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Abstract. To distinguish between chaotic and noisy processes, we analyze one- and two-dimensional chaotic 
mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one 
to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small 
compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, we consider the 
fractal fuzzy sets whose a-cuts are fractals, arising in the context of a quadratic mapping in the extended complex 
plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables us to decide in favor of 
chaotic or noisy evolution. 
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1. Introduction 

When studying chaos in fuzzy dynamical systems, one 
faces two fascinating challenges. The first one, also 
encountered in crisp dynamical systems, is how to dis- 
tinguish between chaos and noise. The second one con- 
cerns the various ways a fuzzy chaos can be brought 
about. A systematic study of chaos in fuzzy dynamical 
systems has been initiated by Kloeden 111, Diamond 
[ 2 ] ,  and Diamond and co-workers [3]. The mathemati- 
cal definitions of chaos rely on positive topological 
entropy, sensitive dependence on initial conditions, and 
positive Liapunov exponents. When transcribed to 
dynamical fuzzy systems, the definition of chaos 
invokes the notion of topological entropy; roughly 
speaking, a system is chaotic if the trajectories are mix- 
ing. 

Although fuzzy dynamics often applies the 
extension principle to define mappings of fuzzy sets, 
other fuzzification schemes allowing one to extend 
chaotic evolution to the domain of fuzzy sets are 
possible. For example, Buckley and Hayashi [4] 
discuss two simple methods, in which one either varies 
the parameters of the underlying fuzzy set (e.g. three 
numbers defining a triangular fuzzy set) or chaotically 
changes the fuzzy set by varying its shape and support. 
Chaotic dynamic operating on fuzzy truth values has 
been a subject of an article by Grim [ 5 ] .  Even within 
the framework of the extension principle, different 
fuzzification schemes based on the notion of s- and t- 
norms are possible, leading to the mapping of levels of 

the level sets [6] .  
The goal of this paper is twofold. First, we apply 

the predictive ability of a fuzzy controller to 
distinguish chaotic and noisy behavior in a one- 
dimensional time series; to this end, we use a well- 
known example from the number theory. Second, we 
turn to two-dimensional systems, subject to a 
quadratic mapping in a complex plane, which leads to 
a Julia set, an attractor in the space of compact sets 
with Hausdorff metric [7]. Based on the extension 
principle, Fridrich [8] investigated the relationship 
between the initial and asymptotic membership 
functions for one-dimensional quadratic mappings. 
Here we apply the extension principle to the inverse 
function algorithm. Two-dimensional iterated fuzzy 
set systems have earlier been studied by Cabrell et al. 
[9] in a different context. If we preserve the notion of 
level sets, we arrive at a novel description of the 
Hausdorff dimension, given in terms of a fuzzy set. 
The membership function of this fuzzy set is a 
constant when the chaotic system is perturbed by an 
additive noise and all the points of the iterated system 
are accounted for: on the other hand, in the absence of 
noise, the fuzzy set provides a quantitative measure 
allowing one to distinguish chaotic from noisy 
mappings. 
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2. Ergodic and chaotic time series 

Can a chaotic time series be distinguished from a ran- 
dom one? We don't know, but random and ergodic time 
series are different. 

If m is a measure on space E,  consider 
transformations T of E into itself. T is said to be 
measure preserving, if m(T-lA)  = m(A). A is invariant 
under T in case T -'A = A .  T i s  ergodic if it is measure 
preserving and if each invariant set is trivial in the 
sense of having a measure of either 0 or 1 [ 101. 

For ergodic transformations, the sequence of 
iterates of a point is uniformly dense in space. This 
means that, starting with a point p at time 0, one asks 
for the frequency with which the iterates of p fall into 
A.  In the lirnit of infinitely many iterates, for almost 
every point p this frequency is equal to the relative 
measure of the region. In mathematical terms, the 
ergodic theorem reads 

where IA is the indicator function of A. 
Among different applications, the ergodic theorem 

has found remarkable use in number theory, 
especially in the context of continued fractions. Let 
x E [0,1] , then the continued fraction expansion of x is 

1 x =  
1 

a1 + 1 a2+ - 
a3 + ... 

where the partial quotients, 
transformation 

T(x) = I - E] , 
X 

! are positive integers. The 

(3) 

where [llx] denotes the integer part of llx, gives the 
fractional part of l lx;  it preserves the Gauss measure 

1 1  m(A) = -I-& . 
10g2A1 + x  (4) 

Note that the integers (an} in Eq. (2) can be expressed 
in terms of the function T(x). If a(x) = [ llx], and a&) = 
a(P-'x), FZ = 1,2, ..., then al(x),  az(x), ... are just the par- 
tial quotients in the continued fraction expansion of x. 

The probability of finding an integer k in the 
sequence al, u2, a3, ... is given as 

Equation (5) is obtained from the ergodic th orem by 
taking E to interval (0,l); A to be the interval - - , 
that is the set on which q ( x )  = k, and the measureyo e 
Gauss measure, given by Eq. (4). For example, for k = 
1,2, 3,4, 5, wegetp(1) = 0.4150,p(2) = 0.1690,~(3) = 
0.0931,~(4) = 0.0589, andp(5) = 0.0406. 

Any sequence of natural numbers drawn form the 
probability distribution of the quotients of the 
continued fraction corresponding to an irrational 
number represents a typical sequence, in the sense that 
almost all sequences of quotients have this 
distribution. On the other hand, some numbers lead to 
sequences of quotients that are not ergodic. For 
example, the quotients corresponding to (8 - 1)/2 
are all equal to 1. In the same vein, a sequence of 
uniformly distributed integers will have more large 
numbers than allowed by the probability distribution 
of quotients. 

These comments lead to a method allowing one to 
distinguish an ergodic from a random sequence. After 
constructing the rules based on the ergodic sequence, 
we register the forecast error for ergodic and random 
sequences, thus obtaining a classification tool. 

In forecasting error using fuzzy rule-based system 
(FRBS) [ l l ]  with lag vector of length 6, rules are 
obtained for ergodic and random sequences, drawn 
from a set of random numbers with the probability 
distribution given by Eq. (5) and from a uniformly 
distributed set of numbers, respectively. 
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Fig. 1 Ergodic and chaotic time series. 



The ergodic sequence (left) is too irregular for 
FRBS to be captured in rules. The random sequence 
(right) shows “anomalies” where large integers occur. 

3. Spaces of fractals and fuzzy sets 

Let (R, d)  be a complete metric space with metric d. 
Denote by 3(R) the space whose points are the com- 
pact subsets of 0, other than the empty set. For x E C2 
and B E Z(C2) define the distance from the point x to the 
set B: 

d(x, B) = Min {d(x,  y ) :  y E B }  , 
and the separation between the sets A, B E 3(H) : 

d(A,B)  = M a x { d ( x , B ) : x  E A }  . (7) 

Then the Hausdorff metric between A and B, defined as 

d&4,  B)  = MaxId(A, B)  , d(B, A))  , (8) 

yields a metric space of fractals (3(C2), dH) . If wi, i = 1, 
2, ..., n denotes an iterated function system of contract- 
ing mappings of R, then the transformation 
W: 3(Q) + 3(Q), defined by 

W(B) = c, W i ( B )  
i =  1 

(9) 

for all B E Z(Q), is a contraction mapping on 
(Z(R), dH)  . Its unique fixed point is called an attractor 
of the iterated function system [ 121. 

The space of fuzzy sets D(R) on R is defined as 
the set of upper semicontinuous and normal mappings 
u :  R + [0, 11 . For 0 < CL I 1 , the level set is a crisp 

set [u]”  = (x E R: u(x> 2 a> ; a metric on D(.Q) can 
be defined as 

When the contractive operator is defined on 
(D(C2), d,) , its unique fixed point defines a fuzzy set 
attractor [9]. 

In fuzzy sets theory, a fuzzy set defined on a 
Cartesian product of crisp set is called a fuzzy relation. 
In the case of a Cartesian product of two crisp sets, an 
image analogy has proved fruitful in visualization of 
fuzzy sets: grey or color levels of an image admit a 
natural representation in terms of fuzzy sets. 

4. Juliaset 

Quadratic Julia sets arise from sequences of complex 
numbers defined iteratively by the relation 

z,+1 = z; + c  , 

where c is a complex number. Fixing c, while varying 
the initial point ZO, we may look for the values of ZO, for 
which the sequence z, remains bounded. These values 
form the filled Julia set (or prisoner’s set) K,; the Julia 
J, set consists of the boundary points of K,. Equiva- 
lently, J, can be defined as the closure of the set of 
repelling periodic points of the mapping 

2 F(z)  = z + c 

associated with Eq. (1 1). 
A simple algorithm that produces a Julia set of the 

quadratic mapping (12) relies on the fact that the Julia 
set for is an attractor of an iterated function system, 
consisting of two functions fi(z) = z c  and 

&(z) = -6, which are just the functions inverse to 
F. In the inverse iteration method, a fixed initial point 
zo is iterated by selecting either fi or f 2  with equal 
probability of 0.5; the sequence (zn: n = 0,  1, 2, ...} 
converges to the attractor of the iterated function 
system. We use the inverse iteration method to study 
the transformation of an initial fuzzy set of a simple 
form. 

The escape set, defined as the complement of the 
prisoner’s set, can be divided into equipotential sets by 
using an escape time algorithm: the escape time for a 
point z outside of K ,  is the first n for which z, in Eq. 
(10) has modulus greater than a given radius R. 
Whereas an equipotential set is by definition an 
invariant of the iterative mapping (12), it is no longer 
so when Eq. (1 1) is supplemented by an additive noise 
term. This leads to a different mapping in the space of 
fuzzy sets than the mapping resulting from the 
extension principle. 

4.1. Julia set: Inverse iteration method 

In the simplest formulation, based on the classic exten- 
sion principle [l], a mapping f: R + R induces a fuzz- 
ification f=D(R) + D(R) , defined on the space D(R) 
of fuzzy sets on a set 0, as 



(Su>(y )  = sup{u(x): x Ef+)}. 

A simple fuzzification scheme relies on the 
definition of level sets and the resolution theorem, by 
virtue of which, 'any fuzzy set, X = c u ( x ) / x ,  can be 
represented as 

In Eq. (14), [u]" is interpreted as a fuzzy set with a 
membership function whose value is unity. The resolu- 
tion theorem reduces the transformations of fuzzy sets 
to interval arithmetic. Under broad conditions, spelled 
out in Ref. [2], the level sets satisfy the following trans- 
formation rule 

Equation (15) remains valid even for a more general 
fuzzification schemes, known as r-fuzzification [2]. 

The chaotic properties of a dynamical systems can 
be quantified in terms of the Hausdorff dimension, 
whose fractional values indicate the existence of 
chaos. The dimension may be viewed as a measure of 
information necessary to specify the location within a 
given accuracy [13]. Mathematically, if N(E)  is the 
number of cubes of side E in a p-dimensional space 
needed to cover the set, the Hausdorff dimension h is 

h = lim logN(E)/log(l/E). 
E + O  

In the following we use the Hausdorff dimension to 
characterize the chaotic behavior of different level sets 
of a fuzzy set. 

Fig. 2 Julia set for the complex parameter c = 
0.238489 + i 0.51919800. 

For c = 0.238489 + i 0.519198 ( i  = fi) the 
resulting Julia set is shown in Fig 2. In the absence of 
noise, the attractor resembles a one-dimensional curve 

Fig. 3 Noise-perturbed Julia set. The noise strength 
q = 0.2; c as in Fig. 2. 

with the Hausdorff dimension close to unity. We now 
supplement the iterative equations of the inverse 
iteration method with an additive uniform noise of 
strength q. 73is implies that, at each step, the real and 
imaginary parts of the square root are supplemented 
by a random number from the interval (0, 1) 
multiplied by q. As the iteration process is more and 
more perturbed by noise, the attractor is gradually 
being filled, with its Hausdorff dimension approaching 
the value of 2; see Fig. 3. 

As in Ref. [6], we now construct an initial fuzzy 
set X having the form of a quadrilateral pyramid with 
base area in the form of a square with half-side of 2.0 
around the origin; the apex of the pyramid is a point 
with coordinates (0, 0, 1) in the x,y,z-space. This fuzzy 
set is subject to the quadratic transformation given by 
Eq. (12), applied to X by virtue of the extension 
principle. The extension principle is used in the form 
of Eq. (15), which tells us to apply the quadratic 
transformation to the level sets. The Hausdorff 
dimension of the resulting level sets is shown in Fig. 4 
as a function of the level set size for different noise 



strengths. The a-cut size is expressed in terms of the 
half-size of the underlying square, whereas the noise 
strength 4 refers, once again, to the multiplicative 
factor scaling the additive white noise. During the 
course of the iterating process, we drop the points 
falling outside of the level set boundaries. For this 
reason, for small values of a,  the Hausdorff dimension 
approaches zero: after many iterations there are only 
few points left. 

We note that, for q = 0, the inverse iteration results 
in a fuzzy set whose each level set is a fractal. Such a 
fuzzy set can naturally be termed a fractal fuzzy set. 
As q increases, the a-cuts become uniformly filled; 
the chaotic properties of the attractor become 
truncated [14]. 
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Fig. 4 Hausdorff dimension for the level sets 
resulting from the inverse iteration method as a 
function of the a-cut size for different noise values. 

4.2. Julia set: forward iteration 

The inverse iteration method relies on the backward 
iteration: one selects one of the two possible preimages 
of a given point in the complex plane. The forward iter- 
ation maps each point either to the interior of the Julia 
set (prisoner's set) or to its exterior (escape set). The 
escaping points can be studied by calculating the escape 
time, related to the potential of the Julia set. By virtue 
of the Riemann mapping theorem, the potential of any 
connected prisoner's set is can be brought into a one-to- 
one correspondence with the potential of a unit disk. 
Viewed from this perspective, the different potential 
values of the escape set can be interpreted as levels of a 
fuzzy set in two dimensions. 

More precisely, let C denote a target set consisting 
of the points in the complex plane whose distance 

from the origin is larger than a given value R, 
supplemented by the point at infinity: 

C = { Z E C : I Z I > R ) U { ~ )  . (17) 
Define iteratively a sequence of inverse images of C , 
denoted as C,, n = 0, 1, 2, ..., with C, = C, 
C, = F-'(C,), ..., where the function F is defined by 
Eq. (12). It can readily be shown [7] that C, can be 
defined as the set of points whose orbits need at most n 
iterations to reach C . The regions L, = C, + \ C, have 
orbits which reach C in exactly n + 1 iterations. 

In the following we restrict our attention to 16 
levels. After normalization to unity, the level sets 
define a fractal fuzzy set; that is, a fuzzy set whose 
levels are fractals (cf. Sec 4.1). Figure 5 shows the 
level set of a = 0.31 (level 5 )  whose Hausdorff 
dimension turns out to be 1.4906. Again, we perturb 
the iteration process by the additive noise terms scaled 
by q, resulting for q = 1.0, in a level set illustrated in 
Fig. 6 with Hausdorff dimension of 1.8767. 

Fig. 5 Level set, identified with the a-cut for a = 
0.25, of the Julia set defined as the set of points in 
the complex plane requiring 4 iterations to reach a 
large target set. Hausdorff dimension h of this level 
set is 1.4906. 

In Fig 7, we show the Hausdorff dimension as a func- 
tion of the a-cut size, depicted for different noise lev- 
els. It can be seen that, for a close to unity (large escape 
times) and high noise values, the Hausdorff dimension 
of the level sets drops to small fractional values: most 
points are lost due to the random perturbations of the 
trajectory. Had we retained the points that escape the 
level sets due to noise, the Hausdorff dimension of the 
level set would tend to the constant value of 2, typical 
of two-dimensional geometric objects. 



5. Conclusions 

Fig. 6 Noise-perturbed (q = 1.0) a-cut of Fig. 5. 
Hausdorff dimension h = 1.8767. 

As stressed in Ref [6], Fig. 7 demonstrates that the 
properties of an iterated mapping in two dimensions 
can be described in terms of a fuzzy set that provides 
the measure of the Hausdorff dimension for different a- 
cuts. The fuzzy set is constructed by normalizing the 
values of the Hausdorff dimension to unity. 
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Fig. 7 Hausdorff dimension as a function of level 
set size for different noise values. 

The shape of the membership function of this 
fuzzy set should tell us the difference between noise- 
dominated and chaos-dominated iterative mappings. 

To distinguish between noisy and chaotic mappings, we 
analyzed both-one and two-dimensional systems. In 
one-dimension, the application of the fuzzy rule-based 
system allows us to detect anomalies in an ergodic 
mapping, thus distinguishing this mapping from a set of 
numbers drawn from a uniform distribution. In two 
dimensions, we have focused on the quadratic map- 
pings in the complex plane, having a Julia set as an 
attractor. The Hausdorff dimension, considered as a 
function of the a-cut size, can be regarded as a fuzzy set 
whose functional form encodes the chaotic or noisy fea- 
tures of the mapping. 
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