
Approximation Algorithms for the Fixed-Topology Phylogenetic
Number Problem

Mary Cryan* Leslie Ann Goldberg t Cynthia A. Phillips$

Abstract. In the &phylogeny problem, one wishes to construct an evolutionary tree for a set of species
represented by characters, in which each state of each character induces no more than t connected components.
We consider the fixed-topology version of this problem for fixed-topologies of arbitrary degree. This version of the
problem is known to be A?P-complete for L 2 3 even for degree-3 trees in which no state labels more than e + 1
leaves (and therefore there is a trivial e + 1 phylogeny). We give a 2-approximation algorithm for all L 2 3 for
arbitrary input topologies and we give an optimal approximation algorithm that constructs a 4-phylogeny when
a 3-phylogeny exists. Dynamic programming techniques, which are typically used in fixed-toplogy problems,
cannot be applied to &phylogeny problems. Our 2-approximation algorithm is the first application of linear
programming to approximation algorithms for phylogeny problems. We extend our results to a related problem
in which characters are polymorphic.

* marycQdcs. warvick .ac .uk. Department of Computer Science, University of Warwick, Coventry CV4 7AL,
United Kingdom. This work was partly supported by ESPRIT LTR Project no. 20244 - ALCOM-IT.

l e s l i e e d c s . warwick. ac.uk. Department of Computer Science, University of Warwick, Coventry CV4 7AL,
United Kingdom. Part of this work took place during a visit to Sandia National Laboratories which was supported
by University of Warwick Research and Teaching Innovations Grant 0951CSA and by the U.S. Department of
Energy under contract DE-AC04-76AL85000. Part of this work was supported by ESPRIT LTR Project no. 20244

CaphillOcs. sandia.gov. Sandia National Laboratories, Albuquerque, NM. This work was performed under
- ALCOM-IT.

U.S. Department of Energy contract number DE-AC04-76AL85000.

http://sandia.gov

1. Introduction. The evolutionary biologist collects information on extant species (and
fossil evidence) and attempts to infer the evolutionary history of a set of species. Most mathe-
matical models of this process assume divergent evolution, meaning that once two species diverge,
they never share genetic material again. Therefore, evolution is modelled as a tree (phylogeny),
with extant species as leaves and (extant, extinct, or hypothesized) ancestors as internal nodes.
Species have been modelled in several ways, depending upon the nature of available information
and the mechanism for gathering that information. Based upon these representations, differing
measures of evolutionary distance and objective function are used to evaluate the goodness of a
proposed evolutionary tree.

In this paper we assume that input data is character-based. Let S be an input set of n
species. A character c is a function from the species set S to a set R, of states. If we are given
a set of characters c1, . . . , Ck for S , each species is a vector from R,, x . . . x R,,, and any such
vector can represent a hypothesized ancestor. Characters can be used to model biomolecular
data, such as a column in a multiple sequence alignment, but in this paper, we think of characters
as morphological properties such as coloration or the ability to fly.

Character-based phylogenies are typically evaluated by some parsimony-like measure,
meaning that the total evolutionary change is somehow minimized. In this paper, we consider
the !-phylogeny metric introduced in [8]. Given a phylogenetic tree, a character ci and a state
j E R,,, let tij be the number of connected components in c k - l (j) (the subtree induced by the
species with state j in character i). A phylogeny is an !-phylogeny if max,,,jERc, !ij 5 1. The 1-
phylogeny problem is to determine if an input consisting of a species set S and a set of characters
c1, . . . , ck has an !-phylogeny. The phylogenetic number problem is to determine the minimum t
such that it has an &phylogeny. The classic parsimony problem is to find a tree that minimizes
Cc,,jERc, &. The compatibility problem is to maximize ({ c i : !kj = 1 for all j E &}I. A 1-
phylogeny is called a perfect phylogeny. All three problems (&phylogeny for ! 2 1, parsimony,
compatibility) are NF-complete [l, 8, 4, 6, 131. Parsimony, &-phylogeny, and compatibility all
allow states of a character to evolve multiple times. However, both parsimony and compatibility
allow some characters to evolve many times. The &phylogeny metric requires balanced evolution,
in that no one character can pay for most of the evolutionary changes. Thus, !-phylogeny is a
better measure than parsimony or compatibility in biological situations in which all characters
are believed to evolve slowly.

In this paper we consider the &zed-toplogy variant of the &phylogeny problem, where in
addition to the species set and characters, we are also given a tree T in which internal nodes
are unlabelled, each leaf is labelled with a species s E S and each species s E S is the label
of exactly one leaf of T . The fixed-topoEogy !-phylogeny problem is the problem of determining
labels for the internal nodes so that the resulting phylogeny is an !-phylogeny, or determining
that such a labelling does not exist.

Fixed-topology algorithms can be used as filters. Current phylogeny-producing software
can generate thousands of trees which are (approximately) equally good under some metric such

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither,the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

Portions ofthis document may be illegible
in electronic image products. Imnper are
produced from the best available original
docPment,

as maximum likelihood or parsimony. We can think of these outputs as proposed topologies.
One way to differentiate these hypotheses is to see which topologies also have low phylogenetic
number. For example, the original trees can be generated by biomolecular sequence data, and
they can then be filtered using morphological data with slowly-evolving traits.

It will be convenient to allow a node to remain unlabelled in one or more characters in
a fixed topology. In this case, the node disagrees with all of its neighbors on all unlabelled
characters. We can easily extend such a labelling to one in which every node is labelled without
increasing Lsj for any i or j: for any character j , for each connected component of nodes which are
not labelled, choose any neighbouring node v which is labelled i, and label the entire component
with the state i,. This does not introduce any extra component for i,, nor does it break
components of any other state that weren’t already broken.

In the fixed-topology setting, optimal trees for the parsimony and compatibility metrics
can be found in polynomial time [7]. The fixed-topology t-phylogeny problem can be solved in
polynomial time for .t 5 2, but is NP-complete for 1 2 3 even for degree-3 trees in which no
state labels more than t + 1 leaves (and therefore there is a trivial .l+ 1 phylogeny) [8]. Fitch’s
algorithm for parsimony uses dynamic programming. Dynamic programming also gives good
algorithms in some cases for finding phylogenies when characters are polymorphic [2].

Jiang, Lawler, and Wang [lo] consider the fixed-topology tree-alignment problem, where
species are represented as biomolecular sequences, the cost of an edge in the tree is the edit
distance between the labels at its endpoints, and the goal is to minimize the sum of the costs
over all edges. They give a 2-approximation for bounded-degree input topologies and extend
this to obtain a polynomial-time approximation scheme (PTAS). In Lemma 3 of [lo], they prove
that the best lifted tree (in which the label of each internal node is equal to the label of one of
its children) is within a factor of 2 of the best tree with arbitrary labels. The proof only uses the
triangle inequality (it does not use any other facts about the cost measure). Therefore, the result
holds for several other cost measures, including t-phylogeny, parsimony, and the minimum-load
cost measure for phylogenies with polymorphic characters which was introduced in [2]. It also
holds for the variant of l-phylogeny in which e; is specified for each character ci. This variant was
introduced in [8]. We refer to it as the generaked &phylogeny problem. In fact, Lemma 3 of [lo]
holds for the fixed-topology problem with arbitrary input topologies, though the authors do not
state this fact since they do not use it. Despite the applicability of Lemma 3, the algorithmic
method of Jiang, Lawler and Wang does not seem to be useful in developing approximation
algorithms for the fixed-topology l-phylogeny problem (or for related problems). Jiang et al.
use dynamic programming to find the minimum-cost lifted tree. Dynamic programming is
not efficient for the more global metric of t-phylogeny. The dynamic programming proceeds by
computing an optimal labelling for a subtree for each possible labelling of the root of the subtree.
For metrics where cost is summed over edges (such as parsimony or tree alignment), one only
needs to find the lowest-cost labelling for a given root label. For the !-phylogeny problem, the
cost of a tree depends upon how many times each state is broken for a given character. One

2

cannot tell u priori which state will be the limiting one. Therefore, instead of maintaining a
single optimal tree for each root label, we must maintain a91 trees whose cost (represented as a
vector of components for each state) is undominated. This number can be exponential in T , the
number of states, even for bounded-degree input trees. This is a common theme in combinatorial
optimization: the more global nature of minimax makes it harder to compute than summation
objectives, but also more useful.

Gusfield and Wang [14] take the approach of [lo] a step further by proving that the best
uniform lifted tree (ULT) is within a factor of 2 of the best arbitrarily-labelled tree. In a uniform
lifted tree on each level, all internal nodes are labeled by the same child (e.g. all nodes at level
one take the label of their leftmost child). This proof also extends to the 1-phylogeny metric.
If the input tree is a complete binary tree, then there are only n ULTs, and exhaustive search
is efficient, giving an algorithm which is faster than ours and has an equivalent performance
bound. However, when the input tree isn’t complete (even if it is binary), Gusfield and Wang
use dynamic programming to find the minimum-cost ULT, and so their method fails when it is
applied to the f-phylogeny problem. Wang, Jiang, and Gusfield recently improved the efficiency
of their PTAS for tree dignment [15], but still use dynamic programming.

We give a simple 2-approximation for the fixed-topology 1-phylogeny problem that works
for arbitrary input topologies. It is based on rounding the linear-programming relaxation of an
integer programming formulation for fixed-topology &phylogeny. To our knowledge, this is the
first application of linear-programming technology to phylogeny problems.

As we described earlier, &phylogeny is most appropriate for slowly-evolving characters. It
is most restrictive (and hence most different from parsimony) when L is small. Therefore, we
look more closely at the first NP-hard case: 1 = 3. For this case, we give an algorithm based
upon the structure of a 3-phylogeny that will construct a 4-phylogeny if the input instance has
a 3-phylogeny.

algorithm for the t-phylogeny problem. In section 3 we give the optimal approximation algo-
rithm for inputs with 3-phylogenies. Section 4 discusses extensions of our results to a problem
with polymorphic characters.

The remainder of our paper is organized as follows: in section 2, we give the 2-approximation

2. A 2-approximation algorithm for the fixed-topology phylogenetic number
problem. The interaction between characters in phylogeny problems affects the choice of the
topology, but it does not affect the labelling of the internal nodes once the topology is chosen.
Thus, for this problem, we can consider each character separately.

Let c : S --f (1,. . . , r } be a character and let T be a tree with root q and leaves labelled by
character states 1,. . . , r. For each state i, let Ti be the subtree of T consisting of all the leaves
labelled i and the minimum set of edges connecting these leaves. Let L(T;) be the set of leaves
of Ti, and let ~ t ; , the root of Ti, be the node of T; closest to the root of T . The importunt nodes
of Ti are the leaf nodes and the nodes of degree greater than 2. An i-path p of Ti is a sequence
of edges of Ti that connects two important nodes of Ti, but does not pass through any other

3

important nodes. The two important nodes are referred to as the endpoints of p , and the other
nodes along the i-path are said to be on p (an i-path need not have any nodes on it). Although
the edges of the tree T are undirected, we will sometimes use the notation (v + w) for an edge
or i-path with endpoints v and w, to indicate that v is nearer to the root of T than w (v is
the higher endpoint and w is the lower endpoint); otherwise we will write edges and i-paths as
(v, w). If the label of the upper endpoint v or some node on the i-path p = (v -+ w) differs from
the label for the lower endpoint w, then we say that p breaks state i.

Given a tree T with each node labeled from the set (1,. . . , T } , we need a way to count the
number of components induced by the nodes labeled i. Since the tree is rooted, we can assign
each connected component a root, namely the node closest to the root of T . We then count the
number of roots for components labelled i. A node is the root of its component if its label differs
from that of its parent. The root q, which has no parent, is also the root of its component.
Therefore we have the following:

OBSERVATION 2.1. Let T be a tree with its leaves and internal nodes labelled by elements
of (1, r} . For each i, let Ti be defined as above, and let q be the root of tree T . Then the
number of connected components induced by the nodes labelled i is I{e = (v ---f w) : c(v) #
i, C (W) = i}l f x, where x = 1 if q is labelled i and 0 otherwise.

We now define an integer linear program (ILP) which solves the fixed-topology &phylogeny
problem. The linear-programming relaxation of this ILP is the key to our 2-approximation al-
gorithm. The integer linear program Z uses the variables Xu,(, for each state i E (1, a * , r } , and
each node v in the tree T , and the variables Xp,; and costp,i, for each state i , and each i-path p
of Ti. These variables have the following interpretation:

1
0 otherwise

if node v is labelled i
XV ,i

1 if all nodes on p are labelled 2'
0 otherwise
1 if the lower endpoint of p is the root of a component of state i
0 otherwise

XP,i

costp,i =

ILP Z is defined as follows:

minimize f!

subject to

Xv,i =

xv,i =

1

0
T

4=1

X p , i = XV,i

for each leaf v E Ti, i = 1,. D . T

if v # Ti, i = 1, . . . , r

Vu E T

i = l , ..., r , V p E T ; , V v E p

4

(5) xp,i I XW,i i = 1,. . . , T , V p E Ti, each endpoint w E p

(6) cost,& 2 xw,i - x p , i i = 1,. . . , T , Vp E Ti with lower endpoint v

(7) c costp,i t XTti,i I e i = 1 , ..., r
P

(8) xv,i7 xp,i, costp,i E (0, a}

Constraint (8) assures that the cost (cost,,i), i-path (XP,i) , and vertex (Xw,i) variables
serve as indicator variables in accordance with their interpretation. Constraint (1) labels the
leaves in accordance with the input. Constraint (2) prohibits labelling a node 2, with a state
i when w is not in Ti (the number of components labelled i could not possibly be reduced by
this labelling). Constraint (3) ensures that each internal node will have no more than one label.
Constraints (4) and (5) ensure that for each tree Ti, nodes on paths are taken all-or-none; if any
node on an i-path p (including endpoints) is lost to a state i, then it does no good to have any
of the other nodes on the path (though it may be beneficial to maintain one or both endpoints).
Constraint (6) computes the path costs, and constraint (7) ensures that each state has no more
than e connected components. This is an implementation of Observation 2.1. Since there is no
i-path in Ti with rti as its lower endpoint, we must explicitly check the root of each tree Ti, just
as we checked the global root in Observation 2.1.

Integer program Z solves the fixed-topology .&phylogeny problem. We only require, how-
ever, that the optimal value of .! given by Z is a lower bound on the phylogenetic number of tree
2' with the given leaf labelling (proof omitted):

PROPOSITION 2.2. If there exists an L-phylogeny for tree T with a given leaf labelling,
then there is a feasible solution for the integer linear program for this value of E .

Integer linear programming in NP-hard in general [3, 9,113, so we cannot solve it directly
in polynomial time. (In fact, doing so would solve the fixed-topology L-phylogeny problem, which
we know to be NP-hard for e 2 3 from [8].) However, we can solve the linear-programming
relaxation L of Z, which consists of all the constraints of Z except that Constraint (8) is replaced
by the constraint 0 5 Xw,i, Xp, i , costp,+ I 1 (8').

THEOREM 2.3. If there is a solation for the linear program L for a fixed topology T with
leaves labelled with states from { 1,. . . , r}? then we can assign states to the internal nodes of T
such that no state i E { 1,. . . , T } has more than 2L components.

Pro05 The 2 t phylogeny for the character c : S + {1, . . . , T } on T is constructed by
assigning states to the nodes of each tree Ti based on the Xw,; values. For each state i E
{ 1,. . . r } , consider each internal node w of Ti. A node w is labelled i if and only if Xw,i > 1/2,
and there is path v, w1, w2,. . ., W k , w* through tree Ti to a leaf w* of Ti where Xw,,; > 1/2 for
all j = 1,. . . , I C . If Xw,i > 1/2, but there is no such path, then node is isolated, and by our
procedure remains unlabelled. A node w also remains unlabelled if Xw,i 5 1/2 for all states i.

To show that the labelling is a 2L-phylogeny7 we show that each component of state i adds
at least 1/2 to the sum (E, cost,,i) + Xrti,i. From Observation 2.1, the number of connected
components for the state i is [{ e = (v ---f w) : c (v) # i, c(w) = i}l + E, where E is 1 if q has

state i (and therefore q = rt i) and 0 otherwise. Constraints (5) and (4) ensure that if the edge
e = (v + w) has ~ (v) # i and c(w) = i then either w is the root of Ti, or w must be an endpoint
node with Xw,; > 1/2, and that either Xv,t 5 1/2 or o is isolated. However, since w is labelled
i , w must not be isolated, and therefore 2t would not be isolated if Xu,; was greater than 1/2.
So Xu,; 5 1/2, and Xp,i 5 1/2 for the i-path p with lower endpoint w. Therefore we need only
calculate the number of i-paths p with a lower endpoint w such that Xp,i 5 1/2, Xw,i > 1/29
and w is not isolated.

Suppose p = (v + w) is such an i-path. Since w is not isolated and the node above w is not
labelled i, there is a sequence p1 = (w + V I) , p2 = (V I + v2), . . . ? p j = (vj-1 + vj) of i-paths of
Ti such that Xp,; > 1/2 for every p E { P I , . . . , p j } and Xv,i > 1/2 for every v E (211,. . . , vj}, and
oj is a leaf of Ti. Calculating cost,,; + costpl,i + . * . + costp,,; = (Xw,; - Xp,;) + (Xv1,i - Xpl , i) +

know by constraints (5) that Xw,; - Xpl,i 2 0 , Xvl , ; - XP2,i 2 0, . . , , Xv,-l,i - XP3,i 2 0 . So

Note also that for any two i-paths p = (v + w) and p’ = (v’ 3 w‘)’which break i, the
i-labelled paths to leaves are disjoint (because they are in separate components of i). Therefore
each i-path p which breaks i in our construction contributes at least l / 2 to the sum (E, costp,;).
If rt; is labelled i (and hence the root of a component of i), then Xrti,i > 1/2 (corresponding to
an edge (v + rta) in T or to the case % = 1). So 2 x ((CPcos tp , i) + XTtt,;) 2 I{e = (v + w) :
~ (v) # i , C(W) = i}l + x, and therefore 2.t 2 [{ e = (v + w) : ~ (v) # i , c(w) = i}l + E.
0

. . . + (Xu,+ - X P 3) = -x p,i t (Xw,; - XpJ + (Xv1,i - Xp2) + * - - + (Xu,-1, i - Xp,,;) + Xv,,i, we

cost,,; + costp1,; + . . . + COStP,,k 2 Xv3,; - xp,; = 1 - xp,; 2 1/2.

Recall that we have considered each character separately in our 2-approximation algorithm.
Thus, our work applies to the generalized t-phylogeny problem (and not just to the ordinary
&phylogeny problem). In particular, we have the following theorem.

There is a bapproximation algorithm for the generalized t-phylogeny
problem.

THEOREM 2.4.

3. 4-phylogeny algorithm. In this section we give an algorithm which takes a fixed-
topology phylogeny instance with arbitrary topology and, as long as it has a 3-phylogeny, finds
a 4-phylogeny for the instance.

We use the following definitions, in addition to those that we used for the 2-approximation.
We will maintain a forest Fi for every state i. A branch point of Fi is a node in F; with degree 3.
We say that a node v E 4 is claimed by state i if it is not in Fj for any j # i.

The algorithm generalizes the fixed-topology 2-phylogeny algorithm of [8]. It consists of
a forced phase and then an approximation phase. The forced phase produces a partial labelling
which can still be extended to a 3-phylogeny; it makes no labelling decisions that are not forced
if one is to have a 3-phylogeny. The approximation phase removes all remaining contention for
labels, but it can break some states into four pieces. Because finding a fixed-topology 3-phylogeny
is NP-complete [8], this is an optimal approximation algorithm for phylogeny instances with
3-phylogenies.

6

3.1. The Forced Phase of the Algorithm. Initially, for every state i we will have
F; = Ti. During the forced phase of the algorithm, nodes will be removed from the forests Fi.
The invariant during the forced phase of the algorithm is that there is a 3-phylogeny in which
every node w is assigned a state j such that w E Fj. The forced phase applies the following
rules in any order until none can be applied. If any forest F; is broken into more than three
components by the application of these rules, then the instance has no 3-phylogeny and the
algorithm terminates.

1. For any i-path (w, w), let S be the set containing w and w and the nodes on the i-path.
If S contains two or more branch points of Fj then every node on the i-path is removed
from Fa. (Note that in the updated copy of F; (after the rule is applied), w and w
will have lower degree than in the original Fa. Furthermore, if w has degree 2 in the
updated Fi then the i-path containing it will consist of nodes from two different i-paths
in the original 4. Similarly, i-paths can be merged as a result of the following rules.)

2. If Fi has C(Fi) connected components and Fi contains a node w of degree at least
5 - C(&) then in every forest Fj with j # i, w and all nodes on j-paths adjacent to w
are removed from Fj (Lem7 i claims node v).

3. If w is a branch point of E and two i-paths (v, wl) and (w, w2) adjacent to w contain
branch points of Fj (for some j # i), then in every forest Fk with k # i, every branch
point w {w, w1, wg} of Fi and every node on every k-path adjacent to w is removed
from F' (i.e., E claims all branchpoints except w, w1, and w2).

Rule 1 is justified by observing that in any 3-phylogeny7 each forest Fa gives up at most two
disjoint i-paths, or a single branchpoint with the i-paths adjacent to it. In the setting in which
rule 1 is applied, if Fi were to claim the path in question, then Fj would lose two branchpoints
and necessarily be in at least four components. Therefore, in any 3-phylogeny for the input, F'
cannot have that i-path. Note that once any node on an i-path is lost to Fi, then F; has no
reason to claim any other nodes on the i-path.

Rule 2 is justified by the following observations. If there is a node of degree at least 4 in
tree Ti, then it must be labelled i in any %phylogeny (losing it will break state i into at least 4
pieces). Once Fi has been forced to give up an i-path, it cannot give up another branchpoint.
Finally, once Fa has been forced into three pieces, then it must claim all remaining nodes in Fi.

Rule 3 is applied when we isolate a region where a break in Fi must occur, but do not yet
know exactly where the break will occur. If two paths adjacent to a branchpoint of F; contain
branchpoints of F', then by the previous argument for rule 1, Fi cannot keep both of those
paths. Therefore, outside of the affected region (those two i-paths), Fa can act as though the
forest has been cut into at least two pieces, and can claim all branchpoints.

3.2. The Approximation Phase of the Algorithm. In the following, releasinga degree-
2 node w E F; removes all nodes on its i-path from Fa. Releasing a higher-degree node TJ E F;
removes w and all nodes on i-paths adjacent to w from Fi. The approximation phase consists of
the followinn stem.

7

1. For each connected component C of Fi, if the root of C is unclaimed then F; releases
the root of C. Also, if this root has degree 2, Fa releases any unclaimed branch points
at the ends of i-paths adjacent to this root.

2. If, after the forced phase, F; is in a single component with exactly one unclaimed branch
point, w, then it releases w.

3. If, after the forced phase, Fi is in a single component with exactly two unclaimed branch
points, w1 and w2 which are the two endpoints of an i-path, and the path from the root
to w2 passes through w1, then F! releases w2.

4. If, after the forced phase, F; is in a single component with exactly three unclaimed
branch points, w1, w2 and w3 where there is an i-path from w1 to w2 and an i-path
from w2 to w3, then Fa releases w2.

3.3. The Proof of Correctness. The proof requires the following observation (proof
omitted), and follows from Lemma 3.2 and Lemma 3.7.

OBSERVATION 3.1. If F; is in one component and it releases two branchpoints w1 and w2
which share an i-path, then the resulting forest F; has at most 4 components.

LEMMA 3.2. At the end of the approximation phase, every fovest Fi has at most 4 con-
nected components.

Proof. The forest F; can be in at most three components at the end of the forced phase.
If F; is in three components at the end of the forced phase, then, by Rule 2 of the forced phase,
every remaining node in Fi is claimed during the forced phase, so nothing is removed from 4
during the approximation phase. If Fi is in two components after the forced phase, then, again
by Rule 2, all branch points of Fi are claimed during the forced phase, so no branch points are
removed from Fi during the approximation phase. Step 1 of the approximation phase, therefore,
will remove at most one path from each component (when the root has degree 2, since degree-3
roots are claimed) and therefore breaks F! into at most four components. In this case Steps 2-4
of the approximation phase do not apply, and at most one of Steps 2-4 can apply to each of the
remaining cases.

If F; is in one component after the forced phase, and Steps 2-4 do not apply then we have
two cases. If the root is degree three, Step 1 results in at most 3 components. If the root is
degree two, then Fi could release the two branchpoints on either end of this i-path, resulting in
at most four components by Observation 3.1.

Suppose F; is in one component with exactly one unclaimed branchpoint after the forced
phase. If that branchpoint is released by Step 1, then 4 is in at most 3 components after
that step (only that branchpoint and its adjacent i-paths are removed from F;), and Step 2 is
redundant. Otherwise, Step 1 releases only the i-path through the root, since its endpoints are
claimed, resulting in two components, and the subsequent application of Step 2 adds at most
two more for a total of four.

Suppose Step 3 can be applied to F!. If w1 is not an endpoint of the i-path through the
root of 4, then Step 1 results in two components (both endpoints are claimed since neither is

8

w1 or wp). Subsequently removing w2 by Step 3 results in at most two more components for
a total of four. If 201 is an endpoint of the i-path containing the root of F;, then both w1 and
wp are released (and nothing more). Since they share an i-path, this results in at most four
components by Observation 3.1.

Finally, suppose Step 4 can be applied to F;. If none of w1, wg or w3 is the root or is an
endpoint of the i-path adjacent to the root, then Step 1 will result in additional components
only if the root has degree two. Since both of the endpoints of this i-path are claimed in this
case, removing this 2'-path and wp (by Step 4) results in at most four components. Otherwise,
the combined application of Steps 1 and 4 requires the release of w2, and possibly one of w1
and w3 as well (but not both, since if 202 is the root, neither of the other branchpoints will be
released). By Observation 3.1 this will result in at most four components. 0

The following lemmas use this fact:
FACT 3.3. ([8]) The intersection of two subtrees of a tree is connected and contains the

root of at least one of the subtrees.
LEMMA 3.4. If F; and Fj are each in two components after the forced phase, then after

the approximation phase, there is no node that is in Fi and in Fj.
Proof. This proof is similar to the correctness proof of the fixed-topology 2-phylogeny

algorithm in [8]. Let C; be a component of Fa after the forced phase, and let Cj be a component
of Fj after the forced phase. Since F; and Fj are both split in two components during the forced
phase, all branch points in C; and Cj are claimed during the forced phase (by Rule 2), and
their intersection is a path in the fixed topology (i.e., all nodes are degree 2). Furthermore,
the root of Ci or Cj is in the intersection. Therefore, the contention is cleared in Step 1 of the
approximation phase of the algorithm. 0

LEMMA 3.5. If Fa is in one component after the forced phase, and Fj is in two components
after the forced phase, then there is no node that is in Fi and in Fj after the approximation
phase.

Proof. First note that no branch point of Tj is part of Ti. (Since Fj is in only 2 pieces,
it gave up only degree-2 nodes in the forced phase, and subsequently claimed all branch points.
None of these are in Fa, since F; was unbroken in the forced phase). Thus, the intersection of
Ti and Tj is a path in Tj. We conclude that the intersection of F; and Fj is a path in Fj and
contains at most one branch point of F; (otherwise, the path would be removed from Fj during
the forced phase by Rule 1). If the intersection contains the root of Fj, then the contention will
be removed during Step 1 of the approximation phase. Otherwise, the intersection contains the
root of F;. Thus, the single branch point of F; that is contained in the intersection of F; and
Fj is either the root of F; or it is an endpoint of the i-path containing the root of F;. In either
case, the contention will be removed in Step 1 of the approximation phase. 0

LEMMA 3.6. If F; and Fj are each in one component after the forced phase, then there is
no node that is in F; and in Fj after the approximation phase.

Proof. (sketch) The proof is by case analysis. Case (a,/3,7) represents the situation in

9

which the intersection of Fi and Fj after the forced phase contains a! branch points of I?! and ,d
branch points of Fj, y of which are shared.

Cases (O,O,O), (l,O,O), and (1 ,1,7) use arguments similar to those in Lemmas 3.4 and
3.5. Cases (2,0,0), (2,1, l), (3,3,0), (a > 1,p > l , 7 > 0), and (3 , p 5 1 , ~) are all forbidden by
rule 1 of the forced phase. We now give a proof of case (2,1,0). The remaining cases (2 ,2,0)
and (3,2,0) use similar arguments.
Case (2,1,0): By Rule 1, after the forced phase, the intersection of and Fj has the branch-
point of Fj (WZ), between the two branchpoints for Fi (w1 and wg). Let w4 be the other endpoint
of the j-path adjacent to w2 that contains w1, and let w5 be the other endpoint of the j-path
adjacent to w2 that contains w3. By Rule 3 of the forced phase, all branch points of Fj except
w2, w4 and w5 are claimed. Suppose that w2 is not released by Fj during the approximation
phase. Then by Rules 2 and 4 of the approximation phase, exactly one of (w4, w5) is unclaimed
after the forced phase. Suppose without loss of generality this is w4. Because w2 is not released
by Fj in the approximation phase, the root of Fj is not w2 or on any j-path adjacent to it.
Therefore the root of E is in the intersection. If the root of Fi is on the i-path between w1
and wg then by Step 1, Fi will release both w1 and wg, and the contention will be cleared. If
the root of was on one of the other i-paths adjacent to w1, then Fj would have released w2;
by step 3. Finally, if the root is on an i-path adjacent to wg (but not WI), Fi will release wg

by Step 1, clearing the i-path from w3 to w1 (not including wl). By Step 3 Fj will release w4,

clearing the j-path from w2 to w4 (not including w2). Therefore the contention is removed. 0

LEMMA 3.7. After the approximation phase, every node is in at most one forest Fi.
Proof. The lemma follows from Lemmas 3.4, 3.5 and 3.6. U

4. Approximating Polymorphism. A polymorphic character (see [12]) allows more
than one state per character per species. This type of character has strong application in
linguistics [2, 161. If there are T states, a polymorphic character is a function c : S +. (2i1 - 7 ‘1 -
0). For a given set of species, the load is the maximum number of states for any character for
any species.

We consider a simple model where the loss of a state from parent to child costs nothing,
and mutation of a state (changing from parent to child), costs a fixed amount c,. Given a tree
labelled uniquely by species with polymorphic characters, we wish to determine labels for the
internal nodes which minimize the total mutation in the tree (sum over all edges of the number
of mutations across the edge), and achieves a given load bound Q. Bonet et. al. [2], considered
more complicated models motivated by [12], but they proved that even this simple case is AfP-
complete even if the input tree is binary. We can extend the results of section 2 to obtain, for
any a > 1, an (a , &)-approximation algorithm for this problem with arbitrary input topology,
meaning that if there is a load-! phylogeny of cost c, we can find a load-aQ phlogeny with cost
at most (a / (a - 1))c. (Note that taking a = 2 gives a (2,2)-approximation algorithm.)

10

REFERENCES

[I] H. Bodlaender, M. Fellows, T. Warnow, “Two Strikes Against Perfect Phylogeny”, procs. of the 19th In-
ternational Congress on Automata, Languages and Programming (ICALP), pp. 273-287, Springer-Verlag
Lecture Notes in Computer Science, 1992.

[2] M. Bonet, 6. Phillips, T.J. Warnow and S. Yooseph, Constructing Evolutionary Trees in the Presence of
Polymorphic Characters, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(1 996).

[3] I. Borosh and L.B. Treybig, Bounds on positive integral solutions of linear Diophantine equations, Proceedings
of the American Mathematical Society, Vol 55 (1976).

[4] W.H.E. Day, Computationally difficult parsimony problems in phylogenetic systematics, Journal of Theoret-
ical Biology, Vol 103 (1983).

[5] W.H.E. Day, D.S. Johnson and D. Sankoff, The computational complexity of inferring phylogenies by parsi-
mony, Mathematical biosciences, Vol 81 (1986)

[SI W.H.E. Day and D. Sankoff, “Computational complexity of inferring phylogenies by compatibility”, System-
atic Zoology, 35(2): 224-229, 1986.

[7] W. Fitch, Towards defining the course of evolution: minimum change for a specified tree topology, Systematic
Zoology, Vol 20 (1971).

[8] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, E. Sweedyk and T. Warnow, Minimizing phylogenetic number
to find good evolutionary trees, Discrete Applied Mathematics, to appear.

[9] M.R. Garey and D.S. Johnson, Computers and Intractabi&ty: A Guide to the Theory of NP-completeness,
W.H. Freeman and Company (1979).

[lo] T. Jiang, E.L. Lawler and L. Wang, Aligning Sequences via an Evolutionary Tree: Complexity and Approx-
imation, Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (1994).

[ll] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, eds.
R.E. Miller and J.W. Thatcher, Plenum Press (1972).

E121 M. Nei, Molecular Evolutionary genetics, Columbia University Press, New York (1987).
[13] M.A. Steel, “The complexity of reconstructing trees from qualitative characters and subtrees”, Journal of

[14] L. Wang and D. Gusfield, Improved Approximation Algorithms for Tree Alignment, Proceedings of CPM

[15] L. Wang, T. Jiang, and D. Gusfield, “A more efficient approximation scheme for tree alignment”, To appear
in Proceedings of the of First Annual International Conference on Computational Molecular Biology, Jan.
1997.

[16] T. WARNOW, D. RINGE AND A. TAYLOR, A character based method for reconstructing ewohtionary history
for natura2 languages, Tech Report, Institute for Research in Cognitive Science, 1995, and Proceedings
1996 ACM/SIAM Symposium on Discrete Algorithms.

C l a ~ s i j i ~ a t i ~ n , 9 91-1116, 1992.

1996, 220-233.

11

