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1. Introduction. The evolutionary biologist collects information on extant species (and 
fossil evidence) and attempts to infer the evolutionary history of a set of species. Most mathe- 
matical models of this process assume divergent evolution, meaning that once two species diverge, 
they never share genetic material again. Therefore, evolution is modelled as a tree (phylogeny), 
with extant species as leaves and (extant, extinct, or hypothesized) ancestors as internal nodes. 
Species have been modelled in several ways, depending upon the nature of available information 
and the mechanism for gathering that information. Based upon these representations, differing 
measures of evolutionary distance and objective function are used to evaluate the goodness of a 
proposed evolutionary tree. 

In this paper we assume that input data is character-based. Let S be an input set of n 
species. A character c is a function from the species set S to a set R, of states. If we are given 
a set of characters c1, . . . , Ck for S ,  each species is a vector from R,, x . . . x R,,, and any such 
vector can represent a hypothesized ancestor. Characters can be used to model biomolecular 
data, such as a column in a multiple sequence alignment, but in this paper, we think of characters 
as morphological properties such as coloration or the ability to fly. 

Character-based phylogenies are typically evaluated by some parsimony-like measure, 
meaning that the total evolutionary change is somehow minimized. In this paper, we consider 
the !-phylogeny metric introduced in [8]. Given a phylogenetic tree, a character ci and a state 
j E R,,, let tij be the number of connected components in c k - l ( j )  (the subtree induced by the 
species with state j in character i). A phylogeny is an !-phylogeny if max,,,jERc, !ij 5 1. The 1- 
phylogeny problem is to determine if an input consisting of a species set S and a set of characters 
c1, . . . , ck has an !-phylogeny. The phylogenetic number problem is to determine the minimum t 
such that it has an &phylogeny. The classic parsimony problem is to find a tree that minimizes 
Cc,,jERc, &. The compatibility problem is to maximize ( { c i  : !kj = 1 for all j E &}I. A 1- 
phylogeny is called a perfect phylogeny. All three problems (&phylogeny for ! 2 1, parsimony, 
compatibility) are NF-complete [l, 8, 4, 6, 131. Parsimony, &-phylogeny, and compatibility all 
allow states of a character to evolve multiple times. However, both parsimony and compatibility 
allow some characters to evolve many times. The &phylogeny metric requires balanced evolution, 
in that no one character can pay for most of the evolutionary changes. Thus, !-phylogeny is a 
better measure than parsimony or compatibility in biological situations in which all characters 
are believed to evolve slowly. 

In this paper we consider the &zed-toplogy variant of the &phylogeny problem, where in 
addition to the species set and characters, we are also given a tree T in which internal nodes 
are unlabelled, each leaf is labelled with a species s E S and each species s E S is the label 
of exactly one leaf of T .  The fixed-topoEogy !-phylogeny problem is the problem of determining 
labels for the internal nodes so that the resulting phylogeny is an !-phylogeny, or determining 
that such a labelling does not exist. 

Fixed-topology algorithms can be used as filters. Current phylogeny-producing software 
can generate thousands of trees which are (approximately) equally good under some metric such 
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as maximum likelihood or parsimony. We can think of these outputs as proposed topologies. 
One way to differentiate these hypotheses is to see which topologies also have low phylogenetic 
number. For example, the original trees can be generated by biomolecular sequence data, and 
they can then be filtered using morphological data with slowly-evolving traits. 

It will be convenient to allow a node to remain unlabelled in one or more characters in 
a fixed topology. In this case, the node disagrees with all of its neighbors on all unlabelled 
characters. We can easily extend such a labelling to one in which every node is labelled without 
increasing Lsj for any i or j: for any character j ,  for each connected component of nodes which are 
not labelled, choose any neighbouring node v which is labelled i, and label the entire component 
with the state i,. This does not introduce any extra component for i,, nor does it break 
components of any other state that weren’t already broken. 

In the fixed-topology setting, optimal trees for the parsimony and compatibility metrics 
can be found in polynomial time [7]. The fixed-topology t-phylogeny problem can be solved in 
polynomial time for .t 5 2, but is NP-complete for 1 2 3 even for degree-3 trees in which no 
state labels more than t + 1 leaves (and therefore there is a trivial .l+ 1 phylogeny) [8]. Fitch’s 
algorithm for parsimony uses dynamic programming. Dynamic programming also gives good 
algorithms in some cases for finding phylogenies when characters are polymorphic [2]. 

Jiang, Lawler, and Wang [lo] consider the fixed-topology tree-alignment problem, where 
species are represented as biomolecular sequences, the cost of an edge in the tree is the edit 
distance between the labels at its endpoints, and the goal is to minimize the sum of the costs 
over all edges. They give a 2-approximation for bounded-degree input topologies and extend 
this to obtain a polynomial-time approximation scheme (PTAS). In Lemma 3 of [lo], they prove 
that the best lifted tree (in which the label of each internal node is equal to the label of one of 
its children) is within a factor of 2 of the best tree with arbitrary labels. The proof only uses the 
triangle inequality (it does not use any other facts about the cost measure). Therefore, the result 
holds for several other cost measures, including t-phylogeny, parsimony, and the minimum-load 
cost measure for phylogenies with polymorphic characters which was introduced in [2]. It also 
holds for the variant of l-phylogeny in which e; is specified for each character ci. This variant was 
introduced in [8]. We refer to it as the generaked &phylogeny problem. In fact, Lemma 3 of [lo] 
holds for the fixed-topology problem with arbitrary input topologies, though the authors do not 
state this fact since they do not use it. Despite the applicability of Lemma 3, the algorithmic 
method of Jiang, Lawler and Wang does not seem to be useful in developing approximation 
algorithms for the fixed-topology l-phylogeny problem (or for related problems). Jiang et al. 
use dynamic programming to find the minimum-cost lifted tree. Dynamic programming is 
not efficient for the more global metric of t-phylogeny. The dynamic programming proceeds by 
computing an optimal labelling for a subtree for each possible labelling of the root of the subtree. 
For metrics where cost is summed over edges (such as parsimony or tree alignment), one only 
needs to  find the lowest-cost labelling for a given root label. For the !-phylogeny problem, the 
cost of a tree depends upon how many times each state is broken for a given character. One 
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cannot tell u priori which state will be the limiting one. Therefore, instead of maintaining a 
single optimal tree for each root label, we must maintain a91 trees whose cost (represented as a 
vector of components for each state) is undominated. This number can be exponential in T ,  the 
number of states, even for bounded-degree input trees. This is a common theme in combinatorial 
optimization: the more global nature of minimax makes it harder to compute than summation 
objectives, but also more useful. 

Gusfield and Wang [14] take the approach of [lo] a step further by proving that the best 
uniform lifted tree (ULT) is within a factor of 2 of the best arbitrarily-labelled tree. In a uniform 
lifted tree on each level, all internal nodes are labeled by the same child (e.g. all nodes at level 
one take the label of their leftmost child). This proof also extends to the 1-phylogeny metric. 
If the input tree is a complete binary tree, then there are only n ULTs, and exhaustive search 
is efficient, giving an algorithm which is faster than ours and has an equivalent performance 
bound. However, when the input tree isn’t complete (even if it is binary), Gusfield and Wang 
use dynamic programming to find the minimum-cost ULT, and so their method fails when it is 
applied to the f-phylogeny problem. Wang, Jiang, and Gusfield recently improved the efficiency 
of their PTAS for tree dignment [15], but still use dynamic programming. 

We give a simple 2-approximation for the fixed-topology 1-phylogeny problem that works 
for arbitrary input topologies. It is based on rounding the linear-programming relaxation of an 
integer programming formulation for fixed-topology &phylogeny. To our knowledge, this is the 
first application of linear-programming technology to phylogeny problems. 

As we described earlier, &phylogeny is most appropriate for slowly-evolving characters. It 
is most restrictive (and hence most different from parsimony) when L is small. Therefore, we 
look more closely at the first NP-hard case: 1 = 3. For this case, we give an algorithm based 
upon the structure of a 3-phylogeny that will construct a 4-phylogeny if the input instance has 
a 3-phylogeny. 

algorithm for the t-phylogeny problem. In section 3 we give the optimal approximation algo- 
rithm for inputs with 3-phylogenies. Section 4 discusses extensions of our results to a problem 
with polymorphic characters. 

The remainder of our paper is organized as follows: in section 2, we give the 2-approximation 

2. A 2-approximation algorithm for the fixed-topology phylogenetic number 
problem. The interaction between characters in phylogeny problems affects the choice of the 
topology, but it does not affect the labelling of the internal nodes once the topology is chosen. 
Thus, for this problem, we can consider each character separately. 

Let c : S --f (1,. . . , r }  be a character and let T be a tree with root q and leaves labelled by 
character states 1,. . . , r. For each state i, let Ti be the subtree of T consisting of all the leaves 
labelled i and the minimum set of edges connecting these leaves. Let L(T;) be the set of leaves 
of Ti, and let ~ t ; ,  the root of Ti, be the node of T; closest to the root of T .  The importunt nodes 
of Ti are the leaf nodes and the nodes of degree greater than 2. An i-path p of Ti is a sequence 
of edges of Ti that connects two important nodes of Ti, but does not pass through any other 
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important nodes. The two important nodes are referred to as the endpoints of p ,  and the other 
nodes along the i-path are said to be on p (an i-path need not have any nodes on it). Although 
the edges of the tree T are undirected, we will sometimes use the notation (v + w )  for an edge 
or i-path with endpoints v and w, to indicate that v is nearer to the root of T than w (v is 
the higher endpoint and w is the lower endpoint); otherwise we will write edges and i-paths as 
(v, w). If the label of the upper endpoint v or some node on the i-path p = (v -+ w) differs from 
the label for the lower endpoint w, then we say that p breaks state i. 

Given a tree T with each node labeled from the set (1,. . . , T } ,  we need a way to count the 
number of components induced by the nodes labeled i. Since the tree is rooted, we can assign 
each connected component a root, namely the node closest to the root of T .  We then count the 
number of roots for components labelled i. A node is the root of its component if its label differs 
from that of its parent. The root q, which has no parent, is also the root of its component. 
Therefore we have the following: 

OBSERVATION 2.1. Let T be a tree with its leaves and internal nodes labelled by elements 
of (1, r} .  For each i, let Ti be defined as above, and let q be the root of tree T .  Then the 
number of connected components induced by the nodes labelled i is I{e = (v ---f w) : c(v)  # 
i, C ( W )  = i}l f x, where x = 1 if q is labelled i and 0 otherwise. 

We now define an integer linear program (ILP) which solves the fixed-topology &phylogeny 
problem. The linear-programming relaxation of this ILP is the key to our 2-approximation al- 
gorithm. The integer linear program Z uses the variables Xu,(,  for each state i E (1, a * ,  r } ,  and 
each node v in the tree T ,  and the variables Xp,;  and costp,i, for each state i ,  and each i-path p 
of Ti. These variables have the following interpretation: 

1 
0 otherwise 

if node v is labelled i 
XV ,i 

1 if all nodes on p are labelled 2' 
0 otherwise 
1 if the lower endpoint of p is the root of a component of state i 
0 otherwise 

XP,i 

costp,i = 

ILP Z is defined as follows: 

minimize f! 

subject to 

Xv,i = 

xv,i = 

1 

0 
T 

4=1 

X p , i  = XV,i 

for each leaf v E Ti, i = 1,. D .  T 

if v # Ti, i = 1, . . . , r 

Vu E T 

i = l ,  ..., r ,  V p E T ; ,  V v E p  
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( 5 )  xp,i I XW,i i = 1,. . . , T ,  V p  E Ti, each endpoint w E p 

(6) cost,& 2 xw,i - x p , i  i = 1,. . . , T ,  Vp  E Ti with lower endpoint v 

(7) c costp,i t XTti,i I e i = 1 ,  ..., r 
P 

(8) xv,i7 xp,i, costp,i E (0, a} 

Constraint (8) assures that the cost (cost,,i), i-path (XP,i) ,  and vertex (Xw,i)  variables 
serve as indicator variables in accordance with their interpretation. Constraint (1) labels the 
leaves in accordance with the input. Constraint (2) prohibits labelling a node 2, with a state 
i when w is not in Ti (the number of components labelled i could not possibly be reduced by 
this labelling). Constraint (3) ensures that each internal node will have no more than one label. 
Constraints (4) and ( 5 )  ensure that for each tree Ti, nodes on paths are taken all-or-none; if any 
node on an i-path p (including endpoints) is lost to a state i, then it does no good to have any 
of the other nodes on the path (though it may be beneficial to maintain one or both endpoints). 
Constraint (6) computes the path costs, and constraint (7) ensures that each state has no more 
than e connected components. This is an implementation of Observation 2.1. Since there is no 
i-path in Ti with rti as its lower endpoint, we must explicitly check the root of each tree Ti, just 
as we checked the global root in Observation 2.1. 

Integer program Z solves the fixed-topology .&phylogeny problem. We only require, how- 
ever, that the optimal value of .! given by Z is a lower bound on the phylogenetic number of tree 
2' with the given leaf labelling (proof omitted): 

PROPOSITION 2.2. If there exists an  L-phylogeny for tree T with a given leaf labelling, 
then there is a feasible solution for the integer linear program for this value of E .  

Integer linear programming in NP-hard in general [3, 9,113, so we cannot solve it directly 
in polynomial time. (In fact, doing so would solve the fixed-topology L-phylogeny problem, which 
we know to be NP-hard for e 2 3 from [8].) However, we can solve the linear-programming 
relaxation L of Z, which consists of all the constraints of Z except that Constraint (8) is replaced 
by the constraint 0 5 Xw,i,  Xp, i ,  costp,+ I 1 (8'). 

THEOREM 2.3. If there is a solation for the linear program L for a fixed topology T with 
leaves labelled with states from { 1,. . . , r}? then we can assign states to the internal nodes of T 
such that no state i E { 1,. . . , T }  has more than 2L components. 

Pro05 The 2 t  phylogeny for the character c : S + {1, . . . , T }  on T is constructed by 
assigning states to the nodes of each tree Ti based on the Xw,; values. For each state i E 
{ 1,. . . r } ,  consider each internal node w of Ti.  A node w is labelled i if and only if Xw,i > 1/2, 
and there is path v, w1, w2,. . ., W k ,  w* through tree Ti to a leaf w* of Ti where Xw,,; > 1/2 for 
all j = 1,. . . , I C .  If Xw,i > 1/2, but there is no such path, then node is isolated, and by our 
procedure remains unlabelled. A node w also remains unlabelled if Xw,i 5 1/2 for all states i. 

To show that the labelling is a 2L-phylogeny7 we show that each component of state i adds 
at least 1/2 to the sum (E, cost,,i) + Xrti,i. From Observation 2.1, the number of connected 
components for the state i is [ { e  = (v ---f w) : c ( v )  # i, c(w) = i}l + E, where E is 1 if q has 



state i (and therefore q = rt i )  and 0 otherwise. Constraints ( 5 )  and (4) ensure that if the edge 
e = (v + w) has ~ ( v )  # i and c(w) = i then either w is the root of Ti, or w must be an endpoint 
node with Xw,; > 1/2, and that either Xv,t 5 1/2 or o is isolated. However, since w is labelled 
i ,  w must not be isolated, and therefore 2t would not be isolated if Xu,; was greater than 1/2. 
So Xu,; 5 1/2, and Xp,i 5 1/2 for the i-path p with lower endpoint w. Therefore we need only 
calculate the number of i-paths p with a lower endpoint w such that Xp,i 5 1/2, Xw,i > 1/29 
and w is not isolated. 

Suppose p = (v + w) is such an i-path. Since w is not isolated and the node above w is not 
labelled i, there is a sequence p1 = (w + V I ) ,  p2 = ( V I  + v2), . . . ? p j  = (vj-1 + vj )  of i-paths of 
Ti such that Xp,; > 1/2 for every p E { P I , .  . . , p j }  and Xv,i > 1/2 for every v E (211,. . . , vj}, and 
oj is a leaf of Ti. Calculating cost,,; + costpl,i + . * . + costp,,; = (Xw,; - Xp,;)  + (Xv1,i - Xpl , i )  + 

know by constraints ( 5 )  that Xw,; - Xpl,i  2 0 ,  Xvl , ;  - XP2,i 2 0, . . , , Xv,-l,i  - XP3,i 2 0 .  So 

Note also that for any two i-paths p = (v + w) and p’ = (v’ 3 w‘)’which break i, the 
i-labelled paths to leaves are disjoint (because they are in separate components of i). Therefore 
each i-path p which breaks i in our construction contributes at least l / 2  to the sum (E, costp,;). 
If rt; is labelled i (and hence the root of a component of i), then Xrti,i > 1/2 (corresponding to 
an edge (v + rta) in T or to the case % = 1). So 2 x ( (CPcos tp , i )  + XTtt,;)  2 I{e = (v + w) : 
~ ( v )  # i ,  C(W) = i}l + x, and therefore 2.t 2 [ { e  = (v + w) : ~ ( v )  # i ,  c(w) = i}l + E. 
0 

. . . + (Xu,+ - X P 3 )  = -x  p,i t (Xw,; - XpJ + (Xv1,i - Xp2) + * - - + (Xu,-1, i  - Xp,,;) + Xv,,i, we 

cost,,; + costp1,; + . . . + COStP,,k 2 Xv3,; - xp,; = 1 - xp,; 2 1/2. 

Recall that we have considered each character separately in our 2-approximation algorithm. 
Thus, our work applies to the generalized t-phylogeny problem (and not just to the ordinary 
&phylogeny problem). In particular, we have the following theorem. 

There is a bapproximation algorithm for the generalized t-phylogeny 
problem. 

THEOREM 2.4. 

3. 4-phylogeny algorithm. In this section we give an algorithm which takes a fixed- 
topology phylogeny instance with arbitrary topology and, as long as it has a 3-phylogeny, finds 
a 4-phylogeny for the instance. 

We use the following definitions, in addition to those that we used for the 2-approximation. 
We will maintain a forest Fi for every state i. A branch point of Fi is a node in F; with degree 3. 
We say that a node v E 4 is claimed by state i if it is not in Fj for any j # i. 

The algorithm generalizes the fixed-topology 2-phylogeny algorithm of [8]. It consists of 
a forced phase and then an approximation phase. The forced phase produces a partial labelling 
which can still be extended to a 3-phylogeny; it makes no labelling decisions that are not forced 
if one is to have a 3-phylogeny. The approximation phase removes all remaining contention for 
labels, but it can break some states into four pieces. Because finding a fixed-topology 3-phylogeny 
is NP-complete [8], this is an optimal approximation algorithm for phylogeny instances with 
3-phylogenies. 
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3.1. The Forced Phase of the Algorithm. Initially, for every state i we will have 
F; = Ti. During the forced phase of the algorithm, nodes will be removed from the forests Fi. 
The invariant during the forced phase of the algorithm is that there is a 3-phylogeny in which 
every node w is assigned a state j such that w E Fj. The forced phase applies the following 
rules in any order until none can be applied. If any forest F; is broken into more than three 
components by the application of these rules, then the instance has no 3-phylogeny and the 
algorithm terminates. 

1. For any i-path (w,  w), let S be the set containing w and w and the nodes on the i-path. 
If S contains two or more branch points of Fj then every node on the i-path is removed 
from Fa. (Note that in the updated copy of F; (after the rule is applied), w and w 
will have lower degree than in the original Fa. Furthermore, if w has degree 2 in the 
updated Fi then the i-path containing it will consist of nodes from two different i-paths 
in the original 4. Similarly, i-paths can be merged as a result of the following rules.) 

2. If Fi has C(Fi) connected components and Fi contains a node w of degree at least 
5 - C(&) then in every forest Fj with j # i, w and all nodes on j-paths adjacent to w 
are removed from Fj (Lem7 i claims node v). 

3. If w is a branch point of E and two i-paths (v, wl) and (w, w2) adjacent to w contain 
branch points of Fj (for some j # i), then in every forest Fk with k # i, every branch 
point w {w, w1, wg} of Fi and every node on every k-path adjacent to w is removed 
from F' (i.e., E claims all branchpoints except w, w1, and w2). 

Rule 1 is justified by observing that in any 3-phylogeny7 each forest Fa gives up at most two 
disjoint i-paths, or a single branchpoint with the i-paths adjacent to it. In the setting in which 
rule 1 is applied, if Fi were to claim the path in question, then Fj would lose two branchpoints 
and necessarily be in at least four components. Therefore, in any 3-phylogeny for the input, F' 
cannot have that i-path. Note that once any node on an i-path is lost to Fi, then F; has no 
reason to claim any other nodes on the i-path. 

Rule 2 is justified by the following observations. If there is a node of degree at least 4 in 
tree Ti, then it must be labelled i in any %phylogeny (losing it will break state i into at least 4 
pieces). Once Fi has been forced to give up an i-path, it cannot give up another branchpoint. 
Finally, once Fa has been forced into three pieces, then it must claim all remaining nodes in Fi. 

Rule 3 is applied when we isolate a region where a break in Fi must occur, but do not yet 
know exactly where the break will occur. If two paths adjacent to a branchpoint of F; contain 
branchpoints of F', then by the previous argument for rule 1, Fi cannot keep both of those 
paths. Therefore, outside of the affected region (those two i-paths), Fa can act as though the 
forest has been cut into at least two pieces, and can claim all branchpoints. 

3.2. The Approximation Phase of the Algorithm. In the following, releasinga degree- 
2 node w E F; removes all nodes on its i-path from Fa. Releasing a higher-degree node TJ E F; 
removes w and all nodes on i-paths adjacent to w from Fi. The approximation phase consists of 
the followinn stem. 
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1. For each connected component C of Fi, if the root of C is unclaimed then F; releases 
the root of C. Also, if this root has degree 2, Fa releases any unclaimed branch points 
at the ends of i-paths adjacent to this root. 

2. If, after the forced phase, F; is in a single component with exactly one unclaimed branch 
point, w, then it releases w. 

3. If, after the forced phase, Fi is in a single component with exactly two unclaimed branch 
points, w1 and w2 which are the two endpoints of an i-path, and the path from the root 
to w2 passes through w1, then F! releases w2. 

4. If, after the forced phase, F; is in a single component with exactly three unclaimed 
branch points, w1, w2 and w3 where there is an i-path from w1 to w2 and an i-path 
from w2 to w3, then Fa releases w2. 

3.3. The Proof of Correctness. The proof requires the following observation (proof 
omitted), and follows from Lemma 3.2 and Lemma 3.7. 

OBSERVATION 3.1. If F; is in one component and it releases two branchpoints w1 and w2 
which share an i-path, then the resulting forest F; has at most 4 components. 

LEMMA 3.2. At the end of the approximation phase, every fovest Fi has at most 4 con- 
nected components. 

Proof. The forest F; can be in at most three components at  the end of the forced phase. 
If F; is in three components at the end of the forced phase, then, by Rule 2 of the forced phase, 
every remaining node in Fi is claimed during the forced phase, so nothing is removed from 4 
during the approximation phase. If Fi is in two components after the forced phase, then, again 
by Rule 2, all branch points of Fi are claimed during the forced phase, so no branch points are 
removed from Fi during the approximation phase. Step 1 of the approximation phase, therefore, 
will remove at most one path from each component (when the root has degree 2, since degree-3 
roots are claimed) and therefore breaks F! into at most four components. In this case Steps 2-4 
of the approximation phase do not apply, and at most one of Steps 2-4 can apply to each of the 
remaining cases. 

If F; is in one component after the forced phase, and Steps 2-4 do not apply then we have 
two cases. If the root is degree three, Step 1 results in at most 3 components. If the root is 
degree two, then Fi could release the two branchpoints on either end of this i-path, resulting in 
at most four components by Observation 3.1. 

Suppose F; is in one component with exactly one unclaimed branchpoint after the forced 
phase. If that branchpoint is released by Step 1, then 4 is in at most 3 components after 
that step (only that branchpoint and its adjacent i-paths are removed from F;), and Step 2 is 
redundant. Otherwise, Step 1 releases only the i-path through the root, since its endpoints are 
claimed, resulting in two components, and the subsequent application of Step 2 adds at most 
two more for a total of four. 

Suppose Step 3 can be applied to F!. If w1 is not an endpoint of the i-path through the 
root of 4, then Step 1 results in two components (both endpoints are claimed since neither is 
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w1 or wp). Subsequently removing w2 by Step 3 results in at most two more components for 
a total of four. If 201 is an endpoint of the i-path containing the root of F;, then both w1 and 
wp are released (and nothing more). Since they share an i-path, this results in at most four 
components by Observation 3.1. 

Finally, suppose Step 4 can be applied to F;. If none of w1, wg or w3 is the root or is an 
endpoint of the i-path adjacent to the root, then Step 1 will result in additional components 
only if the root has degree two. Since both of the endpoints of this i-path are claimed in this 
case, removing this 2'-path and wp (by Step 4) results in at most four components. Otherwise, 
the combined application of Steps 1 and 4 requires the release of w2, and possibly one of w1 
and w3 as well (but not both, since if 202 is the root, neither of the other branchpoints will be 
released). By Observation 3.1 this will result in at most four components. 0 

The following lemmas use this fact: 
FACT 3.3. ([8]) The intersection of two subtrees of a tree is connected and contains the 

root of at least one of the subtrees. 
LEMMA 3.4.  If F; and Fj are each in two components after the forced phase, then after 

the approximation phase, there is no node that is in Fi and in Fj. 
Proof. This proof is similar to the correctness proof of the fixed-topology 2-phylogeny 

algorithm in [8].  Let C; be a component of Fa after the forced phase, and let Cj be a component 
of Fj after the forced phase. Since F; and Fj are both split in two components during the forced 
phase, all branch points in C; and Cj are claimed during the forced phase (by Rule 2), and 
their intersection is a path in the fixed topology (i.e., all nodes are degree 2). Furthermore, 
the root of Ci or Cj is in the intersection. Therefore, the contention is cleared in Step 1 of the 
approximation phase of the algorithm. 0 

LEMMA 3.5. If Fa is in one component after the forced phase, and Fj is in two components 
after the forced phase, then there is no node that is in Fi and in Fj after the approximation 
phase. 

Proof. First note that no branch point of Tj is part of Ti. (Since Fj is in only 2 pieces, 
it gave up only degree-2 nodes in the forced phase, and subsequently claimed all branch points. 
None of these are in Fa, since F; was unbroken in the forced phase). Thus, the intersection of 
Ti and Tj is a path in Tj. We conclude that the intersection of F; and Fj is a path in Fj and 
contains at most one branch point of F; (otherwise, the path would be removed from Fj during 
the forced phase by Rule 1). If the intersection contains the root of Fj,  then the contention will 
be removed during Step 1 of the approximation phase. Otherwise, the intersection contains the 
root of F;. Thus, the single branch point of F; that is contained in the intersection of F; and 
Fj is either the root of F; or it is an endpoint of the i-path containing the root of F;. In either 
case, the contention will be removed in Step 1 of the approximation phase. 0 

LEMMA 3.6. If F; and Fj are each in one component after the forced phase, then there is 
no node that is in F; and in Fj after the approximation phase. 

Proof. (sketch) The proof is by case analysis. Case (a,/3,7) represents the situation in 

9 



which the intersection of Fi and Fj after the forced phase contains a! branch points of I?! and ,d 
branch points of Fj, y of which are shared. 

Cases (O,O,O), (l,O,O), and (1 ,1,7)  use arguments similar to those in Lemmas 3.4 and 
3.5. Cases (2,0,0), (2,1,  l), (3,3,0), ( a  > 1,p > l , 7  > 0), and ( 3 , p  5 1 , ~ )  are all forbidden by 
rule 1 of the forced phase. We now give a proof of case (2,1,0).  The remaining cases (2 ,2,0)  
and (3,2,0) use similar arguments. 
Case (2,1,0): By Rule 1, after the forced phase, the intersection of and Fj has the branch- 
point of Fj (WZ), between the two branchpoints for Fi (w1 and wg). Let w4 be the other endpoint 
of the j-path adjacent to w2 that contains w1, and let w5 be the other endpoint of the j-path 
adjacent to w2 that contains w3. By Rule 3 of the forced phase, all branch points of Fj except 
w2, w4 and w5 are claimed. Suppose that w2 is not released by Fj during the approximation 
phase. Then by Rules 2 and 4 of the approximation phase, exactly one of (w4, w5) is unclaimed 
after the forced phase. Suppose without loss of generality this is w4. Because w2 is not released 
by Fj in the approximation phase, the root of Fj is not w2 or on any j-path adjacent to it. 
Therefore the root of E is in the intersection. If the root of Fi is on the i-path between w1 
and wg then by Step 1, Fi will release both w1 and wg, and the contention will be cleared. If 
the root of was on one of the other i-paths adjacent to w1, then Fj would have released w2; 
by step 3. Finally, if the root is on an i-path adjacent to wg (but not WI), Fi will release wg 

by Step 1, clearing the i-path from w3 to w1 (not including wl). By Step 3 Fj will release w4, 

clearing the j-path from w2 to w4 (not including w2). Therefore the contention is removed. 0 

LEMMA 3.7. After the approximation phase, every node is in at most one forest Fi. 
Proof. The lemma follows from Lemmas 3.4, 3.5 and 3.6. U 

4. Approximating Polymorphism. A polymorphic character (see [12]) allows more 
than one state per character per species. This type of character has strong application in 
linguistics [2, 161. If there are T states, a polymorphic character is a function c : S +. (2i1 - 7  ‘1 - 
0). For a given set of species, the load is the maximum number of states for any character for 
any species. 

We consider a simple model where the loss of a state from parent to child costs nothing, 
and mutation of a state (changing from parent to child), costs a fixed amount c,. Given a tree 
labelled uniquely by species with polymorphic characters, we wish to determine labels for the 
internal nodes which minimize the total mutation in the tree (sum over all edges of the number 
of mutations across the edge), and achieves a given load bound Q. Bonet et. al. [2], considered 
more complicated models motivated by [12], but they proved that even this simple case is AfP- 
complete even if the input tree is binary. We can extend the results of section 2 to obtain, for 
any a > 1, an ( a ,  &)-approximation algorithm for this problem with arbitrary input topology, 
meaning that if there is a load-! phylogeny of cost c, we can find a load-aQ phlogeny with cost 
at most (a / (a  - 1))c. (Note that taking a = 2 gives a (2,2)-approximation algorithm.) 
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