137.64	-1.00	-1.00	1	1
FC 4D	53910.70	82262.20	146.4	151.4	151.03	-1.00	-1.00	1	4
FC 4E	53915.30	82268.90	176.4	181.4	185.19	-1.00	-1.00	1	2
FCA 1N	53675.90	79037.30	296.8	298.3	299.27	0.23	0.74	10	3
FCA 2C	53712.20	78296.00	295.3	299.3	297.99	0.09	0.42	20	3
FCA 2D	53715.20	78295.80	219.0	239.0	225.03	0.35	2.28	42	3
FCA 9D	53733.10	78600.50	221.9	241.9	225.27	0.23	1.26	31	3
FCA 9DR	53734.50	78608.80	207.7	227.7	224.00	0.41	1.52	14	3
FCA 10A	53571.90	78640.40	221.0	241.0	225.27	0.22	1.40	42	3
FCA 10C	53717.70	78642.50	295.9	298.4	302.96	0.83	1.67	4	3
FCA 10D	53732.00	78640.00	219.5	239.5	226.38	0.27	1.25	22	3
FCA 16A	53568 80	78899 50	215.1	235.1	225.18	0.20	1.28	42	3
FCA 16B	53571.00	78898.00	295.3	299.3	298.00	0.41	1 73	18	3
FCA 16D	53710 50	78898 50	221 1	241 1	224.96	0.26	1 37	28	2 2
ECA 16T	52570.00	79909.00	201 3	291.1	207.63	-1.00	-1.00	1	3
FUA 101	53579.00	70030.00	291.3	292.0	297.03	-1.00	1 05	1	2
FCA 19D	537 19.10 E4971 90	76271.90	209.7	229.7	217.22	0.34	1.00	29	ა ი
	55046 70	76670 70	205.0	235.0	230.23	0.24	2 27	21	4
	53040.70	76075.70	105.2	200.2	223.12	0.01	1 72	30	2
	54674.40	70427.00	190.5	220.0	223.84	0.51	2.12	20	2
	54605.90	70/00.40	204.5	234.5	220.10	0.00	3.42	32	о О
	54773.00	70492.00	217.1	237.1	220.02	0.33	1.70	29	ა ი
	54733.40	70002.10	215.1	235.1	229.08	0.27	1.40	20	3
FCB /	54957.10	76913.90	218.3	238.3	231.03	-1.00	-1.00	1	3
FEI 1D	53299.90	76165.60	206.9	226.9	223.54	0.27	1.43	27	3
FET 2D	52981.20	76045.80	209.5	229.5	222.25	0.29	1.52	27	3
FET 3D	53025.70	/5961.00	203.0	223.0	222.39	0.29	1.51	27	3
FET 4D	53149.00	75959.30	205.1	225.1	222.67	0.28	1.49	28	3
FIW 1D	51420.00	76114.90	198.9	218.9	214.73	-1.00	-1.00	1	3
FIW 1ID	51362.50	76171.60	194.0	214.0	216.62	1.12	1.59	2	3
FIW 2IC	51202.60	75924.50	125.3	175.2	210.81	0.70	1.40	4	2
FIW 2MA	51184.50	75930.80	100.5	110.5	151.50	0.39	0.79	4	1
FIW 2MD	51202.40	75934.90	190.9	220.8	215.21	0.65	1.30	4	3
FNB 1	54271.60	80151.50	177.2	207.2	210.94	0.40	2.22	30	2
FNB 1A	54288.80	80154.50	107.9	117.9	144.29	0.10	0.25	7	1
FNB 2	54362.10	80442.30	180.8	210.8	207.10	0.42	2.33	31	2
FNB 2A	54355.80	80454.70	111.1	121.1	143.59	0.15	0.40	7	1

		mjulume	Houte It	15000 101	mouor	Calloration	(001	(initial day)	
ENB 3	54105.80	80553 10	182 1	212 1	209 27	0.43	2 37	31	2
FNB 3A	54116.60	80557.20	109.2	119.2	143.14	0.22	0.59	7	1
FNB 4	53843.50	80409.80	179.6	209.6	213.61	0.48	2.70	31	2
FNB 5	54295.20	80556.10	193.5	203.5	206.66	0.40	1.12	8	2
FNB 6	54096.28	80822.49	200.6	210.6	208.73	0.21	0.43	4	4
FNB 7	54398.46	80649.18	192.4	202.4	203.95	0.22	0.44	4	2
FNB 8	54550.33	80521.45	195.4	205.4	202.85	0.15	0.33	5	2
FOB 1D	50026.60	73812.76	175.4	195.4	203.43	0.95	1.90	4	3
FOB 2D	49527.75	73973.78	175.5	195.5	204.68	1.14	2.29	4	3
FOB 3D	49082.37	74138.79	183.4	203.4	204.97	1.21	2.42	4	3
FOB 4D	49338.12	74430.27	1/4.0	194.1	205.97	1.06	2.13	4	3
FOB 50	49730.31	74607.04	129.3	149.3	202.89	1.04	2.08	4	2
	50235.00	76074.12	140.9	100.9	200.00	0.55	1.10	4	2
	20244.20 10010 19	75772 14	193.9	213.9	211.09	0.51	1.03	4	3
	49940.10 50707 39	75772.14	191.4	175.5	210.09	0.02	1.24	4	3 2
	50782.52	75774 99	102.6	212.6	213.10	0.00	1.13	4	2
FOR 11C	51920 55	75613.91	156.2	176.2	212 44	0.00	1.56	4	2
FOB 11D	51909.29	75602.78	199.0	219.0	216.11	0.93	1.87	4	3
FOB 12D	49785.91	75596.56	179.3	199.3	209.84	0.67	1.34	4	3
FRB 4	53653.31	76076.19	214.6	229.6	222.98	0.12	0.25	4	3
FSB 0PD	49849.80	74549.20	171.6	215.3	207.37	0.34	0.76	5	3
FSB 50PD	49874.60	74600.90	174.7	219.8	207.07	1.12	2.25	4	3
FSB 76	51388.80	76141.60	197.0	227.0	217.84	0.31	2.27	54	3
FSB 76A	51391.60	76131.90	36.9	47.4	155.12	0.13	0.97	58	1
FSB 76B	51394.00	76122.40	99.2	109.7	151.64	0.09	0.67	57	1
FSB 76C	51396.40	76112.40	154.8	165.3	212.78	0.18	1.48	68	2
FSB 77	50713.10	75129.40	186.4	216.4	212.04	0.20	1.55	62	3
FSB 78	50164.70	74764.00	187.7	217.7	208.55	0.27	2.23	69	3
FSB 78A	50172.80	74757.70	27.0	37.5	156.10	0.10	0.78	60	1
FSB 78B	50178.80	74765.90	82.4	92.8	154.52	0.10	0.77	58	1
FSB 780	50170.20	74772.50	141.6	151.4	207.77	0.16	1.31	66	2
FOD 704	50139.70	73003.10	174.1	204.1	201.93	0.24	2.00	0/ 50	3
FOD / 9A	50149.00	73666 10	24.0	01.2	150.00	0.20	00.1	59 50	1
FOD 79D	50159.20	73668.00	1/0 9	91.2	106.12	0.12	0.05	59	ו ס
FOD / 90	50171.30	75601.00	145.0	139.0	152.24	0.14	0.75	50	2
FSB 87B	50115.80	75597.00	90.0	100 5	150.64	0.10	0.75	59	1
FSB 87C	50093.40	75591.90	148.8	159.3	208.44	0.23	1.83	61	2
FSB 87D	50081.10	75586.30	187.4	216.8	213.81	0.22	0.84	15	3
FSB 88C	51518.00	75619.40	158.4	168.4	212.29	0.21	1.59	58	2
FSB 88D	51527.00	75621.80	202.1	222.1	215.85	0.21	1.58	59	3
FSB 89C	51345.20	75553.20	156.1	166.1	211.69	0.19	1.40	56	2
FSB 89D	51335.80	75548.30	201.9	221.9	215.23	0.22	1.61	56	3
FSB 90C	51148.60	75382.90	158.1	168.1	210.81	0.23	1.73	59	2
FSB 90D	51140.70	75376.90	205.1	225.1	215.00	0.69	4.03	34	3
FSB 91C	50953.50	75213.30	149.1	159.1	210.54	0.17	1.34	62	2
FSB 91D	50946.60	75207.60	200.9	220.9	213.37	0.21	1.58	57	3
FSB 92C	50564.00	75053.20	147.6	157.6	208.67	0.66	3.71	32	2
FOD 920	50357.00	70045.80	201./	150.0	211.09	0.19	1.45	00	ა ი
200 A20	50458.30	74097.30	142.0	102.0	200.00	0.17	1.52	04 60	2
LOD 990	20422.40 50100 00	74000.00	13/.9	211.9	210.01	0.21	1.09	02 60	ა ი
	50160.00	74009.00	109.0	149.0 202 4	207.00	0.30	2.30	02 10	2
FSB 0KC	500102.90	74003.10	105.5	200.4 155 Q	203.32	0.22	1.40	40	2
FSB 95CP	49987 80	75001 90	151 9	161 0	203.04	0.00	1.00	12 11	2
FSB 95D	50008.90	74977.50	207.8	227.8	208.76	0.39	1.09	8	3
FSB 95DR	49996.00	74991.70	187.0	207.0	210.16	0.22	1.44	44	3

Table F-1.	Hydraulic	Head '	Targets	for Model	Calibration	(Continued)

FSB 96A 49778 70 74862.20 85.7 95.7 152.05 0.11 0.37 12 1 FSB 97A 49746.60 7414.49 70.0 89.0 153.38 0.08 0.52 43 1 FSB 97A 49976.60 75179.60 143.8 153.8 208.01 0.18 1.43 65.2 2 FSB 97D 49975.50 75189.60 196.9 216.9 210.49 0.18 1.43 65.2 2 FSB 98A 5016.50 75382.00 82.1 92.1 151.79 0.06 0.37 39 1 FSB 98D 5011.60 75371.90 20.3 220.3 210.91 0.20 1.57 60 3 755 59 29 102.9 10.65 0.68 64 57 1 7 2 58.94 0.08 67 1 7 2 58.94 0.08 57 1 7 2 57 1 55.9 15.31	Ta	ble F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Cont	inued)	
PSB BeAR 497/E.00 74882.20 85.7 152.05 0.11 0.37 12 1 FSB BeAR 49965.70 75171.20 68.8 95.8 152.35 0.09 0.69 68 1 FSB 97A 4997.60 75178.60 1548.80 153.83 200.01 0.18 1.43 65.2 2 FSB 97D 4977.60 75178.60 1538.80 196.9 216.9 210.49 0.18 1.43 65.2 2 FSB 97D 4997.60 7588.00 82.1 92.1 156.79 0.06 0.37 39 1 FSB 98D 50116.50 7588.20 82.1 92.9 102.9 156.65 0.08 0.64 57 1 FSB 99D 50328.60 7589.70 157.2 167.2 209.43 0.19 1.43 57 1 FSB 99D 50328.60 7589.70 157.2 167.7 1 160.6 0.44 57 1 155.9 161.41	505 001		74000 00	~~~~		450.05		0.07	40	
PSB B9AH 49/46.b0 7491.480 79.0 89.0 153.36 0.08 0.02 43 1 FSB 97A 49975.50 75171.20 85.8 95.6 152.23 0.09 0.069 56 1 FSB 97A 49975.50 75178.20 143.8 153.8 20.019 0.18 1.48 65 3 FSB 99A 50115.50 75382.00 82.1 92.1 151.79 0.66 0.37 39 1 FSB 99A 50314.60 75731.90 200.3 221.9 2.20 1.68 55 2 FSB 99A 50326.60 75681.70 197.2 167.2 209.43 0.19 1.43 57 1 FSB 99A 50326.60 75681.70 197.2 167.2 209.43 0.19 1.43 57 1 FSB 99A 50326.60 75681.70 196.2 105.8 114.9 0.21 1.17 64 3 1 55 27 1 5	FSB 96A	49778.70	74882.20	85.7	95.7	152.05	0.11	0.37	12	
PSB 97A 49965.00 75178.60 143.8 153.8 122.23 0.09 0.05 0.01 1.60 75719.00 0.02 0.01 0.07 0.03 0.01 0.07 0.03 1.66 0.05 0.04 0.04 0.05 7 1 1.65 0.05 0.06 0.06 0.64 57 1 1.65 0.05 0.06 0.06 0.64 57 1 1.65 1.01 0.17 0.02 0.14 1.07 0.05 1.01	FSB 96AH	49746.60	74914.90	79.0	89.0	153.36	0.08	0.52	43	1
FSB 97C 4997.00 FSH 97C 997.50 FSH 98.0 94.7 FSD.61 0.18 1.43 652 2 FSB 98A 50121.60 75388.00 84.7 94.7 150.61 0.14 0.51 1.4 1 FSB 98A 5011.60 75382.00 82.1 92.1 151.7 60 0.37 39 1 FSB 99A 5011.60 75371.50 20.3 221.9 150.56 0.08 0.64 57 1 FSB 99A 50024.00 75687.00 157.2 167.2 208.43 0.19 1.43 57 2 FSB 99D 50024.00 75687.00 157.2 167.2 208.43 0.19 1.43 57 1 FSB 99D 50224.00 75691.70 198.1 216.15 1.17 1.00 0.79 57 1 FSB 104A 49248.00 7382.20 145.1 151.5 0.14 1.17 67 2 FSB 104D 49248.00	FSB 97A	49965.70	/51/1.20	85.8	95.8	152.23	0.09	0.69	58	1
FSB 97D 4997.580 75188.90 196.9 216.9 216.91 216.94 0.18 1.48 65 3 FSB 98A 50121.60 75389.80 82.1 92.1 151.79 0.06 0.37 39 1 FSB 98D 50114.50 75381.20 82.9 120.3 220.3 211.99 0.20 15.7 60 3 FSB 98D 50314.80 75575.60 22.9 102.9 150.65 0.06 0.64 57 1 FSB 99A 50326.80 75681.70 196.1 218.1 218.94 0.021 1.71 64 3 FSB100A 50326.80 75681.70 196.8 151.49 0.02 1.43 1.77 2 FSB100C 49631.30 74210.00 147.1 157.1 10.10 0.79 2 5 66 2 5 56 2 5 56 2 5 56 2 5 56 2 5 56	FSB 9/C	49970.60	/51/9.60	143.8	153.8	208.01	0.18	1.43	62	2
FSB 98A 50121.80 7389.80 84.7 94.7 150.51 0.14 0.51 14 1 FSB 98A 50165.80 75382.00 122.1 151.79 0.06 0.37 39 1 FSB 98D 50111.60 7531.90 20.3 22.19 90.23 0.19 0.23 157 60 3 FSB 99A 50320.60 75683.70 157.2 167.2 209.43 0.19 1.43 57 2 FSB 99D 50320.60 75683.70 157.2 167.2 209.43 0.11 1.71 64 3 FSB 100A 5098.40 7553.40 95.8 105.8 151.49 0.09 0.68 57 1 FSB 100A 49851.30 7382.20 145.71 202.53 0.14 1.17 67 2 FSB 104C 49254.40 7382.20 190.4 210.4 20.44 0.20 1.49 57 3 FSB 105C 4983.30 7524.30	FSB 97D	49975.50	75188.90	196.9	216.9	210.49	0.18	1.48	65	3
FSB 98AR 50105.80 75381.20 82.1 92.1 151.79 0.06 0.37 39 1 FSB 98D 50111.60 75381.20 148.4 156.4 208.37 0.23 15.8 55 2 FSB 99A 50314.80 75675.60 92.9 102.9 150.65 0.06 0.64 57 1 FSB 99A 50326.80 75681.70 192.1 167.2 209.43 0.19 1.43 57 2 FSB 100A 5098.40 75534.40 95.8 105.8 151.49 0.021 1.71 64 3 FSB 102A 5098.48.0 7554.40 945.8 105.9 153.1 0.06 0.48 57 2 FSB 103C 4965.10 7421.00 147.1 157.1 10.70 0.36 0.44 1.77 2 56 6 2 555 66 2 555 66 2 556 65 2 556 56 2 2 </td <td>FSB 98A</td> <td>50121.60</td> <td>75389.80</td> <td>84.7</td> <td>94.7</td> <td>150.61</td> <td>0.14</td> <td>0.51</td> <td>14</td> <td>1</td>	FSB 98A	50121.60	75389.80	84.7	94.7	150.61	0.14	0.51	14	1
FSB 98DC 50111.60 75311.90 148.4 158.4 200.3 21.03 159 0.20 157 60 3 FSB 99D 50314.80 7657.60 22.9 102.9 150.65 0.08 0.44 57 1 FSB 99D 50320.60 75683.70 157.2 167.2 209.43 0.19 1.43 57 2 FSB 99D 50320.60 75683.70 157.2 167.2 209.43 0.11 1.71 64 3 FSB 100A 50988.40 75534.40 95.8 105.8 155.9 195.31 0.06 0.48 57 2 FSB 104D 49285.40 73852.60 150.7 160.7 20.34 0.17 12.6 57 3 FSB 104D 49283.00 75284.20 141.5 151.5 207.70 0.36 2.95 66 2 FSB 105D 49841.00 75284.20 148.5 206.6 20.31 1.02 1.13 3 57 <td>FSB 98AR</td> <td>50105.80</td> <td>75362.00</td> <td>82.1</td> <td>92.1</td> <td>151.79</td> <td>0.06</td> <td>0.37</td> <td>39</td> <td>1</td>	FSB 98AR	50105.80	75362.00	82.1	92.1	151.79	0.06	0.37	39	1
FSB 88D 5011.60 7537.80 220.3 221.91 50.20 1.57 60 3 FSB 99A 50326.00 75635.00 92.9 10.29 150.55 0.08 0.64 57 1 FSB 99D 50326.00 75631.70 198.1 211.81 0.21 1.71 64 3 FSB 100A 51191.30 7571.00 92.9 102.9 151.71 0.10 0.79 57 1 FSB 103C 49651.30 7421.00 145.9 155.9 195.31 0.06 0.48 57 2 FSB 104C 49248.60 73372.60 150.7 105.7 20.34 0.17 1.26 57 2 FSB 105C 4983.00 7524.40 202.7 22.37 202.86 0.31 1.02 1.1 3 FSB 105C 5983.30 7524.40 202.9 22.2 207.31 0.36 1.83 2.6 2 FSB 105D 50368.60 74180.10 156	FSB 98C	50116.50	75381.20	148.4	158.4	208.97	0.23	1.68	55	2
FSB 99A 50314.80 7567.60 92.9 102.9 150.65 0.08 0.64 57 1 FSB 99C 50320.60 75681.70 195.1 167.2 209.43 0.19 1.43 57 2 FSB 90D 50320.60 75681.70 195.8 105.8 151.49 0.09 0.68 57 1 FSB 101A 50158.40 75534.40 95.8 105.9 185.11 0.10 0.79 57 1 FSB 103C 50844.60 73826.20 145.9 155.9 195.31 0.06 0.48 57 2 FSB 104C 49255.40 73865.20 190.4 116.7 202.83 0.14 1.17 67 2 FSB 105C 49823.30 7524.30 190.4 203.7 203.62 0.31 1.02 11 3 FSB 105C 50636.60 74190.10 166.0 166.0 201.25 0.11 0.36 22 2 2 2 5 5 133 2 2 2 2 133 6 3	FSB 98D	50111.60	75371.90	200.3	220.3	211.99	0.20	1.57	60	3
FSB 99C 50220.60 75683.70 157.2 167.2 209.43 0.19 1.43 57 2 FSB 99D 50226.90 75631.40 95.8 105.8 151.49 0.09 0.68 57 1 FSB102C 50958.40 75534.40 95.8 105.9 165.11 0.10 0.79 57 1 FSB103C 49651.30 74210.00 147.1 157.1 202.53 0.14 1.17 67 2 FSB104C 49248.60 73872.60 150.7 160.7 200.94 0.17 1.26 57 2 FSB105C 49823.00 75244.30 203.7 223.7 208.26 0.31 1.02 11 3 FSB105C 49833.00 75244.30 202.9 227.9 207.31 0.36 1.33 26 3 FSB105C 50656.80 74193.00 150.8 160.8 209.90 0.40 3.00 57 2 FSB105D 50156.80 75863.02 205.8 223.8 213.44 0.25 1.33 60	FSB 99A	50314.80	75675.60	92.9	102.9	150.65	0.08	0.64	57	1
FSB 90D 5028.800 75691.70 198.1 218.1 211.89 0.21 1.71 64 3 FSB100A 51954.00 75534.40 95.8 105.8 151.41 0.10 0.79 57 1 FSB101A 51191.30 75719.00 92.9 105.9 195.31 0.06 0.78 57 2 FSB104C 49245.40 73876.20 150.7 160.7 200.94 0.17 1.28 57 2 FSB104C 49255.40 73865.20 190.4 210.4 202.41 1.20 1.1 3 FSB105C 49683.30 76244.30 203.7 223.7 208.26 0.31 1.02 11 3 FSB105C 50651.30 74190.10 156.0 201.55 0.11 0.88 28 2 FSB107C 51148.00 75655.00 203.8 223.8 217.47 0.23 2.05 80 3 FSB107C 51148.00 75645.00	FSB 99C	50320.60	75683.70	157.2	167.2	209.43	0.19	1.43	57	2
FSB100A 5088.40 7534.40 95.8 105.8 151.49 0.09 0.68 57 1 FSB101A 50191.30 75719.00 92.9 115.9 195.31 0.06 0.48 57 2 FSB103C 49651.30 7421.00 147.1 157.1 202.83 0.14 1.17 67 2 FSB104C 49248.60 73872.60 150.7 160.7 200.44 0.14 0.14 1.17 67 2 FSB105C 49823.00 75234.20 141.5 151.5 207.70 0.36 2.32 1.51 43 3 FSB105C 988105DR 49841.00 7528.810 188.5 208.6 210.56 0.23 1.51 43 3 FSB107D 51149.80 7517.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB107D 51149.80 7588.90 205.8 223.8 213.44 0.25 1.93 60 3	FSB 99D	50326.90	75691.70	198.1	218.1	211.89	0.21	1.71	64	3
FSB101A 51191.20 73512.90 142.9 151.71 0.10 0.79 57 1 FSB102C 6934.80 7352.90 145.9 155.9 195.31 0.06 0.48 57 2 FSB104C 49254.60 73872.60 150.7 160.7 200.94 0.17 1.26 57 2 FSB104C 49254.60 73872.60 150.7 151.5 207.70 0.36 2.85 66 2 FSB105D 49833.30 75244.30 203.7 223.7 208.26 0.31 1.02 11 3 FSB105D 49841.00 75258.10 188.5 208.6 210.56 0.23 1.51 43 3 FSB106D 56368.00 74190.10 156.0 201.29 213.49 0.19 1.49 61 3 FSB107D 51149.80 7617.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB1080 51149.80 76850	FSB100A	50958.40	75534.40	95.8	105.8	151.49	0.09	0.68	57	1
FSB102C 5083.400 74210.00 147.1 157.1 202.53 0.14 1.17 67 2 FSB104C 49651.30 74210.00 147.1 157.1 202.53 0.14 1.17 67 2 FSB104C 49285.60 73872.60 150.7 160.7 200.94 0.17 1.26 57 2 FSB105C 49828.00 75234.20 131.5 151.5 207.70 0.36 2.95 66 2 FSB105C 49824.00 75258.10 188.5 208.6 210.56 0.23 1.51 43 3 FSB105C 5158.10 75184.00 150.8 166.0 20.12 0.11 0.89 62 2 FSB105D 51185.10 7585.00 205.8 223.8 217.47 0.23 2.05 80 3 FSB105D 50488.60 78855.90 205.8 223.8 213.14 0.25 1.83 60 3 5 FSB110C	FSB101A	51191.30	75719.00	92.9	102.9	151.71	0.10	0.79	57	1
FSB103C 49651.30 74710.00 147.1 157.1 202.53 0.14 1.17 67 2 FSB104C 49248.60 73872.60 150.7 160.7 200.94 0.17 1.26 57 2 FSB104D 49255.40 73872.60 190.4 210.4 200.41 0.17 1.26 57 3 FSB105D 49833.30 75244.30 141.5 151.5 207.70 0.36 2.35 66 2 FSB105D 50651.30 75244.30 203.7 223.7 208.26 0.21.5 0.11 0.89 62 2 FSB106D 50636.80 74190.00 202.9 222.9 207.31 0.36 1.83 26 3 FSB107D 51148.80 7517.20 200.9 220.9 213.49 0.91 1.49 61 3 FSB103D 50141.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110D<	FSB102C	50834.80	73582.90	145.9	155.9	195.31	0.06	0.48	57	2
FSB104C 4928.460 73872.60 150.7 160.7 200.94 0.17 1.26 57 2 FSB104D 4925.40 73862.20 190.4 210.4 204.41 0.20 1.49 57 3 FSB105D 49828.00 7524.20 141.5 151.5 207.70 0.36 2.95 66 2 FSB105D 49833.30 7524.430 203.7 223.7 208.26 0.31 1.02 11 3 FSB105D 50636.80 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB107D 51148.10 75184.00 150.8 160.8 209.90 0.40 30.0 57 2 FSB109D 5048.60 76855.90 205.8 225.8 213.14 0.22 1.80 63 2 FSB110D 5014.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB110D 5014.60 74193.30 191.1 211.1 205.45 0.17 1.31 65	FSB103C	49651.30	74210.00	147.1	157.1	202.53	0.14	1.17	67	2
FSB1040 4925.40 73865.20 190.4 210.4 204.41 0.20 1.49 57 3 FSB105C 49823.00 75244.20 141.5 151.5 207.70 0.36 2.95 66 2 FSB105DR 49843.00 75244.20 203.7 223.7 208.26 0.31 1.02 11 3 FSB106D 50651.30 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB106D 50636.80 74193.00 202.9 222.9 207.31 0.36 1.83 26 3 FSB107C 51148.20 7507.2 200.9 220.9 213.49 0.19 1.49 61 3 FSB108D 5048.60 74193.30 191.1 211.1 20.54 0.13 1.63 3 FSB110C 50150.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110C 50150.60 74190.70 137.2 147.2 201.15 0.27 2.04 56 3	FSB104C	49248.60	73872.60	150.7	160.7	200.94	0.17	1.26	57	2
FSB105C 49828.00 75242.00 141.5 151.5 207.70 0.36 2.95 66 2 FSB105D 49833.30 75244.30 203.7 223.7 208.26 0.31 1.02 11 3 FSB106D 50651.30 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB107C 51188.10 75184.00 150.8 160.8 209.90 0.40 3.00 57 2 FSB107D 51149.30 7620.70 203.8 223.8 217.47 0.23 2.05 80 3 FSB109D 5048.60 76855.90 205.8 225.8 213.14 0.25 1.80 63 2 FSB110D 5015.60 76882.90 201.7 221.1 205.8 0.27 2.04 56 3 FSB111D 51515.60 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112A 48794.00 7422.70 188.9 206.9 205.91 0.20 1.36 45	FSB104D	49255.40	73865.20	190.4	210.4	204.41	0.20	1.49	57	3
FSB105D 4983.30 75244.30 203.7 223.7 208.26 0.23 1.51 43 3 FSB106D 50651.30 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB106D 50636.80 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB107D 51158.10 75184.00 150.8 160.8 209.9 213.49 0.19 1.49 61 3 FSB108D 51142.30 76260.70 203.8 223.8 217.47 0.23 1.60 3 FSB100 50448.60 74955.90 205.8 225.8 213.14 0.25 1.33 60 3 FSB110 50141.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110 51556.30 75383.30 159.0 169.0 211.82 0.21 1.58 57 2 FSB112 48794.80 74227.50 129.1 139.1 201.88 0.19 1.30 46	FSB105C	49828.00	75234.20	141.5	151.5	207.70	0.36	2.95	66	2
FSB105DR 49841.00 75258.10 188.5 208.6 210.56 0.23 1.51 43 3 FSB106D 50651.30 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB107C 51158.10 75184.00 120.3 222.9 207.31 0.36 1.83 26 3 FSB107D 51149.80 7617.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB108D 50148.60 76855.90 205.8 221.8 217.47 0.23 1.80 63 2 FSB110D 50141.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB110D 50141.60 7423.40 81.0 91.0 153.49 0.07 0.45 65 1 FSB112C 48794.00 74227.50 129.1 139.1 201.80 0.19 1.30 46 2 FSB113D 51084.00 74167.50 81.0 94.0 302.0 1.47 7 2	FSB105D	49833.30	75244.30	203.7	223.7	208.26	0.31	1.02	11	3
FSB106C 50651.30 74190.10 156.0 166.0 201.25 0.11 0.89 62 2 FSB107D 51156.10 75184.00 150.8 160.8 209.9 213.49 0.19 1.49 61 3 FSB107D 51149.80 75177.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB107D 51142.00 76260.70 203.8 223.8 217.47 0.23 1.80 63 2 FSB109D 50486.00 75855.90 205.8 225.8 213.14 0.25 1.93 60 3 FSB110 50141.60 74190.70 137.2 147.2 201.17 21.82 0.21 1.80 63 3 FSB1110 51515.90 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112C 47894.00 7422.50 129.1 139.1 201.88 0.19 1.30 46 2	FSB105DR	49841.00	75258.10	188.5	208.6	210.56	0.23	1.51	43	3
FSB100D 50636.80 74193.00 202.9 222.9 207.31 0.36 1.83 26 3 FSB107C 51158.10 75184.00 150.8 160.8 209.90 0.40 3.00 57 2 FSB109D 51144.20 76260.70 203.8 222.9 213.49 0.19 1.49 61 3 FSB109D 5048.60 76855.90 206.8 225.8 213.14 0.22 1.93 60 3 FSB110D 50150.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110D 5151.60 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112D 4879.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113D 5108.40 74167.50 154.0 164.0 202.46 0.21 1.47 7 2 FSB113D 5108.40 74167.50 150.0 165.0 105.4 0.07 0.46 44 <	FSB106C	50651.30	74190.10	156.0	166.0	201.25	0.11	0.89	62	2
FSB107C 51158.10 75184.00 150.8 160.8 209.90 0.40 3.00 57 2 FSB108D 51142.30 7527.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB108D 50488.60 75855.90 205.8 223.8 217.47 0.23 1.80 63 2 FSB10D 50141.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB110D 51515.90 75383.30 159.0 169.0 211.82 0.21 1.58 57 2 FSB112D 48809.10 74221.40 81.0 91.0 153.49 0.07 0.45 45 1 FSB112D 48700.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113D 51084.10 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB114C 5203.80 7528.50 155.0 165.64 0.07 0.46 44 1	FSB106D	50636.80	74193.00	202.9	222.9	207.31	0.36	1.83	26	3
FSB107D 51149.80 76177.20 200.9 220.9 213.49 0.19 1.49 61 3 FSB109D 50486.60 78855.90 205.8 223.8 217.47 0.23 2.05 80 3 FSB109D 50486.60 78855.90 205.8 223.8 213.14 0.25 1.93 60 3 FSB110C 50141.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110C 51526.30 75383.30 195.0 166.0 211.82 0.21 1.58 57 2 FSB112A 4809.10 74231.40 81.0 91.0 153.49 0.07 0.45 45 1 FSB112D 48780.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113D 51084.00 74167.50 81.0 91.3 158.69 0.44 30 44 3 FSB114D 51098.40 74154.80 189.6 207.29 0.20 1.31 44 3	FSB107C	51158.10	75184.00	150.8	160.8	209.90	0.40	3.00	57	2
FSB108D 51142.30 76260.70 203.8 223.8 217.47 0.23 2.05 80 3 FSB109D 50488.60 76855.90 205.8 225.8 213.14 0.25 1.93 60 3 FSB110C 50150.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB111C 5155.90 75383.30 159.0 169.0 211.82 0.21 1.58 57 2 FSB111D 51515.90 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112A 4809.10 74221.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113C 51084.00 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113D 51084.00 74167.60 189.6 206.6 207.29 0.20 1.31 44 3 FSB114A 52046.60 75297.40 95.2 105.0 155.64 0.07 0.44 1	FSB107D	51149.80	75177.20	200.9	220.9	213.49	0.19	1.49	61	3
FSB109D 50488.60 75855.90 205.8 225.8 213.14 0.25 1.93 60 3 FSB110C 50150.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110C 50141.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB111D 51515.90 75382.30 201.7 221.7 215.18 0.27 2.04 56 3 FSB112C 48794.80 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB112D 48780.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113D 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB114A 52046.60 7527.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44	FSB108D	51142.30	76260.70	203.8	223.8	217.47	0.23	2.05	80	3
FSB110C 50150.60 74190.70 137.2 147.2 201.19 0.23 1.80 63 2 FSB110D 50141.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB111D 51526.30 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112A 48809.10 74231.40 81.0 91.0 153.49 0.07 0.45 45 1 FSB112C 48740.00 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB113A 51068.10 74160.70 184.0 91.3 158.69 0.44 3.02 47 1 FSB13D 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB14L4 52046.60 7527.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB14L4 52046.60 75278.60 197.7 217.8 216.88 0.21 1.39 44	FSB109D	50488.60	75855.90	205.8	225.8	213.14	0.25	1.93	60	3
FSB110D 50141.60 74193.30 191.1 211.1 205.45 0.17 1.31 63 3 FSB111C 51526.30 75383.30 159.0 169.0 211.82 0.21 1.58 57 2 FSB111D 51515.90 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112C 48794.80 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB112C 48794.80 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB113A 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB13D 51098.40 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB14A 52046.60 7527.40 95.2 105.0 165.64 0.07 0.46 44 1 FSB14D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 <th< td=""><td>FSB110C</td><td>50150.60</td><td>74190.70</td><td>137.2</td><td>147.2</td><td>201.19</td><td>0.23</td><td>1.80</td><td>63</td><td>2</td></th<>	FSB110C	50150.60	74190.70	137.2	147.2	201.19	0.23	1.80	63	2
FSB111C 51526.30 75383.30 159.0 169.0 211.82 0.21 1.58 57 2 FSB111D 51515.90 75382.90 201.7 221.7 215.18 0.27 2.04 56 3 FSB112A 48809.10 74221.70 188.9 206.9 205.91 0.20 1.36 45 3 FSB112D 48780.00 74227.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113A 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113C 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB113D 51098.40 7528.50 158.0 166.0 213.33 0.18 1.21 47 2 FSB114L 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49	FSB110D	50141.60	74193.30	191.1	211.1	205.45	0.17	1.31	63	3
FSB111D 51515.90 75382.90 201.7 221.7 215.8 0.27 2.04 56 3 FSB112A 48809.10 74231.40 81.0 91.0 153.49 0.07 0.45 45 1 FSB112C 48790.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113C 51084.00 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB13C 51084.20 74167.50 81.0 91.3 158.69 0.44 3.02 47 2 FSB13D 51098.40 74167.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB114C 52046.60 75297.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB114D 52018.60 75287.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49728.30 72504.30 182.5 192.5 191.34 0.18 1.25 48	FSB111C	51526.30	75383.30	159.0	169.0	211.82	0.21	1.58	57	2
FSB112A 48809.10 74231.40 81.0 91.0 153.49 0.07 0.45 45 1 FSB112C 48794.80 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB112D 48794.80 74223.70 129.1 139.1 201.88 0.19 1.30 46 2 FSB113D 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113D 51098.40 74167.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB114A 52046.60 75297.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB114A 52046.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115C 49736.00 72525.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB116D 50629.70 7272.50 160.5 170.5 189.72 0.09 0.62 44	FSB111D	51515.90	75382.90	201.7	221.7	215.18	0.27	2.04	56	3
FSB112C 48784.80 74227.50 129.1 139.1 201.88 0.19 1.30 46 2 FSB112D 48780.00 74223.70 188.9 208.9 205.91 0.20 1.36 45 3 FSB113A 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113D 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB113D 51088.40 74154.80 189.6 209.6 207.29 0.20 1.31 44 3 FSB114C 52033.80 75287.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49783.0 72578.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB116D 50645.90 72727.40 186.4 196.4 191.79 0.19 1.36 51 3 FSB118D 51276.30 74697.90 191.3 211.3 211.35 0.24 1.60 44	FSB112A	48809.10	74231.40	81.0	91.0	153.49	0.07	0.45	45	1
FSB112D 46780.00 74223.70 188.9 208.9 208.9 0.20 1.36 45 3 FSB113A 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113C 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB113D 51098.40 74154.80 189.6 209.6 207.29 0.20 1.31 44 3 FSB114L 52033.80 75285.0 158.0 168.0 213.33 0.18 1.21 47 2 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49726.00 72515.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB116D 50629.70 7272.40 186.4 196.4 191.79 0.19 1.36 51 3 FSB118D 51276.30 7407.40 189.7 20.50 0.16 1.06 42 3	FSB112C	48794.80	74227.50	129.1	139.1	201.88	0.19	1.30	46	2
FSB113A 51068.10 74167.50 81.0 91.3 158.69 0.44 3.02 47 1 FSB113D 51084.20 74160.70 154.0 164.0 202.46 0.21 1.47 47 2 FSB113D 51098.40 74154.80 189.6 209.6 207.29 0.20 1.31 44 3 FSB114C 52033.80 75288.50 158.0 168.0 213.33 0.18 1.21 47 2 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB116D 49728.30 72504.30 182.5 192.5 191.34 0.18 1.25 48 3 FSB116D 50629.70 72725.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB117D 50486.80 74070.40 189.7 209.7 205.05 0.16 1.06 42	FSB112D	48780.00	74223.70	188.9	208.9	205.91	0.20	1.36	45	3
FSB113C 51084.20 74160.70 194.0 104.0 202.46 0.21 1.47 47 2 FSB113D 51098.40 74154.80 189.6 209.6 207.29 0.20 1.31 44 3 FSB114A 52046.60 75297.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB116D 50645.90 72725.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB116D 50645.90 72727.40 186.4 191.79 0.18 1.36 51 3 FSB118D 51276.30 74697.90 191.3 211.3 208.05 0.16 1.06 42 3 FSB119D 5060.060 74599.70 193.1 213.1 208.05 0.18 1.31 52 3 <	FSBIIJA	51008.10	74107.50	81.0	91.3	158.69	0.44	3.02	47	1
FSB113D 51080.40 74194.60 169.6 209.6 207.29 0.20 1.31 44 3 FSB114A 52046.60 75297.40 95.2 105.0 155.64 0.07 0.46 44 1 FSB114C 52033.80 75288.50 158.0 168.0 213.33 0.18 1.21 47 2 FSB115C 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB116C 50645.90 72725.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB116D 50629.70 72727.40 186.4 196.4 191.79 0.19 1.36 51 3 FSB117D 50486.80 74070.40 189.7 209.7 205.05 0.16 1.06 42 3 FSB119D 50600.60 74599.70 193.1 211.3 211.3 202.4 1.60 44 3 FSB119D 50600.60 74599.70 193.1 213.1 208.05 0.18 1.31 52	FSB113C	51064.20	74100.70	154.0	104.0	202.40	0.21	1.47	47	2
FSB114A 52040.00 75287.40 53.2 103.0 153.64 0.07 0.46 44 1 FSB114C 52033.80 75288.50 158.0 168.0 213.33 0.18 1.21 47 2 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115D 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB116C 50645.90 72725.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB116D 50629.70 72727.40 186.4 196.4 191.79 0.19 1.36 51 3 FSB118D 51276.30 74697.90 191.3 211.3 211.35 0.24 1.60 44 3 FSB119D 50600.60 74599.70 193.1 213.1 208.05 0.18 1.31 52 3 FSB120A 49175.70 75588.90 99.0 109.0 151.31 0.94 6.21 44	FODII3D	51096.40	74104.00	109.0	209.0	207.29	0.20	1.31	44	3
FSB114C 5203.60 7528.30 136.0 100.0 213.33 0.16 1.21 47 2 FSB114D 52018.60 75278.60 197.7 217.8 216.88 0.21 1.39 44 3 FSB115C 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB116C 50645.90 72727.40 186.5 192.5 191.34 0.18 1.25 48 3 FSB116D 50629.70 72727.40 186.4 196.4 191.79 0.19 1.36 51 3 FSB118D 51276.30 74697.90 191.3 211.3 211.35 0.24 1.60 44 3 FSB119D 50600.60 74599.70 193.1 213.1 208.05 0.18 1.31 52 3 FSB120A 49175.70 75588.90 99.0 109.0 151.31 0.94 6.21 44 1 FSB120D 49163.70 75568.70 166.5 209.21 0.26 1.81 50 3 <td>FODI 14A</td> <td>52040.00</td> <td>75297.40</td> <td>95.2 159.0</td> <td>169.0</td> <td>100.04</td> <td>0.07</td> <td>1.01</td> <td>44</td> <td>1</td>	FODI 14A	52040.00	75297.40	95.2 159.0	169.0	100.04	0.07	1.01	44	1
FSB114D 52/16.00 752/16.00 197.7 217.6 216.00 0.21 1.39 44 3 FSB115C 49736.00 72515.50 163.8 173.8 184.41 0.12 0.84 49 4 FSB115D 49728.30 72504.30 182.5 192.5 191.34 0.18 1.25 48 3 FSB116D 50645.90 72725.50 160.5 170.5 189.72 0.09 0.62 44 2 FSB117D 50466.80 74070.40 189.7 209.7 205.05 0.16 1.06 42 3 FSB118D 51276.30 74697.90 191.3 211.35 0.24 1.60 44 3 FSB119D 50600.60 74599.70 193.1 213.1 208.05 0.18 1.31 52 3 FSB120A 49175.70 75538.90 99.0 109.0 151.31 0.94 6.21 44 1 FSB120C 49171.10 75568.70 196.5 216.5 209.21 0.26 1.81 50 3		52033.00	75200.30	107.7	017.0	213.33	0.10	1.21	41	2
FSB115C49736.0072515.50163.8173.8184.410.120.84494FSB115D49728.3072504.30182.5192.5191.340.181.25483FSB116C50645.9072725.50160.5170.5189.720.090.62442FSB116D50629.7072727.40186.4191.790.191.36513FSB117D50486.8074070.40189.7209.7205.050.161.06423FSB118D51276.3074697.90191.3211.3211.350.241.60443FSB118D50600.6074599.70193.1213.1208.050.181.31523FSB120A49175.7075538.9099.0109.0151.310.946.21441FSB120C49171.1075549.80150.7160.7206.010.191.29442FSB121C48413.1075155.70148.4158.4204.070.191.29452FSB122D4829.7075151.90191.3211.3206.860.221.35393FSB122D48201.7073861.80160.0170.0199.710.181.19444FSB123D51734.807456.70155.3165.3210.180.221.50452FSB123D51734.807456.70195.3165.3210.180.221.50<		52016.00	70270.00	197.7	217.0	210.00	0.21	1.39	44	3
FSB115D49/28.3072504.30182.5192.5191.340.181.25483FSB116C50645.9072725.50160.5170.5189.720.090.62442FSB116D50629.7072727.40186.4196.4191.790.191.36513FSB117D50486.8074070.40189.7209.7205.050.161.06423FSB118D51276.3074697.90191.3211.3211.350.241.60443FSB119D50600.6074599.70193.1213.1208.050.181.31523FSB120A49175.7075538.9099.0109.0151.310.946.21441FSB120C49171.1075549.80150.7160.7206.010.191.29442FSB120D49163.7075568.70196.5216.5209.210.261.81503FSB121DR48413.1075155.70148.4158.4204.070.191.29452FSB121DR48429.7075151.90191.3211.3206.860.221.35393FSB122D48201.7073865.50186.6206.6203.470.231.54453FSB123D51734.8074562.70194.1214.1212.060.191.30453FSB123D51734.8074562.70194.1214.1212.06 <td< td=""><td>FSBIISC</td><td>49736.00</td><td>72515.50</td><td>103.8</td><td>1/3.8</td><td>184.41</td><td>0.12</td><td>0.84</td><td>49</td><td>4</td></td<>	FSBIISC	49736.00	72515.50	103.8	1/3.8	184.41	0.12	0.84	49	4
FSB116C50645.9072725.50160.5170.5189.720.090.62442FSB116D50629.7072727.40186.4196.4191.790.191.36513FSB117D50486.8074070.40189.7209.7205.050.161.06423FSB118D51276.3074697.90191.3211.3211.350.241.60443FSB119D50600.6074599.70193.1213.1208.050.181.31523FSB120A49175.7075538.9099.0109.0151.310.946.21441FSB120C49171.1075549.80150.7160.7206.010.191.29442FSB120D49163.7075568.70196.5216.5209.210.261.81503FSB121D48413.1075155.70148.4158.4204.070.191.29452FSB121DR48429.7075151.90191.3211.3206.860.221.35393FSB122D48201.7073865.50186.6206.6203.470.231.54453FSB123D51734.8074562.70194.1214.1212.060.191.30453FSB150PC49990.1074090.00107.6160.1198.180.771.5442FSB150PD49717.9074615.80176.2221.3206.97 <td< td=""><td>FSB115D</td><td>49728.30</td><td>72504.30</td><td>182.5</td><td>192.5</td><td>191.34</td><td>0.18</td><td>1.25</td><td>48</td><td>3</td></td<>	FSB115D	49728.30	72504.30	182.5	192.5	191.34	0.18	1.25	48	3
FSB116D50629.7072727.40186.4196.4191.790.191.36513FSB117D50486.8074070.40189.7209.7205.050.161.06423FSB118D51276.3074697.90191.3211.3211.350.241.60443FSB119D50600.6074599.70193.1213.1208.050.181.31523FSB120A49175.7075538.9099.0109.0151.310.946.21441FSB120C49171.1075549.80150.7160.7206.010.191.29442FSB120D49163.7075568.70196.5216.5209.210.261.81503FSB121C48413.1075155.70148.4158.4204.070.191.29452FSB121DR48429.7075151.90191.3211.3206.860.221.35393FSB122C48195.0073881.80160.0170.0199.710.181.19444FSB123C51750.5074566.70155.3165.3210.180.221.50452FSB123D51734.8074562.70194.1214.1212.060.191.30453FSB150PC49990.1074090.00107.6160.1198.180.771.5442FSB150PD49717.9074615.80176.2221.3206.97 <td< td=""><td>FSB116C</td><td>50645.90</td><td>72725.50</td><td>160.5</td><td>170.5</td><td>189.72</td><td>0.09</td><td>0.62</td><td>44</td><td>2</td></td<>	FSB116C	50645.90	72725.50	160.5	170.5	189.72	0.09	0.62	44	2
FSB117D50480.8074070.40189.7209.7209.050.161.06423FSB118D51276.3074697.90191.3211.3211.350.241.60443FSB119D50600.6074599.70193.1213.1208.050.181.31523FSB120A49175.7075538.9099.0109.0151.310.946.21441FSB120C49171.1075549.80150.7160.7206.010.191.29442FSB120D49163.7075568.70196.5216.5209.210.261.81503FSB121C48413.1075155.70148.4158.4204.070.191.29452FSB121DR48429.7075151.90191.3211.3206.860.221.35393FSB122C48195.0073881.80160.0170.0199.710.181.19444FSB123C51750.5074566.70155.3165.3210.180.221.50452FSB123D51734.8074562.70194.1214.1212.060.191.30453FSB150PC49990.1074090.00107.6160.1198.180.771.5442FSB150PD49717.9074615.80176.2221.3206.971.072.1443FSL 1D52992.5079063.10208.5228.6224.480	FSB116D	50629.70	72727.40	186.4	196.4	191.79	0.19	1.36	51	3
FSB110D 51270.30 74097.30 191.3 211.3 211.35 0.24 1.60 44 3 FSB119D 50600.60 74599.70 193.1 213.1 208.05 0.18 1.31 52 3 FSB120A 49175.70 75538.90 99.0 109.0 151.31 0.94 6.21 44 1 FSB120C 49171.10 75549.80 150.7 160.7 206.01 0.19 1.29 44 2 FSB120D 49163.70 75568.70 196.5 216.5 209.21 0.26 1.81 50 3 FSB121C 48413.10 75155.70 148.4 158.4 204.07 0.19 1.29 45 2 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45		51076 20	74070.40	109.7	209.7	205.05	0.16	1.00	42	3
FSB120A 49175.70 75538.90 99.0 109.0 151.31 0.94 6.21 44 1 FSB120C 49171.10 75538.90 99.0 109.0 151.31 0.94 6.21 44 1 FSB120C 49171.10 75549.80 150.7 160.7 206.01 0.19 1.29 44 2 FSB120D 49163.70 75568.70 196.5 216.5 209.21 0.26 1.81 50 3 FSB121C 48413.10 75155.70 148.4 158.4 204.07 0.19 1.29 45 2 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45	FSB110D	51270.30	74097.90	191.5	211.3	211.35	0.24	1.00	44 50	2
FSB120A 49175.70 7555.30 99.0 109.0 151.51 0.94 0.21 44 1 FSB120C 49171.10 75549.80 150.7 160.7 206.01 0.19 1.29 44 2 FSB120D 49163.70 75568.70 196.5 216.5 209.21 0.26 1.81 50 3 FSB121C 48413.10 75155.70 148.4 158.4 204.07 0.19 1.29 45 2 FSB121DR 48429.70 75151.90 191.3 211.3 206.86 0.22 1.35 39 3 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45	ESB120A	40175 70	74599.70	193.1	213.1	200.00	0.10	1.01	52	3
FSB120C 49171.10 75549.80 150.7 160.7 206.01 0.19 1.29 44 2 FSB120D 49163.70 75568.70 196.5 216.5 209.21 0.26 1.81 50 3 FSB121C 48413.10 75155.70 148.4 158.4 204.07 0.19 1.29 45 2 FSB121DR 48429.70 75151.90 191.3 211.3 206.86 0.22 1.35 39 3 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4	F3D120A	49173.70	70000.90	99.0	109.0	101.01	0.94	1.00	44	1
FSB120D 49163.70 75588.70 196.5 216.5 209.21 0.26 1.81 50 3 FSB121C 48413.10 75155.70 148.4 158.4 204.07 0.19 1.29 45 2 FSB121DR 48429.70 75151.90 191.3 211.3 206.86 0.22 1.35 39 3 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4	FSB1200	49171.10	75549.80	150.7	160.7	206.01	0.19	1.29	44	2
FSB1210 40413.10 75155.70 140.4 150.4 204.07 0.19 1.29 45 2 FSB121DR 48429.70 75151.90 191.3 211.3 206.86 0.22 1.35 39 3 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39	FOD 120D	49103.70	75568.70	190.5	210.5	209.21	0.20	1.81	50 45	う
FSB121DR 48425.70 73131.30 191.3 211.3 206.86 0.22 1.35 39 3 FSB122C 48195.00 73881.80 160.0 170.0 199.71 0.18 1.19 44 4 FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3		40413.10	75155.70	140.4	100.4	204.07	0.19	1.29	45	2
FSB122D 48201.70 73865.50 186.6 206.6 203.47 0.23 1.54 45 3 FSB123C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.50 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	FOR100C	40429.10 18105 00	73131.90	181.3	211.3 170.0	200.00	0.22	1.30	39	3
FSB122C 51750.50 74566.70 155.3 165.3 210.18 0.22 1.54 45 2 FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	F\$B1220	48201 70	73865 50	186.6	206.6	203 47	0.10	1.19	44 15	4
FSB123D 51734.80 74562.70 194.1 214.1 212.06 0.19 1.30 45 3 FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	FSB1220	51750 50	74566 70	155.0	165 2	210.19	0.20	1.54	45 15	2
FSB150PC 49990.10 74090.00 107.6 160.1 198.18 0.77 1.54 4 2 FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	FSB1230	51730.00	71560.70	100.0	21/ 1	210.10	0.22	1.00	40 /E	2
FSB150PD 49717.90 74615.80 176.2 221.3 206.97 1.07 2.14 4 3 FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	ESB150PC	10000 10 A0000	74002.70	107.1	160.1	108 18	0.13	1.50	40	2
FSL 1D 52992.50 79063.10 208.5 228.6 224.48 0.19 1.18 39 3	FSB150PD	40300.10	74615.00	176.0	221.2	206 07	1.07	1.04 0.1/	ч Л	2
	FSI 1D	52992 50	79063 10	208.5	228.6	224 48	0.19	1 18	39	3

	Table F-1.	Hydraulic	Head 7	Cargets for	Model	Calibration	(Con	tinued)	
	50700 00	70000 50	000 7	000.0	004.00	0.00	1.04		
	52/90.00	70030.30	200.7	220.0	224.82	0.20	1.34	44	3
	52405.20	77452.40	200.9	220.0	222.49	0.31	2.02	42	3
	52230.40	77047 70	204.0	224.1	217.14	0.22	1.33	38	3
	51903.30	76722 10	203.5	223.7	220.43	0.24	1.40	37	3
	51/2/.90	707007.00	202.1	222.1	219.79	0.22	1.35	37	3
	51405.00	76054 70	199.5	219.0	217.91	0.33	2.05	38	3
	51513.30	75769 40	202.7	222.0	217.15	0.23	1.07	35	3
FSC 1D	53807 60	75757 60	201.4	221.0	210.10	0.01	3.02	30	3
	52019.00	75102 50	209.9	229.9	220.40	0.24	1.09	44	3
	50540.00	70103.00	204.4	224.4	222.07	0.20	1.74	44	3
F55 3D	53548.00	74960.50	205.8	225.8	220.42	0.25	1.69	44	3
FSS 4D	528/6.10	/553/.80	202.6	222.6	218.67	0.29	1.90	44	3
FSI 1D	49102.00	81242.60	119.5	129.5	125.75	0.42	1.11	7	1
	53275.10	77336.00	219.4	239.4	224.87	0.37	1.48	16	3
	53244.80	77235.30	218.2	221.2	223.36	0.62	3.09	25	3
rir 4	53268.20	77132.90	216.6	236.6	223.97	0.36	1.82	26	3
	53106.30	77035.00	215.3	235.3	224.01	0.58	2.76	23	3
FIF 0	53002.00	77035.00	210.9	230.9	223.93	0.48	2.14	20	<u></u> ৩
	53069.70	77226.20	222.1	220.1	223.57	0.39	2.11	29	3
	53039.90	77400.20	219.0	239.0	227.10	1.28	3.03	8 17	3
FTF 10	52709.30	77226.00	210.4	230.4	223.00	0.34	1.41	17	3
	52905.00	77190 70	210.1	200.1	224.17	0.24	1.04	11	3
FTF 12	52648 50	77321 40	215.0	235.0	224.00	0.30	1.04	11 07	3
FTF 13	53098 40	76637.80	216.1	236.1	220.07	0.61	2 72	20	3
FTF 15	53230.00	76732.00	197.5	227.5	225.20	0.64	3 44	29	3
FTF 16	52879.80	76758.60	203.8	233.8	223.17	0.53	2 87	29	3
FTF 17	52884.00	76872.00	200.6	230.6	222.85	0.38	2.06	30	3
FTF 18	52879.20	76955.80	202.3	232.3	223.14	0.57	3.04	28	3
FTF 19	52670.40	77139.10	198.3	228.3	222.25	0.39	2.12	29	3
FTF 20	52500.00	77015.00	198.3	228.3	221.65	0.33	1.80	30	3
FTF 21	52498.60	76866.70	198.7	228.7	222.94	0.27	1.49	30	3
FTF 22	52494.70	76751.30	212.6	242.6	221.64	0.37	2.04	30	3
FTF 23	52660.30	76611.80	201.2	231.2	222.06	0.40	2.13	29	3
FTF 24A	52780.80	77256.60	212.7	232.7	222.35	0.58	3.06	28	3
FTF 25A	52868.70	77308.40	212.8	232.8	223.06	0.36	1.95	29	3
FTF 26	52875.40	77250.00	206.3	226.3	223.07	0.36	1.93	28	3
	52823.50	77227.20	213.5	243.5	223.24	0.44	2.33	28	3
	58335.40	72009.10	225.2	235.2	231.04	0.86	1.91	5	3
п / Ц Q	58222.00	71949.20	224.9	234.9	228.90	0.48	1.07	5	3
НО	58275 30	71572.60	210.4	220.4	227.01	0.10	0.40	5	3
H 10	57822.80	71607.20	207.4	217.4	220.70	0.33	1.04	5	2
H 11	57779 40	71565.90	212.0	222.0	227.27	0.41	0.02	י 5	3
H 18A	57337 70	71339.60	217.5	227 5	224 12	0.26	1 11	18	3
H 10	57041 70	71/3/ 20	210.6	227.5	267.12	0.20	0.77	5	5
	62067.00	60970 10	213.0	104.0	101 10	0.04	0.77	5	3
	62960.40	69885 70	94.9 13.6	23.6	101.12	0.20	0.57	Ö	1
HAA 1B	62976.00	69872.20	119.3	129.3	251 41	0.57	1.60	8	2
HAA 1C	62983.00	69866.20	147.4	157.4	252.00	0.58	1.63	8	2
HAA 1D	62991.00	69859.10	261.8	281.8	276.42	0.54	1.53	8	3
HAA 1TA	62953.30	69892.20	-29.8	-19.8	180.69	0.45	1.27	8	4
HAA 2A	61276.00	70930.40	107.3	117.3	177.01	0.19	0.49	7	1
HAA 2AA	61285.10	70925.40	29.4	39.4	177 65	0.23	0.64	8	4
HAA 2B	61267.50	70935.40	127.2	137.2	253.24	0.42	1.26	9	2
HAA 2C	61258.90	70940.40	171.9	181.9	254.82	0.35	1.04	9	2
HAA 2D	61250.60	70945.40	260.3	280.4	276.53	0.28	0.89	10	3
HAA 3A	60190.40	71470.90	96.8	106.8	175.78	0.19	0.57	9	1

	Table F-1.	Hydraulic	Head Ta	argets for	Model (Calibration	(Con	tinued)	
						•			
HAA 3AA	60201.90	71488.00	6.5	16.5	175.03	0.19	0.58	9	4
HAA 3B	60178.40	71453.20	125.9	135.9	240.66	0.43	1.34	10	2
HAA 3C	60167.40	71436.90	163.3	173.3	243.95	0.49	1.48	9	2
HAA 3D	60154.30	71418.40	246.7	266.7	265.35	0.96	4.07	18	3
HAA 4A	61920.00	72223.00	105.4	115.3	174.73	0.20	0.55	8	1
HAA 4AA	61929.60	72223.20	32.2	42.2	174.95	0.22	0.62	8	1
HAA 4B	61909.90	72222.90	124.5	135.0	250.16	0.32	0.92	8	4
HAA 4C	61899.90	72223.10	158.3	168.3	251.39	0.34	0.84	6	2
HAA 4D	61890.00	72223.30	255.7	275.7	269.87	0.37	1.04	8	3
HAA 6A	63870.00	71440.90	95.6	105.6	178.92	0.19	0.57	9	1
HAA 6AA	63860.20	71441.00	25.8	35.8	178.60	0.18	0.54	9	1
HAA 6B	63879.80	71440.40	131.3	141.4	235.67	0.27	0.82	9	2
HAA 6C	63889.90	71440.60	161.1	171.1	235.86	0.28	0.84	9	2
HAA 6D	63900.20	71440.30	247.1	267.2	265.14	0.37	1.18	10	3
HAC 1	61415.20	72171.00	258.8	278.8	269.40	0.31	1.64	28	3
HAC 2	61366.90	72220.20	258.8	278.8	268.99	0.34	1.79	28	3
HAC 3	61313.60	72183.40	255.0	275.0	269.11	0.29	1.56	29	3
HAC 4	61372.00	72120.30	254.1	274.1	269.63	0.31	1.66	28	3
HAP 1	63398.80	71209.80	256.3	276.3	270.84	0.31	1.48	23	3
HAP 2	63519.80	71122.90	243.8	263.8	270.32	0.24	1.27	28	3
HC 1A	61867.00	71755.00	89.5	94.5	175.80	0.00	0.00	2	1
HC 1D	61867.00	71746.00	206.5	211.5	268.20	-1.00	-1.00	1	3
HC 1E	61864.00	71746.00	251.5	256.5	275.00	0.50	0.71	2	3
HC 2A	61866.00	71794.00	72.2	77.2	175.80	0.50	0.71	2	1
HC 2B	61876.00	71785.00	85.7	90.7	175.00	1.00	1.41	2	1
HC 2C	61872.00	71784.00	135.7	140.7	253.70	0.50	0.71	2	2
HC 2D	61866.00	71784.00	178.2	183.2	255.80	0.50	0.71	2	2
HC 2E	61861.00	71784.00	205.7	210.7	269.50	1.00	1.41	2	3
HC 2F	61861.00	71780.00	250.7	255.7	274.30	0.00	0.00	2	3
HC 4A	63409.00	71606.00	150.0	155.0	244.70	0.00	0.00	2	2
HC 6A	62060.00	72150.00	156.2	161.2	252.20	0.50	0.71	2	2
HC 6B	62070.00	72150.00	210.2	215.2	268.90	1.00	1.41	2	3
HC 8A	60058.50	77481.80	13.3	16.3	175.63	-1.00	-1.00	1	4
HC 8B	60058.40	77487.50	132.5	137.5	155.47	-1.00	-1.00	1	1
HC 8C	60065.10	77484.40	187.3	192.3	197.49	-1.00	-1.00	1	2
HC 10A	61593.40	75806.70	114.0	117.0	163.34	-1.00	-1.00	1	1
HC 10B	61600.10	75801.30	164.8	169.8	208.91	1.11	1.92	3	2
HC 11C	62131.40	74496.40	190.8	195.8	236.60	1.00	1.41	2	4
HC 12B	59488.40	73186.90	177.3	182.3	240.75	1.43	2.48	3	2
HCA 1	63109.00	72521.70	253.7	273.7	269.37	0.26	1.52	34	3
HCA 2	62943.30	72265.90	242.0	273.4	270.22	0.28	1.57	32	3
HCA 3	63108.70	72651.70	253.8	273.8	269.16	0.24	1.42	34	3
HCA 4	62942.90	72523.70	241.9	273.3	269.30	0.25	1.57	40	3
HCA 4A	62929.90	72515.50	103.7	113.7	175.57	0.17	0.52	10	1
HCA 4AA	62942.50	72513.70	33.6	43.6	175.22	0.17	0.53	10	1
HCA 4B	62942.30	72532.90	126.6	136.6	245.93	0.25	0.80	10	2
HCA 4C	62931.80	72532.80	153.8	163.8	246.64	0.26	0.83	10	2
HCB 1	63921.50	71426.80	222.6	252.6	263.59	0.26	1.45	30	3
HCB 2	63797.90	71289.70	239.9	269.9	268.15	0.23	1.27	32	3
HCB 3	63919.90	71098.80	233.6	263.6	266.55	0.18	0.97	30	3
HUB 4	64054.50	/1244.20	235.9	265.9	264.49	0.25	1.35	30	3
HEI 1D	60546.00	71948.30	240.3	260.3	267.71	0.38	2.02	29	3
HET 2D	60094.40	72006.00	239.7	259.7	258.53	0.36	2.00	31	3
HET 3D	60110.50	72093.90	239.9	259.9	258.88	0.33	1.92	33	3
HEI 4D	60166.50	72178.10	239.5	259.6	259.25	0.32	1.77	31	3
HHP 1D	60533.88	/1026.79	260.4	270.4	271.15	0.00	0.00	2	3
HHP 2D	60803.08	70886.58	263.2	273.2	273.85	0.00	0.00	2	3
HIW 11D	58480.00	72506.90	213.0	228.0	231.88	0.58	0.81	2	3
HIW 1MD	58486.00	72546.30	214.9	239.7	232.38	0.33	0.58	3	3

		injuraune	iicau ii	ingetto 101	mouci	Calibration		mucu	,
HIW 1PD	58395 30	72543 30	215 5	240.5	231 01	0.30	0.52	3	3
HIW 2A	56753.00	73249 70	78.3	88.3	167.23	0.30	0.52	6	1
HIW 2D	56750.20	73269.20	210.9	230.8	229.66	0.69	2.06	g	3
HIW 2MC	56698.40	73226.40	154.0	184.0	226.69	0.60	1 20	4	2
HIW 2MC	56698 40	73226 40	124 1	139.0	226.69	0.60	1.20	4	2
HIW 4MC	56570 10	73160 10	150.4	180.4	219.68	-1 00	-1.00	1	2
HIW 4MC	56570.10	73160.10	120.8	135.7	219.68	-1.00	-1.00	1	2
HIW 5MC	56498.90	73557.90	154.2	184 1	227 80	1.04	2.32	5	2
HIW 5MC	56498.90	73557.90	124.4	139.2	227.80	1.04	2.32	5	2
HMD 1D	56973.30	78731.70	199.7	219.7	209.46	0.29	1.71	35	2
HMD 2D	57269.70	79665.80	190.8	210.8	200.74	0.29	1.72	36	2
HMD 3D	57745.20	79578.70	187.7	207.7	200.07	0.29	1.70	35	2
HMD 4D	58188.50	79160.40	188.9	208.9	199.62	0.47	2.76	35	2
HOB 1D	56917.49	72993.46	204.2	224.2	230.51	1.43	2.85	4	3
HOB 2D	57273.89	72811.95	200.4	220.4	228,91	1.19	2.37	4	3
HOB 3D	58034.78	72326.22	207.7	227.7	229.11	1.48	2.96	4	3
HOB 4D	58370.03	72223.65	210.4	230.4	229.91	0.30	0.52	3	3
HOB 6D	57421.25	70577.88	186.9	196.9	207.14	0.83	1.65	4	3
HOB 7D	56289.34	71879.82	197.4	217.4	220.84	1.02	2.04	4	3
HR3 11	60146.50	71402.80	200.4	230.0	259.66	0.35	1.96	32	3
HR3 13	60065.50	71649.40	205.1	234.8	258.78	0.49	2.79	32	3
HR8 11	59559.80	71945.70	207.9	237.6	246.21	0.25	1.43	34	3
HR8 12	59330.10	71780.10	206.3	235.9	239.79	0.22	1.24	33	3
HR8 13	59300.20	71559.60	201.7	231.4	237.79	0.17	0.98	32	3
HR8 14	59612.10	71431.40	202.3	231.9	243.91	0.09	0.33	13	3
HSB 50PC	55690.30	72161.10	119.5	169.6	218.00	1.23	2.47	4	2
HSB 65	58432.00	72425.60	212.4	242.4	232.49	0.34	2.51	56	3
HSB 65A	58436.00	72436.20	62.5	73.2	171.33	0.15	1.13	55	1
HSB 65B	58439.40	72445.60	123.3	133.3	224.31	0.13	0.95	56	2
HSB 65C	58447.10	72439.60	207.8	218.6	232.49	0.24	1.77	56	3
HSB 66	56928.30	72429.20	198.1	228.1	224.69	0.38	3.08	67	3
HSB 67	58424.30	71505.00	200.7	230.7	223.34	0.31	2.50	64	3
HSB 68	56901.00	71528.00	213.3	243.3	221.58	0.18	1.21	43	3
HSB 68A	56892.10	71526.90	47.5	58.0	171.75	0.13	1.00	57	1
HSB 68B	56882.10	71525.50	123.5	134.5	216.59	0.29	2.23	59	2
HSB 68C	56872.70	71524.10	168.4	179.5	217.60	0.21	1.63	58	2
HSB 69	56475.10	71546.90	199.0	229.0	219.43	0.11	0.86	62	3
HSB 69A	56465.10	71549.40	83.1	93.1	171.68	0.39	2.82	53	1
HSB 70	55758.90	72606.90	205.7	235.7	223.89	0.43	3.15	54	3
HSB 70C	55/5/.10	72597.30	164.9	174.9	223.17	0.24	1.82	56	2
	55279.20	72875.90	204.8	234.8	223.99	0.46	3.41	54	3
	55281.50	72866.60	171.9	181.9	222.01	0.28	2.07	55	2
	50000.10	71040.00	101.0	/0.0	172.00	0.31	2.53	69	1
	50594.90	71639.00	121.2	132.1	222.02	0.10	1.21	59	2
	50014.00	71609.10	100.2	1/1.2	224.00	0.13	1.01	5/	2
	50001.70	71526.10	198.7	228.7	224.84	0.15	1.18	59	3
	56359.10	71586.20	04./	/5.9	1/1./9	0.13	0.94	56	1
	56360 10	71603.30	121.8	132.9	210.75	0.10	0.80	58	2
HSB 840	56340 00	71582.00	100.5	101.0 210.5	∠13.48 219.01	0.26	2.02	59 55	2
HSB 854	58943 10	73701 00	61 1	219.0 71.1	169 75	0.11	0.00	50	3
HSB 85B	58953 30	73789 30	122.2	143.0	222 66	0.10	1.00	70	י 2
HSB 85C	58947 40	73802.30	214.2	224.2	238.60	0.22	1.00	70 60	2
HSB 86A	55985.90	72520 20	63 1	73.9	168.59	0.12	0.88	58	1
	0000000		00.1			v. i C.	0.00	50	

HSB 86B

HSB 86C

HSB 86D

HSB100C

55976.90

55984.60

55996.50

58806.50

72519.00

72529.70

72522.10

72077.20

113.8

189.4

206.6

153.0

124.0

199.4

236.6

163.0

221.55

223.55

223.52

226.55

0.17

0.23

0.23

0.16

1.31

1.71

1.73

1.21

Table F-1.	Hydraulic Head	Targets for Model	Calibration ((Continued))
				· · · · · · · · · · · · · · · · · · ·	

2

4

3

2

59

58

57

Ta	able F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Cont	inued)	
	50700.00	70070.00	010.0		000.40	0.04	4.05	<u> </u>	
HSB100D	58796.90	72073.80	216.9	236.9	233.49	0.21	1.65	64	3
HSB100PC	55720.00	72058.30	117.6	167.7	217.15	1.19	2.38	4	2
HSB100PD	56379.50	/1445.30	195.0	214.9	217.41	0.64	1.28	4	3
HSB101C	58604.40	/2001.90	166.3	1/6.3	225.47	0.15	1.10	57	2
HSB101D	58594.80	71997.50	216.1	236.1	230.80	0.18	1.44	62	3
HSB102C	58399.70	71960.10	166.7	176.7	224.62	0.15	1.10	56	2
HSB102D	58393.40	71952.40	216.3	236.3	228.24	0.21	1.53	54	3
HSB103C	58323.60	71593.90	159.2	169.2	223.31	0.16	1.24	58	2
HSB103D	58315.60	71588.10	213.7	233.7	225.59	0.17	1.27	59	3
HSB104C	58082.60	71376.80	163.5	173.5	220.59	0.13	1.02	58	2
HSB104D	58075.80	/13/0.20	210.6	230.6	224.91	0.20	1.51	58	3
HSB105C	57883.80	71447.30	152.2	162.2	219.57	0.12	0.94	57	2
HSB105D	57877.40	71454.80	211.8	231.8	225.29	0.16	1.29	62	3
HSB106C	57651.50	71720.90	158.7	168.7	221.73	0.13	0.99	57	2
HSB106D	57644.80	71727.80	210.7	230.7	225.88	0.17	1.29	55	3
HSB107C	57432.00	71698.50	159.3	169.3	219.29	0.12	0.89	57	2
HSB107D	57412.20	71696.60	215.1	235.1	224.69	0.16	1.19	58	3
HSB108C	57155.50	71688.70	186.0	196.0	218.54	0.18	1.34	58	2
HSB108D	57145.60	71688.00	212.0	232.0	223.46	0.16	1.14	49	3
HSB109C	56895.60	71684.80	168.4	178.4	218.75	0.12	0.95	59	2
HSB109D	56885.50	71685.60	213.0	233.0	222.85	0.16	1.12	47	3
HSB110C	56680.70	71779.30	171.4	181.4	219.07	0.12	0.92	58	2
HSB110D	56672.10	71785.20	211.4	231.4	222.09	0.17	1.26	57	3
HSB111C	56501.90	71919.40	140.7	150.7	220.27	0.13	1.01	58	2
HSB111D	56494.50	71926.20	185.7	195.7	222.03	0.15	1.13	57	4
HSB111E	56487.20	71932.80	211.7	231.7	222.02	0.17	1.27	56	3
HSB112C	56417.40	72156.40	140.6	150.6	221.59	0.16	1.22	55	2
HSB112D	56408.10	72161.60	188.3	198.3	222.75	0.19	1.43	57	4
HSB112E	56399.50	72166.60	211.7	231.7	222.54	0.18	1.41	64	3
HSB113C	56160.40	/2312.30	154.7	164.7	221.87	0.16	1.22	56	2
HSB113C	56160.40	72312.30	151.7	161.7	221.87	0.16	1.22	56	2
HSB113D	56164.30	72302.70	216.2	236.2	222.52	0.20	1.58	60	3
	50107.00	72404.00	185.0	195.0	223.38	0.21	1.59	55	2
	56042.00	72474.20	212.0	232.0	223.29	0.23	1./3	20	3
	56020 80	72653.20	102.0	192.0	224.30	0.34	2.00	5/ 67	2
HSB116C	55089.00	72002.30	213.9	200.9	223.93	0.24	1.90	07 55	ა 2
HSB116D	55988 20	72898 10	214 5	234.5	225.04	0.22	3.80	57	2
HSB117A	55170 10	72733.60	84.8	94.8	166.67	0.50	0.74	55	1
HSB117C	55162.90	72740 70	165 1	175.1	221 61	0.10	2 10	54	2
HSB117D	55155.60	72747.60	200.3	220.3	223.87	0.35	2 75	62	3
HSB118A	55775.60	72696.40	91.0	101.0	167.58	0.12	0.92	56	4
HSB119A	56100.20	73082.50	93.3	103.3	166.93	0.11	0.85	58	1
HSB120A	56431.90	73395.10	91.0	101.0	166.22	0.11	0.82	55	1
HSB121A	57389.60	72024.80	88.3	98.3	171.56	0.12	0.91	56	4
HSB122A	57747.40	72195.90	85.4	95.4	171.34	0.12	0.88	56	1
HSB123A	58124.80	72189.80	93.6	103.6	171 67	0.34	2.68	61	4
HSB124AB	58531 70	72202 70	94.6	104.6	172.00	0.01	0.87	30	1
HSB125C	58592.80	71503 60	145.6	155.6	223.34	0.14	1 17	56	2
HSB125D	58584.10	71498.20	199.4	219.4	221.34	0.15	1.14	57	3
HSB126C	57178.20	70627.70	176.3	181.3	203.91	0.07	0.51	53	2
HSB126D	57169.60	70633.40	190.5	200.5	205.15	0.07	0.56	58	3
HSB127C	56792.10	71210.10	148.4	158.4	210.33	0.08	0.58	57	2
HSB127D	56788.00	71218.90	197.8	217.8	218.19	0.09	0.69	56	3
HSB129C	55110.00	71830.40	147.8	157.8	205.75	0.19	1.39	56	2
HSB129D	55103.40	71837.10	185.2	205.2	208.53	0.13	0.94	56	3
HSB130C	54643.60	70762.40	159.9	169.9	199.92	0.07	0.54	59	2
HSB130D	54651.70	70757.20	182.1	202.1	200.17	0.10	0.74	59	3
HSB131C	56894.90	70374.70	148.5	158.5	203.87	0.08	0.57	56	2

Table F-1. Hydraulic Head Targets for Model Calibration (Continued)

HSB131D	56891.10	70365.00	195.7	205.7	205.15	0.12	0.88	58	3
HSB132C	58787.70	71472.40	168.6	178.6	221.62	0.12	0.88	56	2
HSB132D	58799.30	71469.50	206.5	226.5	221.32	0.18	1.31	55	3
HSB133C	59110.30	71949.50	173.3	183.3	230.55	0.18	1.39	57	2
HSB133D	59102.30	71943.50	208.5	228.5	235.09	0.22	1.65	57	3
HSB134C	58289.90	71210.30	149.1	159.1	220.87	0.13	0.98	58	2
HSB134D	58296 50	71217 30	205.8	225.8	222 33	0.24	1.83	59	3
HSB135C	56560.80	71300 20	147 3	157.3	206 71	0.07	0.54	55	Š
HSB135D	56552.80	71396 70	100 0	219.9	218 31	0.07	0.80	55	2
HSB136C	55949 60	71900.30	160.5	170.5	217.46	0.11	1 00	57	2
HSB136D	55941 70	71906.00	200.2	220.2	220.81	0.14	1.03	56	2
HSB137C	55700.20	70060.00	163.8	173.8	220.01	0.17	1 /3	58	2
LCB127D	55606 10	72203.30	205.2	225.2	220.20	0.15	1.55	56	2
	55090.10	72160.90	203.3	220.0	222.19	0.21	1.00	50	ა 2
	53200.70	73100.20	200.1	07.6	172 56	0.33	2.49	57	3
HODIJSA	57303.40	71127.40	07.0	97.0	1/3.30	0.13	0.99	55 57	4
HOD1090	57374.50	71129.00	146.5	156.5	214.48	0.10	0.77	5/	2
HSB139D	5/384.40	71133.20	206.7	226.7	222.60	0.24	1.80	58	3
HSB140A	50535.40	70050.30	81.0	91.0	175.70	0.09	0.57	43	1
HSB140C	56551.80	70049.20	101.0	1/1.0	204.23	0.68	2.78	17	2
HSB140D	56560.60	70036.00	194.1	214.1	213.61	0.42	2.79	44	3
HSB141A	59168.70	/1213.60	80.6	90.6	1/4.9/	0.19	1.33	48	1
HSB141C	59170.20	71196.70	154.7	164.7	228.85	0.34	1.55	21	2
HSB141CR	59167.20	71226.70	152.1	162.1	229.52	0.87	3.81	19	2
HSB141D	59170.90	71184.40	217.8	237.8	241.18	0.70	4.84	48	3
HSB142C	53505.30	73119.00	161.6	171.6	198.26	0.34	2.28	45	2
HSB142D	53493.10	73113.00	189.7	199.7	198.03	0.36	2.45	46	3
HSB143C	52773.20	73738.20	169.1	179.1	209.27	0.17	1.10	44	2
HSB143D	52774.50	73754.00	196.9	216.9	213.14	0.20	1.33	45	3
HSB144A	56200.50	71892.10	78.6	88.6	170.91	0.07	0.47	45	1
HSB145C	57769.00	71098.90	164.7	174.7	213.44	0.27	1.80	46	2
HSB145D	57753.90	71088.00	184.2	194.2	220.54	0.24	1.62	46	4
HSB146A	58454.00	70478.90	85.5	95.5	1/5.93	0.08	0.53	44	1
HSB146C	584/3.10	/04/1.60	152.3	162.3	209.92	0.19	1.25	45	2
HSB146D	58493.00	/0469.70	204.0	224.1	222.42	0.51	3.45	46	3
HSB147D	55804.40	73827.90	215.2	235.2	231.32	0.36	2.40	45	3
HSB148C	55344.20	70151.50	158.9	168.9	201.72	0.09	0.67	50	2
HSB148D	55355.70	70160.90	198.1	218.1	213.31	0.23	1.66	51	3
HSB149D	57286.30	71338.80	207.0	227.0	222.44	0.50	3.33	45	3
HSB150D	58692.80	71692.60	206.9	226.9	226.94	0.41	2.82	48	3
HSB150PC	55543.90	72236.40	119.5	169.6	218.15	1.40	2.79	4	2
HSB151C	54014.90	72997.90	170.6	180.6	207.91	0.18	1.22	46	2
HSBISID	54026.40	72997.80	197.0	207.6	207.27	0.22	1.43	44	3
HSB1520	54346.70	72012.00	1/3.1	183.1	199.03	0.07	0.48	45	2
HSB152D	54362.10	72011.70	197.0	207.0	205.63	0.38	1.39	13	3
HSL 1D	58925.00	72179.60	219.8	239.8	235.28	0.38	2.30	36	3
HSL 2D	59423.50	72190.80	225.2	245.3	241.92	0.30	1.82	36	3
HSL 3D	59770.60	72251.50	233.7	253.8	250.33	0.40	2.52	39	3
HSL 4D	60171.90	72453.70	245.0	265.1	261.88	0.32	2.03	39	3
HSL 5D	60339.40	72562.20	247.8	267.7	266.03	0.53	3.12	35	3
HSL 5D	60339.40	72562.20	242.0	247.7	266.03	0.53	3.12	35	3
HOL CAA	60549.50	72684.50	104.7	114.7	168.23	0.15	0.51	12	1
HOL OD	00555.70	72692.60	107.0	28.6	168.95	0.14	0.52	13	1
HSL 6B	00543.60	/26/6.30	127.9	137.9	244.32	0.33	1.15	12	4
HOL OD	00501.60	72667.50	157.6	167.6	245.19	0.32	1.14	13	2
	00531.10	72659.70	243.9	264.0	200.01	0.38	2.40	41	3
HOL DU	00531.10	72659.70	239.4	243.9	260.01	0.38	2.40	41	3
HSL /D	60/23.00	/26/4.40	242.3	262.4	259.75	0.33	2.03	39	3
HSE 8A	61113.90	/2/21.00	108.8	118.8	172.61	0.15	0.54	13	1

	Table F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
	61110.00	70700 40		20 7	175 50	0.76	0 70	10	
	61115.00	72710.00	20.7	30.1	040.00	0.70	2.73	10	2
	61115.00	72710.20	130.7	190.7	240.90	0.32	1.15	15	2
	61117.50	72700.00	171.7 040 4	101.7 269 A	200.10	0.20	1.01	10	2
	01117.10	72000.10	240.4	200.4	200.00	0.24	2.42	44 07	2
1100 0D	04075.00	07010.30	230.5	200.0	200.17	0.00	0.42	27	3
HSS 2D	64785.90	6/355.90	234.5	254.5	207.87	0.00	3.42	21	3
HSS 3D	64709.50	68257.50	262.6	282.6	281.85	0.72	3.73	27	3
HTF 1	62067.00	71745.00	236.9	256.9	272.74	0.30	1.67	31	3
HTF 2	62175.00	71610.00	237.0	257.0	2/4.2/	0.29	1.59	31	3
HTF 4	61942.00	71630.00	235.2	255.2	2/4.2/	0.27	1.50	30	3
	62110.00	71390.00	264.3	284.3	277.24	0.61	2.85	22	3
	62228.00	71259.00	263.6	283.6	275.05	0.60	2.76	21	3
	62112.00	71130.00	203.5	283.5	270.90	0.35	1.80	20	3
	61965.00	71270.00	203.0	203.0	273.00	0.01	2.73	20	3
	61698.00	71652.00	245.8	205.8	273.40	0.20	1.43	32	3
HIF 10	61838.00	71520.00	245.2	265.2	2/3.10	0.27	1.40	29	3
	61722.00	71398.00	238.9	258.9	273.00	0.33	1.83	30	3
	01093.00	71020.00	242.9	202.9	270.41	0.30	2.12	04 00	3
	61/62 00	71000.00	202.0	202.0	214.10	0.52	2 20	20	2
1111 14 11111 15	61252.00	71000.00	201.9	201.9	273.44	0.30	1.24	20	2
	61050.00	72150.00	200.7	268.3	213.30	0.24	2.00	32 24	3
	61199.00	72100.00	240.0	268.0	203.07	0.57	2.00	24	3
	61223 30	72000.00	250.4	230.4	202.39	0.57	1.56	22	3
HTE 10	61079.20	71902 50	245 7	265.7	268.96	0.26	1.00	33	3
HTF 20	61086 40	72073 30	251.9	271.9	267 77	0.20	2 12	33	3
HTF 21	61261.00	71998.20	242.6	262.6	269.38	0.28	1.58	31	3
HTF 22	62553.60	71363.40	251.4	271.4	275.41	0.33	1.82	31	3
HTF 23	62670.30	71363.10	256.8	276.8	274.48	0.39	2.21	32	3
HTF 24	62775.60	71362.60	257.8	277.8	274.05	0.32	1.75	30	3
HTF 25	62902.00	71224.30	252.5	272.5	274.57	0.54	2.98	31	3
HTF 26	62815.70	71090.70	255.5	275.5	275.35	0.50	2.76	31	3
HTF 27	62660.30	71057.90	259.1	279.1	276.72	0.71	4.03	32	3
HTF 28	62515.70	71080.10	251.9	271.9	275.84	0.26	1.38	29	3
HTF 29	62414.90	71229.90	259.9	289.9	275.57	0.28	1.54	30	3
HTF 31	62662.50	70747.00	246.7	266.7	275.64	0.28	1.44	27	3
HTF 32	62807.90	70880.60	251.1	271.1	274.71	0.27	1.48	31	3
HTF 34	61978.50	71144.10	251.7	271.7	275.63	0.30	1.33	20	3
HWP 1D	59852.50	72158.08	239.9	249.9	245.25	0.20	0.29	2	3
HWP 2D	59918.86	72368.22	253.0	263.0	262.46	0.12	0.16	2	3
HWS 1A	50234.80	64885.10	225.2	255.2	244.81	0.38	1.95	27	3
HWS 2	50346.40	64786.30	215.3	245.3	245.40	0.41	2.10	27	3
HXB 1	52557.80	60549.70	214.2	244.2	251.40	0.56	2.85	26	3
HXB 2	52892.80	60866.50	212.1	242.1	252.55	0.62	3.12	25	3
HXB 3	52/07.30	60631.20	212.2	242.2	251.89	0.61	3.04	25	3
	52617.30	60685.70	234.9	254.9	253.62	0.46	2.22	23	3
HXB 5D	52510.40	60587.70	234.2	254.2	252.73	0.46	2.19	23	3
IDP 3A	3/781.10	85104.30	-86.7	-81.3	167.02	0.24	1.02	18	4
IDP 3B	37785.30	85119.50	95.7	100.7	157.13	0.52	2.13	17	1
10P 3C	37/90.10	00133./0	104.1 200 0	109.1	201.89	0.92	3.70	10	2
	37794.30 38615 An	82812 60	200.0 180 5	220.0 190 r	209.00	-1.00	1 96	1 1 1	2
	38284 50	83521 50	186.4	206.6	108 18	0.02	3.40	19	2
	3824.00	84112 00	184.5	200.0	201 21	0.00	3 36	18	2
	38713 00	84460 10	188.6	208.6	201.01	0.23	3.53	18	2
	2017/ 20	847/0 /0	185.4	200.0	108.00	1 19	<u>4</u> 74	18	2
	35854 00	80553 70	-189.4	-184 3	165.87	0.26	1 12	18	4
	35858.80	80578 40	108.4	113.4	139.94	1 40	6.09	19	1
IDQ 3C	35863.50	80601.70	136.6	141.6	164.21	0.88	3.62	17	2

	Table F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Cont	inued)	
IDQ 4	36726.20	83125.10	185.6	205.6	198.18	0.77	3.25	18	2
IDQ 5	36851.80	82763.60	187.4	207.5	196.99	0.50	1.75	12	2
IDQ 6	37299.30	82414.40	181.9	202.1	193.62	0.71	3.08	19	2
IDQ 7	37836.30	82107.40	174.6	194.8	187.94	0.60	2.15	13	2
IDQ 8	34688.10	83602.80	180.4	200.4	189.25	0.35	1.05	9	2
IDQ 9	34053.40	82729.60	173.9	193.9	181.84	0.46	1.21	7	2
IDQ 10	33610.10	82135.80	165.7	185.7	174.03	0.45	1.63	13	2
IDQ 12	37116.50	81913.70	164.9	184.9	187.82	0.59	2.04	12	2
K 301AP	40034.00	54284.00	193.3	197.7	208.77	-1.00	-1.00	1	3
K 301P	39842.00	54320.00	194.4	201.0	204.90	0.32	1.94	36	3
KAB 1	39919.70	53055.60	194.0	224.0	205.94	0.60	3.10	27	3
KAB 2	40277.90	52410.80	198.6	228.6	209.89	0.87	4.61	28	3
KAB 3	39918.40	51807.70	193.0	223.0	204.06	0.68	3.42	25	3
KAB 4	39457.00	52807.10	187.0	217.0	203.15	0.69	3.53	26	3
KAC 1	42614.80	53167.00	199.0	229.0	219.27	0.50	2.81	32	3
KAC 2	42677.20	53255.50	195.4	225.4	221.51	0.56	3.12	31	3
KAC 3	42723.90	53201.80	195.8	225.8	221.96	0.47	2.68	32	3
KAC 4	42676.40	53053.50	178.0	208.0	218.07	0.47	2.65	32	3
KAC 5	42716.30	53161.70	204.3	224.3	222.40	0.44	2.39	29	3
KAC 6	42693.50	53139.90	204.6	224.6	222.34	0.46	2.45	28	3
KAC 7	42574.50	53252.90	203.0	223.0	219.45	0.42	2.29	30	3
KAC 8	42641.90	53135.00	192.3	212.3	221.18	0.52	2.02	15	3
	42588.10	53197.60	195.7	213.7	220.84	0.49	1.09	10	3
KCB 1	39523 10	53453.00	183.6	213.6	203.35	0.05	2 79	32	3
KCB 2	39337 20	53634 40	187.7	217.7	202.81	0.43	3.98	31	3
KCB 3	39139.20	53440.50	184.1	214.1	202.20	0.43	2.48	33	3
KCB 4	39315.60	53256.10	188.9	218.9	205.48	0.75	2.70	13	3
KCB 5	39090.70	53353.70	189.3	209.3	200.43	0.58	1.54	7	3
KCB 6	39108.00	53559.20	188.7	208.7	200.97	0.71	1.73	6	3
KCB 7	39812.30	53435.60	196.5	216.5	205.33	0.60	1.68	8	3
KDB 1	40425.90	54050.50	184.8	205.8	208.11	0.23	1.72	55	3
KDB 2	40241.40	53907.30	182.5	203.5	206.73	0.25	1.85	55	3
KDB 3	40393.70	53794.60	184.2	205.4	207.52	0.23	1.79	59	3
KDB 4	40150.30	53787.40	189.2	209.2	206.50	0.23	0.99	18	3
KDB 5	40033.10	54052.20	188.5	208.5	204.89	0.29	1.64	31	3
KDT 1D	40380.00	54154.10	193.7	213.7	208.10	0.37	1.63	19	3
KRB 8	40302.10	54893.60	195.8	215.8	208.55	0.20	0.65	11	3
KHB 13	39986.60	55344.20	197.8	217.8	205.47	0.22	0.53	6	3
KHB 16D	40390.30	54888.00	191.5	211.5	209.22	0.24	1.03	19	3
KHB 1/D	39991.90	55446.40	186.8	206.8	205.94	0.26	1.11	19	3
KHB 18D	40084.90	55563.70	185.8	205.8	204.54	0.22	0.95	19	3
KRB 19D	40207.40	55620.90	186.8	206.8	203.82	0.21	0.92	19	3
KRP 1	42471.20	54544.00	207.0	237.0	218.37	0.45	2.56	33	3
KHP 2	42681.60	54503.60	199.2	229.2	219.13	0.40	2.18	30	3
	42014.30	54246.70	207.5	237.3	219.14	0.40	2.57	29	3
	42590.30	54606 60	200.8	210.7	210.02	0.30	0.41	52 1	3
	42101.00	54000.00	200.0	210.0	210.03	0.21	0.41	4	3
	42220.30	5/200.70	203.1	213.1	217.44	0.07	0.19	6	3
	410/1./U	54470 74	203.1	210.2	213.30	-1.00	.1 00	1	3
	42200.42 <u>1</u> 2100.03	54360 10	200.1	210.1	217.15	-1.00	-1.00	1	3
KSB 1	39806 80	54044 40	175.6	205.6	204 05	0.20	2 12	52	3
KSB 2	39703 40	53927 60	173.8	203.8	203 81	0.30	2 21	55	3
KSB 3	39625.30	54040.20	169.7	199.7	203.05	0.30	2.22	54	3
KSB 4A	39756.70	54140.40	169.6	199.6	203.16	0.51	3.68	51	3
KSB 5C	39969.90	54165.60	172.9	182.9	204.88	0.06	0.10	3	3
KSB 5D	39970.50	54156.50	194.5	214.5	204.54	0.37	0.98	7	3

	Table F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
		5 4 4 9 9 9 9	400 7	040 7					2
KSM 1D	40328.20	54188.00	193.7	213.7	208.14	0.22	1.18	28	3
KSS 1D	40219.10	47758.90	157.4	177.5	174.31	0.44	2.33	28	3
KSS 2D	40437.00	46803.80	144.6	164.7	164.65	0.43	2.28	28	3
KSS 3D	40748.00	46644.30	139.3	159.3	163.82	0.56	2.96	28	4
LAC 1	51318.80	45238.80	191.1	221.1	216.48	0.54	2.96	30	3
LAC 2	51270.20	45330.40	193.4	223.4	216.09	0.65	3.68	32	3
LAC 3	51186.80	45201.90	190.7	220.7	216.55	0.51	2.90	32	3
LAC 4	51270.40	45213.10	185.3	215.3	216.07	0.53	2.86	29	3
LAC 5DL	51352.00	45365.40	176.2	186.2	219.74	0.89	2.18	6	3
LAC 5DU	51348.60	45345.90	207.9	227.8	219.48	0.79	2.10	7	3
LAC 6DI	51188.10	45272.80	175.9	185.9	217.89	0.90	2.21	6	3
LAC 6DL	51185.80	45252 50	201 7	2217	218 97	0.93	2 27	6	3
	51118 /0	45097 10	177 4	187 4	215.11	0.00	2 29	ê	3
	L 5110.40	45057.10	204.0	001.4	210.11	0.00	2.20	e e	2
LAC TOU	51120.10	40114.70	204.9	224.0	210.00	0.97	2.00	0	5
LAC 8DL	51300.90	45096.60	180.4	190.4	217.45	0.87	2.12	6	3
LAC 8DU	51301.80	45116.00	199.8	219.8	218.07	0.93	2.29	6	3
LAW 1C	50603.60	44562.40	-34.0	-29.0	176.21	0.29	0.64	5	4
LAW 1D	50595.60	44562.00	6.6	11.6	176.50	0.17	0.55	10	1
LAW 1E	50579.00	44561.20	90.1	95.1	205.04	0.59	1.33	5	2
LAW 1F	50567.10	44562.10	165.9	185.9	203.89	0.96	2.87	9	3
LAW 2B	49635.50	45641.00	-9.8	-4.8	176.23	0.17	0.52	10	1
LAW 2C	49638.70	45610.90	171.2	191.2	209.21	0.43	2.41	32	3
LAW 3B	52269.50	45600.70	-1.0	4.0	178.20	0.17	0.55	10	1
LAW 3C	52272.90	45616.10	194.9	214.9	235.20	0.58	2.01	12	3
LBP 1D	53508.08	48716.40	246.3	256.3	257.11	0.06	0.13	4	3
LBP 2D	53476.51	48924.92	241.9	251.9	256.15	0.16	0.22	2	3
LBP 3D	53007.66	48912.68	242.8	252.8	256.60	0.10	0.17	3	3
LCO 1	50957.70	45198.20	195.8	225.8	214.76	0.60	3.35	31	3
LCO 2	51043.40	45317.80	196.6	226.6	215.14	0.58	3.30	32	3
LCO 3	51113.20	45203.00	196.3	226.3	229.09	0.51	2.81	30	3
LCO 4	51036.10	45087.40	192.3	222.3	212.57	0.61	3.52	33	3
LCO 5A	50866.00	44987.00	30.0	40.0	177.24	0.28	0.68	6	1
LCO 5C	50881.80	44988.50	110.5	120.5	210.99	0.60	1.48	6	2
LCO 5DL	. 50887.50	44974.50	174.9	184.9	212.95	0.86	2.10	6	3
LCO 6DL	. 50921.20	45069.30	178.0	188.0	213.67	0.83	2.02	6	3
LCO 7DL	. 51055.90	44946.90	170.2	180.2	213.31	0.83	2.03	6	3
LCO 8DL	. 51380.60	45586.10	178.4	188.4	220.55	0.83	2.04	6	3
LCO 8DU	J 51361.70	45586.10	211.1	226.1	220.60	0.84	2.05	6	3
LDB 1	50590.50	45886.50	185.0	215.0	216.92	0.40	2.87	51	3
LDB 2	50784.60	46007.40	184.5	214.5	218.97	0.38	2.76	53	3
LDB 3	50525.80	46068.90	199.3	219.3	218.46	0.42	2.35	31	3
LDB 4	50339.50	45809.00	200.7	220.7	216.50	0.46	, 2.50	30	3
LEW 6	45241 20	84537 80	141 1	160.4	154 07	0.34	1 93	32	4
	45194 00	84413 90	134.5	154.5	153.64	0.04	1 16	8	т Л
	45318 90	84310.30	140.5	159.8	152.04	0.23	1.10	27	4
LFW 8	45415.30	84032 60	139.9	159.2	150.03	0.20	1.20	34	4
LEW 8R	45414 60	83949.00	135.1	155.1	149 78	0.32	0.90	8	4
1 FW 10A	45935 60	84369 60	129.2	159.2	151 27	0.41	2.55	39	4
1 FW 16	45852.60	84748 90	131.2	161.2	155 54	0.29	1.63	31	4
	45607.20	84602.80	109.5	159.5	152.99	0.20	2.74	20	4
	45007.50	94577 20	120.0	160.0	152.00	0.43	2.14	27	4
	40409.40	8/817 00	120.1	160.0	100.00	0.00	3.30 1 67	32	4
LEW 19	45133.40	04017.20 85262 60	130.0	165.0	150.10	0.29	1.07	30	4
	40002.90	8/178 20	100.0	168.0	1/10.90	0.33 A 50	2 65	28	
	40143.40 16225 20	84002 60	100.0	150.9	161 24	0.03	1.00	24	7
1 511/ 02	40020.20	QADE1 20	105 1	156.4	151.04	0.30	200	22	ч Л
	40400.10	04201.00	120.1	100.1	101.04	0.07	3.00	33 7	4
	40012.90	04200.10	110.4	100.4	149.12	1.14	3.03	1	1
	40520.80	84544.20	124.5	154.5	154.38	0.36	2.04	33	4
LFVV 25	46425.70	84967.20	123.2	153.2	155.78	0.35	2.03	33	4

Table F-1.

	nous
Hydraulic Head Targets for Model Calibration (Co	ntinued)
Invulation field faigets for mouth Campration (Co	muuu

I FW 26	45633.80	85654 60	143.2	164.2	161 19	0.33	1.88	32	4
LFW 27	45596.10	85839.10	142.9	163.9	162 11	0.33	1.91	33	4
LFW 28	45555 30	86079 60	141 1	162.0	163.48	0.31	1.01	39	4
LFW 29	45503.30	86372 70	143.9	164.9	164 72	0.36	2.07	33	4
	45300.00	96219 /0	140.0	162.7	164.90	0.00	2.07	25	4
	40170.90	00310.40	141.7	102.7	104.00	0.35	2.09	30	4
LFW 31	44869.00	86262.20	145.0	166.0	164.64	0.40	2.62	42	4
LFW 32	44935.90	85836.80	144.3	165.3	162.31	0.28	1.77	40	4
LFW 32C	44923.00	85837.80	98.6	113.6	160.85	-1.00	-1.00	1	1
LFW 33	44973.00	85633.80	144.4	165.4	161.01	0.31	1.84	35	4
LFW 34	45016.90	85409.50	143.7	164.7	159.85	0.28	1./3	3/	4
LFW 35	45378.80	85237.40	143.4	164.4	158.79	0.31	1.76	33	4
LFW 36	45582.30	83535.50	130.3	151.3	145.93	0.20	1.19	35	4
LFW 36R	45519.10	83537.30	122.0	142.0	146.13	0.30	0.91	9	1
LFW 37	45667.70	83113.20	129.8	150.8	142.84	0.17	0.98	35	4
LFW 38	46018.50	83172.30	130.5	151.5	143.44	0.33	1.81	30	4
LFW 39	46218.50	83213.10	131.2	152.2	143.63	0.33	1.83	30	4
LFW 40	46395.10	83248.80	131.2	152.2	143.54	0.32	1.68	28	4
LFW 41	46626.90	83304.90	130.3	151.3	145.21	0.44	2.57	34	4
LFW 42	46532.90	83776.20	130.2	151.2	147.51	0.49	2.67	30	4
LFW 43B	45240.50	86459.20	90.4	100.4	165.85	0.21	1.15	30	1
LFW 43C	45234.90	86480.60	128.5	138.5	166.02	0.20	1.09	30	1
LFW 43D	45244.50	86443.20	150.9	170.9	166.57	0.27	1.47	30	4
LFW 44D	45022.60	84524.40	139.5	159.3	155.33	0.15	0.67	19	4
LFW 45D	45142.00	84217.80	134.7	154.7	152.58	0.16	0.83	28	4
LFW 46D	45162.80	84054.00	137.3	157.1	151.48	0.14	0.62	19	4
LFW 46D	45162.80	84054.00	109.5	119.6	151.48	0.14	0.62	19	1
	45161.60	83823.30	105.7	115.8	148.91	0.11	0.46	19	1
	45150.80	83838.60	134.9	154.7	149.43	0.11	0.61	29	4
	45413.30	83855.40	108.2	118.2	148.96	0.15	0.66	20	1
	45426.70	83856.90	134.9	155.0	149.42	0.13	0.61	21	4
	45205.90	03013.20	94.1	104.1	140.97	0.09	0.40	19	
LFW 55D	45189.30	83601.30	121.2	141.4	147.10	0.09	0.41	19	1
LFW 56D	45306.60	83398.00	131.3	151.4	145.50	0.09	0.48	29	4
LFW 57B	45440.60	83196.70	68.4	/8.4	143.76	0.09	0.40	21	1
LFW 5/C	45411.10	83200.10	107.8	117.9	143.94	0.08	0.38	21	1
LFW 57D	45417.40	83190.20	130.6	150.4	143.96	0.08	0.39	21	4
LFW 58D	45700.20	82940.60	127.5	147.6	141.99	0.10	0.55	28	4
LFW 59B	46047.40	83027.10	66.0	76.0	142.81	0.12	0.53	21	1
LFW 59C	46052.00	83011.00	100.3	110.3	142.62	0.16	0.62	16	1
LFW 59D	46056.10	83000.10	129.3	149.3	142.68	0.44	2.31	28	4
	45/10.20	82517.50	67.7	1/./	137.85	0.07	0.21	10	1
	45711.90	82529.60	98.3	108.3	138.31	0.35	1.50	20	1
	40722.00	02001.00	123.0	143.0	130.22	0.06	0.40	32	4
	40409.00	03004.40	111.0	121.1	142.09	0.17	0.80	21	1
	46471.10	83089.10	130.3	150.4	144.12	0.29	1.44	24	4
LFW 62B	45915.50	83001.20	62.8	72.8	142.30	0.10	0.44	21	1
LFW 62C	45906.70	83012.70	108.4	118.4	142.74	0.14	0.61	19	1
LFW 62D	45922.90	82991.60	127.6	147.6	143.42	0.22	1.05	22	4
	45550.70	82740.80	06.1	76.1	140.17	0.08	0.35	20	1
LEW 630	40009.20	02/40.1U	90.2 106 4	100.2	140.19	0.09	0.41	19	1
	40009.1U	02/01.8U	120.4	140.4	140.50	0.15	0.07	20	4
	45208.80	02/30.40	51.9	01.9	140.04	0.07	0.24	11	
	45271.30	02/44.80	83.0	93.0	140.33	0.20	0.90	20	1
	45280.70	82/3/.80	115.2	135.2	140.34	0.06	0.29	21	1
	46061.80	82589.20	53.5	63.5	137.91	0.07	0.31	18	1
	40004.40	82592.90	86.1	96.1	137.90	0.10	0.44	19	1
	400/1.80	82598.40	111.5	131.5	138.38	0.20	0.91	21	1
	40195.90	82838.30	70.3	80.3	140.70	0.15	0.37	6	1

	Table F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
I FW 66C	46186.00	82836.50	100.0	110.0	140.72	0.43	1.22	8	1
LFW 66D	46173.70	82835.10	121.8	141.8	141.90	0.26	1.01	15	1
LFW 67B	46517.10	82847.10	55.6	65.6	139.07	0.12	0.51	19	1
LFW 67C	46527.50	82844.20	86.1	96.1	138.71	0.20	0.79	15	1
1 FW 67D	46529.90	82855.00	120.6	140.6	141.98	0.36	1.60	20	1
LEW 688	46885.30	83023.30	56 7	66.7	140.21	0.15	0.47	10	1
LFW/ 68C	46876 20	83027 50	88.3	98.3	139.61	0.22	0.71	10	1
LFW 68D	46868.00	83031 60	124.6	144.6	142 64	0.38	1.70	20	1
LFW 69B	45492.00	82451 20	52.0	57.0	137.56	0.06	0.18	10	1
LEW 69C	45494 50	82458 60	79.1	89.1	137 75	0.07	0.31	19	1
LEW 69D	45501.00	82452.00	119.0	139.0	137.84	0.07	0.34	20	1
LEW 70B	45825.50	82300.50	61.5	66.5	136.20	0.07	0.22	10	1
LEW 70C	45833 40	82309.00	78.8	88.8	136 23	0.06	0.20	10	1
	45000.40	02010.00	110.0	129.2	125 67	0.00	0.27	10	1
	40039.00	02310.30	110.3	130.3	107.74	0.12	0.57	10	1
LFW /1B	46340.40	82616.70	57.0	67.0	137.74	0.11	0.47	20	1
	46329.80	82015.80	80.4 115 5	90.4 105 5	107.90	0.09	0.40	20	1
	46319.80	02015.10	115.5	135.5	107.00	0.15	0.00	19	1
	40944.30	02072.10	50.9	00.9	100.00	0.10	0.54	10	1
LEW 720	40937.10	02070.00	0/.0 120.0	97.0	137.03	0.24	0.70	10	1
	40943.00	02001.00	120.0	140.0	100.74	0.27	0.07	7	1
	45097.60	00013.00	101.0	110.0	160.04	0.27	0.73	11	ן ס
	40090.00	00020.10	102.7	115.6	102.91	0.21	0.70	0	1
	40307.00	00000.00	151.0	115.0	162.01	0.31	1.01	9	1
	40300.00	49549.60	195.9	215.8	200 12	0.54	2.09	20	3
	49120.70	48352 90	184.7	213.8	209.13	0.94	5.00	29	3
IRP 3	49057 70	48333 60	191.4	2214.7	209.45	0.54	3.06	31	3
	48964 70	48440.20	173.3	203.3	208.59	0.54	3.02	31	3
LSB 1	50700.90	45153 10	1927	222.7	211.61	0.48	2.91	37	3
ISB 2	50824 50	45224.00	195.0	225.0	212.39	0.51	3.02	35	3
LSB 3	50729.70	45388.70	196.6	226.6	217.16	0.51	3.15	38	3
LSB 4	50513.00	45321.60	191.5	221.5	216.84	0.74	4.53	38	3
MGA 36	57891.50	73904.00	234.2	254.2	237.38	0.33	0.80	6	3
MGC 9	55610.70	75372.10	217.3	237.3	229.44	0.30	1.51	25	3
MGC 11	55770.70	75252.30	219.2	239.2	230.70	0.58	1.00	3	3
MGC 19	56408.70	74770.10	230.6	234.6	232.01	0.38	1.92	25	3
MGC 32	57448.80	73982.10	232.0	252.0	244.87	0.30	1.42	23	3
MGC 36	57776.00	73738.90	234.4	254.4	235.82	0.34	1.67	24	3
MGE 9	55489.40	75215.10	218.1	238.1	228.78	0.23	0.97	17	3
MGE 21	56446.20	74487.80	227.9	247.9	234.00	0.47	1.64	12	3
MGE 30	57175.40	73935.80	229.3	249.3	235.74	0.66	3.11	22	3
MGE 34	57495.10	73695.00	237.2	257.2	238.08	0.48	1.43	9	3
MGG 15	55851.50	74699.00	223.3	243.3	232.50	1.11	2.93	7	3
MGG 19	56174.30	74456.00	226.0	246.0	232.35	0.70	2.44	12	3
MGG 23	56491.80	74214.00	227.1	247.1	235.00	0.38	1.32	12	3
MGG 28	56895.40	73905.00	230.3	250.3	235.31	0.34	1.03	9	3
MGG 36	57541.70	73413.00	232.5	252.5	237.48	0.42	1.75	17	3
NBG 1	53879.30	79300.40	200.9	232.3	224.47	0.18	1.06	35	3
NBG 2	53958.40	79099.80	203.6	233.6	224.96	0.18	1.06	34	3
NBG 3	54068.10	78939.60	202.1	233.5	217.54	0.36	2.08	33	3
NBG 4	54329.20	78942.10	196.1	227.5	217.05	0.31	1.80	34	4
NBG 5	54515.60	78943.40	194.9	226.4	217.77	0.35	2.06	34	4
NPM 1	56851.60	62153.40	257.1	277.1	287.08	0.67	1.77	7	3
NPM 2	58252.00	63056.80	244.2	264.2	271.63	0.72	2.27	10	3
NPM 3	55417.60	62109.20	247.2	267.2	274.40	0.59	1.86	10	3
NPM 4	57215.00	60883.20	256.7	276.7	284.24	0.68	2.05	9	3
NPM 19A	57551.80	62970.70	248.2	268.2	270.59	0.71	2.24	10	3
NPM 19B	57558.30	62981.80	217.7	227.7	268.72	0.70	2.22	10	3
NPM 19C	57575.40	62977.10	193.5	203.5	267.70	0.68	2.25	11	3

	Table F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
	57567 90	62960 90	97.5	107.5	243 14	0.45	1 42	10	2
	57582.60	62991 70	33.9	43.9	188 42	1.01	3.20	10	1
	56301.20	60774 50	279.8	280.8	290.62	0.67	2 11	10	3
NDM 24R	56215 10	60768 00	225.6	235.6	271 02	0.51	1.62	10	3
NDM 24C	56220 10	60764.20	121 2	101.8	267.58	0.51	1.60	10	3
	56254.00	60752.00	061.0	06.4	207.30	0.51	1.00	10	2
NDM 24E	5634390	60752.00	00.4	50.4 42.1	107 04	0.50	0.59	10	1
NPM 34E	50342.80	00/00.00	33.1	40.1	107.04	0.10	1.00	20	2
PACI	00703.40	43543.30	200.9	203.9	204.74	0.22	1.27	32	ა ი
PAC 2	66980.90	43527.70	247.9	277.9	271.02	0.29	1.04	20	3
PAC 3	66861.40	43585.00	252.9	282.9	2/1.35	0.38	2.15	32	3
PAC 4	66863.20	43495.40	250.6	280.6	284.42	0.17	0.92	31	3
PAC 5	66907.10	43561.70	255.1	2/5.1	275.05	0.48	2.56	29	3
PAC 6	66894.70	43580.10	255.2	2/5.2	2/4.58	0.38	2.02	28	3
PBP 1D	65727.60	45611.30	269.1	2/9.1	280.30	0.00	0.00	2	3
PBP 2D	65359.88	45481.46	262.8	272.8	278.37	1.02	1.45	2	3
PBP 3D	65510.20	45603.52	268.9	278.9	279.85	0.05	0.07	2	3
PCB 1A	65070.60	41988.20	263.5	293.5	280.73	0.52	2.75	28	3
PCB 2A	64891.40	41821.40	257.8	287.8	279.51	0.51	2.70	28	3
PCB 3A	64706.30	42036.00	262.7	292.7	281.56	0.51	2.86	31	3
PCB 4A	64901.40	42171.00	262.9	292.9	279.70	0.48	2.61	29	3
PDB 2	64743.10	43513.10	247.7	268.7	277.85	0.39	2.36	36	3
PDB 3	64938.20	43542.20	248.1	269.1	278.07	0.39	2.32	35	3
PDR 4	64623.80	43455 10	266.2	286.2	278.92	0.44	1.44	11	3
PDB 5	64584.40	44106.60	264.2	284.2	277.70	0.39	1.28	11	3
PRP 1A	63032.70	45349.80	232.9	262.9	249.09	0.42	2.31	30	3
PRP 2	63229.00	45389.50	234.1	264.1	255.53	0.88	4.84	30	3
PRP 3	63165.50	45200.70	228.6	258.6	255.38	0.67	3.59	29	3
PRP 4	63345.90	45268.90	232.9	262.9	257.61	0.47	2.61	31	3
PSB 1A	64141 40	43619 30	257.4	287.4	276.46	0.42	2.65	39	3
PSB 2A	63916.50	43612.40	257.2	287.2	276.32	0.44	2.77	39	3
PSB 3A	63590.40	43599.80	256.5	286.5	275.15	0.46	2.89	39	3
PSB 4A	63347.00	43534.20	255.5	285.5	274.28	0.51	3.20	39	3
PSB 5A	63606.50	43440.50	262.3	292.3	275.68	0.48	3.05	40	3
PSB 6A	63975.70	43436.00	262.1	292.1	277.17	0.45	2.80	38	3
PSB 7A	64301.00	43553 30	259.0	289.0	276.94	0.41	2.53	39	3
PSS 1D	75773 30	37298.40	182.1	202.1	198.17	0.71	3.76	28	4
PSS 2D	75910 10	36037.90	177.1	197.1	195.23	0.69	3.59	27	4
PSS 3D	76138 70	35974 10	178.5	198.5	197.97	0.90	3.12	12	4
PW 83N	52202.00	61394.00	40	9.0	168 43	-1 00	-1.00	1	1
RAC 1	74570 70	55107.30	247.3	277.3	273.93	0.38	1.95	27	3
RAC 2	74555 50	55026.30	243.4	273.4	272 62	0.26	1.31	26	3
RAC 3	74667 50	55015 30	242.3	272.3	272.37	0.20	1.56	27	3
RAC 4	74588 80	54984 00	238.2	268.2	271 64	0.33	1 71	27	3
BBW 1CL	74200.00	62038 50	105.5	115.5	255.93	0.37	0.64	3	2
BBW 1CL	1 74214 00	62047 40	156.1	166 1	255.80	0.40	0.69	3	2
	74214.00	62031 60	243.0	263.1	250.00	0.45	0.00	3	2
	74207.00	50710.00	06 4	106 /	200.01	0.40	0.70	2	2
HOW 20L	. /1/95.10	00/12.00	90.4	100.4	209.44	0.55	0.91	ა •	2
RBW 2CU	J 71785.90	58715.40	145.1	155.1	269.85	0.57	0.99	3	2
RBW 2D	71776.70	58719.90	284.9	304.9	297.55	0.72	1.25	3	3
RCP 1A	74238.30	56968.10	46.8	56.8	194.20	0.23	0.69	9	1
HCP 1D	74223.50	56967.90	261.3	281.3	281.78	0.64	2.20	12	3
RDB 1D	74844.50	57097.30	265.5	285.5	286.08	0.26	1.29	25	3
RDB 2D	74782.20	56879.80	265.7	285.7	285.22	0.22	1.09	24	3
RDB 3D	74899.00	56881.90	265.8	285.8	283.06	0.32	1.59	25	3
RPC 1CL	74261.86	57923.24	103.3	113.3	256.90	0.17	0.30	3	2
RPC 1D	74215.65	57931.26	264.5	284.5	276.77	0.16	0.28	3	3
RPC 7DL	74726.38	58812.32	209.9	219.9	274.90	0.67	0.95	2	3
RPC 7DL	74720.18	58803.87	240.8	277.8	275.68	0.57	0.81	2	3

Ta	ble F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
	74671 66	58276.00	204 1	214 1	278 92	0 92	1 29	2	3
	74071.00	58270.30	273.0	288.0	200.52	1 11	1.20	2	3
	74004.70	50275.15	215.0	200.0	230.30	0.70	0.00	2	2
RPC 9DL	74507.07	57900.57	210.4	220.4	279.10	0.70	0.33	2	2
RPC 9DU	74507.71	57090.35	200.3	203.3	200.90	0.04	1.00	2	ა ი
RPC 10DL	74551.49	5/380.20	200.5	210.5	280.50	0.87	1.22	2	3
RPC 10DU	/4540.11	57380.29	272.5	287.4	290.42	0.10	0.14	2	3
RPC 11DL	75240.08	57380.02	180.2	190.2	278.49	0.54	0.76	2	3
RPC 11DU	75250.01	57380.43	271.2	286.2	289.45	0.00	0.01	2	3
RRP 1	75634.60	54563.50	242.4	272.4	265.67	0.64	3.35	27	3
RRP 2	75829.80	54468.30	242.5	272.5	264.47	0.66	3.37	26	3
RRP 3	75853.00	54303.00	238.1	268.1	264.51	0.72	3.84	28	3
RRP 4	75723.30	54294.50	238.3	268.3	263.90	0.67	3.48	27	3
RSB 7	75044.30	57692.80	272.7	292.6	285.76	0.81	4.28	28	3
RSB 8	75178.20	57612.90	274.3	294.3	287.79	0.88	4.21	23	3
RSC 2	74378.60	58543.00	261.9	281.9	278.28	0.73	3.42	22	3
RSC 3	74699.70	58724.70	258.6	278.6	276.60	0.93	4.35	22	3
BSC 9	74565 30	59241 20	251.6	271.6	271 79	0 79	3 63	21	3
	75025 10	57440.80	267.0	2877	286 45	0.60	3 32	21	3
	73033.10	57451 60	207.3	207.7	200.40	0.00	1 10	31	3
	74702.30	574/1 /0	209.5	209.1	200.70	0.53	2 75	27	3
	75154.00	57491.90	210.0	290.0	200.40	0.55	2.75	27	2
	75207.00	57459.90	209.0	209.0	207.07	0.50	2.05	27	ა ი
HSD 6	75250.60	57441.30	270.1	290.1	200.97	0.46	2.49	21	3
HSD 7	75178.40	57394.30	267.3	287.3	285.13	0.46	2.40	28	3
RSD 8	/5229.60	5/394.00	267.3	287.3	285.43	0.45	2.33	27	3
RSD 9	75185.90	57245.60	251.7	2/1./	283.71	0.35	1./5	25	3
RSE 1A	74/12.70	57734.50	274.8	294.8	288.53	0.77	4.49	34	3
RSE 1B	74698.10	5//31.40	275.7	295.7	288.84	0.99	5.32	29	3
RSE 1C	74684.10	57730.80	268.5	288.5	288.72	1.11	5.88	28	3
RSE 2	74743.50	57594.90	269.7	289.5	286.39	1.08	5.60	27	3
RSE 3A	74931.20	57445.80	268.2	288.0	285.20	0.75	4.03	29	3
RSE 4A	75101.10	57528.40	260.6	270.6	286.51	0.65	3.44	28	3
RSE 7	74783.70	58481.50	266.5	286.3	280.80	0.86	4.79	31	3
RSE 8	74869.40	58538.80	271.2	291.0	284.00	1.32	6.99	28	3
RSE 9	74971.10	58463.30	266.7	286.7	279.23	0.77	4.15	29	3
RSE 10	74848.30	58420.70	270.7	290.5	281.52	1.16	5.93	26	3
RSE 11	74787.70	58357.60	262.1	272.1	282.54	1.36	6.94	26	3
RSE 12	74842.30	58318.20	259.1	269.1	276.09	0.40	1.31	11	3
RSE 18	74839.50	58247.20	268.1	288.1	279.50	0.76	3.87	26	3
RSE 19	74791.20	58318.40	262.5	282.5	280.66	1.15	5.88	26	3
RSE 24	74638.90	57370.40	237.6	257.6	279.63	0.57	3.00	28	3
RSE 25	74544.50	55824.50	237.5	257.5	275.41	0.47	2.56	29	3
RSF 1	74869.40	58505.30	228.8	238.8	277.64	0.68	3.66	29	3
RSF 2	74628.60	57670.40	224.8	235.3	278.38	0.60	3.25	29	3
RSF 3	75206.70	57621.40	229.8	239.8	279.63	0.64	3.39	28	3
RSP 1D	74426.80	56879.40	274.7	289.7	289.71	1.19	1.68	2	3
RSP 2D	75568.60	55947.10	260.3	280.3	278.40	-1.00	-1.00	1	3
SBG 1	63749.10	74619.40	190.7	220.7	237.86	0.30	1.53	26	4
SBG 2	64939 60	74570 20	205.9	235.9	237 79	0.33	1 76	28	3
SBG 3	65265.60	73699 90	206.6	236.6	237 52	0.37	1 99	29	3
SBG 4	65010 20	72399.80	185.6	215.6	240.93	0.27	1.37	26	4
SBG 5	64499.00	72208.30	199.4	219.4	249.31	0.30	1.52	25	4
SBG 6	63860.00	73599.30	208.1	238.1	244.49	0.33	1.73	28	3
SCA 2	64697 10	73850.60	215 9	245 9	242 16	0.36	1.58	19	3
SCA 2	6/571 00	72050.00	220.0	240.2	2/1 20	0.00	1.00	10	a a
	04071.20 64574.00	73065 00	220.3	240.3	071.00	0.00	1.00	10	2
JUA JA	04071.20	73905.00	207.1	2/1.1	2/1.00	0.40	1.94	10	ა ი
50A 4	04003.50	73856.50	220.4	240.4	241.53	0.37	1.40	10	ა ი
SCA 4A	04007.20	73835.20	200.3	2/5.3	200./0	0.42	1.4/	12	ა ი
SCA 5	04030.80	74092.90	223.1	243./	241.33	0.25	1.02	1/	ა ი
JUA D	04037.50	13100.20	221.3	Z41.1	241.98	0.20	1.03	10	3

	Table F-1.	Hydraulic	Head Ta	rgets for	Model C	alibratio	n (Cont	inued)	ł .
SIP 1	64449 10	72958 40	228.0	248.0	245 10	0.34	1 82	28	3
SLP 2	64529 70	72863 40	217 7	237.7	244 72	0.30	1.58	28	3
TRG 1	17134 70	71429 50	89.1	109 1	100.58	0.20	1.38	46	2
TBG 3	17177 70	71324 10	88.9	108.9	103.11	0.27	1 70	40	2
TBG 4	17177 70	71267 10	89.3	109.3	103.07	0.27	1 62	35	2
TBG 5	17354 50	71226.50	92.4	112.4	102.65	0.35	2 02	34	2
TBG 5A	17348.80	71206.80	70.0	80.0	103.90	0.28	1.67	36	2
TBG 5B	17354.80	71216.80	46.2	56.2	113.25	0.45	2.79	38	1
TBG 6	17290.50	71482.30	89.1	109.1	102.65	0.25	1.50	37	2
TBG 7	17548.10	71298.50	84.7	104.7	105.45	0.33	2.09	40	2
TIR 1	16169.25	71019.05	65.7	67.7	93.17	0.31	0.97	10	4
TIR 1M	16170 12	71024 12	84.6	86.6	93.87	0.79	2.36	9	2
	16170.93	71028.98	90.0	92.0	93 23	0.25	0.75	ğ	2
TIR 2	16096 27	71068 64	84.2	86.2	92 41	0.20	0.82	9	2
TIR 3B	16522.86	71099.07	83.5	85.5	95 75	0.34	1 09	10	2
TNX 1D	16699.60	71613.50	79.6	99.6	99.45	0.15	0.92	38	2
TNX 2D	16788.20	71452.00	82.8	102.8	99.29	0.16	0.99	38	2
TNX 3D	17043.10	71236.70	84.9	104.9	99.78	0.19	1.24	43	2
TNX 4D	17223.00	71002.70	85.5	105.5	103.13	0.31	2.01	43	2
TNX 5D	17363.70	70995.30	88.5	108.5	104.96	0.32	1.98	38	2
TNX 6D	17428.70	70717.60	89.8	109.8	105.32	0.34	2.08	38	2
TNX 7D	17080.60	71738.10	83.6	103.6	101.19	0.16	1.06	43	2
TNX 8D	16168.30	70591.90	74.0	94.0	94.04	0.17	1.05	38	2
TNX 9D	16145.80	70791.40	75.4	95.4	93.82	0.15	1.02	45	2
TNX 10D	16166.70	70999.30	77.0	97.0	94.12	0.18	1.07	37	2
TNX 11D	16165.50	71199.30	73.2	93.2	94.12	0.16	1.02	39	2
TNX 12D	16176.30	71598.30	73.1	93.1	94.99	0.12	0.72	38	2
TNX 13D	15938.80	70842.00	87.9	89.9	92.03	0.25	0.55	5	2
TNX 14D	15971.10	70931.80	85.8	87.8	92.12	0.08	0.16	4	2
TNX 15D	16002.10	/1021.10	85.9	87.9	91.73	0.55	1.65	9	2
INX 16D	16012.20	/1111.30	86.1	88.1	91.45	0.44	1.39	10	2
TNX 17D	16047.40	71583.80	89.7	91.7	93.31	0.17	0.39	5	2
TNX 100	15696.00	70746.20	04.9 94.0	00.9 96.0	91.70	0.15	1.01	4	2
TNX 19D	15040.40	70020.70	86.2	88.2	91.40	0.54	1.21	5	2
TNY 21D	15823.10	70446 80	86.9	88.9	91.32	0.59	1.02	5	2
TNY 22D	15757 70	70184 70	85.8	87.8	91.02	0.34	0.89	5	2
TNX 22D	16927.00	71414 50	84.8	104.8	99.34	0.57	1.39	6	2
TNX 24D	17534.60	71536.90	99.8	114.8	108.99	0.20	0.55	8	2
TNX 26D	16251.00	70424 40	87.8	90.1	94 24	0.38	1 21	10	2
TAIX 200	16600 14	71180.00	81.3	101.2	06 30	0.00	1.21	0	2
	10003.14	71160.03	01.3	101.5	90.39	1.01	1.20	J 11	2
	16947.00	71259.60	01.4 77.2	100.4	93.43	1.21	4.02	R R	2
XSB 1	16901.00	71133.10	92.0	112.0	102.82	0.47	0.66	2	2
XSB 1A	16883.00	71105.40	43.6	53.6	98.70	0.21	1.23	36	1
XSB 1B	16872.90	71105.00	64.6	74.6	102.71	0.35	2.10	37	2
XSB 1D	16893.50	71104.80	87.9	107.9	99.00	0.27	1.77	42	2
XSB 2D	16823.10	71086.00	84.0	104.0	98.54	0.18	1.22	45	2
XSB 3A	16901.30	70915.30	87.4	103.2	99.80	0.19	1.20	39	2
XSB 4	16851.10	71024.50	94.3	114.3	98.27	0.36	0.63	3	2
XSB 4D	16826.20	70997.90	83.9	103.9	98.61	0.20	1.27	42	2
YSB 1A	17808.80	71162.20	98.4	128.4	118.28	0.77	5.05	43	2
YSB 2A	17850.20	71010.00	97.7	127.7	119.20	0.74	4.85	43	2
YSB 3A	17755.20	70859.00	96.7	126.7	119.40	0.40	2.65	44	2
YSB 4A	17739.80	71020.70	97.6	127.6	118.08	0.71	4.64	43	2
YSC 1A	65438.90	78039.90	76.8	136.9	163.03	0.57	1.28	5	1
YSC 1C	65855.50	78186.20	197.5	207.5	217.37	0.75	2.98	16	2
YSC 1D	65859.10	78170.70	216.8	236.8	221.34	0.26	0.37	2	3

•

	Table F-1.	Hydraulic	Head Ta	rgets for	Model	Calibration	(Con	tinued)	
VSC 24	66100 10	78311 50	134.7	144 7	162.89	0.20	0.79	16	1
	66120.70	78220.40	107.0	218.0	216 15	0.55	2 35	18	1
100 ZD	65001.00	70020.40	105.0	210.0	210.10	0.55	2.00	10	4
	00901.90	77059.70	195.9	205.9	227.00	0.02	2.47	10	2
130 DA	6/134.90 50101.60	74295.90	110.0	121.0	100.77	1.13	4.52	10	1
22	53181.00	74785.30	214.0	214.0	210.74	0.38	1.27	11	3
Z 3	51328.30	75086.20	206.6	207.1	212.57	0.71	2.02	8	3
28	51584.90	76640.50	213.6	214.1	218.90	0.60	2.08	12	3
Z 9	50570.50	77732.00	207.5	227.5	214.89	0.42	2.08	25	3
Z 12	61400.90	/1198.90	251.3	251.8	274.33	0.22	0.53	6	3
Z 13	62203.60	70785.80	256.6	257.1	275.24	0.80	2.65	11	3
Z 15	63419.20	72802.10	253.8	254.3	263.72	0.26	0.63	6	3
Z 17	43797.80	72260.90	148.2	148.7	169.17	0.31	1.03	11	2
Z 18	43774.10	73077.20	159.9	160.4	184.23	0.63	2.09	11	4
Z 20	43722.40	74080.70	173.4	193.4	184.74	0.36	0.80	5	3
Z 20B	43721.00	74085.00	175.6	195.6	190.67	1.09	3.09	8	3
ZBG 1	65584.10	76584.20	220.0	240.1	234.05	0.50	3.04	37	3
ZBG 1A	65598.80	76588.50	276.0	281.0	279.89	1.22	4.22	12	3
ZBG 2	67472.90	76170.50	210.9	230.9	221.73	0.39	2.42	38	4
ZDT 1	65114.80	71644.40	227.0	247.0	239.89	0.16	0.92	32	3
ZDT 2	65059.90	71696.50	225.1	245.1	241.42	0.18	1.01	32	3
ZW 2	54388.70	80701.50	194.8	204.8	207.07	0.57	2.34	17	2
ZW 3	57078.20	80746.50	194.6	205.1	200.66	0.46	1.89	17	4
ZW 4	56556.90	77667.40	229.2	239.7	232.21	0.51	2.10	17	3
ZW 5	54708.60	75767.40	221.0	231.0	227.26	0.27	1.25	21	3
ZW 6	52030.80	76166.00	216.7	227.2	220.19	0.85	3.30	15	3
ZW 7	60300.70	72399.50	254.5	264.8	265.83	0.39	1.55	16	3
ZW 8	63801.50	70800.80	254.1	264.1	270.85	0.21	0.91	18	3
ZW 9	61400.30	73198.40	242.4	252.4	251.97	0.45	1.93	18	3
ZW 10	63401.00	73212.40	242.2	252.2	249.72	0.86	4.13	23	3
CMP 10C	53994.30	51402.70	179.6	189.6	198.53	-1.00	-1.00	1	2
CMP 10D	53994.30	51392.50	209.6	229.6	229.84	-1.00	-1.00	1	3
CMP 11D	53647.00	51467.90	209.5	229.9	223.34	-1.00	-1.00	1	3
CMP 14D	52589.50	52363.50	204.1	224.5	217.43	-1.00	-1.00	1	3
CMP 15C	52907.80	51361.40	220.6	250.6	244.53	-1.00	-1.00	1	3
CMP 30B	53166.90	51729.80	97.4	107.5	195.00	-1.00	-1.00	1	2
CMP 30C	53208.20	51718.40	179.5	189.5	210.55	-1.00	-1.00	1	2
CMP 30D	53202.90	51709.70	211.6	231.6	227.97	-1.00	-1.00	1	3
CMP 31C	53255.70	52389.70	197.9	207.9	210.78	-1.00	-1.00	1	4
CMP 32B	54052.80	52220.00	97.7	107.7	195.31	-1.00	-1.00	1	2
CMP 32C	54061.10	52214.60	185.2	195.2	195.44	-1.00	-1.00	1	2
CMP 32D	54069.20	52209.20	218.6	228.6	220.77	-1.00	-1.00	1	3
NPM 2	58252.00	63056.80	244.2	264.2	267.00	-1.00	-1.00	1	3
NPM 3	55417.60	62109.20	247.2	267.2	267.60	-1.00	-1.00	1	3
NPM 4	57215.00	60883.20	256.7	276.7	272.70	-1.00	-1.00	1	3
NPN 1	70879.60	66661.40	257.3	277.4	277.50	-1.00	-1.00	1	3
NPN 2	72541.50	67394.10	257.9	278.0	273.50	-1.00	-1.00	1	3
NPN 3	70029.20	67989.80	260.0	280.1	276.70	-1.00	-1.00	1	3
NPN 4	71021.80	65357.20	265.4	285.5	278.50	-1.00	-1.00	1	3
NTN 1	45562.30	56993.70	212.4	232.4	233.70	-1.00	-1.00	1	3
NTN 2	46735.10	57935.50	207.2	227.2	235.20	-1.00	-1.00	1	3
NTS 1	43893.90	46082.00	164.3	184.4	180.40	-1.00	-1.00	1	3
NTS 2	45825.20	46262.60	174.7	194.8	192.30	-1.00	-1.00	1	3
NTW 1	40257.70	48776.50	168.9	188.8	183.60	-1.00	-1.00	1	3
NTW 2	39353.20	49309.30	171.5	191.5	183.90	-1.00	-1.00	1	3
NTW 3	41208.70	50040.00	176.7	196.6	191.80	-1.00	-1.00	1	3
NTW 4	41678.20	48636.30	166.0	185.8	180.40	-1.00	-1.00	1	3
P 13A	60000.00	35600.00	-67.3	-57.4	173.07	0.17	1.24	56	1
P 13B	60000.00	35600.00	-7.2	3.0	175.65	0.22	1.64	56	1
P 15A	51376.30	46755.30	-97.0	-87.0	176.77	0.23	1.63	51	4

Ρ	18A	47688.10	67592.80	12.0	22.0	168.48	0.16	1.27	64	1
Ρ	18B	47680.90	67578.90	67.0	77.0	169.01	0.16	1.30	64	1
Ρ	19A	60031.30	55347.10	-36.7	-26.7	186.83	-1.00	1.60	-1	1
Ρ	21B	40757.60	24641.80	-82.2	-72.2	134.01	0.16	1.29	64	1
Ρ	23A	30914.50	48114.90	-38.8	-28.8	146.11	0.17	1.44	69	4
Ρ	23B	30925.30	48101.20	41.5	46.5	137.85	0.19	1.58	69	1
Ρ	24A	66569.70	43142.20	-1.9	8.9	191.47	-1.00	1.00	-1	1
Ρ	25B	42241.90	52521.40	80.6	90.6	178.24	0.65	5.17	64	1
Ρ	26A	18055.90	72010.40	22.0	32.0	117.48	0.33	2.73	69	1
Ρ	27B	64000.30	70405.90	74.8	94.8	179.76	0.15	1.18	62	1

.

Table F-1. Hydraulic Head Targets for Model Calibration (Continued)

Hydraulic Head Residuals

The complete contents of the FACT code observation well file are listed in Table F-2. FACT does not compute a hydraulic head for wells outside of the saturated zone and model domain (model area). Wells outside the model area are denoted by a simulated head of "0.0" in Table F-2. The associated (large negative) residual is meaningless, and ignored in the calculation of summary statistics.

Table F-2. Summary of Group Statistical Parameters

Group	roup Statistics for Steady-state Analysis Only Overall rms hydraulic head difference: 5.64							
** CF	1 סווס	** rms of	- (FACT-data)	differ	ences	3 389		
01	.001 1	avg of	(FACT-data)	differ	ences.	~1 271		
		avg of	E IFACT-datal	differ	ences:	2 009		
		avy of	E (ENCE data)	diffor	onces.	_10 142		
		max of	. (FACI-uala)	urrier	ences:	-10.142		
"BGO	3A "	57666.62	55791.31	103.7	113.7	162.9	162.7	-0.2
" BGO	6A "	57379.75	56798.46	107.5	117.5	159.2	159.2	0.0
" BGO	8A "	56713.52	57023.70	105.3	115.3	161.0	158.4	-2.6
" BGO	8AR"	56718.93	57053.02	94.6	104.6	160.8	158.3	-2.5
" BGO	9AA "	56557.06	57472.74	73.8	83.8	157.9	156.9	-1.0
" BGO	10AA"	56188.61	57573.76	80.8	90.8	157.4	156.6	-0.8
"BGO	10AR"	56220.41	57370.81	96.5	106.5	158.4	157.2	-1.2
"BGO	1228"	55433 62	57535 80	993	109 3	157 8	156 7	-1 1
" BGO	1228"	55438 21	57566 51	99 5	109 5	157 2	156 6	-0.6
" 860	1/2 "	54932 60	57206 47	109 6	119 6	158 0	157 6	-0.4
" BGO	1428"	54878 94	57191 60	96.8	106 8	159 3	157 6	-1 7
"BGO	160 "	55151 72	56525 53	102 5	112 5	161 0	159 6	-1 4
"BGO	1625	55171 25	56507 27	102.5	113 7	160.9	159 6	_1 3
"BGO	197 "	55613 51	56266 77	105.7 QQ 5	109 5	161 0	160 5	-1.5
"PCO	202 "	55073 74	55562 90	06 2	102.5	162 6	160.5	-0.5
"BGO	20A 252 "	53673.74	55505.00	104 1	11/1	160.6	150 A	-0.9
"BGO	20A "	54720.59	57027.04	104.1 01 0	114.1 01 0	160.0	150.0	-2.6
"BGO	20A "	54076.09	57150.00	01.U 102 E	91.0 112 E	160.9	157.5	-3.0
" BGO	29A "	53065.74	56/6/.54	102.5	112.5	159.5	157.6	-1.9
"BGO	39A "	56289.81	54051.04	84.8	94.8	167.5	167.3	-0.2
" BGO	41A "	54526.63	5/380.82	105.5	115.3	158.3	156.9	-1.4
"BGO	43A	55480.82	57709.12	105.9	115.9	150.0	155.9	-2.9
BGO	4344	55496.65	57750.40	04.4	100 0	150.7	155.9	-0.8
"BGO	44A "	50980.04	5/15/.41	90.0	108.0	150.4	157.9	-0.5
"BGO	44AA "	57009.08	5/153.00	01.2	71.3	160.7	157.9	-0.8
"BGO	4/A 407 4	53085.12	55/05.9/	00.0 75 1	90.0	162.3	164 2	-1.7
"BGO	49A	54//0.0/	54709.50	75.1 00 E	05.I 100 E	167.2	150 5	-3.0
" BGO	50A "	53065.78	56400.69	90.5	100.5	160.1	158.5	-1.6
"BGO	51A "	56425.66	54594.46	75.1	85.1	165.9	165.9	0.0
"BGO	52A "	55886.11	55219.91	81.7	91.7	163.7	163.7	0.0
" BGO	52AA"	55881.46	55226.42	36.6	46.6	162.9	163.6	0.7
" BGO	53A "	54463.49	56992.63	78.7	88.7	158.9	158.0	-0.9
" BGO	53AA "	54469.72	56985.38	38.9	48.9	155.6	157.9	2.3
"BGX	1A "	57719.04	57078.74	114.1	124.1	158.8	158.2	-0.6
" BGX	4A "	56592.03	58389.00	106.8	116.8	155.1	153.5	-1.6
"CMP	8A "	48469.95	34344.23	13.7	23.5	182.9	184.7	1.8
"CMP	12A "	47590.53	33793.03	22.1	32.1	181.6	183.6	2.0.
"CMP	15A "	46853.37	33344.49	14.2	24.2	180.6	182.5	1.9

Table E-2	Summary of Gr	oun Statistical	Parameters ((Continued)
	Dummary or Or	oup oransticat	I al allietero	(Continueu)

"DCB 20D "	17380.30	52486.69	46.2	48.7	114.0	109.5	-4.5
"DCB 23D "	16894.13	52535.54	49.1	51.6	111.2	108.3	-2.9
"FC 1A "	52952.32	60987.82	96.7	101.7	143.5	144.6	1.1
"FC 3B "	57173.69	59132.82	61.2	66.2	150.6	150.3	-0.3
"FC 3C "	57182.65	59131.22	121.0	126.0	151.8	150.4	-1.4
"FC 4B "	54258.68	63352.39	76.1	81.1	141.0	137.7	-3.3
"FC 4C "	54264.51	63357.69	116.3	121.3	137.6	138.2	0.0
"FIW 2MA"	50287.63	57737.11	100.5	110.5	151.5	151.3	-0.2
"FNB 1A "	54202.25	61223.09	107.9	117.9	144.3	144.5	0.2
"FNB 2A "	54330.20	61502.80	111.1	121.1	143.6	143.7	0.1
"FNB 3A "	54117.53	61652.79	109.2	119.2	143.1	143.2	0.1
"FSB 76A "	50532.01	57890.76	36.9	47.4	155.1	151.1	-4.0
"FSB 76B "	50532.38	5/880.96	99.2	109.7	151.0	151.4	-0.4
"FSB 78A "	49054.13	56799.99	27.0	37.5	150.1	152.1	-4.0
"FSB 78B "	49061.71	56806.76	82.4 24 0	94.8	154.5	152.1	-2.4
"FSB /9A "	48804.15	55735.50	24.0	01 2	158 1	155 0	-3.1
"FSB /9B "	40013.0/	55755.07	22 1	43 6	153.8	149 7	-4 1
FSD 07A	491/3.00	57635 06	90.0	100 5	150 6	149 7	-0.9
"FSD 07D	49102.22	57003 71	90.0 85 7	95 7	152 1	150 9	-1 2
"FSD JOA "FCB 96AP"	48669 93	57042 37	79 0	89.0	153.4	150.7	-2.7
"FSB 97A "	48937 53	57247.51	85.8	95.8	152.2	150.5	-1.7
"FSB 98A "	49135.47	57428.92	84.7	94.7	150.6	150.3	-0.3
"FSB 98AR"	49114.24	57405.01	82.1	92.1	151.8	150.4	-1.4
"FCR 992 "	49383 87	57668.31	92.9	102.9	150.7	150.0	-0.7
	40004 05	57396 39	95.9 95.9	105 8	151 5	151 8	03
"FSBIUUA "FSBI01A "	49904.03 50250 24	57528 52	92.9	102.9	151.7	151.8	0.1
"FSB112A "	47610.81	56568.72	81.0	91.0	153.5	150.5	-3.0
"FSB113A "	49807.16	56036.54	81.0	91.3	158.7	155.5	-3.2
"FSB114A "	50999.20	56938.31	95.2	105.0	155.6	154.6	-1.0
"FSB120A "	48241.24	57771.43	99.0	109.0	151.3	147.6	-3.7
"HAA 1A "	60555.31	49367.75	94.9	104.9	181.1	180.4	-0.7
"HAA 2A "	59118.96	50747.84	107.3	117.3	177.0	176.7	-0.3
"НАА ЗА "	58169.46	51502.24	96.8	106.8	175.8	174.6	-1.2
"HAA 4A "	60017.63	51878.30	105.4	115.3	174.7	175.1	0.4
"HAA 4AA"	60027.07	51876.50	32.2	42.2	170 0	175.0	0.1
"HAA 6A "	61/62.41	50707.80	95.0 20 E	102.0	179 6	170.4	-0.3
"HAA 6AA"	61/52.65	50/10.00	20.5	91 5	175 8	175.8	-0.5
	59875 62	51469 90	72 2	77 2	175 8	175 7	-0 1
NC 2A	59883 53	51459 02	85 7	90 7	175 0	175 8	0.8
"HC 8B "	59291 27	57414 80	132 5	137.5	155.5	156.5	1.0
"HC 10A "	60443.26	55451.59	114.0	117.0	163.3	164.7	1.4
"HCA 4A "	61066.28	51954.44	103.7	113.7	175.6	175.5	-0.1
"HCA 4AA"	61078.23	51950.06	33.6	43.6	175.2	175.4	0.2
"HIW 2A "	55177.01	53956.84	78.3	88.3	167.2	166.5	-0.7
"HSB 65A "	56654.09	52811.20	62.5	73.2	171.3	170.9	-0.4
"HSB 68A "	54954.88	52242.77	47.5	58.0	171.8	170.4	-1.4
"HSB 69A "	54541.89	52353.55	83.1	93.1	171.7	169.8	-1.9
"HSB 83A "	56656.73	52005.45	65.2	76.0	172.9	172.6	-0.3
"HSB 84A "	54445.85	52411.59	64.7	75.9	171.8	169.6	-2.2
"HSB 85A "	57432.27	54031.78	61.1	71.1	168.8	168.5	-0.3
"HSB 86A "	54275.00	53402.77	63.1	73.9	168.6	167.0	-1.6
"HSB117A "	53521.40	53781.12	84.8	94.8	166.7	165.5	-1.2
"HSB119A "	54503.71	53929.02	93.3	103.3	166.9	166.0	-0.9
"HSB120A "	54893.16	54165.82	91.0	101.0	100.2	170 /	-0.5
"HSB122A "	55930.58	52/19.32	05.4 01 0	75.4 01 0	175 7	170.4	-0.9
"HSB140A "	54298.9/	508/2.60	01.U 00 C	91.U	175./	17/ 0	-2.9
"HSB141A "	5/116.59	51452.98	0V.0 70 (30.0 00 C	170 0	1/4.V	-1.0
"HSB144A "	54354.32	52/43./8	18.6	88.6	1/0.9	100./	-2.2
"HSB146A "	56264.76	50892.93	85.5	95.5	175.9	174.4	-1.5
--	--	---	--	---	---	---	--
"HSL 6A "	58773.03	52614.66	104.7	114.7	168.2	172.9	4.7
"UCT 677"	58780 78	52621 29	18 6	28 6	168 9	172 8	39
HOL OAA	50700.70	52621.25	100.0	110 0	170 0	172.2	0.7
"HSL 8A "	59332.69	52533.01	108.8	118.8	172.0	1/3.3	0.7
"HSL 8AA"	59334.34	52541.25	28.7	38.7	175.5	173.2	-2.3
"LAW 1D "	43189.65	27176.23	6.6	11.6	176.5	174.7	-1.8
"T.AW 28 "	42474 87	28431.27	-9.8	-4.8	176.2	174.0	-2.2
	45042 02	27044 21	_1 0	4 0	170 2	170 /	0.2
LAW 2D	45042.95	27044.21	-1.0	4.0	177.2	170.4	1.2
"LCO 5A "	43542.51	2/535./3	30.0	40.0	177.2	1/5.6	-1.6
"NPM 19E "	53855.72	43750.52	33.9	43.9	188.4	183.6	-4.8
"NPM 34E "	52178.77	41824.18	33.1	43.1	187.0	184.5	-2.5
"PW 83N "	48260.52	43306.42	4.0	9.0	168.4	179.6	11.2
"TRG 58 "	16217 09	60159.71	46.2	56.2	113.2	97.7	-15.5
100 JD	15732 //	601/8 8/	13 6	53 6	98 7	96.2	-2 5
ASD IA	13732.44	5C02C 4C	45.0	126 0	162 0	160.0	2.5
"YSC IA "	64669.04	50830.40	/0.0	130.9	163.0	160.0	-3.0
"YSC 2A "	65372.26	56964.66	134.7	144./	162.9	159.8	-3.1
"YSC 5A "	65549.56	52821.66	116.0	121.0	180.8	173.8	-7.0
"P 13A "	50525.24	16454.79	-67.3	-57.4	173.1	176.1	3.0
"P 13B "	50525.24	16454.79	-7.2	3.0	175.7	176.1	0.4
י גער סי	45134 06	50308 26	12 0	22 0	168 5	165 1	-3 4
F IOA	45154.00	50306.20	67 0	77 0	160.0	165.1	2.4
"P 18B "	45124.13	50296.16	67.0	77.0	169.0	105.2	-3.8
"P 19A "	54661.51	35763.86	-36.7	-26.7	186.8	191.1	4.3
"P 23B "	24685.04	34727.78	41.5	46.5	137.8	138.6	0.8
"P 24A "	58519.49	22466.26	-1.9	8.9	191.5	192.4	0.9
"P 25B "	36673.35	36698.53	80.6	90.6	178.2	163.5	-14.7
"P 26A "	17067 87	60790 20	22.0	32.0	117.5	99.4	-18.1
יי פר? מיי	61674 69	19668 39	74 8	9/ 8	179 8	180 4	0.6
F 27D	010/4.00	40000.00	/4.0	24.0	172.0	100.4	0.0
	-	(2.55		6 705	,	
\mathbf{x} \mathbf{x} (\mathbf{u}) (\mathbf{u}) (\mathbf{u}) (\mathbf{u})	** rmc of	(FACH-dara)	airrere	nces:	b./0	5	
GROOP 2	1113 01	(Inci data)					
GROOP 2	avg of	(FACT-data)	differe	ences:	0.309)	
GROUP 2	avg of avg of	(FACT-data) FACT-data	differe differe	ences:	0.309) L	
GROUP 2	avg of avg of max of	(FACT-data) FACT-data {FACT-data}	differe differe differe	ences: ences: ences:	0.309 5.291 -33.655) L	
GROUP 2	avg of avg of max of	(FACT-data) FACT-data {FACT-data}	differe differe differe	ences: ences: ences:	0.309 5.291 -33.655) L 5	
"DO OD "	avg of avg of max of	(FACT-data) FACT-data {FACT-data}	differe differe	ences: ences: ences:	0.309 5.291 -33.655	211 Q	3 0
"BG 92 "	avg of avg of max of 56450.00	(FACT-data) FACT-data {FACT-data} 59585.06	differe differe differe	ences: ences: ences: 227.2	0.309 5.291 -33.655 208.8	211.8	3.0
"BG 92 " "BG 93 "	avg of avg of max of 56450.00 56964.98	(FACT-data) FACT-data {FACT-data} 59585.06 60407.16	differe differe differe 197.2 180.5	227.2 210.5	0.309 5.291 -33.655 208.8 198.8	211.8	3.0
"BG 92 " "BG 93 " "BG 94 "	avg of avg of max of 56450.00 56964.98 57485.58	(FACT-data) FACT-data {FACT-data} 59585.06 60407.16 61253.82	differe differe differe 197.2 180.5 152.8	227.2 210.5 182.8	0.309 5.291 -33.655 208.8 198.8 191.1	211.8 193.3 157.4	3.0 -5.5 -33.7
"BG 92 " "BG 93 " "BG 94 " "BG 95 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78	(FACT-data) [FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34	differe differe 197.2 180.5 152.8 152.5	ences: ences: 227.2 210.5 182.8 182.5	0.309 5.291 -33.655 208.8 198.8 191.1 192.8	211.8 193.3 157.4 164.0	3.0 -5.5 -33.7 -28.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94	differe differe differe 197.2 180.5 152.8 152.5 177.2	227.2 210.5 182.8 207.2 210.5 207.2	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7	211.8 193.3 157.4 164.0 191.8	3.0 -5.5 -33.7 -28.8 -5.9
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074 01	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93	differe differe 197.2 180.5 152.8 152.5 177.2 169.5	227.2 210.5 182.8 182.5 207.2 199.5	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8	211.8 193.3 157.4 164.0 191.8 199.6	3.0 -5.5 -33.7 -28.8 -5.9 -0.2
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321 37	(FACT-data) [FACT-data] [FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11	differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9	227.2 210.5 182.8 182.5 207.2 199.5 209.9	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211 2	211.8 193.3 157.4 164.0 191.8 199.6 216.3	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37	(FACT-data) [FACT-data] [FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.24	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9	227.2 210.5 182.8 182.5 207.2 199.5 209.9	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225 5	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14	(FACT-data) [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BG0 3C " "BG0 5C " "BG0 6B " "BG0 6C " "BG0 8C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03	(FACT-data) [FACT-data] [FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 221.6 222.5 224.3	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BG0 3C " "BG0 5C " "BG0 6B " "BG0 6C " "BG0 8C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 56800.40 57033.59 57560.73	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 216.2 218.8 220.0 224.3 219.6	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 221.6 222.5 224.3 223.2	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6C " "BGO 8C " "BGO 10B "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57374.75	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6C " "BGO 8C " "BGO 10B " "BGO 10C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57374.75 57564.08	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 222.5 224.3 223.2 224.0 225.0	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6C " "BGO 6C " "BGO 8C " "BGO 10B " "BGO 10C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 56800.40 57033.59 57560.73 57374.75 57541.08	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 6C " "BGO 10B " "BGO 10C " "BGO 12C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36	(FACT-data) [FACT-data] [FACT-data] {FACT	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0	ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 3C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 6C " "BGO 10B " "BGO 10C " "BGO 12C " "BGO 12CR" "BGO 12CX"	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57374.75 57541.08 57547.24 57571.96	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2	ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 6C " "BGO 10B " "BGO 10B " "BGO 10C " "BGO 12C " "BGO 12CR" "BGO 12CX" "BGO 13DR"	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57560.73 57541.08 57547.24 57571.96 57643.46	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3	ences: ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.9 -5.9 -2.2 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.9 -5.4 -5.9 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.4 -5.9 -5.9 -5.4 -5.9 -5.9 -5.4 -5.9 -5.9 -5.4 -5.8 -5.9 -5.4
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BG0 3C " "BG0 5C " "BG0 6B " "BG0 6C " "BG0 6C " "BG0 10B " "BG0 10C " "BG0 10C " "BG0 12C " "BG0 12C " "BG0 12C " "BG0 12C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56856.84 56800.40 57033.59 57560.73 57560.73 57541.08 57547.24 57541.08 57547.24 57571.96 57643.46 57196.74	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 4.9 2.8 4.9 2.8 4.9 2.8
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 3C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 10B " "BGO 10B " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 13DR" "BGO 14C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 56890.73 57560.73 57560.73 57560.73 57571.96 57541.08 57541.08 57541.08 57543.46 57196.74 57177.89	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 225.0 224.7 224.6 227.8 226.5 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.5 -2.8 -5.5 -2.8 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 5C " "BGO 6B " "BGO 6C " "BGO 10B " "BGO 10B " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 14C " "BGO 14C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73	(FACT-data) [FACT-data] [FACT-data] {FACT	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1 146.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 225.0 224.7 224.6 227.8 226.5 226.5 226.4 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.8 5.4 -2.8 -5.4 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 3C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 10B " "BGO 10C " "BGO 12C " "BGO 12CR " "BGO 12CR " "BGO 14C " "BGO 14CR "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1 146.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 224.6 227.8 226.5 226.4 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.1 -2.9 -5.4 -5.4 -2.9 -5.4 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4 -2.9 -5.4
"BG 92 " "BG 93 " "BG 94 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 3C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 10B " "BGO 10C " "BGO 10C " "BGO 12CR" "BGO 12CR" "BGO 12CR" "BGO 12CR" "BGO 13DR" "BGO 14CR" "BGO 14CR" "BGO 16B "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73 55143.73	(FACT-data) [FACT-data] [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data] {FACT-data] 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24 57571.96 57643.46 57196.74 57177.89 56537.96 55545.19	differe differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0	ences: ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1 146.0 141.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 226.5 224.6 227.8 226.5 226.4 224.9 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 -2.8 -5.4 -2.9 -5.1 -2.9 -5.1 -2.8 -5.4 -2.8 -5.4 -2.9 -5.1 -5.1
"BG 92 " "BG 93 " "BG 94 " "BG 94 " "BG 95 " "BG 103 " "BG 122 " "BG0 3C " "BG0 3C " "BG0 6B " "BG0 6C " "BG0 6C " "BG0 10B " "BG0 10C " "BG0 10C " "BG0 12C " "BG0 12C " "BG0 12C " "BG0 12C " "BG0 12C " "BG0 12C " "BG0 14C " "BG0 14C " "BG0 14C " "BG0 14C " "BG0 14C " "BG0 14C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73 55889.62 55873.23	(FACT-data) [FACT-data] [FACT-data] [FACT-data] [FACT-data] [FACT-data] [FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24 57541.08 57547.24 57577.24 57577.	differe differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0 174.0	ences: ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1 146.0 141.0 184.0	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9 228.2	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.0 225.0 224.7 224.0 225.0 224.7 224.6 227.8 226.5 226.4 226.5 226.5 226.5	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.8 -5.4 -2.9 5.1 2.9 6.8 -0.4 -0.9
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BGO 3C " "BGO 3C " "BGO 6B " "BGO 6B " "BGO 6C " "BGO 6C " "BGO 10B " "BGO 10C " "BGO 10C " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 12C " "BGO 14C " "BGO 14C " "BGO 14C " "BGO 16B " "BGO 20C " "BGO 27C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73 55889.62 55873.23 53643.34	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56689.07 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24 57543.46 57177.89 55545.19 55545.19 55545.19 55545.19 55545.19 55545.19 55534.46 56753.42	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0 174.0 154.9	ences: ences: ences: 227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 220.3 202.1 200.1 146.0 141.0 184.0 163.9	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9 228.2 220.6	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 226.5 226.4 226.5 226.4 224.9 226.5 227.3 222.9	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.9 5.1 2.9 6.8 -0.4 -0.9 2.3
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BG0 3C " "BG0 5C " "BG0 6B " "BG0 6B " "BG0 6C " "BG0 10B " "BG0 10B " "BG0 10C " "BG0 10C " "BG0 10C " "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 14CR" "BG0 14CR" "BG0 16B " "BG0 20C " "BG0 29C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73 55889.62 55873.23 53643.34 53065.14	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data] {FACT-data] 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24 57543.46 57177.89 55545.19 55545.19 55545.19 55545.19 55545.19 55534.46 56753.42 56785.84	differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0 174.0 154.9 176.8	ances: ances:	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9 228.2 220.6 222.8	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 226.5 226.4 226.5 226.4 224.9 226.5 227.3 222.9 222.1	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.8 -2.9 5.1 2.8 -2.9 5.1 2.8 -2.9 5.1 2.9 5.1 -2.8 -2.9 -2.8 -2.9 -2.8 -2.9 -2.3 -0.7
"BG 92 " "BG 93 " "BG 94 " "BG 95 " "BG 96 " "BG 103 " "BG 122 " "BG0 3C " "BG0 5C " "BG0 6B " "BG0 6C " "BG0 10B " "BG0 10B " "BG0 10C " "BG0 10C " "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 12CR" "BG0 14CR" "BG0 14CR" "BG0 16B " "BG0 20C " "BG0 20C " "BG0 29C "	avg of avg of max of 56450.00 56964.98 57485.58 58210.78 57966.00 59074.01 56321.37 57663.88 57844.87 57422.52 57370.14 56716.03 56173.88 56198.04 55415.52 55390.36 55411.15 55027.63 54931.25 54876.13 55143.73 55143.73 55889.62 55873.23 53643.34 53065.14 53386.81	(FACT-data) [FACT-data] [FACT-data] {FACT-data] {FACT-data] {FACT-data] {FACT-data} 59585.06 60407.16 61253.82 60274.34 59647.94 57865.93 59164.11 55780.34 5689.07 56856.84 5689.07 56856.84 56800.40 57033.59 57560.73 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57547.24 57541.08 57543.46 57196.74 57177.89 55545.19 55534.46 56753.42 56785.84 56311.81	differe differe differe differe 197.2 180.5 152.8 152.5 177.2 169.5 189.9 178.7 183.2 139.7 158.0 174.3 139.0 157.3 153.6 144.0 141.2 210.3 192.1 190.1 136.0 131.0 174.0 154.9 176.8 178.4	227.2 210.5 182.8 182.5 207.2 199.5 209.9 188.7 193.2 149.7 168.0 184.3 149.0 167.3 163.6 154.0 151.2 200.1 146.0 141.0 184.3 184.3 145.4 163.6 154.8 184.3 184.3 184.3 149.0 163.6 154.0 154.0 154.0 154.0 154.8 184.8 184.8	0.309 5.291 -33.655 208.8 198.8 191.1 192.8 197.7 199.8 211.2 225.5 216.2 218.8 220.0 224.3 219.6 220.2 220.1 221.9 230.0 230.7 221.4 223.5 218.1 226.9 228.2 220.6 222.8 219.0	211.8 193.3 157.4 164.0 191.8 199.6 216.3 226.5 221.6 222.5 224.3 223.2 224.0 225.0 224.7 224.6 227.8 226.5 226.4 226.5 226.4 226.5 226.4 226.5 226.4	3.0 -5.5 -33.7 -28.8 -5.9 -0.2 5.1 1.0 5.4 2.8 2.5 0.0 3.6 3.8 4.9 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.8 -5.4 -2.9 5.1 2.9 -5.4 -2.9 5.1 2.9 -5.4 -2.9 -2.3 -0.7 -2.4

Table F-2. Summary of Group Statistical Parameters (Continued)

		I abic I		ounnur j or	Or oup o				
" BGO	330 "	5438	4 56	55382.76	177.8	187.8	224.9	222.6	-2.3
"BCO	350 "	5512	0 65	54688 75	161 9	171 9	228.6	224.3	-4.3
BG0	270 "	5512	2 20	54000.75	169 9	178 8	220.0	226 6	-3 3
BGU	370 "	5574	2.20	54090.51	174 0	194 0	222.2	220.0	0.3
" BGO	39C "	5628	2.08	54042.56	1/4.9	184.9	229.3	229.0	-0.3
" BGO	42C "	5462	9.16	57298.77	185.9	195.9	223.2	226.2	3.0
" BGO	43CR"	5545	9.53	57766.86	178.4	188.4	225.2	225.3	0.1
" BGO	43D "	5546	5.56	57787.56	198.2	208.2	231.3	226.0	-5.3
" BGO	44B "	5699	4.49	57155.16	148.1	158.1	221.3	222.4	1.1
" BGO	44C "	5702	3.33	57150.87	190.6	200.6	220.8	223.6	2.8
" BGO	45B "	5357	4 07	56946 03	137 0	147.0	218.7	222.9	4.2
"DGO	450 *	5357	5 AG	56037 00	190 5	200 5	222 6	224 4	1 8
BGO	400	5330	0.40 E E7	50557.50	140.4	150 /	217 0	210 2	1 4
" BGO	408	5320	5.57	56160.05	140.4	100.4	217.9	219.5	1.4
" BGO	46C "	5327	7.11	561/2./8	1/8.0	188.0	219.4	220.4	1.0
" BGO	47C "	5370	9.52	55804.63	178.6	188.6	222.7	220.8	-1.9
" BGO	48C "	5386	4.66	55615.85	176.7	186.7	223.3	220.8	-2.5
" BGO	49C "	5477	7.03	54724.27	166.0	176.0	227.7	222.9	-4.8
" BCO	50C "	5308	0 36	56386 55	162 5	172.5	218.1	220.0	1.9
"PCO	50C 51D #	5500	0.00	54597 93	116 9	126 9	229 4	228 1	-13
"BGU	510 "	5045	U.92	54507.95	175 1	105 1	222.4	220.1	-0.8
" BGO	51C "	5643	5.93	54562.10	175.1	105.1	230.3	229.5	-0.8
" BGO	52B "	5589	0.68	55213.52	126.7	136.7	227.4	226.6	-0.8
" BGO	52B "	5589	0.68	55213.52	126.7	136.7	227.4	226.6	-0.8
" BGO	52C "	5589	5.16	55207.15	178.7	188.7	228.7	227.7	-1.0
" BGO	53B "	5445	7.17	57000.00	143.5	153.5	221.3	224.6	3.3
" BGO	53C "	5445	0.67	57007.32	183.2	193.2	222.0	225.7	3.7
" BGX	1C "	5772	5.76	57065.15	176.0	186.0	215.8	220.0	4.2
"BGX	2B "	5746	9.67	57511.55	137.2	147.2	212.7	218.1	5.4
" BGX	2D "	5747	6.29	57498.90	181.1	191.1	215.2	219.5	4.3
"BGX	4C "	5658	0.37	58398.63	170.7	180.7	214.5	219.1	4.6
"BGX	4D "	5656	6.33	58409.49	203.8	223.8	215.7	222.2	6.5
"BGX	50 "	5679	1.69	58881.04	195.0	215.0	209.0	216.0	7.0
"BGY	6D "	5707	3 56	59166.78	191.0	211.0	205.7	211.2	5.5
"BCX	יי ת7	5776	2 99	58620 70	194 1	214 1	205 5	210 2	4 7
"DGA	יממט	5000	0 00	57746 69	193 1	203 1	205.4	211 8	5 A
DGA	120 "	5022	0.90	54501 71	17/ 1	19/ 1	202.4	222.0	_1 3
DGA	120	5040	E 16	54501.71	156 0	166 0	234.2	225.5	-0.2
"BRR	0C "	5043	5.10	50005.14	141 6	151 6	211.0	211.4	-0.2
"BRR	/BR"	5016	2.98	59444.94	141.0	105.0	204.9	200.2	1.3
"BRR	7C "	5015	3.27	59444.45	1/5.9	185.9	209.8	207.6	-2.2
"BRR	8B "	4955	7.22	59625.82	138.7	148.7	204.3	200.5	-3.8
"CMP	8B "	4848	0.44	34345.48	156.6	166.6	198.5	205.2	6./
"CMP	9B "	4784	7.73	33475.01	149.0	159.0	194.7	210.3	15.6
"CMP	10B "	4794	3.12	33136.89	137.4	147.4	195.0	212.4	17.4
"CMP	10C "	4793	6.35	33160.82	179.6	189.6	198.9	212.7	13.8
"CMP	11B "	4762	2.42	33282.65	139.7	149.7	195.0	210.8	15.8
"CMP	12B "	4758	2.56	33788.69	148.0	158.0	194.6	207.8	13.2
"CMP	13B "	4797	5.22	33615.47	134.2	144.2	194.7	209.5	14.8
"CMP	14B "	4676	2.54	34405.77	130.0	140.0	194.6	200.6	6.0
"CMP	15B "	4685	9.50	33335.32	145.1	155.1	202.9	208.3	5.4
"CMD	168 "	1783	1 28	33361 04	141 7	151 7	194 8	210 8	16 0
"OVD	200 "	4710	E 03	22652 70	07 /	107 5	104 7	207 0	12 2
"CMP	30B .	4/15	15.03	33052.19	97.4	107.5	194./	207.0	14.5
"CMP	30C "	4723	3.06	33633.06	179.5	189.5	210.8	208.2	-2.6
"CMP	31B "	4740	8.43	34209.90	110.0	120.0	194.4	204.3	9.9
"CMP	32B "	4816	3.49	33948.09	97.7	107.7	195.5	207.0	11.5
"CMP	32C "	4817	0.49	33941.09	185.2	195.2	195.9	208.6	12.7
"CRP	3C "	4178	80.37	52154.68	121.1	131.1	196.7	203.0	6.3
"CRP	5C "	4223	8.74	51887.54	110.1	120.1	198.2	207.7	9.5
"DBP	1 "	1655	64.65	55461.46	93.2	121.4	119.8	120.9	1.1
"DBP	2 "	1626	1.38	55305.83	84.3	114.3	117.4	118.3	0.9
"DRP	- 3 "	1634	2.95	55592.44	86.4	116.4	121.0	119.4	-1.6
"DBP	4 "	162	9.48	55516.39	84.2	114.2	118.9	118.5	-0.4
"DBP	5 "	1645	6.49	55271.93	96.1	116.1	117.6	119.9	2.3

Table F-2.	Summary of	of Group	Statistical	Parameters ((Continued)
------------	------------	----------	-------------	--------------	-------------

"DCB 1A "	17169.39	52608.40	90.1	120.1	115.2	122.8	7.6
"DCB 2A "	18062.42	51812.95	97.4	127.4	124.8	129.5	4.7
"DCB 3A "	17908.76	51067.40	96.2	126.2	120.6	127.9	7.3
"DCB 4A "	17512 34	51155.65	92.5	122.5	119.1	125.5	6.4
DCB 5A "	17259 08	51666 78	85 9	115.9	118.8	123.8	5.0
	17210 60	52710 10	109 5	128 2	116 8	124 1	73
	17220.03	52719.10	109.5	120.2	110.0	124.1	5 1
"DCB / "	1/339.83	52544.47	110.9	120.9	126.0	124.4	2 0
"DCB 8 "	18186.59	51825.20	110.3	130.3	120.5	130.3	2.0
"DCB 9 "	17155.27	52777.13	97.3	117.3	114.8	122.5	1.1
"DCB 10 "	17118.62	52388.76	99.8	119.8	116.6	122.6	6.0
"DCB 11 "	16701.76	53331.22	106.8	117.0	122.0	11/.1	-4.9
"DCB 12 "	16105.05	53981.19	92.0	112.0	109.7	115.5	5.8
"DCB 13 "	16523.39	52555.56	102.0	117.6	116.9	117.5	0.6
"DCB 14 "	16898.86	53566.89	94.6	114.6	109.8	119.0	9.2
"DCB 15 "	15117.88	53636.30	99.8	114.5	111.5	110.1	-1.4
"DCB 16 "	14958.28	53004.27	100.1	114.7	111.9	110.3	-1.6
"DCB 17A "	17270.54	53154.00	109.4	119.4	116.6	123.1	6.5
"DCB 17B "	17274.54	53158.87	99.2	101.7	116.9	123.2	6.3
"DCB 17C "	17277.32	53163.29	87.4	89.9	116.1	123.2	7.1
"DCB 18A "	17198.69	52626.00	110.1	120.1	116.2	123.1	6.9
"DCB 18B "	17190.86	52621.83	100.5	103.0	113.3	123.0	9.7
"DCB 18C "	17184.89	52618.30	87.7	90.2	112.7	122.9	10.2
"DCB 19A "	17201.32	52595.07	111.9	121.9	120.0	123.2	3.2
"DCB 19B "	17195 27	52590 63	101 9	104 4	117.4	123.1	5.7
"DCB 19C "	17198 62	52586 32	89 1	91 6	116 5	122 9	6 4
	17202.02	52300.32	110 9	120 9	117 2	124 9	77
"DCB 20A "	17200 02	52461.01	100.9	102 9	116 5	124.9	0.7
"DCB 20B "	17390.93	52466.03	100.3	102.8	116.5	124.0	0.5
"DCB 20C "	17387.59	52471.95	89.4	91.9	116.4	124.7	0.J E 0
"DCB 21A "	1/144.19	52497.52	110.1	120.1	110.9	122.0	5.9
"DCB 21B "	17142.14	52503.27	102.2	104.7	113.4	122.7	9.3
"DCB 21C "	17140.99	52508.93	88.3	90.8	112.9	122.6	9.7
"DCB 22A "	17083.51	52503.06	109.8	119.8	112.8	122.3	9.5
"DCB 22B "	17081.23	52509.16	100.9	103.4	112.8	122.2	9.4
"DCB 22C "	17080.53	52515.45	88.1	90.6	112.9	122.1	9.2
"DCB 23A "	16893.94	52505.32	105.7	115.7	111.8	120.7	8.9
"DCB 23B "	16893.90	52511.36	94.1	96.6	108.8	120.6	11.8
"DCB 23C "	16893.92	52517.70	86.6	89.1	109.0	120.6	11.6
"DCB 24A "	17146.45	51890.59	109.2	119.2	115.5	123.1	7.6
"DCB 24B "	17135.28	51889.49	100.6	103.1	115.2	122.9	7.7
"DCB 24C "	17128.89	51888.29	87.6	90.1	116.3	122.7	6.4
"DOB 1 "	21716.60	56149.98	114.7	144.7	143.2	147.4	4.2
"DOB 2 "	21521.56	56324.23	115.3	145.3	143.2	146.1	2.9
"DOB 3 "	21833.77	56386.18	115.9	145.9	143.2	147.5	4.3
"DOB 4 "	21974.85	56173.09	109.2	139.2	142.4	148.6	6.2
"DOB 7 "	21610.86	56047.42	125.7	145.7	143.1	147.0	3.9
"DOB 8 "	21854.23	56111.62	128.3	148.3	143.7	148.4	4.7
"DOB 9 "	21914.47	56489.76	128.5	148.5	144.1	147.6	3.5
"DOB 10 "	21457.21	56259.09	128.3	148.2	143.2	146.0	2.8
"DOB 11 "	21554.72	56191.64	126.7	131.7	140.9	146.4	5.5
"DOB 12 "	21553.76	56196.84	133.1	138.1	140.5	146.5	6.0
"DOB 14 "	21655.74	56057.51	132.6	137.6	139.7	147.2	7.5
"DOB 15 "	21284 89	55936.57	110.9	116.0	141.9	145.5	3.6
"DOB 16 "	21284 59	55930 81	103.5	108.6	141.4	145.5	4.1
"DOI. 1 "	21808 58	56494 69	109.2	119.2	144.3	146.9	2.6
"EAC 9C "	54788 19	58927 09	197 4	207 4	217 4	224 4	7.0
"EXC 100 "	54766 73	59022 85	200.2	210.2	217 4	224 2	6.8
FAC IUC	54100.12 EA607 6A	50022.05	200.2	210.2	217 E	204.2 224.2	7 0
FAC IIC "	5403/.04 54601 00	55011.10	401.4 100 A	211.4	217.5	224.5	7.0
"FAC 12C "	34001.44 50001 07	30300.3U	150.U	400.0 101 0	211.5	224.3	-6 6
"FBP IA "	50801.9/	00000.10	101.0 107 1	167 1	200.1 101 <i>C</i>	172 0	-0.0
"rbr ZA "	2043/.4/	01010107	T 7 / • T	TO1.T	191.0	T17.0	x,.0

.

	Table F-2. S	ummary of	Group S	tatistical	Parame	ters (Cor	ntinued)
	÷						
"FBP 3A "	50834.99	61616.17	141.0	171.0	194.2	182.3	-11.9
"FBP 4 "	51171.97	61014.05	165.2	195.2	212.3	199.1	-13.2
"FBP 6D "	50442.18	61529.96	178.3	198.3	194.8	179.8	-15.0
"FBP 7D "	50794.34	61590.87	183.2	203.2	194.1	184.4	-9.7
"FBP 8D "	51183.90	60982.69	172.8	192.8	207.1	199.7	-7.4
"FBP 9D "	50935.15	61314.97	177.9	197.9	200.3	192.0	-8.3
"FBP 12D "	50893.28	60676.93	182.1	202.1	208.4	202.8	-5.6
"FBP 13D "	50601.77	61573.73	172.7	192.7	194.9	181.3	-13.6
"FC 1B "	52953.86	60995.57	151.8	156.8	210.8	209.9	-0.9
"FC 1C "	52955.56	61003.08	183.9	188.9	214.0	210.9	-3.1
"FC 3D "	57191.44	59129.76	165.9	170.9	206.4	208.9	2.5
"FC 3E "	57198.96	59128.57	185.7	190.7	205.3	209.7	4.4
"FC 3F "	57206.55	59127.26	205.1	210.1	206.2	210.7	4.5
"FC 4E "	54276.52	63368.94	176.4	168.5	185.2	0.0	-185.2
"FCB 3 "	54000.00	57456.08	195.3	225.3	223.9	228.3	4.4
"FIW 2IC"	50304.02	57727.18	125.3	175.2	210.8	210.7	-0.1
"FNB 1 "	54184.80	61223.73	177.2	207.2	210.9	208.0	-2.9
"FNB 2 "	54333.78	61489.36	180.8	210.8	207.1	204.8	-2.3
"FNB 3 "	54106.12	61651.03	182.1	212.1	209.3	203.0	-6.3
"FNB 4 "	53819.76	61565.40	179.6	209.6	213.6	205.2	-8.4
"FNB 5 "	54292.00	61614.58	193.5	203.5	206.7	202.4	-4.3
"FNB 7 "	54412.36	61684.16	192.4	202.4	203.9	200.6	-3.3
"FNB 8 "	54534.35	61527.65	195.4	205.4	202.8	203.0	0.2
"FOB 5C "	48589.99	56744.62	129.3	149.3	202.9	196.2	-0.7
"FOB 7C "	49389.26	580/4.58	148.9	108.9	208.0	200.1	-1.9
"FOB 9C"		5/603./4	156 2	176.2	210.2	208.7	-1.5
"FOB IIC"	50541.71	57870 68	154 8	165 3	212.4	212.4	-0.2
F3D 70C	19054 67	56815 01	141 6	151 4	207 8	199 4	-8.4
"FGB 70C '	49034.07	55734 41	149 8	159.6	196.8	189.4	-7.4
	40020.10	57632 47	148 8	159 3	208 4	203 9	-4 5
	49149.91 505/0 00	57363 18	158 4	168 4	212 3	211 5	-0.8
"FGB 80C '	50366 31	57334 35	156 1	166 1	212.3	210.2	-1.5
"FSB 90C '	50138 59	57208 65	158.1	168.1	210.8	208.5	-2.3
"FSB 91C '	49912.50	57083.32	149.1	159.1	210.5	206.3	-4.2
"FSB 92C '	49498.22	57007.70	147.6	157.6	208.7	203.5	-5.2
"FSB 93C '	49362.42	56877.18	142.0	152.0	208.6	201.6	-7.0
"FSB 94C '	49084.32	56907.36	139.8	149.8	207.7	200.2	-7.5
"FSB 95C '	48945.94	57041.77	145.8	155.8	205.6	200.4	-5.2
"FSB 95CR	48923.95	57077.32	151.9	161.9	207.7	200.7	-7.0
"FSB 97C '	48944.07	57254.71	143.8	153.8	208.0	201.2	-6.8
"FSB 98C '	49128.70	57421.57	148.4	158.4	209.0	203.2	-5.8
"FSB 99C '	49391.23	57675.02	157.2	167.2	209.4	205.7	-3.7
"FSB102C '	49457.41	55513.22	145.9	155.9	195.3	189.1	-6.2
"FSB103C '	48430.15	56372.68	147.1	157.1	202.5	193.0	-9.5
"FSB104C '	47966.11	56126.38	150.7	160.7	200.9	188.6	-12.3
"FSB105C '	48815.94	57337.76	141.5	151.5	207.7	200.8	-6.9
"FSB106C	49404.17	56145.31	156.0	166.0	201.2	196.4	-4.8
"FSB107C	50106.53	57012.12	150.8	160.8	209.9	207.1	-2.8
"FSB110C	48914.53	50249.99	۲۶/۰۷ ۱۳۵۰	141.2	201.2	194.3 210 2	-0.9
FSBIIIC	50508.12	5/130.51	120 1	120 J.U	211.0	120.3	-1.5
"FSBI12C	4/596.01	5050/.00 E6016 E4	154 0	164 0	201.9	107./	-12.2
FSBII3C	49821.49	50020.54 E6022 27	154.0	160 A	202.3	197.4 011 0	- 1 4
"FSBI14C		50732.21	150.0	170 E	213.3 100 7	411.7 107 1	-1.4
"FSBI16C		54/13.83 57703 04	150.0	160 7	202.7	190 0	-2.0
"FSB120C	40239.01 " 17115 60	577555 15	170.7	150./	200.0	197 7	-10 4
"ECB103C	4/410.03 • 50557 64	56285 14	155 2	165 3	210 2	204 3	-5 9
"FGB150PC	48736 KO	56184 86	107.6	160.1	198.2	192.7	-5.5
"HAA 1B	60561.80	49359.31	119.3	129.3	251.4	247.6	-3.8

Table F-2.	Summary of	Group Statistic	cal Parameters	(Continued)
------------	------------	------------------------	----------------	-------------

"HAA 1C "	60567.40	49351.99	147.4	157.4	252.0	249.5	-2.5	•
"HAA 2B "	59111.69	50754.50	127.2	137.2	253.2	240.7	-12.5	
"HAA 2C "	59104.31	50761.18	171.9	181.9	254.8	244.3	-10.5	
"HAA 3B "	58154.04	51487.42	125.9	135.9	240.7	231.4	-9.3	
"HAA 3C "	58139.89	51473.76	163.3	173.3	244.0	234.8	-9.2	
"HAA 4C "	59997.99	51882.57	158.3	168.3	251.4	242.0	-9.4	
"HAA 6B "	61771.90	50705.33	131.3	141.4	235.7	243.2	7.5	
"HAA 6C "	61781.82	50703.43	161.1	171.1	235.9	244.2	8.3	
"HC 2C "	59879.41	51458.87	135.7	140.7	253.7	241.1	-12.6	
"HC 2D "	59873.54	51460.12	178.2	183.2	255.8	243.8	-12.0	
"HC 4A "	61345.81	50965.20	150.0	155.0	244.7	243.7	-1.0	
"HC 6A "	60139.40	51777.79	156.2	161.2	252.2	242.3	-9.9	
"HC 8C "	59297.17	57410.38	187.3	192.3	197.5	202.2	4.7	
"HC 10B "	60448.69	55444.91	164.8	169.8	208.9	209.1	0.2	
"HC 12B "	57839.58	53326.69	177.3	182.3	240.8	233.8	-7.0	
"HCA 4B "	61082.03	51968.88	126.6	136.6	245.9	234.8	-11.1	
"HCA 4C "	61071.73	51970.96	153.8	163.8	246.6	243.1	-3.5	
"HIW 2MC"	55118.76	53945.40	154.0	184.0	226.7	223.1	-3.6	
"HIW 2MC"	55118.76	53945.40	124.1	139.0	226.7	222.2	-4.5	
"HIW 4MC"	54979.48	53907.23	150.4	180.4	219.7	222.1	2.4	
"HIW 4MC"	54979.48	53907.23	120.8	135.7	219.7	221.2	1.5	
"HIW 5MC"	54992.54	54311.14	154.2	184.1	227.8	223.3	-4.5	
"HIW 5MC"	54992.54	54311.14	124.4	139.2	227.8	222.4	-5.4	
"HMD 1D "	56532.27	59273.24	199.7	219.7	209.5	214.6	5.1	
"HMD 2D "	57016.40	60125.31	190.8	210.8	200.7	198.5	-2.2	
"HMD 3D "	57463.40	59941.25	187.7	207.7	200.1	196.5	-3.6	
"HMD 4D "	57810.04	59439.92	188.9	208.9	199.6	198.8	-0.8	
"HSB 50PC"	53911.20	53112.98	119.5	169.6	218.0	209.7	-8.3	
"HSB 65B "	56659.37	52819.69	123.3	133.3	224.3	226.7	2.4	
"HSB 68B "	54944.81	52243.48	123.5	134.5	216.6	212.4	-4.2	
"HSB 68C "	54935.32	52244.06	168.4	179.5	217.6	212.5	-5.1	
"HSB 70C "	54067.23	53525.76	164.9	174.9	223.2	214.1	-9.1	
"HSB 71C "	53658.01	53888.06	171.9	181.9	222.6	212.5	-10.1	
"HSB 83B "	56643.90	51998.97	121.2	132.1	222.8	223.0	0.2	
"HSB 83C "	56662.80	51992.19	160.2	171.2	224.6	223.9	-0.7	
"HSB 84B "	54442.86	52429.71	121.8	132.9	210.8	209.8	-1.0	
"HSB 84C "	54449.10	52422.04	170.9	181.8	213.5	210.1	-3.4	
"HSB 85B "	57441.42	54027.18	133.2	143.2	233.7	230.7	-3.0	
"HSB 86B "	54265.95	53403.47	113.8	124.0	221.6	213.9	-7.7	
"HSB100C "	56941.86	52383.02	153.0	163.0	226.5	227.6	1.1	
"HSB100PC"	53918.88	53006.25	117.6	167.7	217.2	209.1	-8.1	
"HSB101C "	56728.52	52351.38	166.3	176.3	225.5	220.0	1.1	
"HSB102C "	56519.60	52353.05	150.7	160.7	224.0	223.2	-1 5	
"HSB103C "	56369.03	52010.00	162 5	172 5	223.5	221.0	-1.5	
"HSB104C "	56088.16	51848.43	163.5	162.2	220.0	210.0	-2.1	
"HSB105C "	55908.36	51958.72	152.2	162.2	219.6	217.9	-1.7	
"HSB106C "	55738.02	52274.64	158.7	168.7	221.7	219.1	-2.6	
"HSBI07C "	55518.00	52298.37	196 0	196 0	219.5	217.7	-1.6	
"HSB108C "	55240.10	52346.27	168 4	178 4	218.8	214 5	-4 3	
"HSBIUSC	54991.13	52533 61	171 4	181 4	210.0	214 2	-4.9	
HUCD111C H	54650 .57 57657 Q1	52707 82	140 7	150 7	220 3	213 4	-6.9	
"UCD111C "	54601 40	52957 01	140 6	150.7	221 6	214 8	-6.8	
HUCD112C "	54021.45	53163 13	154 7	164 7	221 9	214 6	-7.3	
"HGB113C "	54402.40	53163 13	1517	161 7	221.9	214.5	-7.4	
HUCD114C "	54402.40 5/381 80	53303 21	185 6	195 6	223 4	216.7	-6.7	
"HCB115C "	54358 70	53520 95	182 8	192 8	224 4	217.2	-7.2	
"HSB116C "	54354 62	53761 97	180 5	190.5	225.0	218.1	-6.9	
"HSB117C "	53515 83	53789.56	165.1	175.1	221.6	210.5	-11.1	
"HSB125C "	56613.57	51866.38	145.6	155.6	223.3	222.4	-0.9	

		ummar j or	<u>Oroup D</u>				
"HSB126C "	55047 77	51303 73	176 3	181 3	203 9	205 7	18
"HGB127C "	54791 20	51953 68	148 4	158 4	210 3	209.1	-1 2
HUGD120C	52774 07	52010 16	147 9	157 0	210.5	202.1	_3_0
"HSB129C	55274.02	52910.10	147.0	137.8	205.8	202.0	-3.0
"HSB130C "	52596.56	51962.46	159.9	169.9	199.9	203.0	3.1
"HSB131C "	54718.06	51115.16	148.5	158.5	203.9	206.1	2.2
"HSB132C "	56797.72	51795.34	168.6	178.6	221.6	223.9	2.3
"HSB133C "	57212.47	52194.94	173.3	183.3	230.6	229.6	-1.0
"HSB134C "	56256.31	51642.47	149.1	159.1	220.9	218.1	-2.8
"HSB135C "	54602.40	52177.94	147.3	157.3	206.7	209.3	2.6
"HSB136C "	54110.61	52803.97	160.5	170.5	217.5	209.7	-7.8
"HCB137C "	53943 50	53217 34	163.8	173 8	220 2	211 1	-9 1
"HGB139C "	55344 17	51754 05	148 5	158 5	214 5	212 0	-2 5
HGD140C #	55544.17	51754.05	161 6	171 6	214.5	212.0	2.5
"HSB140C	54514.70	50000.11	161.0	164 7	204.2	200.0	2.4
"HSB141C	57114.54	51446.14	154.7	164.7	228.8	224.9	-3.9
"HSB141CR"	57117.85	514/6.11	152.1	162.1	229.5	224.9	-4.6
"HSB142C "	51973.10	54504.23	161.6	171.6	198.3	195.0	-3.3
"HSB143C "	51385.74	55262.11	169.1	179.1	209.3	198.8	-10.5
"HSB145C "	55723.63	51641.80	164.7	174.7	213.4	213.5	0.1
"HSB146C "	56281.92	50881.82	152.3	162.3	209.9	214.6	4.7
"HSB148C "	53154.84	51219.25	158.9	168.9	201.7	207.8	6.1
"HSB150PC"	53783.65	53217.07	119.5	169.6	218.1	209.2	-8.9
"HSB151C "	52446.39	54279.83	170.6	180.6	207.9	199.8	-8.1
"HSB152C "	52565.96	53246.49	173.1	183.1	199.0	196.6	-2.4
"HSL 6C "	58757.86	52600.50	157.6	167.6	245.2	237.3	-7.9
"HSL BR "	59331 52	52522 22	138 7	148 7	249 0	238 5	-10 5
"HGI 8C "	59330 38	52512 54	171 7	181 7	250 2	239 8	-10 4
	43173 25	27178 90	90 1	95 1	205 0	205.3	10.4
	43558 27	27533 91	110 5	120 5	211 0	203.3	-13
LCO JC	43330.27 E2024 04	A2722 AE	07 5	107 5	242 1	260.7	-1.5
NPM 19D	53634.94	43723.45	91.5	107.5	243.1	250.7	7.0
"NPM 34D "	52189.19	41815.02	86.4	96.4	253.7	250.9	-2.8
"TBG 1 "	16046.02	60413.52	89.1	109.1	100.6	106.7	6.1
"TBG 3 "	16066.17	60301.49	88.9	108.9	103.1	107.8	4.7
"TBG 4 "	16054.32	60245.73	89.3	109.3	103.1	108.1	5.0
"TBG 5 "	16218.81	60169.26	92.4	112.4	102.6	110.4	7.8
"TBG 5A "	16209.14	60151.18	70.0	80.0	103.9	110.1	6.2
"TBG 6 "	16209.40	60432.78	89.1	109.1	102.7	108.5	5.8
"TBG 7 "	16423.15	60199.44	84.7	104.7	105.5	112.3	6.8
"TIR 1M "	15018.24	60217.55	84.6	86.6	93.9	95.7	1.8
"TIR 1U "	15020.04	60222.14	90.0	92.0	93.2	95.7	2.5
"TIR 2 "	14955.26	60276.45	84.2	86.2	92.4	95.0	2.6
"TTR 3B "	15378.85	60217.52	83.5	85.5	95.8	100.0	4.2
"TNX 1D "	15658.69	60683.97	79.6	99.6	99.4	101.1	1.7
ייתא 20 יי	15711.77	60507.57	82.8	102.8	99.3	102.4	3.1
יי תוצ צואידיי	15916 34	60243.98	84.9	104.9	99.8	106.4	6 6
ייתאי אחיי	16043 66	59977 69	85 5	105 5	103 1	109 9	6.8
	16179 74	599/1 20	99.5	109.5	105.0	111 /	6.0
TINA SD	16175.74	59941.20	00.0	100.5	105.0	110 7	7 4
TNX 6D	16185.59		09.0	109.8	105.3	104 0	7.4
"TNX 7D "	16057.27	60726.63	83.6	103.6	101.2	104.8	3.6
"TNX 8D "	14926.59	59/95.15	74.0	94.0	94.0	95.5	1.5
"TNX 9D "	14946.06	59994.97	75.4	95.1	93.8	95.3	1.5
"TNX 10D "	15009.73	60193.98	77.0	95.9	94.1	95.7	1.6
"TNX 11D "	15050.14	60389.86	73.2	93.2	94.1	95.8	1.7
"TNX 12D "	15143.66	60777.90	73.1	93.1	95.0	94.8	-0.2
"TNX 13D "	14754.11	60087.50	87.9	89.9	92.0	93.4	1.4
"TNX 14D "	14804.37	60168.63	85.8	87.8	92.1	93.8	1.7
"TNX 15D "	14853.26	60249.53	85.9	87.9	91.7	94.2	2.5
"TNX 16D "	14881.89	60335.66	86.1	88.1	91.5	94.3	2.8
"TNX 17D "	15014.56	60790.52	89.7	91.7	93.3	92.6	-0.7
"TNX 18D "	14694.70	60004.24	84.9	86.9	91.7	93.1	1.4
"TNX 19D "	14620.92	59895.70	84.9	86.9	91.5	92.6	1.1

Table F-2.	Summary of	Group Statisti	cal Parameters	(Continued)

		1	able 1°-2. D	unning of O	noupo	anstra	1 al allie			
" ጥ አነ ሂ	200	н	14589 19	59853.68	86.2	88.2	91.5	92.4	0.9	
MUNIX.	200	н	14568 94	59722 83	86.9	88 9	91 8	92.3	0.5	
"TINA	210		14300.94	50102 22	Q5 Q	87.8	90.2	91 5	1 3	
AULT	220		15020 7/	50402.22	84 8	104 8	99.2	104 2	4.9	
TINA	230		10009.74	00442.04	04.0	114 0	100 0	111 6	2.5	
"TNX	24D	"	16459.51	60435.43	99.8	114.0	109.0	111.0	2.0	
" TNX	26D		14972.66	59614.12	87.8	90.1	94.2	96.3	2.1	
"TNX	27D		15480.09	60278.84	81.3	101.3	96.4	101.1	4.7	
" TRW	1	н	15806.97	60191.68	81.4	106.4	93.4	105.5	12.1	
"TRW	2	м	15687.03	60316.14	77.2	112.2	94.0	103.2	9.2	
"XSB	1	Ν	15755.80	60172.19	92.0	112.0	102.8	105.0	2.2	
"XSB	1B		15722.48	60150.55	64.6	74.6	102.7	102.8	0.1	
"XSB	1D	"	15742.58	60146.07	87.9	107.9	99.0	105.0	6.0	
"XSB	2D		15669.81	60142.32	84.0	104.0	98.5	104.1	5.6	
"XSB	3A	н	15710.81	59959.09	87.4	103.2	99.8	105.7	5.9	
"XSB	4	н	15684.42	60076.34	94.3	114.3	98.3	104.7	6.4	
"XSB	4D	"	15654.53	60055.50	83.9	103.9	98.6	104.4	5.8	
"YSB	1A	"	16649.82	60011.91	98.4	128.4	118.3	115.6	-2.7	
"YSB	2A	"	16658.67	59854.43	97.7	127.7	119.2	116.4	-2.8	
"YSB	3A	н	16534.35	59726.48	96.7	126.7	119.4	115.8	-3.6	
"YSB	4A	н	16552.90	59887.85	97.6	127.6	118.1	115.3	-2.8	
"YSC	1C		65106.95	56892.95	197.5	207.5	217.4	213.6	-3.8	
"YSC	4C		64918.13	55781.42	195.9	205.9	227.5	223.8	-3.7	
"7.	17		42299.33	55683.19	148.2	148.7	169.2	168.3	-0.9	
" 7.W	2		54413.69	61737.37	194.8	204.8	207.1	199.9	-7.2	
"CMP	100	н	47936.35	33160.82	179.6	189.6	198.5	212.7	14.2	
"CMP	30B	н	47195.03	33652.79	97.4	107.5	195.0	207.0	12.0	
"CMP	30C		47233.06	33633.06	179.5	189.5	210.6	208.2	-2.4	
	32B		48163.49	33948.09	97.7	107.7	195.3	207.0	11.7	
"CMP				··· · · ·						
"CMP "CMP	32C	н	48170.49	33941.09	185.2	195.2	195.4	208.6	13.2	
"CMP "CMP	32C	и	48170.49	33941.09	185.2	195.2	195.4	208.6	13.2	
"CMP "CMP ** G	32C ROUP	" 3	48170.49 ** rms of	33941.09 (FACT-data)	185.2 differ	195.2 ences:	195.4 5.061	208.6	13.2	
"CMP "CMP ** G	32C ROUP	" 3	48170.49 ** rms of avg of	33941.09 (FACT-data) (FACT-data)	185.2 differ	195.2 ences: ences:	195.4 5.061 0.155	208.6	13.2	
"CMP "CMP ** G	32C ROUP	" 3	48170.49 ** rms of avg of avg of	33941.09 (FACT-data) (FACT-data) FACT-data	185.2 differ differ	195.2 ences: ences: ences:	195.4 5.061 0.155 3.830	208.6	13.2	
"CMP "CMP ** G	32C ROUP	" 3	48170.49 ** rms of avg of avg of max of	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data}	185.2 differ differ differ	195.2 ences: ences: ences: ences:	195.4 5.061 0.155 3.830 16.291	208.6	13.2	
"CMP "CMP ** G	32C ROUP	" 3	48170.49 ** rms of avg of avg of max of	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data}	185.2 differ differ differ differ	195.2 ences: ences: ences: ences:	195.4 5.061 0.155 3.830 16.291	208.6	13.2	
"CMP "CMP ** G "BG	32C ROUP 26	" 3	48170.49 ** rms of avg of avg of max of 57336.11	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data} 54222.44	185.2 differ differ differ 210.7	195.2 ences: ences: ences: ences: 230.7	195.4 5.061 0.155 3.830 16.291 239.3	208.6	-0.6	
"CMP "CMP ** G "BG "BG	32C ROUP 26 27	" 3	48170.49 ** rms of avg of avg of max of 57336.11 57419.22	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data} 54222.44 54611.98	185.2 differ differ differ 210.7 234.4	195.2 ences: ences: ences: ences: 230.7 254.4	195.4 5.061 0.155 3.830 16.291 239.3 240.9	208.6 208.7 238.7 238.5	13.2 -0.6 -2.4	
"CMP "CMP ** G "BG "BG "BG	32C 32C ROUP 26 27 28	" 3 "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data} 54222.44 54611.98 54998.60	185.2 differ differ differ 210.7 234.4 239.7	195.2 ences: ences: ences: 230.7 254.4 259.7	195.4 5.061 0.155 3.830 16.291 239.3 240.9 247.1	208.6 238.7 238.5 0.0	-0.6 -2.4 -247.1	
"CMP "CMP ** G "BG "BG "BG "BG	32C ROUP 26 27 28 29	" " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data} 54222.44 54611.98 54998.60 55389.53	185.2 differ differ differ 210.7 234.4 239.7 231.6	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0	208.6 238.7 238.5 0.0 234.8	-0.6 -2.4 -247.1 -10.2	
"CMP "CMP ** G "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30	" " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46	33941.09 (FACT-data) (FACT-data) FACT-data {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7	195.4 5.061 0.155 3.830 16.291 239.3 240.9 247.1 245.0 237.5	208.6 238.7 238.5 0.0 234.8 233.9	-0.6 -2.4 -247.1 -10.2 -3.6	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31	" " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7	208.6 238.7 238.5 0.0 234.8 233.9 232.6	-0.6 -2.4 -247.1 -10.2 -3.6 -1.1	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31 32	* 3 * *	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3	-0.6 -2.4 -247.1 -10.2 -3.6 -1.1 -2.1	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31 32 33	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582 86	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4	-0.6 -2.4 -247.1 -10.2 -3.6 -1.1 -2.1 -1.5	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG	220 ROUP 26 27 28 29 30 31 32 33 24	" 3 "	48170.49 ** rms of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7	-0.6 -2.4 -247.1 -10.2 -3.6 -1.1 -2.1 -1.5 -1.1	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31 32 33 34 25	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.8	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7	-0.6 -2.4 -247.1 -10.2 -3.6 -1.1 -2.1 -1.5 -1.1 -1.2	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.94 56752.61	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ \end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.94 56752.61 56403.29	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 248.0 243.3 247.8	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 232.2	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ \end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG "B	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.94 56752.61 56403.29 56012.15	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 232.2 232.8	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG "B	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 566012.15 55621.07	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 246.0	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3 231.7	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 231.7 231.4 231.4	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG "B	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 245.9 246.0 241.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 231.7 231.7 231.4 231.4 231.4 231.4 231.7	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG "B	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.94 56803.94 566752.61 56403.29 56012.15 55621.07 555229.56 55003.77	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 245.9 246.0 241.9 241.0	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\end{array} $	
"CMP "CMP ** G "BG "BG "BG "BG "BG "BG "BG "BG "BG "B	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.94 56803.29 56012.15 55621.07 55229.56 55003.77	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 221.0	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 245.9 246.0 241.9 241.0 237.1	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 230.2	$ \begin{array}{r} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\\ -0.5\\ \end{array} $	
* CMP * CMP * MP * CMP * CMP * BG * BG * BG * BG * BG * BG * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	" 3 " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56 55003.77 54921.81	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651 13	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 221.0 217.1 222.9	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 245.9 246.0 241.9 241.0 241.0 241.0	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 230.5	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 230.2 230.6	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ \end{array} $	
* CMP * CMP * CMP * CMP * G * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 51	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56403.29 56403.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651.13 54174.14	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 246.0 241.9 241.0 241.0 241.0 241.2	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 230.5 240.7	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 230.2 230.6 238.6	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ -2.1\end{array} $	
* CMP * CMP	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 51 52	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15 57110.74	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651.13 54174.14 56814.86	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2 223.8	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 243.3 247.8 245.9 246.0 241.9 241.0 237.1 242.9 241.2 241.2 243.8	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 230.5 240.7 239.1	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 230.2 230.6 238.6 230.1	$ \begin{array}{r} -0.6 \\ -2.4 \\ -247.1 \\ -10.2 \\ -3.6 \\ -1.1 \\ -2.1 \\ -1.5 \\ -1.1 \\ -1.5 \\ -1.1 \\ -1.2 \\ -0.8 \\ -0.7 \\ 0.5 \\ 1.7 \\ 1.7 \\ 1.6 \\ -0.5 \\ 0.1 \\ -2.1 \\ 1.0 \end{array} $	
* CMP * CMP * CMP * CMP * G * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 51 52 53	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15 57110.74 54528.35 54139.12	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651.13 54174.14 56814.86 57150.01	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2 223.8 21.4 7	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 243.3 247.8 245.9 245.9 246.0 241.9 241.0 241.0 241.0 241.2 241.2 241.2 241.2 243.8 245.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 230.5 240.7 229.1 228.0	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 230.6 238.6 230.1 230.0	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ -2.1\\ 1.0\\ 2.0\end{array} $	
* CMP * CMP * CMP * CMP * G * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 36 37 38 940 41 42 52 53 4	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15 57110.74 54528.35 54139.12	33941.09 (FACT-data) (FACT-data) [FACT-data] FACT-data] FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57394.58 57095.62 56651.13 54174.14 56814.86 57150.01 5688.22	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2 223.8 214.7 215.2	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 241.2 247.8 245.9 246.0 241.9 241.0 241.0 241.0 241.2 241.2 241.2 241.2 243.8 245.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.8 232.9 232.3 231.7 231.4 230.8 230.7 230.5 240.7 29.1 228.0 228.4	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 233.1 232.4 233.1 232.4 230.6 238.6 238.6 230.1 230.0 228.5	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ -2.1\\ 1.0\\ 2.0\\ 0 \\ 1 \end{array} $	
* CMP * CMP * CMP * CMP * G * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42 31 52 53 45	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56403.29 56403.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15 57110.74 55229.56 55003.77 54921.81 55020.15 57110.74 5428.35 54139.12 53834.44	33941.09 (FACT-data) (FACT-data) [FACT-data] {FACT-data] {FACT-data} 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 56929.14 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651.13 54174.14 56814.86 57150.01 56888.23 56622.22	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2 223.8 214.7 215.2 221.4	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 241.2 247.8 245.9 246.0 241.9 241.0 241.0 241.0 241.2 241.2 241.2 241.2 243.8 245.9	195.4 5.061 0.155 3.830 16.293 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 230.5 240.7 229.1 228.0 228.4 226.3	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 233.1 232.4 230.6 238.6 238.6 230.1 230.0 228.5 227.2	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ -2.1\\ 1.0\\ 2.0\\ 0.1\\ 0.9 \end{array} $	
* CMP * CMP * CMP * CMP * G * BG * BG	32C ROUP 26 27 28 29 30 31 32 33 34 56 37 38 90 41 42 53 54 55 55	" " " " " " " " " " " " " " " " " " "	48170.49 ** rms of avg of avg of max of 57336.11 57419.22 57501.60 57584.39 57666.46 57744.30 57827.27 57582.86 57176.26 56803.29 56012.15 55621.07 55229.56 55003.77 54921.81 55020.15 57110.78 55229.56 55003.77 54921.81 55020.15 57110.78 554139.12 53834.44 53534.89 5226.222	33941.09 (FACT-data) (FACT-data) [FACT-data] FACT-data] FACT-data] 54222.44 54611.98 54998.60 55389.53 55779.48 56171.67 56562.97 56747.83 56848.26 5692914 57197.98 57330.81 57414.05 57497.08 57580.50 57394.58 57005.62 56651.13 54174.14 56814.86 57150.01 56888.23 56632.32 56632.32	185.2 differ differ differ 210.7 234.4 239.7 231.6 231.7 223.3 226.9 221.2 217.4 228.0 223.3 227.8 225.9 226.0 221.9 221.0 217.1 222.9 221.2 223.8 214.7 215.2 214.7 215.2 214.9 210.9	195.2 ences: ences: ences: 230.7 254.4 259.7 251.6 251.7 243.3 246.9 241.2 237.4 248.0 241.2 247.8 245.9 246.0 241.9 241.0 241.0 241.0 241.2 241.2 241.2 243.8 245.9 241.2 243.8 245.9	195.4 5.061 0.155 3.830 16.291 239.3 240.9 247.1 245.0 237.5 233.7 233.4 232.9 232.8 232.9 232.5 232.9 232.3 231.7 231.4 230.8 230.7 231.4 230.5 240.7 229.1 228.0 228.4 226.3 225.0	208.6 238.7 238.5 0.0 234.8 233.9 232.6 231.3 231.4 231.7 231.7 231.7 231.7 232.2 232.8 233.4 233.1 232.4 233.1 232.4 230.2 230.6 238.6 230.1 230.0 228.5 227.2 225.9	$ \begin{array}{c} -0.6\\ -2.4\\ -247.1\\ -10.2\\ -3.6\\ -1.1\\ -2.1\\ -1.5\\ -1.1\\ -1.2\\ -0.8\\ -0.7\\ 0.5\\ 1.7\\ 1.7\\ 1.6\\ -0.5\\ 0.1\\ -2.1\\ 1.0\\ 2.0\\ 0.1\\ 0.9\\ 0.9\\ 0.9\\ \end{array} $	

 Table F-2. Summary of Group Statistical Parameters (Continued)

		T	able F-2.	Summary of	Group S	Statistical	Parame	eters (Con	tinued)
	······	•							
" BG	58		53941.50	55795.09	218.2	238.2	226.8	225.7	-1.1
"BG	59		54238.88	3 55529.97	217.7	237.7	229.6	226.4	-3.2
"BG	60	и	54530.35	5 55256.29	215.5	235.5	230.6	227.1	-3.5
"BG	61		54965.05	5 54846.04	225.0	245.0	232.5	228.5	-4.0
"BG	62		55109.85	5 54709.14	222.5	242.5	233.2	229.1	-4.1
"BG	63	"	55396.89	9 54426.18	224.2	244.2	235.2	230.0	-5.2
"BG	64	"	55688.22	2 54152.33	227.3	247.3	238.1	231.3	-6.8
"BG	65	"	55978.13	3 53879.49	230.9	250.9	235.7	232.5	-3.2
"BG	66		56275.73	3 54066.09	231.0	251.0	235.2	234.5	-0.7
"BG	67	н	56447.94	4 54406.83	224.7	244.7	236.3	235.5	-0.8
"BG	68	н	57329.68	8 56876.99	216.5	242.9	232.2	231.4	-0.8
"BG	69		57304.98	56882.44	222.2	242.2	232.5	231.6	-0.9
"BG	80		57056.01	1 56979.02	226.2	248.6	232.7	232.0	-0.7
"BG	81	н	57081.25	5 57000.00	222.9	246.9	227.3	231.9	4.6
" BG	84		57069.64	4 57077.74	227.2	247.2	232.6	231.9	-0.7
" BG	85	8	57048.52	2 57105.85	228.0	248.0	232.6	231.9	-0.7
"BC	86		57098 42	57097 69	228 0	248 0	232 5	231 8	-0.7
" BG	87	н	57077 23	3 57130 31	226.2	245.8	232.3	231.8	-0.5
" BG	98	н	56712.64	4 58075.77	212.5	242.5	224.5	227.9	3.4
"BG	99		57551 92	2 57188 59	215.9	245.9	232.5	230.0	-2.5
" BG	100		58225 51	57976 77	203 3	233 3	224 8	216 3	-8 5
" BG	104		59031 30	5701134	215 8	245 8	224.8	220 4	-4 4
"BG	107		58793.60	54776.73	208.3	228.3	235.3	233.0	-2.3
"BG	108		58420.34	4 54426.07	217.3	247.3	238.8	238.8	0.0
"BG	109	н	58127.98	8 54021.21	228.4	258.4	240.1	241.9	1.8
"BG	110	н	57667.88	8 53534.74	224.3	254.3	241.2	242.6	1.4
" BG	0 1D		57260.53	3 54013.08	225.0	245.0	237.9	239.7	1.8
" BG	O 2D	11	57459.73	1 54803.95	218.9	238.9	238.0	237.3	-0.7
" BG	O 3D	"	57625.22	2 55585.01	227.6	247.6	235.5	234.1	-1.4
" BG	O 3DR	."	57669.26	55740.24	217.5	237.6	231.8	233.6	1.8
"BG	0 4D	"	57785.92	2 56367.50	220.6	240.6	231.8	231.8	0.0
" BG	0 5D	н	57835.53	1 56691.67	219.3	239.3	230.4	230.6	0.2
" BG	0 6D	н	57360.50	56802.66	217.2	237.2	231.4	231.6	0.2
"BG	0 7D	м	56990.40	56888.68	220.2	240.2	232.7	231.9	-0.8
"BG	0 8D	"	56717.15	5 57043.17	220.6	240.6	232.7	231.4	-1.3
"BG	0 90		56627.6.	1 57289.98	209.2	229.2	230.0	230.4	0.4
" BG	0 100		56187.75	5 5/3/6.83	230.5	250.5	231.8	232.6	0.8
" BG	0 100R		56429.85	D 5/30/.58	218.3	238.3	231.5	232.0	0.5
"BG			55010.74	4 57455.05	210.3	230.3	220.7	231.3	1.2
" " " " "		м	55023 21	1 57624 57	222 5	218 5	231.0	232.5	2.6
" " " " " " "	0 1400 9 140	н	54873 29	5 57162 45	218 1	238 1	231.0	233.0	0.6
" BG	0 15D		54868 9	5 56806 97	218 7	238.7	229.7	230.3	0.0
"BG	0 16D		55158.28	B 56518.41	217.3	237.3	230.8	230.5	-0.3
"BG	0 17DR	н	55328.25	5 56331.59	216.9	236.9	232.0	230.5	-1.5
"BG	0 18D	н	55624.78	8 56264.47	219.6	239.6	231.9	231.2	-0.7
"BG	0 20D		55885.97	7 55556.90	216.3	236.3	233.9	232.9	-1.0
" BG	0 21D		56178.17	7 55214.98	217.7	237.7	234.8	234.1	-0.7
" BG	0 22D		56474.30	0 54941.13	194.2	214.2	232.6	233.3	0.7
"BG	O 22DR		56485.97	7 54927.71	219.2	239.2	236.0	235.4	-0.6
"BG	0 22DX		56445.03	3 55027.38	217.9	237.9	233.9	235.1	1.2
" BG	0 23D	a	56732 35	5 54636 72	222 0	242 0	235 8	236 3	0 5
"BG	0 24D	17	56984.54	4 54352.38	221.0	241.0	236.8	237.9	1.1
"BG	0 26D	H	54075.62	2 57133.55	213.4	233.5	227.7	229.6	1.9
"BG	0 27D	н	53654.23	3 56762.35	209.3	229.3	227.4	227.7	0.3
" BG	O 28D	"	53368.39	9 56486.76	210.1	230.1	226.1	226.3	0.2
" BG	O 29D	H	53068.49	9 56800.16	208.5	228.5	226.1	227.9	1.8
" BG	0 30D	н	53375.39	9 56321.08	207.8	227.8	225.5	225.8	0.3
" BG	0 31D	"	53668.33	3 56051.90	211.1	231.1	226.4	225.6	-0.8
" BG	0 32D		54014.20	0 55714.31	214.5	234.5	227.5	225.9	-1.6

Table F-2. Summary of Group Statistical Parameters	ers (Continuea)
--	-----------------

" BGO	33D "	54395.96	55369.09	213.1	233.1	229.9	226.6	-3.3
"BGO	34D "	54724.82	55053.93	212.7	232.7	232.7	227.7	-5.0
"BGO	35D "	55129.57	54678.78	219.4	239.4	234.5	229.1	-5.4
"BGO	360 "	55411.89	54412.06	223.3	243.3	236.6	230.1	-6.5
" BGO	37D "	55755.24	54080.42	226.1	246.1	237.9	231.5	-6.4
" BGO	380 "	55980.48	53867.44	222.3	242.3	235.2	232.3	-2.9
"BGO	390 "	56300 85	54059 22	224 7	244 7	234.6	234.5	-0.1
"PCO	400 "	53706 79	57209 70	216 6	226 5	222 2	230.3	8.1
BG0	400 "	57020 /5	571/0 30	223 4	223.2	232 5	231 8	-0.7
	440	57656.45	56055 15	209 6	200.4 229 K	222.5	228 8	1 1
"BGO	450	53536.50	54729 97	209.0	222.0	234 5	228.0	-6.4
"BGO	49D "	54770.07	54756.57	218.5	220.5	225 0	225.2	0.4
"BGO	500	55090.50	54575 22	200.0	240.1	225.0	225.0	0 1
"BGO	510 "	56000 05	55201 33	210.1	230.1	233.2	233.0	-0.6
"BGO	52D 52D "	55655.55	56077 92	219.4	235.4	229.0	233.0	19
BGU	10 "	54401.90	50977.02	223.3	243.3	222.1	222.0	0 1
"BGX	10 °	57752.10	57055.05	214.7	234.7	229.5	229.0	-2 5
"BGX	90 "	58652.02	56986.80	212.4	232.4	220.5	224.0	-2.5
"BGX	10D "	58733.61	56200.00	216.2	236.2	225.4	227.1	1.7
" BGX	11D "	58370.03	55374.96	216.7	236.7	235.3	233.3	-2.0
" BGX	12D "	58275.90	54485.29	223.7	243.7	238.8	238.8	0.0
" BRD	1 "	24686.69	42660.07	148.9	178.9	167.1	177.3	10.2
"BRD	2 "	24812.76	42871.28	148.5	178.5	169.3	178.1	8.8
" BRD	3"	24954.28	42662.69	158.5	188.5	169.9	180.1	10.2
" BRD	5D "	24681.93	42758.41	148.4	168.4	166.8	176.9	10.1
"BRR	1D "	50002.58	59264.14	200.4	220.4	217.1	214.2	-2.9
" BRR	2D "	49740.61	59387.51	196.1	216.1	215.5	211.7	-3.8
" BRR	3D "	49633.17	59376.50	197.1	217.1	215.2	211.1	-4.1
" BRR	4D "	49528.48	59360.11	198.7	218.7	215.1	210.5	-4.6
"BRR	5D "	49415.56	59288.22	202.1	222.1	214.9	210.2	-4.7
" BRR	7D "	50143.22	59444.34	201.9	221.9	217.9	214.5	-3.4
" BRR	8DR"	49620.92	59613.22	204.0	219.0	214.3	209.7	-4.6
"CBR	1D "	48664.46	42224.29	230.9	250.9	253.5	262.5	9.0
"CBR	2D "	48528.64	42201.43	233.8	253.8	252.9	262.1	9.2
"CBR	3D "	48467.37	42234.49	234.1	254.1	253.0	261.9	8.9
"CCB	1 "	44003.41	48346.16	198.4	228.4	226.1	238.8	12.7
"CCB	2 "	43881.49	48236.71	198.6	228.6	222.5	238.8	16.3
"CCB	3 "	43967.36	48097.21	205.6	235.6	225.1	239.8	14.7
"CCB	4 "	44164.05	48180.84	211.2	241.2	226.1	240.3	14.2
"CDB	1 "	43158.97	50648.13	195.7	216.6	213.9	223.6	9.7
"CDB	2 "	43072.00	50565.10	195.1	216.1	214.9	223.7	8.8
"CMP	11D "	47610.19	33296.80	209.5	229.9	221.2	234.4	13.2
"CMP	14D "	46762.01	34392.70	204.1	224.5	216.2	211.6	-4.0
"CMP	15C "	46865.00	33346.32	220.6	250.6	239.6	234.5	-5.1
"CMP	16C "	47835.75	33352.73	215.6	235.6	223.5	233.7	10.2
"CMP	30D "	47226.07	33625.65	211.6	231.6	221.1	228.8	7.7
"CMP	32D "	48177.29	33934.12	218.6	228.6	220.9	0.0	-220.9
"CRP	1 "	42103.71	52000.00	187.8	217.8	207.9	207.9	0.0
"CRP	2 "	42157.12	52423.62	171.8	201.8	207.1	204.3	-2.8
"CRP	3 "	41750.56	52124.11	184.0	214.0	207.8	204.7	-3.1
"CRP	3D "	41768.04	52149.12	194.3	214.3	207.4	204.7	-2.7
"CRP	4 "	41803.23	51889.94	180.7	210.7	207.9	206.9	-1.0
"CRP	5D "	42229.13	51903.38	194.6	214.6	211.6	209.5	-2.1
"CRP	6DR"	41693.10	51774.41	194.2	214.2	210.5	207.3	-3.2
"CRP	7D "	41940.04	52626.90	188.0	208.0	206.5	201.4	-5.1
"CRP	8D "	41435.10	52175.72	191.0	211.0	207.6	202.3	-5.3
"CRP	9D "	42089.59	52554.22	191.4	211.4	207.1	203.0	-4.1
"CRP	10D "	41567.41	52504.81	189.5	209.5	205.0	200.3	-4.7
"CRP	11D "	41920.37	52137.09	193.7	203.6	206.9	205.7	-1.2
"CSA	1 "	46385.49	44128.63	232.0	262.0	243.3	255.9	12.6
"CSA	2 "	46396.93	44078.56	218.2	248.2	243.7	255.7	12.0

	T	able F-2.	Summary of	Group S	Statistical	Parame	eters (Cor	ntinued)
• <u> </u>								
"CSA 3	з н	46343.87	44047.31	218.6	248.6	243.0	255.6	12.6
"CSA 4		46317.09	44116.08	218.4	248.4	242.7	255.4	12.7
"CSB 1	Α "	42479.31	50872.75	194.9	224.9	213.2	218.8	5.6
"CSB 2	2A "	42252.86	50631.76	192.6	222.6	210.5	219.0	8.5
"CSB 3	BA "	42117.61	L 50737.59	193.0	223.0	210.4	217.6	7.2
"CSB 4	IA "	42125.10	50916.14	188.0	218.0	210.6	216.4	5.8
"CSB 5	5A "	42164.95	551101.71	185.9	215.9	210.7	215.3	4.6
"CSB €	5A "	42417.14	51110.26	189.8	219.8	211.1	216.7	5.6
"CSD 1	י מו	46660.50) 45549.91	238.4	273.4	244.9	254.8	9.9
"CSD 2	י חי	46607.64	45428.65	233.8	258.8	248.9	254.9	6.0
	ים. וח יי	46528 06	5 45463.56	213.5	263.5	244.0	254.4	10.4
"CSD E	י סו	46386.31	45546.03	226.8	256.8	243.1	254.1	11.0
"CSD (יי תו	46299.69	45447.80	226.2	256.2	243.2	254.1	10.9
"CSD 1(י תו	46270 84	45467 42	224.5	254.5	243.1	254.0	10.9
	על יי תו	46408 43	46319 64	220 9	250.9	243.0	, 252.3	9.3
	י חל	46380 10	4535278	224 5	254.5	243.6	254.4	10.8
	עט יי תוג	46092 11	45304 73	202 4	252.4	242.4	253.5	11.1
CSD IS	ענ יי תו	40092.11	1 44835 79	202.4	248 2	243 4	253.5	10.1
	י תנ	45755.00	5 43247 88	235 2	255 2	251 0	257.5	6.5
	5D 1 "	40097.20		232.0	262 0	251 0	262 0	11.0
"CSO 1	ב אי כ	48409.42	7 42958 61	209 7	239 7	252.2	261.6	9.4
"CSU 2	<u>с</u> 1 и	40331.3	x 42550.01	202.7	267 2	256 1	258 5	2.4
"CSR I	L N	49477.30	169/959	237.2	267.2	250.1	256.0	1 6
"CSR 3	2 4 11	10079 4	40049.00	230.1	267.6	254.4	259.0	3 3
"CSR 4	±	490/0.44	E E7122 AE	257.0	207.0	270.4	200.4	-270 4
"F 10	י ע יי גר	49402.30	5 57132.45 n 56239 90	19/ /	270.5	203 8	197 0	-6.8
	5A 1 "	5/325 /	J 58788 57	215 4	235 4	228.3	231 5	3.2
FAD I	1 7 "	54323.4	8 58420 90	216 5	236 5	229.1	232 3	3.2
FAD 2	2. 1 "	54128 5/	4 58611 44	210.3	234 2	228 5	232.1	3.6
"FAD	± २ "	54769 4	1 58918 61	224 8	254.8	229.1	231.2	2.1
"FAC (4 "	54959 0	5 59088.39	207.8	237.8	228.5	226.9	-1.6
"FAC	- 5 "	54677.7	3 58878.80	214.0	234.0	224.9	229.9	5.0
"FAC	5 P "	54794.4	1 59074.22	225.7	235.7	230.0	230.4	0.4
"FAC (6 "	54804.9	5 59024.23	216.2	236.2	220.7	229.6	8.9
"FAC	- 7 "	54824.0	3 59014.45	215.7	235.7	223.2	229.4	6.2
"FAC	8 "	54826.8	6 58980.62	216.0	236.0	227.2	229.6	2.4
"FAL	2 "	53282.7	3 59452.99	206.6	238.0	217.1	229.4	12.3
"FC	1D "	52956.6	8 61011.23	217.2	222.2	223.6	220.4	-3.2
"FCA	1N "	53370.4	6 60257.73	296.8	298.3	299.3	0.0	-299.3
"FCA	2C "	53251.8	4 59525.09	295.3	299.3	298.0	0.0	-298.0
"FCA	2D "	53254.7	3 59524.27	219.0	239.0	225.0	230.3	5.3
"FCA	י ת9	53335.5	9 59818.59	221.9	241.9	225.3	229.0	3.7
"ECA	ייסח	53338 6	9 59826 41	207 7	227 7	224 0	227.8	3.8
FCA :	9DR 07 "	52106 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	207.7	241 0	225 3	228 7	3 4
FCA I	0A 0C "	53329 2	6 59862 87	295 9	298 4	303.0	0.0	-303.0
"FCA 1	00 00 "	53342 7	3 59857.45	219.5	239.5	226.4	228.8	2.4
"FCA 1	6A "	53237.0	5 60145.21	215.1	235.1	225.2	227.1	1.9
"FCA 1	6B "	53238.8	9 60143.29	295.3	299.3	298.0	0.0	-298.0
"FCA 1	 6D "	53384.2	5 60112.90	221.1	241.1	225.0	227.4	2.4
"FCA 1	 6ጥ "	53246 7	2 60141 62	291.3	292.8	297.6	0.0	-297.6
"ECA 1"	91 910 "	53253 5	8 59500 00	209 7	229.7	217.2	229.8	12.6
"FCR	1 "	54082 4	3 57855 31	205.6	235.6	230.2	230.9	0.7
"FCR	- 4 "	53810.9	0 57856.79	204.5	234.5	228.2	230.9	2.7
"FCB	5 "	53914.5	1 57540.54	217.1	237.1	228.8	232.2	3.4
"FCB	- 6 "	53894.3	9 57636.32	215.1	235.1	229.1	232.2	3.1
"FCB	7 "	54182.1	8 57914.36	218.3	238.3	231.0	233.1	2.1
	1D "	52405.6	2 57526.96	206.9	226.9	223.5	228.3	4.8
ግግግግ"	 20 "	52068 9	7 57476 04	209.5	229.5	222.2	226.7	4.5
"FET"	יי תצ יי תצ	52094 8	7 57383 84	203.0	223.0	222.4	226.2	3.8
"FET	4D "	52215.1	2 57356.54	205.1	225.1	222.7	226.8	4.1

_

T	able F-2. Su	immary of	Group S	Statistical	Parame	eters (Con	ntinued)
		E7060 11	100 0	210 0	214 7	219 6	3 0
"FIW ID"	50556.20	57005.22	190.9	210.9	214.7	210.0	3.7 1 7
"FIW IID"	50511.00	5735.04	194.0	214.0	210.0	210.3	1.7
"FIW ZMD"	49714 66	57757.40	175 4	105 /	215.2	210.0	12 7
"FOB ID "	48/14.00	55900.09	175.4	195.4	203.4	190.7	-12.7
"FOB 2D "	48260.19	56167.31	102 4	195.5	204.7	192.2	-12.5
"FOB 3D "	4/858.85	56421.32	183.4	203.4	205.0	194.9	-10.1
"FOB 4D "	48169.62	56653.25	1/4.0	194.1	206.0	198.9	-7.1
"FOB 7D "	49400.09	58083.79	193.9	213.9	211.7	212.4	-0.7
	49037.51	57640.02	107 6	211.4	210.0	209.9	-0.7
	49002.03	57000.20	192.0	212.0	213.1	214.0	2.2
"FOB IID	10050 11	57205.50	179.0	100 2	210.1	210.9	_1 9
"FOB 12D "	48850.11	57700.96	1/9.3	199.5	209.0	208.0	-1.0
"FRB 4 "	52732.71	5/366.03	214.6	229.6	223.0	229.3	6.3
"FSB OPD"	48694.84	56663.20	171.6	215.3	207.4	201.7	-5.7
"FSB 50PD"	48729.85	56708.61	174.7	219.8	207.1	202.4	-4.7
"FSB 76 "	50531.29	57900.83	197.0	227.0	217.8	218.5	0.7
"FSB 77 "	49659.91	57051.23	186.4	216.4	212.0	210.2	-1.8
"FSB 78 "	49047.52	56807.83	187.7	217.7	208.5	205.3	-3.2
"FSB 79 "	48794.18	55736.19	174.1	204.1	201.9	189.5	-12.4
"FSB 87D "	49136.71	57629.55	187.4	216.8	213.8	209.9	-3.9
"FSB 88D "	50558.40	57363.65	202.1	222.1	215.8	217.1	1.3
"FSB 89D "	50356.09	5/331.51	201.9	221.9	215.2	215.8	0.6
"FSB 90D "	50129.62	57204.42	205.1	225.1	215.0	214.0	-1.0
"FSB 91D "	49904.56	57079.18	200.9	220.9	213.4	212.1	-1.3
"FSB 92D "	49490.42	5/001./9	201.7	221.7	211.7	209.5	-2.2
"FSB 93D " "970 9930	49354.04	56609.80	197.9	217.9	210.5	207.7	-2.0
"FSB 94DK "FSB 95D "	49007.01	57049 06	207 8	203.4	209.9	200.0	-208 8
"FSB 95DR"	48929 85	57065 63	187 0	207 0	210.2	206 5	-3 7
"F3B 93DK	48950 80	57262 79	196 9	216 9	210.2	200.5	-2.8
"FSB 98D "	49121 97	57413.49	200.3	220.3	212.0	209.4	-2.6
"FSB 99D "	49399.05	57681.54	198.1	218.1	211.9	211.7	-0.2
"FSB104D "	47971.22	56117.73	190.4	210.4	204.4	0.0	-204.4
"FSB105D "	48823.22	57346.54	203.7	223.7	208.3	207.7	-0.6
"FSB105DR"	48833.62	57358.44	188.5	208.6	210.6	207.4	-3.2
"FSB106D "	49390.58	56151.16	202.9	222.9	207.3	0.0	-207.3
"FSB107D "	50097.00	57007.19	200.9	220.9	213.5	212.8	-0.7
"FSB108D "	50314.94	58068.57	203.8	223.8	217.5	217.8	0.3
"FSB109D "	49591.36	57808.53	205.8	225.8	213.1	213.3	0.2
"FSB110D "	48906.27	56254.41	191.1	211.1	205.4	197.5	-7.9
"FSB111D "	50497.87	57132.28	201.7	221.7	215.2	215.7	0.5
"FSB112D "	47580.74	56567:24	188.9	208.9	205.9	195.8	-10.1
"FSB113D "	49834.16	56017.82	189.6	209.6	207.3	201.6	-5.7
"FSB114D "	50967.90	56925.74	197.7	217.8	216.9	217.4	0.5
"FSB115D "	48150.84	54688.25	182.5	191.3	191.3	185.3	-6.0
"FSB116D "	49078.92	54719.06	186.4	195.1	191.8	0.0	-191.8
"FSB117D "	49218.37	56062.42	189.7	209.7	205.1	196.8	-8.3
"FSB118D "	50121.08	56512.06	191.3	211.3	211.4	209.2	-2.2
"FSB119D "	49439.73	56556.50	193.1	213.1	208.1	205.6	-2.5
"FSB120D "	48235.70	57803.07	196.5	216.5	209.2	205.6	-3.6
"FSB121DR"	47431.08	57547.99	191.3	211.3	206.9	201.1	-5.8
"FSB122D "	46940.61	56337.10	186.6	206.6	203.5	189.2	-14.3
"FSB123D "	50541.46	56284.49	194.1	214.1	212.1	209.0	-3.1
"FSB150PD"	48579.67	56755.77	176.2	221.3	207.0	202.0	-5.0
"FSL 1D "	52707.36	60425.06	208.5	228.6	224.5	224.1	-0.4
FSL 2D "	52421.17	60049.76	208.7	228.8	224.8	226.0	1.2
"FSL 3D "	51921.73	59265.15	205.9	226.0	222.5	226.7	4.2
"FSL 4D "	51627.03	59008.00	204.0	224.1	217.1	225.6	8.5
"FSL 5D "	51222.93	58680.16	203.5	223.7	220.4	223.4	3.0
"FSL 6D "	50985.96	58408.90	202.1	222.1	219.8	222.0	2.2

		J	able F-2. St	immary of	Group St	austical	rataille		(initiaeu)
" E CT	70	н	50664 69	58062 83	199 5	219 6	217.9	219.7	1.8
101	20		50004.05	50002.05	202 7	222.0	217 2	219 0	1 8
"FSL	80		50635.20	57789.90	202.7	222.0	216 2	219.0	1 8
"FSL	9D		50605.41	5/503.53	201.4	221.5	210.2	210.0	1.0
"FSS	1D	н	52801.47	56514.53	209.9	229.9	223.5	225.8	2.3
"FSS	2D	н	52790.27	56359.37	204.4	224.4	222.7	224.7	2.0
"FSS	3D	u.	52397.74	56296.61	205.8	225.8	220.4	222.5	2.1
"ESS	4D		51860.55	57000.99	202.6	222.6	218.7	223.5	4.8
" E'TE	2	н	52624 70	58676 94	219.4	239.4	224.9	230.7	5.8
1.11	2		52521.70	E0E01 71	210 2	221 2	223 1	220 3	69
" F'I'F	3		52574.12	50504.74	210.2	221.2	223.4	220.5	6.5
"FTF	4	"	52575.72	584/9./1	216.6	236.6	224.0	230.0	0.0
"FTF	5	۳	52457.78	58405.31	215.3	235.3	224.0	230.1	6.1
"FTF	6	н	52377.87	58540.68	216.9	236.9	223.9	229.8	5.9
דרד "	7	н	52422.54	58617.58	222.1	226.1	223.6	230.0	6.4
 ਸ਼ਾਨਾਜ਼ "	8		52414 24	58721.88	219.6	239.6	227.1	230.0	2.9
* 505	å		52160 67	58925 65	216 4	236.4	223.6	228.7	5.1
1000	10	н	52260.07	59753 89	215 1	235 1	224 2	229 2	5 0
FIF	10		52202.09	50755.05	215.1	222.1	224.2	222.2	3.0
"FTF	11		52077.61	58634.46	215.0	235.0	224.0	220.5	1 4
"FTF	12		52008.76	58/92.94	215.0	235.0	226.7	228.1	1.4
"FTF	13		52306.70	58030.74	216.1	236.1	225.2	229.2	4.0
"FTF	15	н	52455.01	58095.52	197.5	227.5	225.1	229.0	3.9
"FTF	16	н	52117.99	58194.35	203.8	233.8	223.2	228.2	5.0
"FTF	17		52145.67	58304.40	200.6	230.6	222.9	228.3	5.4
 ਜਿੰਧਾਜ "	18		52158.40	58387.36	202.3	232.3	223.1	228.5	5.4
" ፑጥፑ	19	н	51992 27	58610 07	198.3	228.3	222.2	227.6	5.4
"EQE	20	н	51700 80	5852/ 11	198 3	228 3	221 7	226 7	5 0
FTF	20		51755.00	50324.11	100.7	220.5	221.7	220.1	3.5
"FIF	21		51707.59	50575.54	212 6	220.7	222.5	220.4	5.0
" F.I.F.	22		51/39.79	58207.27	212.0	242.0	221.0	220.0	5.0
"FTF	23	н	51872.76	58096.39	201.2	231.2	222.1	220.0	4.7
"FTF	24A	•	52124.69	58702.05	212.7	232.1	222.4	228.0	6.2
"FTF	25A		52221.44	58734.44	212.8	232.8	223.1	229.0	5.9
"FTF	26		52215.85	58675.92	206.3	226.3	223.1	228.7	5.6
"FTF	27	"	52160.35	58664.41	213.5	243.5	223.2	228.8	5.6
" H	6	"	56466.89	52414.35	225.2	235.2	231.0	231.3	0.3
"Н	7		56455.12	52355.62	224.9	234.9	229.0	230.3	1.3
"H	8	н	56285.76	52050.36	218.4	228.4	227.0	224.4	-2.6
"H	9	н	56317.35	52000.00	207.4	217.4	226.8	223.9	-2.9
 "ਸ	10		55881 94	52127.81	222.5	232.5	227.3	223.7	-3.6
 "ប	11	п	55830 90	52096 44	212 0	222 0	227.7	222.7	-5.0
	107		55050.90	51066 00	212.0	222.0	22/11	0.0	-22/1 1
"H	18A		55351.00	51900.92	217.5	227.5	224.1	0.0	222.1
"H	19	н	55081.94	52120.99	219.6	221.1	223.8	0.0	-223.8
"HAA	1D	ы	60573.75	49343.38	261.8	281.8	276.4	285.1	8.7
"HAA	2D	м	59097.23	50767.79	260.3	280.4	276.5	278.2	1./
"НАА	3D	"	58123.23	51458.39	246.7	266.7	265.4	263.3	-2.1
"HAA	4D	"	59988.35	51884.83	255.7	275.7	269.9	264.7	-5.2
"HAA	6D	"	61791.83	50700.99	247.1	267.2	265.1	261.6	-3.5
"HAC	1	Ħ	59513.05	51932.39	258.8	278.8	269.4	265.8	-3.6
"HAC	2	"	59476.04	51990.55	258.8	278.8	269.0	265.0	-4.0
" HAC	3	"	59416.25	51965.64	255.0	275.0	269.1	265.3	-3.8
"HAC	4		59460.26	51891.78	254.1	274.1	269.6	266.3	-3.3
"HAP	1		61253.46	50579.78	256.3	276.3	270.8	269.6	-1.2
"НАР	2	н	61353.75	50469.62	243.8	263.8	270.3	267.6	-2.7
"HC	ת 1		59866 62	51422 74	206.5	211.5	268.2	266.1	-2.1
10	10		5000.02	51402 24	250.5	256 5	275 0	271 2	-3 8
" HC	15		57003.00	51463.30	205 7	230.3	213.0	271.2	_3 0
"HC	2E		59868.65	51461.16	205.7	210.7	207.5	202.1	-3.0
"HC	2F	н	59867.82	51457.24	250.7	255./	2/4.3	270.8	-3.5
"HC	6B		60149.18	51775.71	210.2	215.2	268.9	261.5	- / . 4
"HCA	1		61242.75	51923.26	253.7	273.7	269.4	260.6	-8.8
"HCA	2		61027.49	51707.50	242.0	273.4	270.2	262.1	-8.1
"HCA	3	н	61269.49	52050.48	253.8	273.8	269.2	259.9	-9.3
"HCA	4	μ	61080.70	51959.75	241.9	273.3	269.3	260.6	-8.7

• .

"HSB117D "

"HSB125D "

"HSB126D "

"HSB127D "

53510.12

56603.94

55040.55

54789.02

]	Fable F-2.	Summary of	Group	Statistical	Parame	eters (Con	tinued)
.								
"HCB 1		61809.86	5 50683.36	222.6	252.6	263.6	260.4	-3.2
"HCB 2	н	61660.45	5 50574.96	239.9	269.9	268.1	262.9	-5.2
"HCB 3	н	61740.10	50362.86	233.6	263.6	266.6	262.9	-3.7
"HCB 4		61901.99	9 50477.10	235.9	265.9	264.5	260.8	-3.7
"HET 1	Ð "	58616.55	5 51895.27	240.3	260.3	267.7	263.5	-4.2
"HET 2	י מ	58186.8	52045.60	239.7	259.7	258.5	256.0	-2.5
"UEM 3	ש יי ת	58220 83	2 52128 23	239 9	259 9	258 9	255.6	-3.3
	יי מ	50220.0	5 52120.25	239.5	259.5	259.2	255 7	-35
	ש יים	50255.12	5 50996 12	255.5	255.0	271 2	269 3	-1 9
"HHP I	י ע.	50413.10		200.4	209.9	271.2	202.5	03
HHP 2	ש	50047.20	5 = 50005.50	203.2	272.2	2721 0	274.4	3.5
"HIW I	10"	50/11.0.		213.0	220.0	231.3	235.7	3.0
"HIW I	PD"	56725.0	5 52900.00	214.9	239.7	232.4	235 6	37
"HIW I	יעץ. שיים	56030.3	5 53976 50	210.9	240.5	2291.2	229.0	-0.7
"HIW 2	י ע	551/0.54	2 53570.30	210.9	230.0	220.5	222.0	-2.2
HOB 1	"ע	55264.0. EEEAE E	D 53072.00	204.2	224.2	230.5	220.5	0 1
HUB 2	ע.	55555.50	0 53420.30 0 53707 04	200.4	220.4	220.5	222.0	2 2
"HOB 3	י ע	56545 2	5 52767.04	207.7	227.7	229.1 229.1	231.3	2.2
"HUB 4	ייע	56545.5	52017.01 5 51204 47	196 9	196 9	229.5	205.2	-0.7
HOB 0	שי	55275.1	5 51204.47	100.9	217 4	207.1	216 1	-4 7
"HOB /	י עי יי	59112 20	52115.50	200 4	217.4	220.0	257 5	-2.2
HUD2 12		59094 44	0 51702 80	200.4	234.8	258.8	254 9	-3.9
"UDO 11		57651 3	6 52097 77	203.1	234.0	230.0	246 0	-0.2
"UD0 17		57392 21	5 51983 55	207.5	235.9	239 8	240.0	2 4
- HRO 12 		57317 1	5 51774 08	200.5	233.5	237.8	240 4	2.6
"HR8 14	н	57595 5	8 51583 84	202.3	231 9	243.9	248.0	4.1
"HCB 65		56647 9	8 52801 67	212 4	242 4	232 5	235.1	2.6
"HSB 65	, 	56665 6	6 52812.22	207.8	218.6	232.5	234.6	2.1
"HSB 66	,	55177.8	9 53117.82	198.1	228.1	224.7	225.4	0.7
"HSB 67	, н	56449.0	4 51902.78	200.7	221.6	223.3	222.9	-0.4
"HSB 68	3 "	54963.8	1 52241.99	213.3	238.5	221.6	214.7	-6.9
"HSB 69) "	54551.1	5 52349.03	199.0	227.8	219.4	212.9	-6.5
"HSB 70) "	54070.9	9 53534.77	205.7	235.7	223.9	219.5	-4.4
"HSB 71	. "	53657.7	0 53897.63	204.8	234.8	224.0	217.7	-6.3
"HSB 83	D"	56648.1	6 51986.31	198.7	225.2	224.8	226.8	2.0
"HSB 84	D "	54436.3	8 52411.25	199.5	219.5	218.9	212.4	-6.5
"HSB 85	ic "	57438.3	5 54041.12	214.2	224.2	238.7	239.5	0.8
"HSB 86	5D "	54285.7	6 53402.43	206.6	236.6	223.5	220.6	-2.9
"HSB100)D "	56931.7	6 52381.69	216.9	236.9	233.5	236.1	2.6
"HSB100	PD"	54436.5	1 52269.53	195.0	214.9	217.4	209.9	-7.5
"HSB101	D "	56718.2	1 52349.07	216.1	236.1	230.8	233.1	2.3
"HSB102	2D "	56511.8	4 52346.83	216.3	236.3	228.2	230.5	2.3
"HSB103	D "	56360.0	0 52006.67	213.7	224.7	225.6	223.5	-2.1
"HSB104	lD "	56080.1	3 51843.39	210.6	224.6	224.9	220.6	-4.3
"HSB105	5D "	55903.6	6 51967.39	211.8	230.9	225.3	221.8	-3.5
"HSB106	5D "	55732.9	0 52282.78	210.7	230.7	225.9	223.7	-2.2
"HSB107	D "	55498.9	0 52300.62	215.1	235.1	224.7	222.1	-2.6
"HSB108	3D "	55236.3	3 52347.64	212.0	232.0	223.5	219.6	-3.9
"HSB109	D "	54981.4	2 52399.37	213.0	233.0	222.8	217.9	-4.9
"HSB110)D "	54793.3	9 52541.16	211.4	231.4	222.1	218.4	-3.7
"HSB111	LE "	54643.2	2 52723.98	211.7	231.7	222.0	218.7	-3.3
"HSB112	2E "	54606.0	4 52970.91	211.7	231.7	222.5	220.5	-2.0
"HSB113	3D "	54404.2	8 53152.93	216.2	236.2	222.5	220.2	-2.3
"HSB114	1D "	54381.5	4 53333.10	212.8	232.8	223.3	221.1	-2.2
"HSB115	5D "	54357.2	7 53530.56	213.9	233.9	223.9	222.2	-1.7
"HSB116	5D "	54355.8	2 53771.94	214.5	234.5	226.2	223.4	-2.8

220.3

200.5

197.8 217.8 218.2

53797.83 200.3

51311.10 190.5

51963.14

51862.91 199.4 219.4

223.9

221.3

205.2

215.5

225.0

205.0

208.1

-8.4

3.7

-0.2

-10.1

	Table F-2.	Summary of	Group	Statistical	Parame	ters (Cor	ntinued)
"HSB129D '	53269.76	5 52918.08	185.2	205.2	208.5	201.6	-6.9
"HSB130D '	52603.43	1 51955.69	182.1	202.1	200.2	202.9	2.7
"HSB131D '	54712.33	3 51106.47	195.7	203.0	205.2	203.3	-1.9
"HSB132D '	56808.4	7 51790.09	206.5	226.5	221.3	227.8	6.5
"HSB133D '	57203.40	0 52190.74	208.5	228.5	235.1	238.6	3.5
"HSB134D '	56264.22	2 51647.94	205.8	218.9	222.3	218.6	-3.7
"HSB135D '	54595.92	2 52185.96	199.9	219.9	218.3	210.4	-7.9
"HSB136D '	54104.0	7 52811.18	200.2	220.2	220.8	212.7	-8.1
"HSB137D '	53941.30	6 53227.00	205.3	225.3	222.2	215.7	-6.5
"HSB138D '	53698.7	1 54179.56	208.1	228.1	223.7	219.7	-4.0
"HSB139D '	55354.5	7 51755.32	206.7	222.0	222.6	212.5	-10.1
"HSB140D '	54320.6	5 50853.37	194.1	214.1	213.6	206.5	-7.1
"HSB141D '	57112.6	7 51433.96	217.8	233.7	241.2	233.9	-7.3
"HSB142D	" 51959.92	2 54500.90	189.7	192.3	198.0	192.3	-5.7
"HSB143D	51390.3	0 55277.30	196.9	216.9	213.1	200.7	-12.4
"HSB146D	. 56300.9	9 50875.82	204.0	224.1	222.4	220.7	-1.7
"HSB147D '	54369.3	5 54719.63	215.2	235.2	231.3	226.6	-4.7
"HSB148D	• 53168.04	4 51226.05	198.1	218.1	213.3	207.8	-5.5
"HSB149D	55301.3	6 51976.82	207.0	227.0	222.4	215.1	-7.3
"HSB150D	56750.6	8 52030.46	206.9	226.9	226.9	229.2	2.3
"HSB151D	52457.6	2 54277.34	197.6	204.4	207.3	199.5	-7.8
"HSB152D	52580.9	6 53242.99	197.0	200.1	205.6	0.0	-205.6
"HSL 1D	57079.0	6 52458.54	219.8	239.8	235.3	238.6	3.3
"HSL 2D	57568.9	9 52365.85	225.2	245.3	241.9	245.1	3.2
"HSL 3D	57921.1	3 52353.06	233.7	253.8	250.3	249.1	-1.2
"HSL 4D	58355.7	0 52467.41	245.0	265.1	261.9	252.8	-9.1
"HSL 5D	58542.1	0 52538.71	247.8	267.7	266.0	253.5	-12.5
"HSL 5D	58542.1	0 52538.71	242.6	247.7	266.0	252.9	-13.1
"HSL 6D	" 58749.8	8 52594.22	243.9	264.0	260.0	253.7	-6.3
"HSL 6D	58749.8	8 52594.22	239.4	243.9	260.0	253.1	-6.9
"HSL 7D	58940.6	4 52568.70	242.3	262.4	259.8	254.7	-5.1
"HSL 8D	• 59328.9	8 52500.00	248.4	268.4	260.7	257.2	-3.5
"HSS 1D	" 61753.9 " 61953.9	8 46/93.4/	236.5	256.5	208.8	277.5	8.7
"HSS 2D	" 61808.9	8 40521.70 0 47410 40	234.5	204.0	207.9	270.3	-2 /
"HSS 3D	" 61921.7 " 60062 0	0 4/419.48	202.0	202.0	201.9	279.3	-2.4
"HTF 1	" 60062.0 " 60120 6	4 51300.10 1 E100E 60	230.9	250.9	272.7	270.0	-3.2
"HTF Z	" 60139.0 " 60015 9	L 51225.00	237.0	257.0	274.3	271.1	-3 2
HIF 4	" 60030 2	9 51024 00	255.2	284 3	277 2	277 6	0.4
HIF J	" 60118 4	8 50871 33	263 6	283.6	276.1	278.4	2.3
"HTF 7	" 59978 1	9 50769.26	263.5	283.5	275.9	279.9	4.0
"HTF 8	<pre>" 59863.5</pre>	1 50936.77	263.6	283.6	273.7	278.6	4.9
"HTF 9	" 59681.7	7 51365.93	245.8	265.8	273.5	272.3	-1.2
"HTF 10	" 59791.2	6 51207.71	245.2	265.2	273.2	273.5	0.3
"HTF 11	" 59652.4	3 51112.49	238.9	258.9	273.9	273.5	-0.4
"HTF 12	<pre>" 59551.6</pre>	2 51258.65	242.9	262.9	273.4	272.9	-0.5
"HTF 13	59614 6	3 51588 76	262.6	282.6	274.1	271.7	-2.4
"UTE 14	" 59/93 7	5 51616 50	261 9	281 9	273 4	271 5	-1.9
- HIF 14 	= 59354 2	9 51484 61	260 7	280 7	273 4	273.2	-0.2
"HTF 16	" 60031.8	0 51800.66	248.3	268.3	269.7	265.7	-4.0
"HTF 17	" 59380.0	1 52399.25	238.4	258.4	262.4	258.3	-4.1
"HTF 18	" 59242.3	5 51581.81	251.7	271.7	271.6	270.8	-0.8
"HTF 19	<pre>" 59128.5</pre>	7 51739.61	245.7	265.7	269.0	267.9	-1.1
"HTF 20	" 59171.1	3 51905.18	251.9	271.9	267.8	266.8	-1.0
"HTF 21	<pre>" 59326.3</pre>	0 51795.42	242.6	262.6	269.4	266.7	-2.7
"HTF 22	" 60458.6	50905.75	251.4	271.4	275.4	274.9	-0.5
"HTF 23	" 60572.7	5 50881.19	256.8	276.8	274.5	274.9	0.4
"HTF 24	• 60675.6	5 50858.81	257.8	277.8	274.0	274.0	0.0
"HTF 25	• 60770.5	3 50697.25	252.5	272.5	274.6	274.2	-0.4
"HTF 26	" 60658.3	4 50584.51	255.5	275.5	275.4	276.9	1.5

<u>_</u>	Table F-2.	Summary of	Group S	tatistical	Parame	ters (Co	ntinued)
							<u> </u>
"HTF 27 "	60500.00	50584.74	259.1	279.1	276.7	278.8	2.1
"HTF 28 "	60362.69	50636.52	251.9	2/1.9	275.8	277.7	1.9
"HTF 29 "	60295.24	50804.00	259.9	289.9	275.6	277.8	2.2
"HTF 31 "	60437.03	50280.18	246.7	266.7	275.6	279.1	3.5
"HTF 32 "	60607.03	50380.63	251.1	271.1	274.7	278.2	3.5
"HTF 34 "	59850.54	50810.81	251.7	271.7	275.6	277.7	2.1
"HWP 1D "	57981.82	52244.65	239.9	249.9	245.2	250.8	5.6
"HWP 2D "	58090.42	52436.40	253.0	260.7	262.5	0.0	-262.5
"HWS 1A "	47062.15	47130.24	225.2	255.2	244.8	251.1	6.3
"HWS 2 "	47150.77	4/010.39	215.3	245.3	245.4	251.5	6.1
"HXB I "	48433.00	42406.60	214.2	244.2	251.4	261.5	10.1
"HXB 2 "	48826.55	42646.82	212.1	242.1	252.6	262.8	10.2
"HXB 3 "	48596.18	42455.23	212.2	242.2	251.9	262.0	10.1
"HXB 4D "	48519.48	42527.26	234.9	254.9	253.6	262.2	8.0
"HXB 5D "	48394.54	42453.62	234.2	254.2	252.7	261.7	9.0
"K 301AP"	34880.17	38881.66	193.3	197.7	208.8	204.6	-4.2
"K 301P "	34699.85	38950.80	194.4	201.0	204.9	203.1	-1.8
"KAB I "	34512.97	3/703.87	194.0	224.0	205.9	207.1	1.2
"KAB Z "	34729.28	36998.69	198.6	228.6	209.9	207.7	-2.2
"KAB 3 "	34232.24	30403.51	193.0	223.0	204.1	202.7	-1.4
"KAB 4 "	34008.71	37357.00	107.0	217.0	203.2	203.1	-0.1
"KAC I "	3/1/2.33	37252.49	199.0	229.0	219.3	210.3	-3.0
"KAC 2 "	37251.77	37326.09	195.4	225.4	221.5	216.8	-4./
"KAC 3 "	37286.28	37263.85	195.8	225.8	222.0	216.6	-5.4
"KAC 4 "	37208.99	37128.67	178.0	208.0	218.1	215.4	-2.7
"KAC 5 "	37270.51	37226.21	204.3	224.3	222.4	216.6	-5.8
"KAC 6 "	37243.08	37209.62	204.6	224.0	222.3	210.5	-5.8
"KAC / "	37130.77	27216 54	203.0	223.0	219.5	210.7	-2.0
KAC O	37152.40	37210.34	192.5	212.3	221.2	210.0	-1.5
יי תכ איזי	34610 95	36668 99	184 3	194 3	203 4	204 9	1 5
"KCB 1 "	34207.66	38175.04	183.6	213.6	204.6	203.5	-1.1
"KCB 2 "	34063.53	38391.13	187.7	217.7	202.8	201.6	-1.2
"KCB 3 "	33829.55	38242.63	184.1	214.1	202.2	199.9	-2.3
"KCB 4 "	33963.75	38025.59	188.9	218.9	205.5	202.2	-3.3
"KCB 5 "	33764.06	38167.82	189.3	209.3	200.4	199.6	-0.8
"KCB 6 "	33823.71	38365.23	188.7	208.7	201.0	199.4	-1.6
"КСВ 7 "	34486.92	38097.90	196.5	216.5	205.3	206.5	1.2
"KDB 1 "	35214.96	38571.78	184.8	205.8	208.1	208.4	0.3
"KDB 2 "	35004.72	38470.07	182.5	203.5	206.7	207.6	0.9
"KDB 3 "	35130.26	38328.17	184.2	205.4	207.5	208.8	1.3
"KDB 4 "	34890.68	38371.73	189.2	209.2	206.5	207.7	1.2
"KDB 5 "	34831.09	38655.12	188.5	208.5	204.9	206.0	1.1
"KDT 1D "	35191.60	38682.66	193.7	213.7	208.1	208.3	0.2
"KRB 8 "	35269.15	39422.20	195.8	215.8	208.5	203.6	-4.9
"KRB 13 "	35054.23	39928.55	197.8	217.8	205.5	0.0	-205.5
"KRB 16D "	35354.26	39398.39	191.5	211.5	209.2	204.2	-5.0
"KRB 17D "	35080.66	40027.41	186.8	206.8	205.9	196.1	-9.8
"KRB 18D "	35196.02	40122.82	185.8	205.8	204.5	196.0	-8.5
"KRB 19D "	35327.74	40153.30	186.8	200.8	203.8	190.0	-7.0
יי כ ממאי ארב ד	37515 57	38516 00	207.U 190 0	221.0	∠⊥0.4 210 1	217.3 220 2	0.9
NNF 2 "	27502.27	30340.00	133.2 207 E	447.2 777 E	213.1 210 1	220.2	1.1 1 E
	2726.21	20202.U0 20177 75	100 7	421.3 910 m	617.1 710 7	220.0	1 1
KKP 4	3/39/.01	30421.35	100./	210./	210.3	417.4 017 5	1.1
"KRP 5 "	37048.11	38/50.66	200.8	210.8	216.0	21/.5	1.5
"KRP 6 "	37009.08	38350.12	203.1	213.1	217.4	217.9	0.5
"KRP 7 "	36699.81	38603.56	203.1	213.2	215.4	216.3	0.9
"KKP 8 "	3/110.32	38591.27	200.1	210.1 210 0	21/.2 210 /	218.1 210 7	0.9
"KSB 1 "	34608 12	38694 54	200.0 175 6	210.0	210.4	210.7	-0.2
يق مونياند	23000.14	~~~~~		202.0			v . 4

		Τa	able F-2.	Summary of	Group S	tatistical	Parame	ters (Cor	ntinued)	
				20601 50	172.0	202.0	202.0	202 5	0.2	
"KSB	2 "		34482.69	38601.79	1/3.8	203.8	203.8	203.5	-0.3	
"KSB	3 "		34429.71	38728.16	169.7	199.7	203.0	202.0	-1.0	
"KSB	4A "		34579.07	38798.85	169.6	199.6	203.2	202.6	-0.6	
"KSB	5C "		34792.85	38779.18	172.9	182.9	204.9	203.9	-1.0	
"KSB	5D "		34791.55	5 38770.15	194.5	214.5	204.5	205.3	0.8	
"KSM	1D "		35147.98	3 38726.59	193.7	213.7	208.1	207.8	-0.3	
"KSS	1D "		33704.58	3 32460.67	157.4	177.5	1/4.3	1/5.3	1.0	
"KSS	2D "		33719.14	1 31481.13	144.6	164.7	164.7	101.3	-5.4	
"LAC	1 "		44037.76	5 27687.88	191.1	221.1	216.5	217.6	1.1	
"LAC	2 "		44009.27	7 27787.58	193.4	223.4	216.1	218.2	2.1	
"LAC	3 "		43900.98	3 27679.23	190.7	220.7	210.0	210.7	0.1	
"LAC	4 "		43985.08	3 27672.80	185.3	215.3	210.1	217.0	1.9	
"LAC	5DL"		44096.56	27804.81	1/6.2	186.2	219.7	217.9	-1.8	
"LAC	5DU"	,	44089.18	3 27786.44	207.9	227.8	219.5	210.9	-0.8	
"LAC	6DL		43916.99	2//48.31	1/5.9	185.9	217.9	210.4	-1.5	
LAC	6DU"		43910.54	2 27728.93	201.7	221.7	219.0	217.5	-1.7	
"LAC	1DL.		43812.28	3 27590.94	1//.4	107.4	215.1	214.7	-0.4	
"LAC	700		43817.6.	27607.80	204.9	224.8	210.1	215.9	-2.2	
"LAC	8DL		43990.69	2/552.51	180.4	190.4	217.5	215.7	-1.0	
"LAC	800		43995.00	2/2/1.30	199.0	219.0	210.1	210.7	2 0	
" LAW	IF '		43101.80	J 27102.20	171 2	101 2	203.5	205.5	1 6	
"LAW	2C '	•	424/1./4	4 28401.16	1/1.2	191.2	209.2	210.0	11 1	
"LAW	3C '	'	45049.40	5 27858.57	194.9	214.9	235.2	224.1	-11.1	
"LBP	1D '	,	46902.24	4 30634.31	246.3	256.3	257.1	0.0	-257.1	
"LBP	2D '	•	46914.7	1 30844.84	241.9	251.9	256.1	245.8	-10.3	
"LBP	3D '		46453.50	5 30930.34	242.8	252.8	256.6	243.9	-12.7	
"LCO	1 '		43676.1.	1 27723.24	195.8	225.8	214.8	215.0	1.0	
"LCO	2		43784.8.	1 27822.41	196.6	220.0	215.1	217.0	-12 7	
"LCO	3 .		43829.2		190.3	220.3	229.1	215.4	- 12.7	
"LCO	4 5		43729.70	0 27590.57 A 27519 03	17/ 9	184 9	212.0	212 5	-0.4	
"LCO	501		43500.94	4 27519.05 1 27604 75	178 0	188 0	213 7	213.5	-0.2	
"LCO	יזס7.		43719 9	27457.02	170.2	180.2	213.3	212.9	-0.4	
"LCO	201, 108	u	44170.43	2 28014.74	178.4	188.4	220.5	219.7	-0.8	
"LCO	8000		44151.9	4 28018.67	211.1	226.1	220.6	220.9	0.3	
"LDB	1	u	43460.04	4 28472.85	185.0	215.0	216.9	218.7	1.8	
"LDB	2 '		43675.0	4 28550.75	184.5	214.5	219.0	220.2	1.2	
"LDB	3		43434.6	8 28664.71	199.3	219.3	218.5	219.7	1.2	
"LDB	4	н	43198.43	2 28449.23	200.7	220.7	216.5	217.2	0.7	
"LRP	1	н	42583.6	7 31380.70	185.8	215.8	209.1	215.9	6.8	
"LRP	2	11	42626.8	1 31171.46	184.7	214.7	209.6	216.8	7.2	
"LRP	3	•	42469.5	2 31185.16	191.4	221.4	209.4	215.9	6.5	
"LRP	4		42400.7	2 31308.77	173.3	203.3	208.6	214.3	5.7	
"LSB	1		43415.5	5 27732.52	192.7	222.7	211.6	213.8	2.2	
"LSB	2		43551.1	9 27776.17	195.0	225.0	212.4	215.1	2.7	
"LSB	3		43492.7	0 27956.99	196.6	226.6	217.2	216.1	-1.1	
"LSB	4		43266.7	9 27936.41	191.5	221.5	216.8	214.2	-2.6	
"MGA	36		56426.6	7 54360.14	234.2	254.2	237.4	235.6	-1.8	
"MGC	9	H	54500.9	4 56270.36	217.3	237.3	229.4	227.6	-1.8	
"MGC	11	н	54632.5	4 56119.91	219.2	239.2	230.7	227.8	-2.9	
"MGC	19		55156.3	4 55515.60	230.6	234.6	232.0	0.0	-232.0	
"MGC	32	••	56009.8	8 54528.57	232.0	252.0	244.9	232.8 224 5	-12.1	
"MGC	36		56279.3	6 54222.66	234.4	254.4	235.8	234.5	-1.3	
"MGE	9		54349.6	5 56142.01	218.1	238.1	228.8	220.0	-2.0	
"MGE	21		55134.3	3 55231.67	227.9	247.9	234.U	229.0	-5.0	
"MGE	30		55/32.8	3 54540.13	229.3	249.3	235.1	231.4	-4.3	
"MGE	34	•1	55995.4	7 54238.12	231.2	257.2	238.1	0.0	-238.1	
"MGG	15	11	54596.5	3 55561.90	223.3	243.3	232.5	227.1	-5.4	
" MGG	19		54861.7	6 55257.10	226.0	246.0	232.3	228.0	-4.3	
" MGG	23		55122.0	1 54954.38	227.1	247.1	235.0	228.9	-6.1	

Table F-2.	Summary of	Group Statistic	al Parameters	(Continued)

"MGG	28	н	55452.54	54568.21	230.3	250.3	235.3	0.0	-235.3
"MGG	36	11	55982.43	53952.59	232.5	252.5	237.5	0.0	-237.5
"NBG	1	"	53624.12	60472.79	200.9	232.3	224.5	221.8	-2.7
"NBG	2	н	53659.78	60260.13	203.6	233.6	225.0	223.7	-1.3
" NBG	3	81	53733.78	60080.63	202.1	233.5	217.5	224.5	7.0
"NPM	1	"	52966.40	43082.52	257.1	277.1	287.1	276.7	-10.4
"NPM	2	н	54524.03	43675.02	244.2	264.2	271.6	272.6	1.0
"NPM	3	41	51554.55	43337.43	247.2	267.2	274.4	272.5	-1.9
"NPM	4	"	53057.77	41764.52	256.7	276.7	284.2	278.8	-5.4
"NPM	19A	۳	53821.23	43736.38	248.2	268.2	270.6	273.9	3.3
"NPM	19B	н	53829.89	43745.89	217.7	227.7	268.7	272.5	3.8
"NPM	19C	н	53845.64	43737.74	193.5	203.5	267.7	271.9	4.2
"NPM	34A	н	52141.34	41848.19	279.8	289.8	290.6	0.0	-290.6
"NPM	34B	н	52153.77	41839.82	225.6	235.6	271.0	275.4	4.4
"NPM	34C	u	52166.49	41832.31	181.8	191.8	267.6	274.3	6.7
"PAC	1	н	58782.57	22820.40	253.9	283.9	284.7	275.5	-9.2
"PAC	2	н	59001.85	22757.84	247.9	277,9	271.0	274.0	3.0
"PAC	3	н	58897.00	22839.32	252.9	282.9	271.3	274.9	3.6
"PAC	4		58880.01	22750.72	250.6	280.6	284.4	274.7	-9.7
"PAC	5	н	58936.73	22806.44	255.1	275.1	275.1	274.7	-0.4
"PAC	6		58928.43	22827.02	255.2	275.2	274.6	274.8	0.2
"PRP	ם 1 ת		58209.15	25056.48	269.1	279.1	280.3	277.8	-2.5
"DRD	20		57822 47	25005 93	262 8	272 8	278 4	277 9	-0.5
	20	н	57022.47	25005.55	202.0	272.0	270.4	2779.2	-1.6
	30		5/994.88	25094.07	200.9	210.9	219.0	270.2	-1.6
"PCB	1A		56813.22	21649.15	263.5	293.5	280.7	279.1	-1.6
"PCB	2A		56603.25	21523.26	257.8	287.8	2/9.5	278.8	-0.7
" PCB	3A 42		56466.82	21//1.05	262.7	292.7	281.6	279.2	-2.4
"PCB	4A		56665.72	21003.14	202.9	292.9	273.7	279.4	-0.3
"PDB	2		56809.92	23208.82	247.7	268.7	277.9	278.2	0.3
" PDB	5		5/006.81	23196.72	248.1	209.1	278.1	278.4	0.3
" PDB	4		56681.17	231/0.89	200.2	200.2	278.9	279.1	0.2
" PDB	5 1 7		56778.08	23822.35	204.2	284.2	2//./	2/0.0	0.9
PRP	2		55518.77	25361.00	232.9	262.9	249.1	203.5	14.4
"PRP	2		55719.03	25359.02	234.1	204.1	200.0	200.4	10.9
PRP	د ۸		55017.00	25107.55	220.0	250.0	255.4	203.0	7.0
PRP	4		55608.30	23210.73	252.9	202.9	257.0	207.1	9.5
"PSB			56243.45	23437.00	257.4	207.4	276.5	277.9	1.4
"PSB	2A		56022.03	234/7.81	257.2	201.2	276.3	277.4	1.1
"PSB	JA 47		55700.43	23233.29	250.5	200.5	213.2	276.2	1.0
"PSB	4A		55448.71	23519.73	200.0	202.5	274.3	275.5	1.2
"PSB	SA C N		55063.00	23374.12	202.3	292.3	273.7	270.0	1.1
"PSB	6A 72		56043.26	23292.96	262.1	292.1	277.2	277.8	0.6
"PSB	7 A			23340.00	259.0	289.0	270.9	2/0.3	1.4
"SBG	2		63459.26	53540.40	205.9	235.9	237.8	244.2	0.4 7 2
"SBG	2 C		62201 20	52027.33	200.0	230.0	237.5	244.0	7.3
SBG	2		62072 44	52621.17	200.1	230.1	244.5	231.0	7.3
"SCA	2		63072.44	52692.94	215.9	243.9	242.2	249.0	0.0
"SCA	2		62971.90	53025.44	220.3	240.3	241.3	249.2	7.9
"SCA	3A		62973.08	53031.02	267.1	212.4	271.1	0.0	-2/1.1
"SCA	4		62942.99	52926.49	220.4	240.4	241.5	249.5	0.8
"SCA	4A		62946.34	52924.45	265.3	2/4.0	268.8	0.0	-268.8
"SCA	5		63057.97	53143./3	223.1	243.1	241.3	248.6	1.3
" SCA	6	"	62984.12	52764.09	221.3	241.1	242.0	249.6	7.6
"SLP	1	'n	62644.37	52071.80	228.0	248.0	245.1	252.4	7.3
"SLP	2	۳	62703.45	51962.12	217.7	237.7	244.7	251.5	6.8
"YSC	1D	н	65107.25	56877.04	216.8	236.8	221.3	220.9	-0.4
"Z	2	н	52002.92	56201.42	214.0	214.5	218.7	219.4	0.7
"2	3	"	50252.68	56881.07	206.6	207.1	212.6	212.8	0.2
"Z	8		50826.83	58348.05	213.6	214.1	218.9	221.1	2.2
" Z	9	N	50061.53	59626.61	207.5	227.5	214.9	212.9	-2.0

		Т	able F-2. St	ummary of G	Froup S	Statistical	Parame	ters (Cor	ntinued)
				50004 50	251 2	251 0	274 2	274 3	0.0
" Z	12		59296.96	50984.50	251.5	251.0	274.3	274.5	0.0
" Z	13	"	59996.23	50413.54	250.0	257.1	275.2	279.0	4.4 5 5
"Z	15		61604.47	52133.04	253.8	254.3	203.7	258.2	-5.5
" Z	20	*	42603.93	57478.90	173.4	193.4	184.7	180.2	-4.5
" Z	20B	••	42603.46	57483.39	175.6	195.6	190.7	180.3	-10.4
"ZBG	1	н	64508.41	55382.39	220.0	240.1	234.0	234.7	0.7
" ZBG	1A	N	64523.68	55383.54	276.0	281.0	279.9	0.0	-279.9
"ZDT	1	*	63022.32	50648.11	227.0	237.6	239.9	237.8	-2.1
" ZDT	2	"	62979.45	50710.48	225.1	243.1	241.4	241.2	-0.2
"ZW	4	н	55903.68	58318.78	229.2	239.7	232.2	232.7	0.5
"ZW	5	н	53700.74	56844.58	221.0	231.0	227.3	228.5	1.2
"ZW	6	41	51164.33	57791.21	216.7	227.2	220.2	222.7	2.5
"ZW	7	11	58470.42	52387.61	254.5	264.8	265.8	255.9	-9.9
"ZW	8	н	61562.33	50095.99	254.1	264.1	270.8	268.0	-2.8
"ZW	9		59712.09	52940.43	242.4	252.4	252.0	253.8	1.8
"ZW	10		61671.98	52538.16	242.2	252.2	249.7	255.8	6.1
"CMP	10D	н	47934.22	33150.84	209.6	229.6	229.8	235.9	6.1
"CMP	11D	н	47610.19	33296.80	209.5	229.9	223.3	234.4	11.1
" CMP	14D	н	46762.01	34392.70	204.1	224.5	217.4	211.6	-5.8
"CMP	15C	"	46865.00	33346.32	220.6	250.6	244.5	234.5	-10.0
"CMP	300	н	47226.07	33625.65	211.6	231.6	228.0	228.8	0.8
"CMD	320	н	48177 29	33934 12	218.6	228.6	220.8	0.0	-220.8
"NDM	220	н	54524 03	43675 02	244 2	264.2	267.0	272.6	5.6
"NDM	2		51554 55	43337 43	247 2	267.2	267.6	272.5	4.9
"NDM	1	и	53057 77	41764 52	256 7	276.7	272.7	278.8	6.1
H NITINI	1	н	40851 04	40382 75	212 4	232.4	233.7	238.2	4.5
" NITN	2	a	40001.04	41060 13	207 2	227.2	235.2	243.5	8.3
"NTC	1		36950 43	30056 38	164.3	184.4	180.4	184.4	4.0
"NTS	2	н	38877 07	29831.49	174.7	194.8	192.3	198.6	6.3
" NTTM	1	н	33953 91	33448 01	168.9	188.8	183.6	186.3	2.7
"NTW	2		33179.95	34157.22	171.5	191.5	183.9	186.8	2.9
"NTW	3		35146.82	34486.17	176.7	196.6	191.8	194.8	3.0
"NTW	4	н	35314.22	33015.53	166.0	185.8	180.4	181.8	1.4
								_	
** G	ROUP	4	** rms of	(FACT-data)	diffe	rences:	8.049)	
			avg of	(FACT-data)	diffe	cences:	-1.486	5	
			avg of	FACT-data	diffe	rences:	5.188	3	
			max of	{FACT-data}	diffe	rences:	-38.678	3	
"BG	91		56069.82	58655.49	205.4	235.4	218.6	224.5	5.9
" BG	113	н	58617.49	57478.99	196.4	216.4	217.1	216.1	-1.0
"BG	115	"	57106.59	57592.61	198.9	218.9	215.8	224.7	8.9
"BG	119		56357.76	58300.26	209.2	229.2	215.4	225.8	10.4
"BG	124		56344.08	57802.53	214.8	234.8	231.8	230.7	-1.1
" BGO	10A	н	56207.63	57372.71	111.1	121.1	170.6	157.6	-13.0
" BGO	11D	R "	55825.05	57499.11	213.1	233.0	230.1	231.2	1.1
" BGO	12D	R"	55395.81	57575.32	212.7	232.8	219.6	230.9	11.3
" BGO	17D		55319.71	56328.91	204.0	224.0	230.8	229.1	-1.7
" BGO	19D	н	55852.65	55960.45	196.8	216.8	234.2	230.2	-4.0
" BGO	19D	R"	55695.69	56167.61	196.7	216.7	231.3	229.0	-2.3
" BGO	20A)	A."	55859.63	55549.83	36.4	28.3	161.5	0.0	-161.5
" BGO	45A	"	53558.72	56938.76	116.9	126.9	160.7	169.5	8.8
" BGO	46D	"	53265.93	56187.01	202.1	212.1	225.0	224.3	-0.7
" BGC	47D	Ħ	53696.69	55794.78	203.4	213.4	226.3	224.2	-2.1
" BGO	48D	"	53858.59	55603.64	202.0	212.0	226.5	224.1	-2.4
" RGO	512	יי ב	56446 18	54569.76	31.1	39.2	168.2	165.9	-2.3
" <u>8</u> GV	עג. עדר י		57081 36	57976 03	201.6	221.6	214.6	223.0	8.4
"BRD		н	24671.03	42867.77	129.1	159.1	165.9	176.1	10.2
"BRR	. 8C	*1	49605.56	59621.29	182.7	192.7	208.5	205.9	-2.6
" CMF	10	41	47945.72	33146.25	188.8	218.8	220.1	222.1	2.0

.

1 able F-2. Summary of Group Statistical Fatameters (Comm

"CMP 11 "	47606.72	33311.24	185.2	215.2	212.0	218.4	6.4	
"CMP 14C "	46754.03	34402.77	185.1	215.1	212.4	206.1	-6.3	
"FAB 3 "	54303.61	58131.15	211.8	231.8	228.8	231.6	2.8	
"FBP 5D "	50857.86	60951.80	192.6	212.6	205.2	201.5	-3.7	
"FBP 11D "	50538.90	60922.99	192.0	212.1	203.0	196.7	-б.3	
"FC 3A "	57163.77	59133.80	54.2	26.5	175.5	0.0	-175.5	
"FC 4A "	54252.64	63347.03	66.5	-23.0	173.3	0.0	-173.3	
"FC 4D "	54270.62	63363.34	146.4	151.4	151.0	0.0	-151.0	
"FCB 2 "	54221.13	57666.65	205.2	235.2	229.1	230.4	1.3	
"FNB 6 "	54152.82	61916.51	200.6	210.6	208.7	0.0	-208.7	
"FSB115C "	48160.70	54697.60	163.8	173.8	184.4	185.3	0.9	
"FSB122C "	46937.44	56354.44	160.0	170.0	199.7	186.5	-13.2	
"НАА 1АА"	60549.35	49375.76	35.7	23.6	181.0	0.0	-181.0	
"НАА 1ТА"	60543.75	49383.60	35.6	-19.8	180.7	0.0	-180.7	
"наа 2аа"	59126.82	50741.06	29.4	39.4	177.6	176.6	-1.0	
"НАА ЗАА"	58184.26	51516.57	9.2	16.5	175.0	174.4	-0.6	
"HAA 4B "	60007.73	51880.30	124.5	135.0	250.2	211.5	-38.7	
"HC 8A "	59290.18	57409.21	65.9	16.3	175.6	0.0	-175.6	
"HC 11C "	60697.08	54058.07	190.8	195.8	236.6	232.7	-3.9	
"HSB 86C "	54275.70	53412.33	189.4	199.4	223.6	217.6	-6.0	
"HSB111D "	54648.99	52716.01	185.7	195.7	222.0	215.3	-6.7	
"HSB112D "	54613.42	52964.23	188.3	198.3	222.8	217.4	-5.4	
"HSB118A "	54105.93	53618.85	91.0	101.0	167.6	166.5	-1.1	
"HSB121A "	55545.03	52626.35	88.3	98.3	171.6	170.2	-1.4	
"HSB123A "	56298.47	52634.89	93.6	103.6	171.7	172.8	1.1	
"HSB124AR"	56699.16	52562.91	94.6	104.6	172.0	171.5	-0.5	
"HSB139A "	55334.77	51753.59	87.6	97.6	173.6	172.1	-1.5	
"HSB145D "	55706.59	51634.28	184.2	194.2	220.5	213.1	-7.4	
"HSL 6B "	58765.56	52607.86	127.9	137.9	244.3	225.5	-18.8	
"KSS 3D "	33990.18	31260.46	139.3	159.3	163.8	160.0	-3.8	
"LAW 1C "	43197.56	27174.96	-27.8	-29.0	176.2	0.0	-176.2	
"NBG 4 "	53989.69	60028.79	196.1	227.5	217.0	223.5	6.5	
"NBG 5 "	54172.29	59991.30	194.9	226.4	217.8	223.0	5.2	
"SBG 1 "	62305.00	53842.04	190.7	220.7	237.9	241.6	3.7	
"SBG 4 "	63077.06	51408.75	185.6	215.6	240.9	241.7	0.8	
"SBG 5 "	62537.22	51327.71	199.4	219.4	249.3	250.2	0.9	
"TIR 1L "	15016.33	60212.77	65.7	67.7	93.2	94.8	1.6	
"YSC 2D "	65404.04	56967.00	197.9	218.0	216.2	215.4	-0.8	
"Z 18 "	42445.86	56486.58	159.9	160.4	184.2	172.6	-11.6	
"ZBG 2 "	66269.92	54585.02	210.9	230.9	221.7	220.6	-1.1	
"ZW 3 "	57053.77	61222.21	194.6	205.1	200.7	0.0	-200.7	
"CMP 31C "	47419.09	34279.81	197.9	207.9	210.8	206.7	-4.1	
"P 15A "	44409.31	29159.29	-20.5	-87.0	176.8	0.0	-176.8	
"P 23A "	24677.32	34743.42	-4.3	-28.8	146.1	0.0	-146.1	

This page intentionally left blank

.

APPENDIX G. Uncertainty Analysis

Four uncertainty cases were considered as summarized in the table below. For each case, numerous plots of the simulated groundwater flow results are provided for comparison to the nominal case. Discussion of the comparison is provided in the Section 4.3 of the main text.

GCU Ky	V
--------	---

Recharge	5×10 ⁻⁴ ft/day	10 ⁻⁴ ft/day	2×10 ⁻⁵ ft/day
15 in/yr	-	Case 1	-
12.5 in/yr	Case 3	Nominal	Case 4
10 in/yr	10 in/yr -		-

This page intentionally left blank

Simulation results for uncertainty case 1

Uncertainty case 1 involves an increase in recharge of 20% to 15 in/yr over the reactor areas (Table 4-4). Summary calibration results are provided in Table 4-5. This appendix presents detailed simulation results for uncertainty case 1 for comparison to the nominal results shown in figures in the main text. The correspondence between figures for the nominal and uncertainty case 1 is as follows:

Plot type	Nominal case	Uncertainty case 1
Head residual summary	Figure 4-1	Figure G-1-1
Head residuals in Gordon aquifer	Figure 4-2	Figure G-1-2
Head residuals in "lower" UTRA	Figure 4-3	Figure G-1-3
Head residuals in "upper" UTRA	Figure 4-4	Figure G-1-4
Kh in element layer 1	Figure 4-5	Figure G-1-5
Kv in element layer 2	Figure 4-6	Figure G-1-6
Kh in element layer 3	Figure 4-7	Figure G-1-7
Kh in element layer 4	Figure 4-8	Figure G-1-8
Kv in element layer 5	Figure 4-9	Figure G-1-9
Kh in element layer 6	Figure 4-10	Figure G-1-10
Kh in element layer 7	Figure 4-11	Figure G-1-11
Kh in element layer 8	Figure 4-12	Figure G-1-12
Gordon aquifer head	Figure 4-14	Figure G-1-13
"Lower" UTRA head	Figure 4-15	Figure G-1-14
"Upper" UTRA head	Figure 4-16	Figure G-1-15
Head in aquifer containing water table	Figure 4-17	Figure G-1-16
Water table	Figure 4-18	Figure G-1-17
Seepage faces	Figure 4-22	Figure G-1-18
Recharge/discharge	Figure 4-23	Figure G-1-19
Example particle tracing	Figure 4-24	Figure G-1-20

Figure G-1-3 (uncertainty case 1; compare to Figure 4-3)

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure G-1-13 (uncertainty case 1; compare to Figure 4-14)

G-16

Simulated hydraulic head in "lower" UTR aquifer zone

Figure G-1-14 (uncertainty case 1; compare to Figure 4-15)

Simulated hydraulic head in "upper" UTR aquifer zone

Figure G-1-15 (uncertainty case 1; compare to Figure 4-16)

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure G-1-16 (uncertainty case 1; compare to Figure 4-17)

Figure G-1-19 (uncertainty case 1; compare to Figure 4-23)

This page intentionally left blank

.

•

Simulation results for uncertainty case 2

Uncertainty case 1 involves a decrease in recharge of 20% to 10 in/yr over the reactor areas (Table 4-4). Summary calibration results are provided in Table 4-5. This appendix presents detailed simulation results for uncertainty case 2 for comparison to the nominal results shown in figures in the main text. The correspondence between figures for the nominal and uncertainty case 2 is as follows:

Plot type	Nominal case	Uncertainty case 2
Head residual summary	Figure 4-1	Figure G-2-1
Head residuals in Gordon aquifer	Figure 4-2	Figure G-2-2
Head residuals in "lower" UTRA	Figure 4-3	Figure G-2-3
Head residuals in "upper" UTRA	Figure 4-4	Figure G-2-4
Kh in element layer 1	Figure 4-5	Figure G-2-5
Kv in element layer 2	Figure 4-6	Figure G-2-6
Kh in element layer 3	Figure 4-7	Figure G-2-7
Kh in element layer 4	Figure 4-8	Figure G-2-8
Kv in element layer 5	Figure 4-9	Figure G-2-9
Kh in element layer 6	Figure 4-10	Figure G-2-10
Kh in element layer 7	Figure 4-11	Figure G-2-11
Kh in element layer 8	Figure 4-12	Figure G-2-12
Gordon aquifer head	Figure 4-14	Figure G-2-13
"Lower" UTRA head	Figure 4-15	Figure G-2-14
"Upper" UTRA head	Figure 4-16	Figure G-2-15
Head in aquifer containing water table	Figure 4-17	Figure G-2-16
Water table	Figure 4-18	Figure G-2-17
Seepage faces	Figure 4-22	Figure G-2-18
Recharge/discharge	Figure 4-23	Figure G-2-19
Example particle tracing	Figure 4-24	Figure G-2-20

Figure G-2-2 (uncertainty case 2; compare to Figure 4-2)

Figure G-2-3 (uncertainty case 2; compare to Figure 4-3)

Figure G-2-4 (uncertainty case 2; compare to Figure 4-4)

Figure G-2-13 (uncertainty case 2; compare to Figure 4-14)

Simulated hydraulic head in "lower" UTR aquifer zone

Figure G-2-15 (uncertainty case 2; compare to Figure 4-16)

Simulated hydraulic head in "upper" UTR aquifer zone

Figure G-2-16 (uncertainty case 2; compare to Figure 4-17)

This page intentionally left blank

Uncertainty case 3 involves an increase in Gordon confining unit vertical conductivity by a factor of 5 to 5×10^{-4} ft/day (Table 4-4). Summary calibration results are provided in Table 4-5. This appendix presents detailed simulation results for uncertainty case 3 for comparison to the nominal results shown in figures in the main text. The correspondence between figures for the nominal and uncertainty case 3 is as follows:

Plot type	Nominal case	Uncertainty case 3
Head residual summary	Figure 4-1	Figure G-3-1
Head residuals in Gordon aquifer	Figure 4-2	Figure G-3-2
Head residuals in "lower" UTRA	Figure 4-3	Figure G-3-3
Head residuals in "upper" UTRA	Figure 4-4	Figure G-3-4
Kh in element layer 1	Figure 4-5	Figure G-3-5
Kv in element layer 2	Figure 4-6	Figure G-3-6
Kh in element layer 3	Figure 4-7	Figure G-3-7
Kh in element layer 4	Figure 4-8	Figure G-3-8
Kv in element layer 5	Figure 4-9	Figure G-3-9
Kh in element layer 6	Figure 4-10	Figure G-3-10
Kh in element layer 7	Figure 4-11	Figure G-3-11
Kh in element layer 8	Figure 4-12	Figure G-3-12
Gordon aquifer head	Figure 4-14	Figure G-3-13
"Lower" UTRA head	Figure 4-15	Figure G-3-14
"Upper" UTRA head	Figure 4-16	Figure G-3-15
Head in aquifer containing water table	Figure 4-17	Figure G-3-16
Water table	Figure 4-18	Figure G-3-17
Seepage faces	Figure 4-22	Figure G-3-18
Recharge/discharge	Figure 4-23	Figure G-3-19
Example particle tracing	Figure 4-24	Figure G-3-20

Figure G-3-3 (uncertainty case 3; compare to Figure 4-3)

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure G-3-13 (uncertainty case 3; compare to Figure 4-14)

Simulated hydraulic head in "lower" UTR aquifer zone

Simulated hydraulic head in "upper" UTR aquifer zone

Figure G-3-15 (uncertainty case 3; compare to Figure 4-16)

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure G-3-16 (uncertainty case 3; compare to Figure 4-17)

Figure G-3-17 (uncertainty case 3; compare to Figure 4-18)

.

.

٩

This page intentionally left blank

Simulation results for uncertainty case 4

Uncertainty case 4 involves a decrease in Gordon confining unit vertical conductivity by a factor of 5 to 2×10^{-5} ft/day (Table 4-4). Summary calibration results are provided in Table 4-5. This appendix presents detailed simulation results for uncertainty case 4 for comparison to the nominal results shown in figures in the main text. The correspondence between figures for the nominal and uncertainty case 4 is as follows:

Plot type	Nominal case	Uncertainty case 4
Head residual summary	Figure 4-1	Figure G-4-1
Head residuals in Gordon aquifer	Figure 4-2	Figure G-4-2
Head residuals in "lower" UTRA	Figure 4-3	Figure G-4-3
Head residuals in "upper" UTRA	Figure 4-4	Figure G-4-4
Kh in element layer 1	Figure 4-5	Figure G-4-5
Kv in element layer 2	Figure 4-6	Figure G-4-6
Kh in element layer 3	Figure 4-7	Figure G-4-7
Kh in element layer 4	Figure 4-8	Figure G-4-8
Kv in element layer 5	Figure 4-9	Figure G-4-9
Kh in element layer 6	Figure 4-10	Figure G-4-10
Kh in element layer 7	Figure 4-11	Figure G-4-11
Kh in element layer 8	Figure 4-12	Figure G-4-12
Gordon aquifer head	Figure 4-14	Figure G-4-13
"Lower" UTRA head	Figure 4-15	Figure G-4-14
"Upper" UTRA head	Figure 4-16	Figure G-4-15
Head in aquifer containing water table	Figure 4-17	Figure G-4-16
Water table	Figure 4-18	Figure G-4-17
Seepage faces	Figure 4-22	Figure G-4-18
Recharge/discharge	Figure 4-23	Figure G-4-19
Example particle tracing	Figure 4-24	Figure G-4-20

Figure G-4-2 (uncertainty case 4; compare to Figure 4-2)

Figure G-4-3 (uncertainty case 4; compare to Figure 4-3)

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

WSRC-TR-98-00285, Rev. 0, Hydrogeological and Groundwater Model for the C, K, L, and P Areas

Figure G-4-13 (uncertainty case 4; compare to Figure 4-14)

Simulated hydraulic head in "upper" UTR aquifer zone

Figure G-4-15 (uncertainty case 4; compare to Figure 4-16)

Simulated hydraulic head in aquifer zone containing water table

Figure G-4-16 (uncertainty case 4; compare to Figure 4-17)

Figure G-4-17 (uncertainty case 4; compare to Figure 4-18)

Figure G-4-19 (uncertainty case 4; compare to Figure 4-23)

This page intentionally left blank

.