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Abstract 
This paper first extends the traditional perspective 
of linkage using the basic concepts developed in the 
SEARCH framework (Kargupta, 1995; Kargupta & 
Goldberg, 1996) and identifies the fundamental objec- 
tives of linkage learning. It then explores the computa- 
tional role of gene-expression (DNA+RNA+Protein 
transformations) in evolutionary linkage learning, us- 
ing group representation theory. It offers strong evi- 
dence to support the hypothesis that the transforma- 
tions in gene-expression define a group of symmetry 
transformations that leaves the fitness invariant; how- 
ever, they change the eigen functions leading to iden- 
tifying independent subspaces of the search space (a 
major objective of linkage learning) using irreducible 
representations of such transformations. 

1 Introduction 
Intra-cellular expression of genetic information in a 
living organism plays a critical role in the emergence 
of different forms of life. Different regions of DNA- 
the career of genetic information-are transcribed in 
different cells of an organism for producing messen- 
ger RNA (mRNA). Messenger RNA sequences are in 
turn translated to produce proteins, which are respon- 
sible for almost every activity of a living being. The 
transformation of the information coded in DNA to 
the proteins is often called gene expression. Little at- 
tention has been paid to understand the quantitative 
role of this intra-cellular flow of genetic information 
in evolutionary search. Almost all state of the art 
evolutionary algorithms acknowledge very little com- 
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putational importance of gene expression. 
In this paper we first offer a perspective of link- 

age learning as identifying delineable relations (Kar- 
gupta & Goldberg, 1996) (relations that are inher- 
ently appropriate for constructing an ordering among 
its classes, defined over the search space) in subspaces 
of the search space. In other words, the task of linkage 
learning is decomposed in (1) decomposing the search 
space into different independent subspaces and (2) de- 
tecting appropriate relations defined within the sub- 
spaces. Next we relate these steps of linkage learning 
with the series of transformations introduced by the 
gene expression process and develop a possible per- 
spective of linkage learning in natural evolution using 
group representation theory. 

Section 2 briefly reviews previous work on linkage 
learning. Section 3 develops the general perspective 
of linkage using basic concepts of the SEARCH frame- 
work. Section 4 first briefly describes the basic steps of 
gene expression. After reviewing the concepts of group 
representation theory, the transformations in gene ex- 
pression are related to the issues of linkage learning. 

2 Previous Work 
Genetic linkage if often viewed in both genetic algo- 
rithm (GA) literature (Goldberg, Korb, & Deb, 1989; 
Harik & Goldberg, 1996; Holland, 1975) and evolu- 
tionary biology (Alberts, Bray, Lewis, Raff, Roberts, 
& Watson, 1994) as the non-linear epistatic relations 
among different variables (often called genes in the bi- 
ological context). The scope of linkage learning is of- 
ten described as identifying the cluster of epistatically 
related genes. Although the major bulk of the GA 
literature failed to pay attention to the issue of link- 
age learning, a significant amount of effort has been 
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made toward understanding the linkage issue by a rel- 
atively closed group of researchers. Goldberg, Korb, 
and Deb (1989) was first to pay serious attention to 
linkage issue. They developed the so called messy 
genetic dgora’thms which targeted learning linkage in 
problems that are quasi-decomposible. In this effort 
the subspaces were defined by equivalence classes de- 
fined over the representation and they are determin- 
istically enumerated. Equivalence classes were evalu- 
ated using a “competiive template” (Deb, 1991). One 
of the major problem of this approach was the com- 
putational cost of explicit enumeration of classes. The 
fast messy GA(fmGA) (Goldberg, Deb, Kargupta, & 
Harik, 1993; Kargupta, 1995) proposed a probabilis- 
tic and approximate way to learn linkage. Although 
fmGA successfully reduced the computational cost of 
the messy GAS for some large problems linkage learn- 
ing in fmGA may be sub-optimal. Kargupta (1995, 
Kargupta (199613, Kargupta (1996a) reported the so 
called gene expression messy GA which used a lo- 
cal perturbation based algorithm to determine locally 
optimal classes. Although the complexity was sub- 
quadratic, it is not quite clear how general the tech- 
nique for determining subspaces is. 

Most of the above mentioned techniques of link- 
age learning were in a way based on heuristics. The 
present work offers an analytically well grounded ap- 
proach that follows the emphasis of gene expres- 
sion developed elsewhere (Kargupta, 1995; Kargupta, 
1996b). However, before we do that, let us first un- 
derstand the scope of linkage learning and its funda- 
mental need in blackbox optimization. The following 
section does that using the SEARCH framework devel- 
oped elsewhere (Kargupta, 1995; Kargupta, 1996a). 

3 Linkage And Optimization 
As mentioned earlier, traditionally linkage is viewed 
from the problem perspective, as the epistatic rela- 
tion between the problem variables, often represented 
by one or a collection of genes in genetic algorithms. 
However, this intuitive definition may not be sufficient 
to understand the fundamental objectives of linkage 
learning in the context of optimization. 

The SEARCH (Search Envisioned As Relation and 
Class Hierarchizing) framework developed elsewhere 
(Kargupta, 1995; Kargupta & Goldberg, 1996) of- 
fered an algorithm perspective of linkage in terms of 
the relations introduced by the representation. In 
this section, we first briefly review the decomposi- 
tion of search space proposed by the SEARCH frame- 
work into relation, class, and sample spaces. This will 
be followed by a section, identifying scope of linkage 
learning. 

3.1 Decomposition of blackbox opti- 
mization search space in SEARCH 

Foundation of SEARCH is based on the fact that in- 
duction is an essential part of blackbox optimization 
(BBO), since in absence of any analytic information 
about the objective function structure, a BBO algo- 
rithm must guess based on the samples it takes from 
the search space. SEARCH also notes that induction 
is no better than table look up unless we restrict a fi- 
nite set of relations among the search space members. 
If relations are important to consider, then we should 
pay careful attention to determine which relation is 
“appropriate” and which is not. Let us say, we have 
a set of people sitting in a room and we would like to 
identify the person with highest amount of money in 
his/her pocket. If we want to do any better than enu- 
meration, Le. exhaustively picking every person in the 
room and checking his pocket for the amount of money 
he or she has, we must make intelligent guesses by ob- 
serving certain features of the people (e.g. quality of 
the dress, shoe etc.). If we consider “all possible fe* 
tures” we are again back to enumeration (Watanabe, 
1969; Mitchell, 1980). We must consider a certain fi- 
nite set of features that defines the bias of the process. 
Features, like quality of dress define relations among 
the set of people. Depending on what we mean by 
the “quality of the dress”, such relation may divide 
the set of people into different classes, such as people 
with cheap dresses, people with very expensive dresses 
and so on. We consider hypotheses defined by the fea- 
ture set, use it to divide the search space into different 
classes, and evaluate hypotheses using samples taken 
from the search domain. The decomposition of BBO 
in SEARCH in terms of relation, class, and sample 
spaces essentially captures this idea. Note that, the 
search for relations is essential, since some relations 
are inherently good and some are not. For example, 
“quality of the dress” may be a good one; however, 
“color of the hair” may not be a good relation for this 
problem. In SEARCH, such relations that are inher- 
ently good for decision making are said to properly 
delineate the search space. If we construct an order- 
ing among the classes, defined by a relation of order 
k (the logarithm of this set of classes), in order to se- 
lect the high ranked classes for further exploration and 
the class containing the optimal solution is one among 
those selected classes, then we say that order-k: rela- 
tion properly delineates the search space. The search 
for appropriate relations and classes can be viewed 

‘A relation is defined as a set ordered tuples. A class is a 
tuple of elements taken from the domain under consideration. 
In this paper we will primarily be concerned with tuples taken 
from space of n-ary Cartesian products of the search domain 
with itself. 
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as a stochastic decision making processes in the re- 
lation and class spaces respectively. SEARCH offers 
a general probabilistic and approximate framework to  
do that. If the relation space provided a priori to 
the search algorithm contains all the relations needed 
to  solve a problem and the order of all of these suit- 
able relations is bounded by some constant k:, then the 
given problem can be solved in sample complexity (can 
be loosely defined as the number of samples taken for 
solving the problem) polynomial in problem size, solu- 
tion quality, success probability. This class of problem 
is called the class of order-k delineable problems. 

Although, SEARCH has different implications on 
different grounds, in this paper we need only the fol- 
lowing implications of SEARCH: 

1. decomposition of BBO in relation, class, and Sam- 
ple spaces 

2. assumes that the relation space is defined a priori. 

3. once we fix the relation space, an algorithm can 
only solve the class of order-k delineable prob- 
lems. 

Searching for appropriate relations plays an impor- 
tant role in SEARCH. The following section relates 
this aspect of SEARCH with linkage learning. 

3.2 Scope of linkage learning 

The objective of linkage learning is to identify the 
non-linearly related variables and use them together 
to define a decision variable. This offers a way to 
linearly decompose the given set of optimization vari- 
ables into different subsets, each corresponding to a 
unique decision variable. This essentially decomposes 
the global decision making process in the search into 
different linearly decomposable sub-problems. This 
idea is rigorously captured by the notion order-k de- 
lineability. Non-linearly related genes can be used to 
define idimensional subspaces and relations defined 
within these subspaces that properly delineate the 
search space can be used to make correct search deci- 
sions. Let us take an example. Consider a sequence 
representation of four binary variables 21, Q, 23 and 
a4. If these variables can be decomposed into two lin- 
early decomposable subsets (all z2) and ( ~ 3 ~ 4 ,  then 
each of them define subspaces which may contain re- 
lations that properly delineate the search space. Note 
that, we may need relations other than simple parti- 
tions such as f f ##, where f denotes the position of 
equivalence. This is because, the classes defined by 
such partitions are hyperplanes, either parallel or or- 
thogonal to the axes of reference; for some objective 
functions such limitations may be be okay. However, 

in the general case we may not want such restrictions 
in order to efficiently capture better regions of the 
search space in classes. 

The task of identifying relations of some bounded 
order-k: that properly delineates the search space, can 
be decomposed into two modules: (1) decompos- 
ing the problem into linearly separable subspaces (2) 
identifying proper relations in these independent sub- 
spaces. In this paper we will be primarily concerned 
with the former objective. The coming sections lays 
the foundation of a technique for identifying these sub- 
spaces and use it to explain the computational role of 
different transformations of gene expression in living 
organisms. 

4 From DNA To Protein 

Information flow in evolution is primarily divided into 
two kinds: 

0 extra-cellular flow: storage, exploration, and 
transmission of genetic information from genera- 
tion to generation; 

0 intra-cellular flow: expression of genetic infor- 
mation within the body of an organism. 

The extra-cellular flow involves replication, mutation, 
recombination, and transmission of DNA (deoxyri- 
bonucleic acid) fromparents to offspring. On the other 
hand the intra-cellular flow of information involves 
transcription and translation of genetic information 
leading to the computation of the phenotype of the or- 
ganism. Information flow along these streams depend 
on each other. Although genetic linkage plays impor- 
tant roles in both extra (e.g. defining the crossing- 
over sites) and intra-cellular flow, there are strong 
reasons to believe that development of genetic linkage 
takes place primarily during the intra-cellular flow. In 
this section we will primarily be concerned with gene 
expression-the intra-cellular flow of information. 

4.1 DNA, RNA, and Protein 

DNA molecule consists of two long complementary 
chains held together by base pairs. DNA consists of 
four kinds of bases joined to a sugar-phosphate back- 
bone. The four bases in DNA are adenine (A), guanine 
(G) ,  thymine (T) and cytosine (C). Chromosomes are 
made of DNA double helices. Bases on DNA helices 
obey the complementary base pairing rule. T and G 
pair with A and C respectively. In other words, if the 
base at a particular position of a helix is T then the 
corresponding base in the other helix should be A. 



Expression of genetic information coded in DNA 
into the proteins takes place through several compli- 
cated steps. However, the major distinct phases are 
identified as 

Glutamine 
Arginine 
Serine 
Threonine 
Valine 
Tryptophan 
Tyrosine 
STOP 

a transcription: formation of mRNA (ribonucleic 
acid) from DNA 

a translation: formation of protein from mRNA 

Messenger RNA (ribonucleic acid) consists of four 
types of bases joined to a ribose-sugar-phosphodiester 
backbone. The four bases are adenine (A), uracil (U), 
guanine (G), and cytosine (C). All the bases defining 
the RNA are same as those in DNA sequences, except 
that T is replaced by U. DNA produces mRNA us- 
ing the RNA Polymerase and the regulatory proteins 
following the complementary base-pairing rules 
similar to those in DNA. 

Messenger RNA acts as the template for protein 
synthesis. Proteins are sequence of amino acids, 
joined by peptide bonds. Messenger RNA is trans- 
ported to the cell cytoplasm for producing protein in 
the ribosome. There exists a unique set of rules that 
define the correspondence between nucleotide triplets 
(known as codons) and the amino acids in proteins. 
This is known as the genetic code. Each codon, 
comprised of three adjacent nucleotides in a DNA 
chain, produces a unique amino acid. Although se- 
quence of amino acids fundamentally defines proteins, 
formation of the three dimensional structure of pro- 
teins involve a complex non-linear process, which is 
often called protein folding. This process involves in- 
teraction between multiple amino acid subsequences. 
Current understanding of the process can reasonably 
predict the nature of secondary interaction structure 
among amino acids. However, the nature of higher 
order interactions, such as tertiary structure among 
amino acids is little understood. The following section 
views different steps of gene expression in the light of 
linkage learning. 

CAA CAG 
AGA AGG CGA CGC CGG CGU 
AGCAGUUCAUCCUCGUCU 
ACAACCACGACU 
GUAGUCGUGGUU 
UGG 
UAC UAU 
UAA UAG UGA 

4.2 Symmetries in gene expression 

Like many other natural processes, steps of gene 
expression are characterized by different symmetric 
structures and operations. Let us spend a little time 
recalling some of these important symmetric proper- 
ties. 

DNA double helix is comprised of the two comple- 
mentary chains of nucleic acid bases. The notion of 
complementary base pairs exists due to the fact that 
(T+A, A+T) and (C+G, G+C). These pairs de- 
fine two disjoint cyclic permutations over the set of 
four nucleic acid bases. Similarly, the DNA-+mRNA 
mapping exhibits cyclic pairs (T, U) and (C, G). The 

I Alanine I GCA GCC GCG GCU 

Leucine UUAUUGCUACUCCUGCUU 

Proline CCACCCCCGCCU 

genetic code that maps the mRNA into the amino- 
acid sequence in protein, also offers interesting sym- 
metry properties. Figure 1 tabulates the nucleic acid 
codons and their corresponding amino acids. Note 
that most of the rows of the table have multiple 
codons listed against one amino acid. For example, 
the first row shows that GCA, GCC, GCG, GCU- 
all of them maps to Alanine. In other words, this 
set of four codons offers an invariant transformation 
to the mRNA. Since the “fitness” of a living organ- 
ism depends on its protein structure, which is deter- 
mined by the amino acid sequence in the protein, the 
“fitness” remains invariant if any member of the set 
of four codons is replaced by another member. Such 
transformations are called fitness invuriant symmetry 
transformations. Formally speaking if #(x) be an arbi- 
trary function, x = T X, where T is a linear transfor- 
mation, and #(x) = #(X), then we say T is a fitness 
invariant symmetry transformation. Although such 
transformations keeps #(x) invariant, they does not in 
general keep the eigen functions invariant. Q, an eigen 
function of the operator # is a state function that sat- 
isfies #(Q) = E*, where the values of E are the eigen 
values. In the coming sections these fitness invariant 
symmetry transformations will play an important role. 

Capturing the abundance of symmetries in gene ex- 
pression is a challenging task. However, group theory 
offers some interesting tools to deal with symmetry 
in both physical and abstract systems. Group theory 



has been successfully used for exploiting symmetries 
in quantum mechanics (Heine, 1993). Group theory 
can also be used to study the computational rationale 
behind the transformations in gene expression. The 
following section presents a brief review of the neces- 
sary concepts of group theory used in this paper. 

4.3 A brief review of group theory 
Groups are best explained in terms of their definition. 
After the following definition, a series of examples will 
show some groups and lead into their desired applica- 
tion. A group is a set of elements and an operation 
on the elements with four properties. Say we have the 
set E = {a,  b, c, ....} and an operation @. We can write 
any table for @ which has the following properties: 

1. €3 must be closed: 
For any z1,zz in E,  z1 @ 2 2  = 2 3  where 23 must be 
in E.  
This means that the result of using the operation on 
E's elements must also be in E .  

2. @ must be associative: 
For any 21, 2 2 ,  z3 in E,  

When the operation is used more than once, it does 
not matter which operation is performed first. 

(21 @ 2 2 )  @ 23 = 2 1  @ ( 2 2  €3 23). 

3. There is a unique identity element (usually written as 
e) :  
For any 2 1  in E ,  5 1  @ e = 2 1  = e €3 51. 
In arithmetic, 0 is the identity f o .  the addition oper- 
ator and I is the identity for  the multiplication oper- 
ator. 

4. Every element has a unique inverse: 
For each z1 in E ,  there is a single xz in E such that 
2 1  €3 
An element operated with its inverse equals the iden- 
tity. 

= e = 2 2  €3 21. 

As a small example of a group, take a set of two 
elements E = { e , a } .  By keeping the properties of 8 
in mind, an operation table can be written. Let e be 
the identity and note that e @ e  = e satisfies the third 
and fourth properties, showing that e is always its own 
inverse. As e is the identity, a @ e = a = e 8 a, by 
the third property. The only remaining combination is 
a@a. As we haven't found an inverse for a, a@a must 
be a. As it turns out, there is only one possible way 
to define @ for a set of two elements once the identity 
has been chosen. The operation table is shown in the 
following: 

8 11 e I a I 

There is a simple theorem which can explain the 
most important aspects of groups. 

Theorem 1 (Cayley's Theorem) Every group is 
isomorphic to a group of permutations. 

Here, isomorphic is the notion of 'equal', but with 
care to remember that sets are not ordered. In gen- 
eral, if a group is defined by a set E = {a l ,  a ~ ,  . . . , h} 
and an operation @ on those n elements, then the 
group can impose its structure on another set E' = 
{ b l ,  b 2 , .  . ., b,} or just its original set in a different 
order. In the case of a new set, each element of E' 
is associated with one element of E ,  not leaving any- 
thing un-associated in E .  Thus we can define a group 
on one set and let it 'act' on another set of the same 
size. A group of permutations is just a group defined 
over a set of permutations (functions that reorder el- 
ements in an ordered sequence). So the theorem says 
that any group on a set of n elements can 'act' on a 
set of n permutations - with the implication that its 
operator 8 will be the same as the way permutations 
are defined to be multiplied. 

The important points are that a group can act on 
any set of the same size as the set of its original def- 
inition. And that a group can be thought as a set of 
functions which manipulate the order of an ordered 
list, with 8 serving to combine a sequence of such 
functions. An interesting corollary is that every group 
is a subgroup of a symmetric group. For this paper, 
the import is that every group behaves (acts) the same 
as one of the ways a symmetric group acts. A sym- 
metric group captures all the symmetries in the most 
perfectly symmetric way to arrange a number a points. 
A graphical example will be developed next. 

Groups evolved as a means to express the symme- 
tries in a problem. And especially to use symmetries 
to simplify problems. The power of behind the idea of 
groups is that a group can act on a set of functions. 
By studying functions which preserve the shape of a 
geometric figure, the symmetries of a figure can be 
expressed. The boon is that these functions can be 
used to manipulate a figure without changing its es- 
sential nature. As an example consider an equilateral 
triangle. 

There are three points, Pl,Pz,P3, connected by 
equal length segments. The identity transforma- 
tion (function), just leaves the triangle unchanged. 
The next type of transformation is a rotation by 
a multiple of 120'. The set of three rotations 
E = (0' = 360°, 120°, 240') forms a 'rotation' group 
with 0' as the identity, and @ serving to add rotations. 

Q3 11 0' I 120' I 240' I 
0' I I  0' I 120' I 240' 1 

I 

120' 11 120' I 240' I 
240' 1 1  240' I 

0' 
0' 1 120' 



Comer 3 

A 
Comer 1 comer 2 

Figure 1: . 

The equilateral triangle has the symmetry of a 120' 
angle between points on the corners. Another symme- 
try is that any two adjacent corners can be exchanged 
by flipping the triangle. There are three possible pairs 
of corners, (12), (13), (23). If we use the notation that 
(1) means to leave the triangle unchanged, and (12) 
means to flip the triangle to exchange the lower two 
points, then E = ((l), (12)) and the following 63 form 
a group. 

(1) I (12) 

(12) (12) (1) 

Note that the (12) notation always refers to the bot- 
tom corners rather than points PI ,  Pz. The combi- 
nation of the identity, the rotations, and the three 
flips form a set E = (0' = (1)1 120' = (123), 240' = 
(132), (12), (13), (23)). The permutation notation 
(123) means to move the point at corner 1 to corner 2, 
the point at corner 2 to corner 3, and wrapping around 
the two ends of (123) means to move the point at cor- 
ner 3 to the point at corner 1. Thus (123) can mean 
the same as rotating 120' about the center. If we use 
the elements of E in permutation notation, then the 
group with E and 8, as defined below, is called the 
symmetric group on three points, or 5'3. 

mi 

The symmetric group S4 has all the symmetry trans- 
formations of a pyramid. S,, refers to a regular pyra- 
mid in n - 1 dimensions with n corners and a line 
of unit length between each possible pair of points. 
While it is not necessary to learn how to do geometry 
in large numbers of dimensions, there is the implica- 
tion that S,, gets complicated for large n. In gen- 
eral, s,, has n! elements in its set of transformations, 
and describes all possible symmetry transformations 
(shape and scale preserving functions) for a set of n 
points. 

Groups can also be formed over sets of transforma- 
tions which can vary a non-geometric problem with- 
out varying the problem's solution. The advantage 
of groups will be in showing how a problem space 
can be broken into independent subsets of dimensions 
(subspaces). Each subspace will be invariant under 
a corresponding group of symmetry transformations. 
Representing groups with matrices is the best way to 
discuss the issues of independence among subspaces 
and how subspaces can be invariant under symmetry 
transformations. 
Group Representation Theory 

General groups can be represented in matrices by 
finding a set of matrices to correspond to the group's 
set E. Where the group operation @ can be replaced 
by ordinary matrix multiplication. For instance, an 
n x n matrix can represent a rotation, flip (reflection), 
or any other symmetry transformation possible in n 
dimensions. The entire space can be transformed, but 
in the context of this paper, only a set of discrete 
points need to be transformed, while an underlying 
continuous space can remain unchanged. 

Matrix representations are easiest to interpret for 
permutations. For an example consider five points. 
Consider the first two points as equivalent under 
the symmetry transformations of Sz, and let the 
last three points be equivalent under the transfor- 
mations of S3. Represent the points by their place 
in a vector: ( P I , P z ,  P3, P41 P5) such that PI = 
(1 ,0 ,0 ,0 ,0 ) ,  . . . , Ps = (0, 0, 0,  0 , l ) .  A transformation 
which preserves the symmetry of equivalence among - 

the points has the form: T = ( o f : z  O Z 3 ) .  Where . - ,  
OnlXna represents an n1 by 122 matrix of 0's. The 

two elements of S, are representable by (; ; ) ,and 

(; ' 8 ) , ( '  0 1 0  8 ;),(; 1 0 0  ; '), 
(: 0 1 0  : '),(! :),(: 0 0 1  : :), 

( y  i). The first serves as the identity, and the 

second interchanges the first two values in the point 
vector. The six elements of S3 are: 

0 0 1  

The first serves as the identity, and the next two as 
the rotations. The last three are flips. The two trans- 
formations of Sz act independently of the six trans- 
formations of &. This can be seen as Sz and S3 do 
not share any rows or columns when they are com- 
bined together. There are twelve combinations of the 
two groups. As an example of a transformation that 
swaps the first two points and rotates the last three 
points: 



0 1 0 0 0  

(: 0 0 1 0 0  x x :  ; ) * ($ )= ($ )  p4 p3 

0 0 0 1 0  ps p4 

In general, representations may have larger matri- 
ces than necessary. There are representations which 
have minimal size and are referred to as irreducible 
representations. Representations need only preserve 
part of the structure of a group, but our attention 
is upon irreducible representations which capture the 
full structure of a group. In particular, the irreducible 
representations we looking for can be represented in 
a block diagonal form. With one block for each in- 
dependent group placed along the diagonal of a ma, 
trix which represents a combination of groups. Each 
block/group will act on its own subset of the vari- 
ables represented in a vector. Just as Sz acts on the 
first two elements in the point vector and S, acts on 
the last three elements. In terms of symmetry, points 
PI, Pz can be considered independently of the points 
P3, P4, Ps. This can greatly reduce the size of a prob- 
lem. 

By taking equivalences: 

An original problem on five points can be considered 
as a problem in terms of the two points P, PI. The 
relatively simple examples used in this paper may not 
make this seem like a great savings. The general case 
may use variables, each representing a separate di- 
mension, instead of points. Thus the above example 
could be seen as reducing a five dimensional problem 
into a two dimensional problem. With the analogous 
relations: 

u 21 22 ,  v 23 24 = 2 5  
Where U and V are considered independent subspaces 
of some five dimensional problem. In the most ab- 
stract sense, a subspace can be expressed a function 
of its underlying dimensions. Even then, there is a 
great simplification in that the subspaces do not share 
underlying dimensions. Each dimension is associated 
with a single subspace. Each subspace corresponds to 
one of the blocks along the diagonal of representation. 
Each block represents a group of symmetry transfor- 
mations which acts on the corresponding subspace. 
Each subspace can be said to be invariant under the 
group of transformations which act on the subspace. 

4.4 Transformations in gene expres- 

Earlier in this section we have described the struc- 
ture of DNA, mRNA, proteins and the transforma, 

sion 

tions that define the process of gene expression in qual- 
itative terms. Little work has been done that estab- 
lishes such qualitative descriptions on computational 
grounds and justify their purpose in natural evolution. 
In this section we shall hypothesize that these trans- 
formations offer a well grounded mathematical tech- 
nique for identifying linearly decomposable subspaces 
of the search space. We shall also provide examples 
to demonstrate that the biological events in gene ex- 
pression do seem to follow our line of mathematical 
arguments. 

In the previous section we saw that the block diago- 
nal elements of irreducible representations of a group 
of invariant transformations can be used to produce 
the linearly independent subspaces of the search space. 
However, in the context of optimization, transforma- 
tions that change the objective function are of little 
use, since the solution of the transformed will not re- 
main invariant in the general case. Therefore we need 
fitness invariant symmetry transformations (defined 
earlier) which keeps the objective function invariant 
but changes the underlying eigen functions. The fol- 
lowing theorem is useful for further understanding of 
groups of fitness invariant symmetry transformations. 

Theorem 2 Fitness invariant symmetly transforma- 
tions, that are non-singular, always form a group. 

Proof sketch: If Q1 and Q z  are two fitness invari- 
ant symmetry transformations, then it can be easily 
shown that Q1Qz is also a fitness invariant symme- 
try transformation. Trivial to show the associativity 
property. We can always have the identity transfor- 
mation. Since the transformations are non-singular, 
there always exists the inverse, Qf'. Please see (Kar- 
gupta & Stafford, 1997) for details. Detailed proof is 
not provided here due to lack of space. 0 

This theorem clearly says that non-singular, fitness 
invariant symmetry transformations can be naturally 
studied as a group. In the following, we shall study 
the transformations in transcription, translation and 
discuss their role in the context of fitness invariant 
transformations. 
Transcription 
Earlier in this section we have described the struc- 
ture of DNA, mRNA, proteins and the transforma- 
tions that define the process of gene expression in qual- 
itative terms. In this section we shall capture them in 
a quantitative manner. Denote the DNA double helix 
as 2) = (2),,D~); where 2), = d,l,d,z,...d,j...d,, . 
Any element d,i innd, where Ad is the alphabet set 
for DNA. 

Mathematically transcription can be viewed as a 
process that transforms a DNA sequence into the 
mRNA sequence. Let us denote the alphabet set of nu- 



. 
cleic acids in mRNA by A,. An mRNA sequence can 
be denoted as, 72 = r 1 , r 2 , - - . r i . - - r n ,  where ri E &. 

The complementary pairing between the two strand 
of DNA can be modeled by the group S2. The identity 
transformation will transcribe D, to mRNA. If Db is 
to be transcribed, it can be determined from D, by the 
complementary relation between strands. To demon- 
strate the latter, consider each d,i as a vector and 
the matrix Mcmolernent for complementary pairing: 

/ o  1 0 o\ 

\ o  0 1 0 1  
Then Mc-plement x d,i translates one strand into the 
other, after which there is a one to one translation 
from DNA to mRNA with the substitution of U for T. 
The symmetry of the complementary pairing can be 
express by Sz , The transformation M c m p l e r n e n t  is not 
fitness invariant as each strand will lead to a function- 
ally different protein. 
Translation 
RNA is grouped into a sequence of codons (triplets) 
which are translated into a sequence of amino acids. 
In terms of amino acids, a set of codons on the same 
row of table 1 are equivalent. As from the first row, 
GCA, GCC, GCG, GCU all result in the same amino 
acid and can be considered in an equivalence class. By 
forming a separate equivalence class for each row of ta- 
ble l, the symmetries of the table can be expressed by 
a group. The group which contains all the symmetries 
for m elements is S,. Thus the symmetry transforma- 
tions for the first row form the group S,. Remember- 
ing that the irreducible representation of S, in terms 
of permutation matrices is an m x m matrix, the fol- 
lowing matrix shows the block diagonal form of the 
group of all symmetries of table 1. Mtsanslate looks 
like: 

All entries outside of the blocks on the diagonal are 0. 
If there were room to expand each block, Mt+ansiate 

would be seen as a 64 x 64 matrix. Codons are repre- 
sented by 64 x 1 vectors, with exactly one 1 to mark 
which of the 64 codons is to be represented. The 
codons must be ordered as in table 1. As in the exam- 

ple of S2 x S, = ( ,,E2 ‘E3)  shown in the group 

theory section, each block can be any m x m permu- 
tation matrix. The choice of which particular matrix 
(identity, rotation ,...) to use in a block is indepen- 
dent of the choices made in other blocks. Thus the 
total number of symmetry transformations for the ta- 
ble is 2!’ - 3!. 4!5 6!3 = 339,738,624. The group of the 
symmetry transformations is a product of symmetry 
groups, each given as an irreducible representation, so 
the overall representation is irreducible. Each block 
corresponds to a subspace of codons, and the codons in 
that subspace have fitness invariant symmetry trans- 
formations represented by the block. 

Regarding k-delineable problems, k is bound by the 
largest number of codons in a row of table 1. This also 
applies to a sequence of codons C = c1, c2, . . . , %.The 
required representation Mtranalate,equence can be con- 
structed by placing n copies of MtTanslate along the 
diagonal, with the rest of Mtranslate-sequence as 0’s: 

The vector for C is just a single vector formed by 
appending the ci vectors in sequence order. Thus as 
long as a coding table has bounded row length, then 
the problem is k-delineable, even for a sequence of 
codons. 

5 Conclusions 
Linkage learning plays an important role in blackbox 
optimization. The scope of linkage learning may be 
divided into two groups, namely, (1) identifying the 
linearly decomposable subspaces and (2) identifying 
relations within these subspaces that properly delin- 
eate the search space. In this paper we proposed a 
possible strategy for identifying the linearly decom- 
posable subspaces, if they exist for the given problem. 
Searching for a group of fitness invariant transforma- 
tions and constructing the irreducible representation 
of the group are the two main components of this ap- 
proach. In future work on protein structure, we will 
use more general unitary matrices for transformations 
and group representations. This will allow hyper- 
planes at arbitrary angles as may be required by the 



geometry of protein search spaces. We noted that the 
transformation in transcription (DNA+RNA) does 
not introduce any fitness invariance. Therefore, RNA 
representation does not let us identify the linearly de- 
composable subspaces. However, the RNAjProtein 
transformation, i.e. the genetic code offers interesting 
characteristics. It introduces fitness invariant trans- 
formations. Moreover, the transformations appears 
to be in irreducible form. It is interesting to note 
that many biologists conjecture that RNA came to 
existence before proteins. However, during the course 
of evolution, RNA+Protein transformation appeared 
and proteins took the responsibility of being basic 
functional units. Our analytical arguments offers a 
justification behind this natural phenomena. 
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