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Abstract  

In this thesis we have developed a simplified spherical harmonic method (Sc%r method) 

and associated efficient solution techniques for 2-D multigroup electron-photon trans- 

port calculations. The SPN method has never before been applied to charged-particle 

transport. We have performed a first time Fourier analysis of the source iteration 

scheme and the PI diffusion synthetic acceleration (DSA) scheme applied to the 2-D 

SPN equations. Our theoretical analyses indicate that the source iteration and PI 

DSA schemes are as effective for the 2-D SPN equations as for the 1-D S, equations. 

Previous analyses have indicated that the PI DSA scheme is unstable (with suffi- 

ciently forward-peaked scattering and sufficiently small absorption) for the 2-D SN 

equations, yet is very effective for the 1-D SN equations. In addition, we have applied 

an angular multigrid acceleration scheme, and computationally demonstrated that it 

performs as well for the 2-D SPN equations as for the 1-D SN equations. It has pre- 

viously been shown for 1-D SN calculations that this scheme is much more effective 

than the DSA scheme when scattering is highly forward-peaked. We have investi- 

gated the applicability of the SPN approximation to two different physical classes of 

_. 

problems: satellite electronics shielding from geomagnetically trapped electrons, and 

electroq beam problems. In the space shielding study, the SPN method produced 

solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and 

often orders of magnitude faster than Monte Carlo. We have successfully modeled 

quasi-void problems and have obtained excellent agreement with Monte Carlo. We 

have observed that the SPN method appears to be too diffusive an approximation for 

beam problems. This result, however, is in agreement with theoretical expectations. 
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Chapter 1 

Introduction 

Over the past five decades, considerable research effort has been expended upon 

the development of numerical methods for solving radiation transport problems. 

There are two primary approaches to modeling transport processes: deterministic 

and stochastic. In deterministic methods, one directly solves a discrete approxima- 

tion to the Boltzmann equation. It is the complexity of this equation which necessi- 

tates the use of approximate solution techniques. In stochastic methods, i.e. Monte 

Carlo, physical processes are directly modeled by statistical methods. Monte Carlo 

often proves to be more efficient at calculating global quantities, while deterministic 

methods are often more efficient at calculating local quantities. For large problems in 

multidimensional (2-D, 3-D) geometries, Monte Carlo often requires enormous com- 

putational time. Deterministic methods for neutron transport have been the subject 

of extensive investigation for decades; however, in the area of multidimensional de- 

terministic charged particle transport, little work has been done to  date. In this 

thesis, we shall focus upon the development of deterministic computational methods 

for coupled electron-photon transport. 

The standard PN equations have been a classic approximation to the transport 

equation for over fifty years. The basis of this approximation is to assume that the 

angular dependence of the angular flux can be represented in a truncated spherical 

harmonic expansion. Here, the index N is an indicator of the number of terms re- 

tained in the expansion, and as N increases without bound, the solution of the PN 



equations converges to the solution of the transport equation. In multidimensional 

problems, these ev equations are quite complex and difficult to deal with numerically 

Furthermore, the number of unknowns in multidimensional PN calculations is of order 

( N  + l)2. Since electron scattering is highly anisotropic, high order flux and cross 

section expansions (P7 - PIS)  are required, and the PN method can be prohibitively 

expensive in terms of both memory and CPU time. 

In view of this, Gelbard developed a heuristic simplification of the PN equations, 

which he called the simplified PN method. The method was originally applied to neu- 

tron transport problems. The SPN method abandons the requirement that the exact 

transport solution is obtained as N approaches infinity. Instead, one obtains approx- 

imate transport solutions which are signicantly more accurate than diffusion theory, 

but significantly less expensive than discrete ordinates ( S N ) ,  or full PN methods. The 

initial derivation of the SPN equations was not rigorous. This lack of a theoretical 

foundation has undoubtedly acted as an obstruction to the widespread use of these 

equations. However, a recent paper [I] in the literature shows that the SPN equa- 

tions represent a formal asymptotic solution to the Boltzmann transport equation. 

That is, the SPl equation, or diffusion equation, is the leading order approximation 

to  the transport equation, and higher order SPN equations represent higher order 

corrections to diffusion theory. Furthermore, in multidimensional SPN the number 

of unknowns is reduced to order ( N  + l), thus, offering tremendous computational 

savings over full PN when N is large. The condition that N is large will always be 

met in charged particle transport. 

The focus of this thesis is multifold: Our first major objective is to develop a 

simplified spherical harmonic method for multidimensional coupled electron-photon 

transport; this is the first time that the Sf" method has been applied to charged 
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particle transport. The second major objective is the development and analysis of 

efficient solution techniques for the multidimensional SPN equations. 

We present an overview of the thesis: 

1. In Chapter 2, we introduce the continuous transport equation, along with some 

physical definitions which will be used extensively throughout the thesis. We 

introduce the Boltzmann - Continuous Slowing Down (CSD) Equations, the 

fundamental model for coupled electron-photon transport. We then briefly dis- 

cuss particle interactions of interest, and cross section production. We conclude 

with a reformulation of the Boltzmann - CSD equations into the Boltzmann 

equations for coupled electron-photon transport, necessary to  facilitate the use 

of our code with the cross section generation code CEPXS. 

2. In Chapter 3, we examine numerical methods for discretization of the angular 

variable in the Boltzmann equation. We begin by introducing the discrete 

ordinates or SN method, in which the particle is allowed to travel in a discrete set 

of directions. We then formulate an alternate approach, the spherical harmonics 

or P N  method, based upon function expansion techniques. We conclude with 

a discussion of the equivalence between SN and PN methods. It is important 

to note that both SN and PN methods will be used in our development of the 

SPN method. 

3. In Chapter 4, we derive the simplified spherical harmonic (SPN)  equations using 

the original technique of Gelbard, and examine the characteristics of the SPN 

method in a comparison with the PN and S N  methods. We briefly discuss a 

recently developed asymptotic derivation which lends mat hematical rigor to the 

SPN approximation. We conclude with a derivation of the canonical form of 
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the SPN equation, which permits the application of efficient numerical solution 

and acceleration techniques. 

4. In Chapter 5 ,  we discretize the remaining energy and spatial variables in the 

integrodifferential canonical equations to obtain a set of algebraic equations 

amenable to computational solution. We difference the energy variable using 

the conventional multigroup method. Spatial discretization is performed using 

the finite element method. In this thesis we consider one dimensional planar, 

two dimensional X - Y, and two dimensional R - Z geometries. 

5 .  In Chapter 6, we address the topic of solution and acceleration of the discretized 

SPN equations using iterative methods. We present and analyze the standard 

source iteration (SI) scheme. It is shown, through Fourier analysis, that the SI 

method is unconditionally stable, but can be very slow to converge in optically 

thick systems which are dominated by scattering. Next, we analyze and develop 

two new methods, PI diffusion synthetic acceleration and multigrid in angle 

acceleration, which have been devised to further accelerate the convergence. We 

note, these acceleration methods represent multidimensional generalizations of 

existing one dimensional SN methods. We conclude with a discussion of particle 

production/loss rates, particle conservation and energy deposition rates. 

6. In Chapter 7, we formulate one and two dimensional test problems to investi- 

gate and validate the theoretical method developed in the previous chapters. 

Specifically, we investigate the applicability of the SPN method in two physical 

regimes: Satellite electronics shielding for geomagnetically trapped electrons, 

where we have uniform isotropic boundary sources; and electron beam prob- 

lems. We present numerical comparisons with Monte Carlo, an examination of 



accuracy and computational efficiency, and a brief discussion of our results. 

7. In Chapter 8, we review and summarize the findings of this thesis. Specifi- 

cally, we interpret the test problem results of the previous chapter, contrast the 

Spiv method to other deterministic transport methods, and conclude with some 

possibilities for future work. 



Chapter 2 

Continuous Transport Problems 

6 

2.1 Introduction 

In this chapter we introduce the continuous transport equation, along with some 

definitions which we will use extensively throughout this thesis. We begin by defining 

the Boltzmann - Continous Slowing Down Equations (Boltzmann - CSD equations) 

with associated boundary conditions for an arbitrary geometry, section 2.2. This set 

of equations represents our fundamental physical model for coupled charged particle 

- photon transport. We do not derive the Boltzmann transport equation here; the 

derivation is presented in most transport theory textbooks [2-4], and the Boltzmann 

- CSD equation, an extension desirable for the treatment of charged particles, is given 

in [5] .  We conclude, section 2.3, by reformulating the Boltzmann - CSD equations 

into a new more symmetric form, the Boltzmann equations for coupled electron-photon 

transport, necessary for the use of our SPN code with the cross section generation 

code CEPXS. 

2.2 The Boltzmann - CSD Equations 

The ultimate goal of transport theory is to determine the distribution in phase 

space of particles in a medium, taking into account the motion of the particles and 

their interaction with the host medium. The fundamental model of particle transport 

for a coupled system of electrons and photons is given by the Boltzmann - CSD ap- 

proximation. This system is coupled due to the physical fact that electrons generate 
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photons in their interaction with the host medium, and photons in turn generate 

electrons in their interaction with the host medium. Within the context of this ap- 

proximation the electron distribution is described by the Boltzmann - CSD equation, 

and the photon distribution is described by the Boltzmann equation. For brevity, we 

shall refer to these two equations as the Boltzmann - CSD equations. 

First, let us begin by making some fundamental physical definitions. Consider 

an arbitrary differential volume d3r, about r', as shown in Figure 2.1. We define the 

particle density distribution as 

n(?, E ,  6,  t)d3rdEdfi = the expected number of particles in a volume d3r 

about Straveling in the solid angle dfi about fi with energies between E 

and E + dE at time t 

For most purposes it is more convenient to formulate the transport equation in terms 

of the angular flux 

$(?, E ,  6, t )  = v(E)n(S, E,  Si, t )  (2-1) 

where v ( E )  is the particle speed. 

Let us now consider an arbitrary volume, with spatial domain D, bounded by 

a surface J?, as shown in Figure 2.2, within which we wish to describe the distribu- 

tion of particles. For a coupled system of electrons and photons in equilibrium the 

distribution is described by the steady state Boltzmann - CSD equations [5] 

= 1" d E ' i T  E' + E,  @ - E', 6') 



X 

Figure 2.1 : Cartesian Space-Angle Coordinate System 

h 

n 

D 

Figure 2.2: Spatial Domain D Bound by Surface 
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where 

$(37 E ,  fi) = angular flux (particles cm-2s-1kev-') 

6 = particle direction 

at(S, E )  = total cross section (cm-') 

~ ; + ~ ( f ,  E' -+ E ,  fl' fi) = electron to electron differential scattering and 

production cross section, where the particle scatters from initial energy E' 

and initial direction fl', to final energy E and final direction fi. Does not 

include soft inelastic interactions, which are treated by the CSD operator 

(cm-'keV-lstr-') 

O ~ + ~ ( S ,  E' 3 E ,  fl' - 6)  = photon to  electron differential scattering cross 

section (cm-lkeV-'str-') 

o~--.~(?? E' -+ E, f2' - 6 )  = photon to photon differential scattering cross 

section (cm-lkeV-'str-') 

~ ~ + ~ ( f ~  E' + E,  fl' * h) = electron to photon differential scattering cross 

section ( cm-'iceV-lstr-l) 

Re(?, E )  = electron restricted stopping power. Includes only contributions 

from soft inelastic interactions. (cm-lkeV) 

Q(?, E )  = distributed angular source (particles ~m-~s- l lcev- l )  
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and where subscripts e and p denote electron and photons, respectively. LVe will use 

this notation throughout this thesis. 

Note the asymmetry which appears in a comparison of the right hand side of the 

electron equation, Equation (2.2), and the photon equation, Equation (2.3). The 

electron inelastic interactions (both collisional and radiative) are divided into two 

classes: “catastrophic” interactions that result in large energy losses, treated by the 

Boltzmann operator, and “soft” interactions that result in small energy losses, treated 

by the CSD operator. The cumulative effect of many soft interactions may be a p  

proximated by the continuous energy loss of an electron without angular deflection. 

This is the restricted slowing down or continuous slowing down approximation, and 

is represented in the electron equation, Equation (2.2), by the term containing the 

restricted stopping power. 

The transport equations, Equations (2.2) and (2.3), physically express the fact 

that the rate at which particles, in the differential phase space volume associated 

with position 8, direction 6,  and energy E ,  leave the volume due to leakage and 

collisions is equal to the rate at which they enter the volume by scattering or by a 

prescribed distributed source. These linear equations are valid in a physical regime in 

which there are no external electric or magnetic fields and the density of transporting 

particles is much less than the density of target atoms. It is this later restriction, the 

neglect of particle - particle interaction, which leads to linearity. 

In addition to Equations (2.2) and (2.3), the angular flux entering the volume D ,  

through the surface r, must be specified. We consider three types of boundary con- 

ditions: prescribed incoming source, vacuum, and reflective. The prescribed incoming 



source boundary condition is given by the equation 

q(?, E ,  a) = $Jb(S, E ,  6) , h i  < O,SE r 

11 

(2.1) 

where ii is the unit outward normal vector to the surface r, and $b(r ' ,E, f i )  is a 

specified function. The case in which q b ( Z ,  E ,  h) is zero is referred to as the vacuum 

boundary condition 

$(?, E , h )  = 0 , s2 .  ii < 0, r' E r (2.5) 

If there exists a plane of symmetry in the problem, the reflective boundary condition 

may be used to exploit this symmetry. At a reflecting boundary the incoming flux, 

along direction 6, is set equal to the outgoing flux, along direction 6', where fi is the 

mirror reflection of f2'. Specifically, let us consider a plane of symmetry I", then the 

reflecting boundary condition at this plane is given by the equation 

- 

$I(?, E, fi) = $I(?, E ,  ff) , fi . ii < 0,s E r' 
" 

(6 x e) . ii = 0 

We now define the s c a l a r ~ u ~  

1 
47r 47r 

+(?, E )  = - J dfi$(r', E ,  A) (2.9) 
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and the current 
-+ 

dflfi?)(?, E ,  h) (2.10) 

In this thesis we will consider two geometries to describe our space - angle coor- 

dinate system, Cartesian and cylindrical. 

In Cartesian coordinates r' = ( u I , u 2 , u ~ )  = (x,y,z),  Figure 2.1, the streaming 

operator may be written as 

(2.11) 

where the direction cosines are defined as 

For the cylindrical coordinate system 2 = ( u I , u ~ , u ~ )  = ( r ,6 , z ) ,  Figure 2.3, the 

streaming operator [6] is given by 

with the direction cosines defined in Equation (2.12). 

2.3 The Boltzmann Tkansport Equations 

(2.13) 

Cross sections for the SPN method developed in this thesis will be generated by 

the code CEPXS [71. Particle interactions included in CEPXS are listed in Table 2.1. 

Here we do not consider the actual models, but instead refer the interested reader to 

the literature [7]. 



e- + e- 1 
e- + y 

Y- ,Y  

y -+ e- 

y -+ e+ 

e+ -+ e+ 

e+ +? 

e+ -+ e- 

13 

Table 2.1: CEPXS Interactions 

collisional scattering, bremsstrahlung, 
Auger production following impact ionization 

~ ~~ ~ ~~~ 

bremsstrahlung, 
relaxation radiation following impact ionization 

Compton scattering, 
relaxation radiation following photoionization 

photoelectric effect, Compton scattering, pair production, 
Auger production following photoionization 

pair production 

collisional scattering, bremsstrahlung 

bremsstrahlung, pair annihilation, 
relaxation radiation following impact ionization 

impact ionization, 
Auger production following impact ionization 
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CEPXS produces a special "pseudo" cross section for electron to electron scat- 

tering, which effectively lumps the continuous slowing down operator [SI in Equation 

(2.2), together with the previously defined electron to electron differential scattering 

cross section, CTZ,,, which did not include the soft inelastic interactions. To facilitate 

the use of these cross sections, the Boltzmann - CSD equations, Equations (2.2) and 

(2.3), must be placed in a symmetric form, the Boltzmann transport eqzlations, where 

the Boltzmann operator in the electron equation now effectively includes the CSD 

operator. The Boltzmann transport equations are given by 

(2.14) 

(2.15) 

Physical quantities are defined as before, with the exception of the electron to electron 

differential scattering cross section, which now includes an approximation to the soft 

inelastic interaction [7]. 

The electron equation, Equation (2.14), is now of the same form as the photon 

equation, Equation (2.15). That is, an invariance exists between the equations under 



the transformation (e + p ,  p -+ e). This symmetry will allow us to use one discrete 

equation to represent all particle species, provided the cross sections are structured 

in an appropriate manner. We will return to this point in Chapter 5 when we derive 

the multigroup equations. 

We note CEPXS also has the capability to generate cross sections for positrons, 

as well as electrons and photons, for the final cross section set. The consideration 

of positrons would involve including a third Boltzmann - CSD equation in the set, 

Equations (2.2) and (2.3), to represent the positrons and an update of the scattering 

operators to  include positron to electron and positron to photon interactions. In 

our applications, the energy range is such that the production of positrons, via pair 

production (E, > 1.02MeV), is a rare event. Hence, we will not consider positrons in 

this thesis. To summarize, the solution of the Boltzmann equations, Equations (2.14) 

and (2.15), with CEPXS generated cross sections effectively represents the solution 

of the Boltzmann - CSD equation for electrons and the the solution of the Boltzmann 

equation for photons. 
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X 

.- 

Figure 2.3: Cylindrical Space-Angle Coordinate System 
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Chapter 3 

Numerical Methods of Solution for the Transport Equation 

3.1 Introduction 

In Chapter 2 we defined the continuous Boltzmann transport equation. One of 

our objectives is to develop accurate numerical methods for solving the Simplified 

Spherical Harmonic approximation (SPN method) to the transport equation. How- 

ever, before we formulate the SPN method, we must first examine the discretization 

of the angular variable for the continous Boltzmann equation. We begin in section 

3.2 by introducing the Discrete Ordinates or SN method. We then formulate, section 

3.3, an alternate approach, the Spherical Harmonics or PN method. We conclude, 

section 3.4, with a discussion of the equivalence between SN and PN methods which 

exists only for the special case of one dimensional slab geometry. Both the SN and 

PN equations will be used in the derivation of the SPN equations given in Chapter 4. 

3.2 The Discrete Ordinates Method 

Let us consider a general transport equation, where for simplicity in notation we 

have omitted the reference to particle type 

fi e+(?, E ,  s1) + at(?, E)+(?, E ,  6 )  = 

Jrn dE’ ix  dfi’oS(?? E‘ -+ E,  f2’ - fi)$(?, E’, f2’) + Q(?? E ,  6 )  
47T 0 

, ? E  D ( 3 4  
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In the Discrete Ordinates or SN method [2], we represent the angular variable, a, 
by a discrete set of directions or ordinates hn, where n = 1 . 2 , .  . . M. We represent 

functions of fi by their values at each of the ordinates 

f ( f i n )  f n  , n = 1 , 2  ,..., N 

and we approximate integrals over i? as a summation over n 

N 

n= 1 
(3.3) 

where the w, are the quadrature weights, and the set of variables {fi,lw,) is termed 

the quadrature set. 

Frequently one encounters a one dimensional problem, in which case the angular 

variable reduces to the single directional cosine p,, n = 1, 2,. . . N. We impose the 

following requirements on the quadrature set 

1. N is an even integer 

N 
2. tu, > 0 and U I ,  = 1. 

3. The ordinates are symmetric about p = 0 

n=l 

(3.4) 

Property one assigns equal importance to right and left particle flows and avoids 

ambiguities in the boundary condition that arises at p = 0 when N is odd. Even with 
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the restrictions imposed by Equations (3.4), substantial freedom remains in choosing 

a quadrature set. For our purposes we choose the Gauss - Legendre quadrature set 

defined and discussed in section 3.3. The scalar flux is then given as 

(3.5) 

and the current as 
N 

i(2) E )  = fin$& E)W, (3.6) 
n= 1 

Introducing Equations (3.2) and (3.3) into Equation (3.1)7 we obtain the discrete 

ordinates or SN approximation to the continuous transport equation. The discrete 

ordinates approximation is given by the following coupled set of N equations 

,?E D, n = 1 ,2 , .  . . , N (3.7) 

with vacuum boundary conditions represented as 

and reflective boundary conditions as 

qn(3, E )  = $n@, E )  (3.9) 
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where 

ii * Qn = -n Qn, 

(fin x fin!). ii = 0 

(3.10) 

(3.11) 

where I?' is the surface at which the reflective boundary condition exists, ii is a normal 

to the surface, and f i n  is the direction corresponding to spectral reflection of f in!  at 

r'. 
The discrete ordinates method is a widely used method of analysis. It however, 

suffers from non-physical anomalies, called ray effects [2,9], which arise in the scalar 

flux when there is little scattering and localized sources. These ray effects arise from 

the fact that particles effectively travel in a finite set of discrete directions rather 

than in a continuum of directions. In most cases ray effects may be reduced by 

increasing the order N of the SN calculation. This, however, may be costly in terms 

of computational effort required. While a higher order S N  calculation will reduce ray 

effects, this will not eliminate them altogether. This can only be accomplished 191 if 

one applies a method that has rotational invariance, such as the Spherical Harmonics 

or P ~ J  method. 

3.3 The Spherical Harmonics Method 

The Spherical Harmonics or PN method [2,3] is based upon the expansion of 

the angular dependence of the angular flux in a finite series of spherical harmonic 

functions. These spherical harmonics [lo], K m ( f i ) ,  form a complete set of orthogonal 
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functions on the unit sphere and are defined as 

(3.12) 

where p G cosB, 2 is a non-negative integer 2 = 0,1, .  . . , -2 5 m 5 I ,  and & ( p )  

are the associated Legendre functions defined for non-negative integer values m = 

0 , 1 , . . . , 2  by 

(3.13) 
d" 

dPrn f i m ( p )  = ( - 1 ) ~ ( 1 -  p2)m'2- 9 (4 

and the negative integer values m = -1, -2,. . . , -1 by 

(3.14) 

- 
and the €unctions 8 ( p )  are the Legendre polynomials. To avoid the use of complex 

functions, we introduce the modified spherical hamonic functions defined as the linear 

(3.15) 

or 

where 

(3.16) 

(3.17) 

Since the spherical harmonics form a complete set, we may express the angular flux 

as 

(3.18) 
1=0 m=-I 
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In the P N  approximation, this infinite series is replaced with a finite series with 

I = 0,1, . . . , N .  Now using the orthogonality relation 

where 
1 m = n  

0 otherwise 

(3.19) 

(3.20) 

We define the expansion coefficients or flux moments, q5lm(Fl E ) 1  as 

- 

For computational purposes it is customary to expand the differential scattering cross 

section, in Equation (3. l), in Legendre polynomials -- 

where po = 6 - f2’ is the cosine of the scattering angle in the laboratory system. Using 

the orthogonality of the Legendre polynomials 

we define the scattering moments 

(3.23) 

(3.24) 

It is useful at this point to review some properties of the Legendre polynomials [6, 
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lo]. The first few Legendre polynomials are given as 

Legendre polynomials satisfy the recursion relation 

(3 .25)  

(3.26) 

(3.27) 

(3.28) 

and the spherical harmonic addition theorem 

l (1 - 41Prn( 
* 6’) = f i ( P ) f i ( P ’ )  + 2 (1 + rn)! I P>p;“(P’)  c o s b ( 4  - 4’11 (3.29) 

m= 1 

We may now express the integral scattering operator in Equation (3.1) in terms 

of the Legendre flux and cross section moments using Equations (3.21), (3.22), and 

(3.29). For one dimensional slab geometry, the resultant form of the scattering oper- 

ator is given by the equation 

where 

(3.30) 

(3.31) 

To find the general form of the P N  equations, we substitute Equations (3.18), with the 

series terminated at 1 = N ,  and the scattering operator expansion into the continuous 

transport equation (3.1). We then multiply by a spherical harmonic of different order, 
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R t m t  (a), integrate over 6, and utilize orthogonality. Boundary conditions are derived 

from the continuous transport equation in a similar manner. It is this coupled set of 

equations for the expansion coefficients that is referred to as the P.v equations. Since 

these equations are quite complicated for general geometries, we refer the interested 

reader to  the literature [ll] for the general form. For our purposes we need only 

consider the one dimensional PN equations. 

In one dimensional slab geometry an expansion in spherical harmonics reduces 

to an expansion in Legendre polynomials. In this case the 1 - D slab geometry P N  

equations are given as 

I. 

where 

,n=0,  17.. .7 N (3.32) 

6N+1 = 0 (3.33) 

Since the PN approximation consists of N + 1 first order differential equations, N + 1 

boundary conditions are required. Odd order N is used, to permit (N+1)/2 conditions 

at each of the left and right boundaries. Reflective boundary conditions, at  the 

boundary x = 50,  are represented by 

which translates to 

44x0) = 0 , l = l , 3  ,..., N 

(3.34) 

(3.35) 



Vacuum boundary conditions, €or example at  the right boundary of the slab, are given 

(3.36) 

This condition cannot be satisfied exactly by a finite order Legendre expansion. Two 

sets of boundary conditions have been devised to satisfy this condition approximately. 

Mark boundary conditions are given by 

(3.37) 

where the values p,, are given as 

PN+l(PL,)  = 0 (3.38) 

Equation (3.38) is satisfied by the Gauss - Legendre quadrature cosines, defined in 

section 3.3. Marshak boundary conditions are given by 

, I =  173, ..., N (3.39) 

This condition has the advantage of setting the incoming current of particles at the 

boundary equal to  zero. 

We conclude this discussion with some important properties of the PN approxima- 

tion. The PN method is convergent as N approaches infinity, that is, we obtain the 

exact transport solution as N approaches infinity. For an order N calculation there 

are order ( N  + 1)2 unknowns in two dimensional and three dimensional geometries, 

and order ( N  + 1) unknowns in one dimension. The fact that electron scattering is 

highly anisotropic requires a high order expansion (P7 - P15) in calculations of interest 
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to us. Finally, the PN equations are rotationally invariant, and hence do not produce 

ray effects. 

3.4 The Equivalence between Discrete Ordinates and the Legendre Equa- 

tions 

Let us examine the relationship between the discrete ordinates SN approximation 

and the spherical harmonic Plv-1 approximation. We will show an equivalence exists 

only in one dimensional slab geometry, provided we restrict our choice of quadrature 

sets. For brevity, we limit our discussion to a monoenergetic problem. The one 

dimensional slab geometry SN equations with PN-~ cross section expansion are given 

,n = 1 , 2 , .  . - , N (3.40) 

where 

(3.41) 

we write the P N - ~  approximation to the angular flux as 

It may be shown [2,3] that by taking Legendre moments of Equation (3.40), that is, 

operating by E,”=, Wnfi t (pn) ,  we obtain the P N - ~  equations, provided that we place 

the following restrictions upon the quadrature set: 
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1. For an order N SN or P N - 1  calculation, the ordinates pn are the zeros of the 

the iVth order Legendre polynomial 

(3.43) 

2. The quadrature integrates the polynomials Po through P2N-l  exactly 

N 
W n 6 ( P n )  = SEO , I = O ,  1, ..., 2N-1 

n= 1 
(3.44) 

Equations (3.43) and (3.44) specify the Gauss - Legendre quadrature set. The equiv- 

alence between the Gauss-SN approximation and the Legendre P N - ~  approximation 

in one dimensional slab geometry will be used in the derivation of the cannonical form 

of the SPN equations in Chapter 4. 
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Chapter 4 

The Simplified Spherical Harmonics Approximation 

4.1 Introduction 

The Simplified PN (SPN) method is an approximation method used to treat the 

angular variable. As mentioned in Chapter 1, the SPN equations were originally 

proposed by Gelbard [12-141 for application to neutron transport problems. This 

method has been shown to  produce approximate transport solutions which are sig- 

nificantly more accurate than diffusion theory, but significantly less expensive than 

discrete ordinates ( S N )  or full PN methods. The SPN method has never before been 

applied to charged particle transport problems. - 

In this chapter we first derive the SPN equations, section 4.2.1, using the original 

technique of Gelbard, and examine the characteristics of these equations in contrast 

with the SN and PN methods. We then briefly discuss, section 4.2.2, a recently devel- 

oped asymptotic derivation that lends mathematical rigor to the SPN approximation. 

We conclude, section 4.3, with a derivation of the canonical form of the SPN equa- 

tions, an alternate formulation which permits the application of efficient numerical 

solution and acceleration techniques. 
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4.2 The Standard SPN Equations 

4.2.1 Conventional Derivation 

Let us consider the one dimensional slab geometry PN equations 

where #n is the nth Legendre moment of the angular flux, and Qn is the nth Legendre 

moment of the distributed source 

Note that q5~+1, which appears in Equation (4.1) when n = N ,  is defined to be zero. 

This produces a system of N + 1 equations with N + 1 unknowns. 

Comparing the one dimensional PI equations, given by Equations (4.1) with N=l, 

with the three dimensional PI equations we may define a procedure [15] that produces 

the three dimensional PI equations from the one dimensional PI equations: 

1. Consider the zeroth order flux moment 4 0 ,  and zeroth order source moment Qo, 

as scalars. 

2. Consider the first order flux moment 41, and first order source moment &I, as 

vectors. 



30 

in the one dimensional n = 0 equation with the diver- 3. Replace the operator 

gence operator V.. 
-+ 

4. Replace the operator & in the one dimensional n = 1 equation with the gradient 

operator 9. 

The derivation of the SPN equations is motivated by this observation. Specifically, 

we generalize the procedure to obtain the three dimensional SPN equations from the 

one dimensional PN equations: 

1. 

2. 

3. 

4. 

Consider the even order flux moments #I ,  and even order source moments &i t  

as scalars. 

Consider the odd order flux moments # l t  and odd order source moments &I, as 

vectors. 

Replace the operator 6 in the one dimensional even n equations with the di- 

vergence operator $-. 

Replace the operator & in the one dimensional odd n equations with the gra- 

dient operator 9. 

Carrying out this procedure, we obtain 

w + ut(.', E)&(.', E )  = dE'a,n(r', E' + E)#n(S, E') + Qn(i, E )  

, n = 0, 2 , .  . . , N - 1 (4.4) 
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, n = l ,  3 , . . . l  N (4.5) 

where 4 ~ + ~ ,  which appears in Equation (4.5) when n = N ,  is defined to be zero. 

This closes the system of equations yielding ( N  + 1)/2 scalar equations and scalar 

unknowns, and ( N  + 1)/2 vector equations and vector unknowns. Equations (4.4) 

and (4.5) are known as the simplified PN equations. 

Since this procedure is exact for the PI equations, it follows that the PI and SPI 

equations are identical in all geometries. However, an equivalence does not exist for 

N > I; that is, the SPN equations differ from the PN equations for N > 1 in two - 

dimensional and three dimensional geometries. In one dimensional slab geometry 

SPN and PN are identical. 

It is noted that for two dimensional or three dimensional geometries, the SPN 

equations have order (N+1) unknowns, in contrast to the PN equations, which contain 

order ( N  + 1)21  thereby offering tremendous computational savings when N is large. 

The condition of N large will always be met in electron transport, since an accurate 

representation of highly anisotropic electron scattering requires high order flux and 

cross section expansions. The SPN equations maintain the rotational invariance of 

the PN approximation, and hence ray effects do not appear in the solution. However, 

due to the asymptotic nature of the SPN method the exact transport solution is not 

necessarily obtained as N approaches infinity. 
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4.2.2 The Diffusion Limit and an Asymptotic Derivation 

There is actually no intrinsic mathematical justification for the traditional deriva- 

tion of the SPA? equations. However, it has recently been shown (11 that the SPN 

equations can be derived via a rigorous asymptotic expansion of the transport equa- 

tion. In this section we will only briefly outline the procedure; the interested reader 

is referred to the above references. 

Let us begin by considering a system which is optically thick, and where scattering 

dominates; that is, one where there is little absorption. This can be represented by 

the scaling 

where E << 1. Equations (4.6)-(4.8) characterize a class of problems known as dif- 

fusive. The scaling is introduced into the the continuous transport equation and the 

equation is operated upon by P and (1 - P) where the operator P is defined as 

Pqfi!, E ,  0)  = - 1 dh?,!(S,E,fi) 
47r 47r 

(4.9) 

and i is the identity operator. After much operator algebra, the authors arrive at a 

sixth order partial differential equation for the scalar flux, asymptotically equivalent 

to the transport equation with O ( E ~ )  error. If terms of O(c3) are ignored, the SPI 

equations are obtained. If terms of O(e5) are ignored, the SP2 equations are ob- 

tained. Similarly, if terms of O(e7) are ignored, the SP3 equations are obtained. The 
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expansion may be carried out even further, and higher order SPN equations may be 

obtained. Thus, one sees that that the SPN equations are shown to be an asymptotic 

approximation to the transport equation in a class of physical problems known as 

diffusive. That is, the SP, equations, or diffusion equation, are the leading order 

approximation to the transport equation and higher SPN equations represent higher 

order corrections to diffusion theory. 

4.3 The Canonical Formulation of the SPN Equations 

The SPN equations can be put in a canonical form [15] that has several advan- 

tages relative to the conventional form. Recall, the standard derivation of the SPN 

equations, section 4.2.1, began with the one dimensional slab geometry PN equa- 

tions. However, it has been demonstrated, section 3.3, that the one dimensional slab 

geometry PN equations are equivalent to the one dimensional S N + ~  equations with 

Gauss - Legendre quadrature and PN cross section expansions. We begin with the 

one dimensional slab geometry s N + 1  equations 

where m is the angular index, N + 1 is an even integer, qm is the angular distributed 

source, & is the angular flux moment, and all other quantities are as previously 

defined. The quadrature weights sum to unity over the interval [-1,1]. Let us now 

express equation (4.10) in terms of the even and odd parity components of the angular 



flux. The even - parity angular flux is defined as 

and the odd - parity angular flux as 

1 
@-(Pm> = sIYj(Pm) - l h % r J  

Note from Equations (4.13) and (4.14) that 

1CI+(-Pm> = ZLf(Pm) 

3-1: 

(4.13) 

(4.14) 

(4.15) 

In the interest of simplifying the notation, we have suppressed the spatial and energy 

variables. Manipulating Equations (4.10) through (4.14), we obtain the following 

equivalent equations [16]: 

, m =  172,  . . . J  N+1)/2 (4.17) 
d 

P*-+;+ = QZ ax 

, m = 1 , 2 , .  . . , (N + 1)/2 (4.18) d hz+& i- ut$; = QG 

where 

N-1 

QL = (2n + l)P,-,(pm) Jm dE'u,(x, E' -+ E)&(x, E') + qA(x ,  E )  (4.19) 
n=0,2 0 

N 

Q, = (2n + l )Pn(pm) Im dE'a,(z, E' 4 E)+n(z, E') + qG(z, E )  (4.20) 
n=t,3 0 
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m = l  

and where q; and 4;;; are the even - parity and odd - parity angular distributed 

sources, respectively. These sources are defined in analogy with the even and odd 

parity angular fluxes, Equations (4.13) and (4.14), and are given by 

and 
1 

(4.23) 

(4.24) 

- Note that one need only solve for half of the even - parity and odd - parity fluxes 

since defining them on either half of the interval [-1,1] also defines them on the whole 

interval. 

Following the procedure outlined in section 4.2.1, we now obtain a set of SP, 

equivalent equations by replacing the operator in Equation (4.17) with the di- 

vergence operator, and replacing g in Equation (4.18) with the gradient operator. 

These equations are given as 

pmV - 6; +- o~$J; = QL , m = 1 ,2 , .  . . , ( N  + 1)/2 (4.25) 
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where 

N 

Q; = c (272 + l)P,(p*) Sm dEb, (2 ,  E’ + E)&(Z, E’) + i2;(z, E )  (4.28) 
n=1,3 0 

(4.29) 

(4.30) 
m= 1 

To obtain a second order form, we then solve Equation (4.26) for the odd parity flux 

6; 
(4.31) 

and substitute Equation(4.31) into Equation (4.25) to eliminate 6; and yield 

-$,.,a * -V$L l - +  + at$; = QZ - bmV + * (-) a, , m = 1, ( N  + 1)/2 (4.32) 
at ut 

Equations (4.31) and (4.32), are referred to as the canonical forma of the SPN equa- 

tions. 

Boundary conditions for the canonical form are obtained by generalizing the stan- 

dard one dimensional SN+, boundary conditions. For example, considering only 

pm > 0 , the one dimensional incoming source boundary condition at the left face 

requires 

@ ( ~ m >  = + + ( ~ r n )  + @-(Pm) = f(pm) 7Pm > o  (4.33) 
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an incoming source on the right face requires 

W - P m )  = ++(PL,) - $ - ( P m >  = f ( P m >  , ~ r n > O  .(4.34) 

In the three dimensional case we generalize the incoming source boundary condition 

for any any point on the boundary as 

(4.35) 

where f i  is the unit outward normal to the surface. Reflective boundary conditions 

at a surface x = xo 

.Ic(Pm> = TN-Pm) (4.36) 

are satisfied in the even odd partity formulation by inverting Equations (4.13) and 

(4.14) and substituting into Equation (4.36) to  obtain 

which translates to the three dimensional boundary condition 

The main advantages of the canonical form of the SPN equations are 

(4.37) 

(4.38) 

1. They require a matrix solution only for the even parity flux moments, thereby 

reducing the number of unknowns by a factor of four (considering the vector 

nature of the odd parity moments). 
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2. They represent a self adjoint system of equations which can be spatially dis- 

cretized to produce a symmetric positive definite coefficient matrix. Efficient, 

robust numerical techniques exist for solving such matrix equations [17]. 

3. The fluxes do not become coupled at the boundaries, in contrast to the full 

coupling that occurs between flux moments for the standard form. 

4. Since the left hand side consists of independent diffusion equations, both diffu- 

sion discretization and diffusion solution techniques can be directly applied to 

these equations in conjunction with a source iteration technique. 

5. Standard convergence acceleration techniques for the one dimensional even par- 

ity SN+l equations [IS] can be generalized for application to the canonical form. 

For these reasons, we will consider only the canonical form of the SPN equations 

throughout the remainder of this thesis. 
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Chapter 5 

Numerical Differencing Schemes for the SPN Equations 

5.1 Introduction 

,,I Chapter 4 we derived the canonical lurm of the SPN equations. Recall, the 

SPN equations represent an angular approximation to the continuous Boltzmann 

equation. In this chapter we turn to the discretization of the independent variables, 

energy and space, in the integrodifferential canonical SPN equations. We begin, 

section 5.2, by using the multigroup approximation method to  discretize the energy 

variable and produce the canonical multigroup SPN equations. We then discuss the 

multigroupLegendre format for cross sections, and cross section generation for our 

method using the program CEPXS. A general method of solution is then developed for 

the multigroup equations. We conclude, section 5.3, with a finite element treatment 

of the spatial variables in the multigroup equations, and a derivation of appropriate 

boundary and source conditions. 

5.2 Energy Discretization 

5.2.1 The Multigroup Equations 

The multigroup met hod is common to virtually all deterministic computational 

methods and is described in various references [2,18]. Let us begin with the energy 

dependent, one dimensional S N + ~  equations, Equations (4.10) through (4.12) 
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Figure 5.1: Division of the Energy Range into G Energy Groups 

where 

and the notation is as defined in Chapter 3 
-. 

To derive the multigroup equations we first divide the energy range into G intervals 

as shown in Figure 5.1, where EG = 0 and Eo is sufficiently large that the number of 

particles at energies greater than 80 is negligible. Our objective is to discretize the 

SN+1 equations in terms of the group angular flux 

where for brevity, we introduce the notation 

d E  L:-' d E  

,m= 1,2,  ..., N + l  (5.4) 

(5.5) 

We proceed by dividing the energy integral in Equation (5.2) into contributions from 
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each energy group 
G 

l m d E '  = / dE' 
g'=1 9' 

(5.6) 

and integrating the S,,, equations over the domain Eg 5 E < Eg-l, we obtain 

, m = l , . . . , N + l  (5.7) 

where 

We now assume that within each energy group, the angular flux can be separated 

or expressed as the product of a known function of energy !(E),  and the group flux 

+*s (4 

similarly, we express the flux moments as 

&m(x,  E )  x f ( E ) @ m g ( X )  7 Eg < E 5 Eg-1 (5.10) 

where the spectral weighting function f ( E ) ,  is normalized by the definition of the 
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group angular flux: Equation (5.4), to 

Next, we define the multigroup cross sections 

(5.11) 

(5.12) 

(5.13) 

and the group distributed source 

Introducing Equations (5.9) and (5.10) into Equations (5.7) and (5.8), and utilizing 

Equations (5.11) through (5.14) we arrive at the one dimensional multigroup S N + l  

equations, given as 

,m = 1 , N  + l , g  = 1,G (5.15) 

where 
G N  

(5.17) 

where g is the group index, G is the total number of groups, and an+, is the nth 

Legendre moment of the scattering cross section for scattering from group j to group 
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To produce the canonical multigroup SPN equations from the multigroup SNcl 

equations, one proceeds with exactly the same steps, section 4.3, that were used 

to produce the continuous energy form of the canonical SPN equations from the 

continuous S N + 1  equations. We arrive at  the canonical multigroup SP,Y equations 

where 
.- 

, m = l , ( N + 1 ) / 2 , g = 1 7 G  

G N-1  

j=1 n=1,3, 

IN+ 1)/2 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

5.2.2 Multigroup Cross Section Generation 

As we have shown in sections 3.3 and 5.2.1, the energy and angular variations 

of the cross sections can be represented by multigroupLegendre expansions. The 

coefficients of these expansions are called multigroup-Legendre cross sections. -4s 

discussed in Chapter 2, cross sections for our multigroup S P N  code will be generated 
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by the code CEPXS. CEPXS produces coupled electron-photon cross sections in a 

rnultigroupLegendre format over the energy range 1 keV to 100 MeV for materials 

of arbitrary composition. We note, electron cross sections are not generally available 

below 1 keV for materials of arbitrary composition. 

In CEPXS the energy domain is the same for all species of particles. For example, 

in coupled electron-photon transport, the lower energy bound EG, and the upper 

energy bound Eo, will be the same for both the electrons and photons. If we consider 

a electron source problem with G total groups, and n electron groups, CEPXS assigns 

group indices g = 1,2 , .  . . , n to the electrons, and group indices g = n + l ,  n+2,. . . , G 

to  the photons. Electron to  photon scattering then looks like downscattering, and 

photon to  electron scattering looks Eke upscattering. This format 1191 allows one to 

use only one set of multigroup equations; where, the subscript g now refers to both 

- particle type and energy. 

5.2.3 Numerical Solution of the Multigroup Equations 

Let us develop a general solution algorithm for solving the multigroup equations. 

We begin with these equations 

(5.24) 



We introduce a general operator notation to condense these equations. Define the 

group g streaming-collision operator, H;,,as 

c 

$1 

$2 

- $G 

and the group g' to g scattering operator, Higl, as 

we may then express Equation (5.24) as 

G 

(6 9_9 t H o  99 - Higl )  $ 1 ~ 1  = qg , g  = 1,2,. . . ,G  
g'=l 

I and defining the multigroup transport operator 

we may write Equations (5.27) its the coupled set of operator equations 

or 

,g=1,2 ,..., G 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 



46 

For many problems there is no scattering of particles from lower energy to higher 

energy, or no upscutter, this implies 

kg9f = 0 (5.31) 

matrix H is now lower triangular, and the group fluxes may be obtained systematically 

starting with the highest energy group, group 1 

f i - 1  
$1 = 11 q1 

(5.32) 

Each one of these G equations represents an equation for the flux in group g, and 

a sweep through all groups, g = 1,2 , .  . . , G, is referred to as an outer iteration. We 

defer the development of a solution method for the group equations until section 5.3, 

and Chapter 6. For the general case where upscatter is included an iterative method 

must be employed. We write equation (5.29) as 

, g =  1 , 2 , . . . , G  (5.33) 
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The first term on the left physically represents all interactions within the 9th group 

which result in a loss of particles from the gth group. The second term, known as the 

downscatter source, represents the t.ransfer of particles from higher energy groups to 

the 9th group. The third term, the upscatter source, represents transfer of particles 

from lower energy groups to the 9th group. We now specify the iteration scheme 

, g =  1 , 2  ,..., G (5.34) 

where I is the outer iteration index. 

The iteration process begins (1=1) with some initial guess of the group fluxes 

where g = 1 , 2 , .  . . ,-G. We first solve the group 1 equation for the group 1 flux. 

We then use this value to construct the downscatter source for group 2, and solve 

the group 2 equation for the group 2 Am. Next, we use the group 1 and 2 fluxes 

for the construction of the downscatter source for group 3, and solve the group 3 

equation. This process is continued until the first outer iteration is complete. We 

may now update the initial flux guess with the new group fluxes, which we have 

just calculated, and then proceed with the next outer iteration (1=2). After 2 outer 

iterations a convergence test is performed. The error is calculated for each group 

using the L2 norm of the scalar flux, and the L2 norm of the residual of the scalar 

flux, and is given by 

(5.35) 
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where IC is the spatial index. If the error criterion 

max\elf)/ < e , for all 9 = 1, 2 , ,  . . , G (5.36) 

is not satisfied, where E is typically a global flux update is made, and another 

outer iteration is performed. When the error criterion is satisfied, the calculation is 

terminated. 

As we have seen in the case of no upscatter, we have the complete solution after 

one outer iteration, at which point we may terminate the calculation. We turn now 

to the topic of spatial discretization of the group equations. 

5.3 Spatial Differencing - Bilinear Continuous Finite Element Methods 

- 5.3.1 Two Dimensional R - 2 Geometry 

The canonical multigroup equations represent a self adjoint system of equations. 

Upon discretization, self adjoint systems yield matrix equations with symmetric pos- 

itive definite coefficient matrices. Efficient, robust numerical methods exist for the 

solution of such matrix equations. In this section the group g equation will be spatially 

discretized using bilinear continuous finite element methods (BLCFEM) to produce 

a discrete set of equations. Let us begin with the group g canonical SPN equations, 

Equatians (5.18) and (5.19), given by 

(5.38) 
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where for brevity, we have omitted the group index g, and the source terms, Qk, Q;, 

which appear on the right hand side of each equation are known functions. In the 

interest of simplifying the calculation, we choose to proceed with a first order form 

of the SPN equations obtained by solving Equation (5.38) for e@; and substituting 

into Equation (5.37) 

pmG $; i- at+; = Q; , m = 1, ( N  + 1)/2 (5.39) 

Here we consider two dimensional R - Z geometry, which is characteristic of cylindrical 

geometry with azimuthal symmetry. We proceed by dividing the problem domain into 

an R - 2 mesh of (I X J) rectangular cells as shown in Figure 5.2; where the mesh 

deltas are defined as 

(5.40) 

Azj ~ j + l  - Z j  (5.41) 

Within each cell we require the material properties to be constant, allowing for dis- 

continuities, if any, to exist only at cell edges. Thus the total cross section within the 

(i,j)th cell is defined as 

Next, we assume that the even parity angular flux is represented as a bilinear function 

of r and z within each cell. That is, for the (i,j)th cell the even parity flux is given by 



where the even parity flux is continuous across cell edges. We define the node based 

unknowns, where we have supressed the subscript m, as 

(5.44) 

and approximate the even parity source in an analogous manner 

Continuing, we must next consider the odd parity angular flux. The odd parity 

angular flux is also represented bilinearly within each (i,j) cell. It however, is defined 

not in terms of node based unknowns, but in terms of corner based unknowns, as 

shown in Figure 5.3. For the (ij)th cell, the odd parity angular flux is given as 
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Figure 5.2: Two Dimensional R-2 Geometry Spatial Mesh 

Z. 
J +  

Figure 5.3: Corner Numbering System for Cell ( i j )  
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and the odd parity source as 

We define a set of basis functions $;)(r, z), which represent the behavior of the flux 

- within each ( i j )  cell 

otherwise 1 O  

(5 .50)  

Here the superscript I C ,  where k = I,&. . . ,4, corresponds to  the kth corner of the 

( i j ) th  cell, as shown in Figure 5.3. An important property of these basis functions 

derives from the fact that the functions vanish except in a small region within the 
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(i,j)th cell. This property, called compact support, guarantees that the coefficient 

matrices resulting from the finite element approximation are sparse. Xumerical so- 

lution of matrix equations with sparse coefficient matrices requires fewer arithmetic 

operations and less memory than would otherwise be the case. For two dimensional 

R - 2 geometry the differential volume element is 

d V  = 2 m d r d z  ( 5 . 5 2 )  

Let us operate on Equation (5.39) by 2.irJ,:'+' r d r  J:+' dz w(r, z )  , where w(r,  z )  is 

an arbitrary function defined throughout the domain of the problem. For brevity, we 

introduce the notation 

(5.53) 

to  signify the integration over the total problem volume. We obtain 

The first term of Equation (5.54) may be simplified through the use of the vector 

identity 

(5 .55)  

and Gauss' divergence theorem to 
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If we now substitute the basis function y2,J (1) ( T ,  z )  for W ( T ,  z ) ,  where (i,j) is an interior 

node, the surface integral term vanishes. This can be seen from the fact that yi , i)(~,  z )  

is zero on the surface. The integration over the total volume then collapses to an 

integration over the volume of the (i,j)th cell. 

(5.58) 

Substituting Equations (5.48), and (5.43) through (5.46) into Equation (5.58), and 

proceding with the integration, we then obtain the contribution from the (ij)th cell 

(5.59) 

where $Zj and +& are defined to  be the radial and axial components, respectively, 

of the odd parity angular flux &. 
To complete our derivation of an equation for node (i j) ,  we must next consider 

the contributions from the 3 other cells surrounding node (ij), that is cells (i,j-1), 

(i-1,j-1), and (i-1,j). We define an analogous procedure to  derive equations for these 



cells using the BLCFEM: 

1. cell (i,j-1) - multiply Equation (5.39) by -/j,:)-l(r, 2 )  and integrate over the volume 

of the cell 

2. cell (i-1,j-1) - multiply Equation (5.39) by #)12-1(~, z )  and integrate over the 

volume of the cell 

3. cell (i-1,j) - multiply Equation (5.39) by $!)l,J(r, z )  and integrate over the volume 

of the cell 

The resulting 4 equations, from the 4 cells surrounding node (i,j), are then summed, 

and the odd parity angular flux, G;, is eliminated using equation (5.38) 

(5.60) 

where the radial components of (5.60) are given by 

and the axial components of (5.60) are given by 

(5.65) 

(5.66) 
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Finally, we obtain the equation for the (ij)th interior node 

I where the coefficients ck E c k ( i , j ) ,  IC = 1,. . . , 9, are defined as 

(5.67) 

(5.68) 

(5.69) 
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1 
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and the source term Si,j is given by 

(5.70) 

- Sij - 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

- 
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(5.71) 

-. . where 

This equation is valid for all interior nodes, that is i = 2 ,3 , .  . . , I ,  j = 2 , 3 , .  . . J ;  

special consideration must be given to nodes which occur at corners and edges. We 

address the topic of corner and edge nodes, including boundary and source conditions 

in section 5.3.3. 
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5.3.2 Two Dimensional X - Y Geometry 

To extend the range of application of the SPN method, we have also derived 

the finite element equations for two dimensional X - Y geometry. These equations 

represent a simple modification of the R - 2 equations. Specifically, we proceed by 

dividing the problem domain into an X - Y mesh of (I x J) rectangular cells, Figure 

5.4, where material properties are again constant within a cell. 

Let us examine the differential volume element dV in orthogonal curvilinear co- 

or dinat es 

dV = hlh2h3d~ld~2d~3 

where hi,i = 1,2 ,3  are the scale factors. Then 

R-Z geometry - (u1, u2, U Q )  = (r, 8, r ) ,  dV = 2nrdrdz 

X-Y geometry - ( ~ 1 , 2 1 2 ,  u3) = (2, y, z) ,  d A  = dxdy 

(5.76) 

We may then define a procedure that transforms the R-Z geometry finite element 

equations to the X-Y geometry finite element equations: 

1. calculate mesh deltas Ar,, Arj 

2. set all ri = 1 

3. transform constant C = 2n + 1 

4. relabel variables ri + xi ,  zj + yj 

When the X-Y geometry option is choosen by the user, this procedure is performed 

internally. 
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5.3.3 Boundary Conditions and Sources 

In the derivation of the finite element equations, section 5.3.1, we have thus far 

considered only the interior nodes: i = 2 , 3 , .  . . , I ,  j = 2 , 3 , .  . . , J :  in which case the 

surface integral contribution to Equation (5 .37)  

(5.77) 

was found to be zero. If we consider the node ( i j )  to lie on the boundary, that is any 

of the 4 corner nodes: (1, l), ( I  + 1,1), (1, J + l), ( I  + 1, J + l), or any of the 4 edge 

nodes: 

left edge - (l,j), where j = 2 , .  . . , J 

right edge - ( I  + l,j), where j = 2 , .  . . , J 

bottom edge - (2, l),  where i = 2 , .  . . , I  

top edge - (2, J + l), where i = 2 , .  . . , I 

then the basis function 7:;) will be nonzero for at least one IC value; and the surface 

integral, Equation (5.77), will not necessarily be zero. Furthermore, the finite element 

procedure applied to a corner node will involve integration over only one cell, and 

the procedure applied to a edge node will involve integration over two cells, this is in 

contrast to an interior node which required integration over the four cells surrounding 

the node ( i , j ) .  The reflective boundary condition, Equation (4.38), is given as 

, m = 1, ( N  + 1)/2 (5.78) 
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Substitution of Equation (5.78) into the surface integral gives zero, thus the refective 

boundary condition requires no modification of the interior equation. We refer to such 

a boundary condition (one which is satisfied automatically) as a natural boundary 

condition. The prescribed source boundary conditon, Equation (4.35), is given by 

* 
$;. fi = ?j; - frn , m = 1, ( N  + 1)/2 (5.79) 

and will produce a nonzero surface integral 

Recall, the vacuum boundary condition is a special case of the incoming source bound- 

ary condition where fm = 0, 

as fm = constant G $BDRY. 

To illustrate the analysis 

and a homogeneous isotropic boundary source is given 

of a corner/edge cell, let us consider the node (I+l,l) 

in the corner cell ( I ,  1) , Figure 5.5, with reflective boundary conditions on the bot- 

tom surface, and incoming source boundary conditions on the right surface of the 

problem. The equation for (I+l,l) node will involve only coefficients c4, c5, c7, Cg, 

in Equation (5.69). We calculate the surface integral contribution for the incoming 

source boundary condition, where the differential area element over the right surface 

is given by 

dA = 27rr1+~dz (5 .81)  



Figure 5.4: Two Dimensional X-Y Geometry Spatial Mesh 

2 
2 

z 
r 1  ' 1  Reflecting Bdry I +  1 

Figure 5.5: Corner Cell (1,l) 
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The surface integral then becomes 

BDRY 1 

The coefficients c5, and are then modified 

(5.82) 

(5.83) 

- and the boundary source term moved to the right hand side of the equation. The 

other corner/edge nodes may be analyzed in an analogous manner. 

The boundary source may be specified as monoenergetic, or distributed in energy. 

We define the spectral distribution function xg, as 

xg - the fraction of source particles emitted with energy E ,  in the range 

Eg < E 5 Eg-l 

where 
G 

g=1 
CXg=1 

and 

BDRY - BDRY 
$9 - x& 

(5.84) 

(5.85) 

This completes the discretization of the multigroup canonical SPN equations, and we 

now turn to the topic of their solution. 
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Chapter 6 

Solution and Acceleration of the SPN Equations 

6.1 Introduction 

In Chapters 2 through 5, we have derived and discretized the canonical SPN 

equations. In this chapter, we address the topic of solution of the SPN equations 

via iterative methods. We begin, section 6.2, by presenting the standard iterative 

procedure, the Source Iteration (SI) method; we then provide a abbreviated discus- 

sion of Fourier analysis, a mathematical technique used to examine the the stability 

and convergence rate of iterative schemes, and we perform a Fourier analysis of the 

continuous SPN equations solved with the SI scheme. It is shown that in certain 

physical problems, that is optically thick systems with a scattering ratio c 3 2 near 

unity, the SI method can converge very slowly. We then examine two methods which 

have been devised to accelerate the SI method. The first of these, the Dzfluszon Syn- 

thetic AcceEerution (DSA) method, is developed in section 6.3, and a Fourier analysis 

is performed. The AnguEar Multigrid method, an extension of the DSA technique 

shown to be much more effective than DSA when scattering is highly forward peaked, 

is formulated in section 6.4, and applied to the electron groups. A comparison of 

the three iterative schemes is provided, and numerical results presented in Chapter 7, 

section 7.4. In the development of these acceleration schemes for the SPN equations, 

we also discuss their effectiveness for the 1-D and 2-D SN method. We conclude, 

section 6.5, with a discussion of particle conservation, particle productionlloss rates, 

and energy deposition rates. 
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6.2 The Source Iteration Method 

6.2.1 Description 

Let us consider the group g canonical SP,v equations 

where 
- 

, m = 1, N / 2  

, m = 1 ,  N / 2  

m= 1 

here, we have supressed the group index g, and the fixed source terms & 7  <;, include 

the distributed sources, and the g' to g scattering sources, where g' # g.  The sum 

terms in QA7 Q; are referred to as the within-group scattering sources. The problem 
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can be solved iteratively by the Source Iteration (SI) method, which is described by 

, m = I ,  iV/2 (6.7) 

m= 1 

where 1 is the inner iteration index. The iteration process begins with some initial 

guess for the even and odd parity sources Q&(O), Q ; ( O ) .  One then calculates the even- 

parity fluxes for all m, by solving Equation (6.7): and then the odd-parity fluxes for all 

m, using Equation (6.8). Next, the flux moments are calculated, Equations (6.9) and 

(6.10), and new source terms are calculated using Equations (6.11) and (6.12). After 

two inner iterations a convergence test is performed. The relative error is calculated 

using the L2 norm of the scalar flux, and the L2 norm of the scalar flux residual 

(6.13) 
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where k is the spatial index. If the error criterion 

is not satisfied, where p@) is the spectral radius defined in Equation (6.15), and E 

is typically lod6, new within-group scattering sources are calculated, and another 

iteration is performed. When the error criterion is satisfied, the group g calculation is 

terminated. Furthermore, we require €inner < cater, where €inner is the error tolerance 

on the inner iterations, and cmter is the error tolerance on the outer iterations. 

6.2.2 Continuous Fourier Analysis 

The convergence rate of an iterative scheme is determined by the spectral radius 

p [2] (see Appendix A), which is defined as 

(6.15) 

The spectral radius can be interpreted as the smallest possible reduction in the relative 

error between successive iterates, that is e x p'. We may estimate the number of 

iterations required to reach a specified convergence criterion ( e  < E )  using 

(6.16) 

An iteration scheme is stable if p 5 1, and convergent if p < 1. Note from Equation 

(6.16) that the smaller the value of p, the fewer number of iterations required to 

converge. Fourier analysis is a mathematical technique that allows one to examine 

the stability and convergence rate of an iterative scheme by providing an estimate of 
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the spectral radius. Let us proceed with a Fourier analysis of the SI scheme for the 

continuous SPAT equations. To begin, we make the following definitions 

€f(Z+l) m = $; - $m +(l+l) (6.17) 

4 -4 

Em -++l) = $)- m - +- ( l+ l )  m (6.18) 

where E;(') and %(l) represent the error at  the Ith iterate. Subtracting Equation (6.7) 

from (6.1), and Equation (6.8) from (6.2), we obtain the error equations 

(6.19) 2 '  1 +  -pmv . -v,+U+l) + qE+(l+l) m = >+,+U) - 
m 

at 

(6.20) 
' +(Z+l) + -S-%(Z) 1 

-U+1) = --vem 
at at em 

where, for simplicity, we have represented the sources 

Q$l) = ,$+$+$) + (6.21) 

Qm +-(q - - S-J-(L) m + q; (6.22) 

in terms of the scattering operators S+, S-. We now assume a homogeneous, infinite 

medium in X - Y geometry, and substitute the Fourier ansatz 

E:(')(?, A,, A ~ )  = E:(') exp [ ~ ( A ~ X  + ~,y)] (6.23) 

G(')(z, A,, A ~ )  = ~ ( ' 1  exp [ ~ ( A ~ X  + ~ ~ y ) ]  (6.24) 
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where i = G, -m < Ax < 00, and -m < A, < 00. We obtain the following 

coupled set of equations 

-a 

0 0  

0 0  

0 0  

0 0  

1 0  

0 1  - 

(6.26) 

(6.27) 

An analysis of the SI scheme has been performed for an S4 calculation, after calcu- 

lating the scattering operators, we arrive at the matrix form of Equations (6.25) - 
(6.27) 

_. 

where 

A 

A =  

(6.28) 

(6.29) 



i l  

(6.30) 

and the matrix elements are given by 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

The spectral radius is given as the largest eigenvalue moduli of the iteration matrix [2] 

(see Appendix A) M = A-lB. 

Let us now list the results of our analysis: For an infinite medium problem the SI 

method is shown to be unconditionally stable, but has arbitrarily poor convergence 

as c -+ 1. For a finite medium problem p < c because of leakage; however, as the 
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medium becomes optically thick p -+ e. This is the same behavior exhibited by the 

SN method in all dimensions. 

6.3 The Diffusion Synthetic Acceleration Method 

6.3.1 Description 

The Diffusion Synthetic AcceEerution Scheme (DSA) has been shown to be an 

effective method of accelerating the convergence rate of the SI method [20] in 1-D S N  

calculations. This two stage iterative procedure is based upon solving a “low order” 

S2 (or PI) calculation to produce additive correction terms which are then used to 

accelerate the “high order” transport calculation. 

Neglecting spatial discretization, the Diffusion Synthetic Acceleration Scheme 

(DSA) is given as 

, m  = 1, N / 2  

rn = 1, N / 2  

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 
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(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) &-("+l) = +++& 4+$) 
m $m +3ClnaCl 

where the transport and absorption cross sections are defined as 

Equations (6.38) 

iteration scheme. 

through (6.41) correspond to the standard unaccelerated source 

One first solves the SPN equations using sources constructed from 

the previous iterate flux moments, and then one calculates new fluxes using the 

latest iterate angular fluxes. If there were no acceleration, these two steps would 

constitute a complete iteration. Convergence acceleration is achieved by calculating 

additive correction terms for the angular fluxes by solving Equations (6.44) and (6.45). 

The motivation for Equations (6.44) and (6.45) derives from the fact that the exact 

correction for the angular flux at the ( I  + i) iterate is given by 

(6.50) 

(6.51) 
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where $J;, 4; represent the exact solution, and the corrections satisfy 

These equations are exact, but just as difficult to solve as the original problem. In the 

DSA procedure we replace Equations (6.52) and (6.53) with a S2 (PI) aproximation or 

diflusion approximation, and Equations (6.44) and (6.45) result. Boundary conditions 

for the correction equations are the same as the original equations, with the exception 

of the incoming source boundary condition which is replaced by a vacuum boundary 

condition? so as not to inelude the source twice. Once CO, and c'l have been obtained, 

the angular fluxes are corrected or updated according to Equations (6.46) and (6.47). 
-. 

This completes the iteration. 

6.3.2 Continuous Fourier Analysis 

The analysis of the DSA scheme is makz for a 5'4 calculation following the same 

procedure outlined in section 6.2.2 for the SI method. In this section we will only 

display the results. We substitute the Fourier ansatz 

(6.54) 

(6.55) 

(6.56) 

(6.57) 
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where 

and arrive at the final matrix equation 

where M is the iteration matrix, I is the identity matrix, matrices A and 

previously defined, Equations (6.27), (6.28), and the remaining matrices are g 

r 1 

1 0  O 

0 1  O I  

(6.58) 

(6.59) 

B are 

ven as 

(6.60) 

(6.61) 

(6.62) 
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(6.63) 

In the analysis of the DSA procedure we obtain a spectral radius p =.184 for c = 1; 

this is in contrast to the SI procedure which produced a spectral radius p =I for 

c = 1. Fourier analysis of the 1-D and 2-D SPN equations produced identical results. 

We wish to emphasize that previous analyses indicate the DSA method is stable for 

1-D SN,  but unstable for the multidimensional case. 

- 6.4 The Angular Multigrid Acceleration Method 

The DSA met hod becomes ineffective as scattering becomes increasingly forward 

peaked. An Angular Multigrid method [21] is developed in this section, which is 

effective in acceleration of the electron groups. Let us begin by considering the general 

matrix problem 

H f = q  (6.64) 

which may be solved iteratively by splitting the coefficient matrix 

H = A - B  (6.65) 

and specifying an iteration scheme 

(6.66) 
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By manipulating Equations (6.64), (6.65), and (6.66), it may be shown that the exact 

error in f at the ( 1  + l ) th  iterate satisfies 

where the error is defined by 

&+1) - - f - f ( ' + l )  

(6.67) 

(6.68) 

and the residual is defined as 

We may then obtain the exact error in f('+l) by solving Equation (6.67); however, 

Equation (6.67) is just as difficult to solve as the original problem ,Equation (6.64). 

The main idea of synthetic acceleration is to obtain an estimate of the error in f(l+l)  

by solving Equation (6.67) with a low-rank approximation to H. The accelerated 

scheme then takes the form 

where 

HL=low-rank operator 

(6.70) 

(6.71) 

(6.72) 

(6.73) 



P=projection operator that maps the high-rank residual to the low-rank 

space of HL 

T=interpolation operator that maps the low-rank correction to the high- 

rank space of H 

Synthetic acceleration is effective if the low-rank operator is easy to  invert, and the 

low-rank operator attenuates the error modes which are not well attenuated by the 

basic iteration scheme. The DSA scheme, presented in section 6.3, may be viewed as 

a SPN transport sweep followed by a diffusion solve, where the PI diffusion operator 

is the low rank approximation to the transport operator (i.e. a 2 grid method). The 

projection and interpolation operators are defined in terms of the Legendre moments. 

To illustrate the angular multigrid method, we now specify the angular multigrid 

acceleration scheme for the canonical SPN equations for a SI6 calculation. 

1. Transport sweep on SI6 grid 

,m= 112,  . . . ,  8 

,m= 1 , 2  )...) 8 

m=l 

(6.74) 

(6.75) 

(6.76) 

(6.77) 



79 

2. Transport sweep on Ss grid (first coarse grid) with P7 expansion for the SI6 

residual 

,m= 1 7 2 , . . . , 4  (6.78) 

,m= 1 , 2 , . . . , 4  (6.79) 

3. Transport sweep on S4 grid (second coarse grid) with P3 expansion for the S, 

residual 

, m  = 1,2  (6.82) 

,m = 1 , 2  (6.83) 



m= 1 
, n = 0 , 2  

80 

(6.84) 

(6.85) 
m = l  

4. Solve the diffusion equation with PI expansion for the S4 residual as an inho- 

mogeneous source 

5. Update angular fluxes 

n=1,3 

, m  = 1 , 2  ,..., 8 

where 

(6.86) 

(6.87) 

(6.88) 

(6.89) 
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(6.90) 

and 

,uk)=cosine for direction m on grid i 

wi)=weight for direction m on grid i 

D = -  1 
3utr 

oF)=Legendre moment of degree I of the cross section for grid i, where 

- 1 (i-1) (i-1) 
= S(ON,2  f % - l >  

The transport sweep attenuates the errors in the upper half of the Legendre flux mo- 

ments, provided the cross sections are “corrected” on each grid, as given by Equation 

(6.91). This cross section correction modifies the convergence rate of the transport 

sweep, while the equation solution remains invariant. Again, boundary conditions for 

the correction equations are the same as the original equations with the exception of 

incoming source boundary condition, which is replaced by a vacuum boundary con- 

dition. The net effect of a single transport sweep in conjunction with a projection to 

lower order space is the attenuation of the errors in the upper three quarters of the 

Legendre flux moments. One may then continue this process through multiple levels, 

attenuating a larger fraction of the error modes with an increasing number of grids. 

The diffusion solve on the final grid attenuates errors not attenuated by the transport 

sweeps on the upper levels. 
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It may at first appear as if a large number of coarse grids would require an inor- 

dinate amount of computational work. However, it is easily shown that this is not 

the case. To illustrate, let us measure computational work in a system where 1 unit 

equals the work required to solve the fine grid problem. Let us also assume that 

the work required to solve each equation is constant, and that the fine grid problem 

involves X equations. Then a 2 grid problem (fine grid plus a single coarse grid) 

would involve X plus X/2 equations, and the total work required is 3/2. We may 

then continue this summing process through an indefinite number of grids, and we 

see that the total work required is bounded by a limiting value of 2. That is, a 

problem with an infinite number of grids would require twice the amount of work as 

is required to solve the unaccelerated or fine grid problem. Multigrid acceleration 

becomes increasingly effective, relative to DSA, as N increases. For 1-D S, multigrid 

acceleration is stable. Since DSA is unstable for multigeometry SN, and is contained 

in the multigrid method, then multigrid is also unstable for multigeometry S,. 

6.5 Particle Conservation and the Calculation of Energy Deposition Rates 

Particle production (distributed sources, boundary sources) and loss (absorption, 

leakage) rates are calculated for each group using: 

Nf’L . 
dist. source = 2 JvqLwrndV 

m=l 

(6.92) 

(6.93) 

bdry. source = (6.94) 
m=l 

BDRY 
Nl2 

leak. rate = 2 f ( + L  - -+ )pmwrndA 
S 2 m=l 

(6.95) 
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where V is the total problem volume, S is the problem surface, and 

(6.96) 

Rates are then summed over appropriate groups, and tabulated for electrons and 

photons. Particle balance is calculated using the equation 

(dist. source + bdry. source - abs. rate - leak. rate) 
(dist. source + bdry. source) 

bal = (6.97) 

and checked to be zero to verify particle conservation. 

Energy deposition rates are calculated for each group, using the CEPXS energy 

deposition cross sections. Three different average rates are calculated volumetric, 

axial, and radial, given as 
_I 

EDR = 1 dED)$dV v v  (6.98) 

(6.99) 

(6.100) 

and summed over all groups. 





84 

Chapter 7 

Numerical Results 

7.1 Introduction 

In this chapter we consider various computational problems to investigate and 

validate the theoretical method developed in the previous chapters. One and two 

dimensional test problems have been formulated, and comparison tests have been 

performed using a SPN code, written by the author, and the Monte Carlo code 

CYLTRAN [22]. CYLTRAN will serve as our benchmark. For each problem we 

will investigate the accuracy of the numerical solutions, the computational efficiency 

of the methods, and provide a brief discussion of results. An extended discussion 

and interpretation of results will be presented in the next chapter. CYLTRAN is a 

member of the integrated TIGER series (ITS) of coupled electron-photon transport 

codes developed by Sandia National Laboratory; cross sections for CYLTRAN are 

generated using the ITS code XGEN [22]. All calculations were performed on a 

CRAY YMP at Los Alamos National Laboratory. 

7.2 Test Problem One 

Let us begin by analyzing a simple problem: a one dimensional homogeneous slab 

of aluminum with an isotropic boundary source of electrons (1 electron/cm2 s). The 

problem is of thickness 25 mil (.0635 cm), with the source located at the plane z = 

0 em. The source electrons are distributed in a flat energy spectrum as shown in 

Figure 7.1. We have calculated the energy deposition rate (EDR) as a function of 
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Figure 7.1: Problem One: Electron Differential Spectrum 
.- 

Table 7.1: Problem One: Results 

1 4 1 s  2 hr 22 min I 
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penetration, and the energy deposition rate in a test region defined as 24 mil 2 z 5 

25 mil. For the SP,V calculation, we have performed an order PIS calculation with 80 

energy groups (50 e-, 30 7 )  and 50 spatial cells of uniform mesh spacing (Az = 1.27 

x cm). For the Monte Carlo calculation we ran lo6 histories. In a comparison of 

SPN and Monte Carlo results, Figure 7.2 and Table 7.1, we note that the EDR curves 

are almost identical, the test region energy deposition rates differ less than 2%, and 

the SPAr method is over 200 times faster than Monte Carlo. 

7.3 Test Problem Two 

The second problem is a one dimensional, deep penetration, multi-media problem, 

shown in Figure 7.3. Deep penetration problems are problems in which we wish to 

calculate the dose in a region surrounded by many mean free paths of material. An 

isotropic geosynchronous trapped electron source [23], Table 7.2, is incident at the 

plane z = 0 cm. The source is normalized to 1 particle/cm2 s. This source-geometry 

configuration is characteristic of space shielding benchmark problems [23], with the 

silicon region representing a semiconductor device, and the aluminum and tungsten 

regions representing the shield. We have written a FORTRAN code to produce the 

SPN and Monte Carlo input spectrum from the tabular electron spectra data. For 

the SPN calculation have performed an order PIS calculation, with 70 spatial cells of 

nonuniform mesh spacing (A~l ,s i  = 1.27 x cm, A, = 7.5197 x IO-* cm). To 

obtain a low standard deviation on the Monte Carlo solution, it was necessary to run 

a large number of histories (1 x lo7). We display the results of the calculation, the 

EDR in the silicon region, in Table 7.3. 

We have performed a convergence study of the SPN method, where we investigated 

the effects of the order N upon the solution. The results of the convergence study are 
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EDR (MeV/cm3s) 

1.67 10-3 
2.02 x 10-3 
2.11 10-3 
2-14 10-3 
2.26 x f 3% 

Table 7.2: Geosynchronous Electron Spectrum 

CPU time 

09 s 
20 s 
45 s 
91 s 
6 hr 4 min 

Energy 
(MeV) 

0.1 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

Integral Spectruma 
(e/cmj2) 

1.878 (12)' 
2.789 (11) 
5.861 (10) 
1.375 (10) 
3.224 (09) 
8.832 (08) 
2.419 (08) 
1.313 (08) 
7.122 (07) 
3.153 (07) 
1.396 (07) 
3.862 (06) 
1.069 (06) 

Differential Spectrum 
(e /cm2MeV)  

1.227 (13) 
1.047 (12) 
1.661 (11) 
4.082 (10) 
8.685 (09) 
2.409 (09) 
4.678 (08) 
1.278 (08) 
1.074 (08) 
4.899 (07) 
2.868 (07) 
1.092 (07) 
2.194 (06) 

"The integral spectrum is given for a period of one day. The integral spectrum 

"value read as 1.878 x 10l2 
value at energy Ei is defined as the integral spectrum between Ei and 00. 

Table 7.3: Problem Two: Results 

HWM memory' 1 

1513 K 
2884 K 

a l  high water mark (HWM) memory unit = 512 words (64 bits/word) 
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Figure 7.4: Problem Two: Photon Flux vs Energy 
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displayed in Table 7.3.  We observed that the largest change in the solution occurs 

between SP, and SP3. ,4fter SP, the solution changes relatively little, while the 

required CPU time increases proportional to  3. We will consider the SP15 calculation 

as the final answer for our comparison with Monte Carlo, although it appears as if 

an order SP7 calculation would be sufficient. We observed that the SPlj and Monte 

Carlo results differ by 5%, with the Monte Carlo CPU time exceeding the SP15 CPU 

time by over two orders of magnitude. 

We have calculated the unshielded or free space dose to the silicon region. This 

value was found to be 12.0 MeV/cm3s, indicating 4 orders of magnitude attenuation 

by the shield. This calculation verifies that we are in a well shielded regime. 

All space shielding calculations, up until now, have been performed without in- 

cluding the effects of positrons. Our justification for neglecting positrons, thus far, 

lies in the geosynchronous electron spectrum, where 97% of the electrons in the spec- 

trum have energy E < 1.0 MeV.  Recall, for positron production we require photons 

with energies E > 1.02 MeV. To investigate the significance of positrons we have 

performed the following two calculations: We have repeated the test problem two cal- 

culation with positrons, and we note that the energy deposition rate increases from 

the previous value of 2.14 x loa3 MeV/cm3s (no positrons) to  2.16 x MeV/cm3s. 

To understand this result, we calculated the photon spectrum at the midpoint of the 

silicon region, Figure 7.4. From this differential spectrum we found that relatively 

few photons have energies E > 1.02 MeV,  the threshold energy for positron produc- 

tion. Thus, we conclude that positrons do not significantly contribute to the dose in 

space shielding problems, and hence we are justified in neglecting their effect in our 

calculations. 
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7.4 Test Problem Three 

The third problem, Figure 7.5, is a difficult two dimensional, R - 2 geometry, 

four region, deep penetration problem. Each region represents a coaxial cylinder of 

uniform composition. A geosynchronous trapped electron source is uniformly incident 

along the outer periphery. Again, this geometry-source configuration is characteristic 

of satellite shielding benchmark problems. We note that for the calculation of the 

dose in a region deep within a multidimensional problem, Monte Carlo requires a 

large number of histories and often a corresponding large CPU time. For the SPN 

calculation we have again performed an order P7 calculation, with 35 x 35 spatial 

cells of nonuniform mesh spacing ( A A ~ , s ~  = 2.54 x cm). 

For the Monte Carlo calculation we ran 2 x lo7 histories. We display the results of 

the calculation, the EDR in the silicon region, in Table 7.4. 

cm, A, = 1.504 x 

L 

The unshielded or free space dose to the silicon region was calculated to be 25.8 

MeV/cm3s, indicating 3 orders of magnitude attenuation by the shield, and again 

verifying that the silicon region is highly shielded. 

We have performed a convergence study for the two dimensional SPN method, 

where we have investigated the effects of the order N upon the solution, Table 7.4. 

We again observed that the largest change in the solution occurs between SPl and 

SP3, with a relatively small change between SP3 and SP7. For our comparison with 

Monte Carlo, we shall consider the SP7 result as the final answer. We observed that 

the SP7 result significantly overshoots the Monte Carlo answer; however, there is a 

relatively large uncertainty in the Monte Carlo answer. Unfortunately, the current 

Monte Carlo calculation required over nine hours. To reduce the uncertainty to 4% 

would require an excessive run time of 37 hrs. Furthermore? we wish to indicate that 
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solution overshoots have been observed in previous SPN studies [15]. Finally, we note 

that the SP7 and Monte Carlo results differ by 896, with the Monte Carlo CPU time 

exceeding the SP7 CPU time by over two orders of magnitude. 

X e  have investigated the effects of including positrons in this two dimensional test 

problem. With positrons the EDR increased from the previous value of 1.97 x lod2 

MeV/cm3s (no positrons) to 2.00 x iMeV/cm3s, a change of only 1.5%, while, 

the CPU time required increased a factor of four. Again, this calculation validates 

the assumption that positrons may be neglected in our space shielding calculations. 

The computational efficiency of the SPN code with various acceleration schemes 

is displayed in Table 7.5. In this particular calculation, the MGA scheme with a 

conjugate gradient (CG) solver is shown to be the most efficient. However, we note 

that in problems involving a void region, the multigrid (MG) matrix solver [17] can 

surpass the conjugate gradient solver in efficiency. In general, if we have a system of 

well-conditioned equations, CG is the recommended method of solution. However, if 

the equations are ill-conditioned, as those that result in a void calculation, MG can 

be more efficient. 

We have performed a separate study to further investigate the effectiveness of 

the angular multigrid (MGA) method when applied to two dimensional SPN calcu- 

lations. In this study we compared the computational spectral radius of the one and 

two dimensional SPN methods with the computational spectral radius of the one 

dimensional SN method for one group, highly forward peaked Fokker-Planck scat- 

tering [21]. Recall, SPN is equivalent to SN in one dimension; therefore, we would 

expect to see the same spectral radius in one dimensional SPN as one dimensional SN.  

Furthermore, our previous Fourier analysis indicated that the PI diffusion synthetic 

acceleration scheme exhibits exactly the same effectiveness on two dimensional SPN 
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calculations that it does on one dimensional SPN calculations. This would suggest 

that MGA should have the same effectiveness on two dimensional SPN calculations as 

one dimensional SP,v calculations. Finally, we wish to remind the readed that both 

the DSA and MGA methods are unstable (with sufficiently forward-peaked scattering 

and sufficiently small absorption) for two dimensional SN calculations, yet are both 

very effective for one dimensional SN calculations. We display the results of our in- 

vestigation in Table 7.6, and we observe the following: The one dimensional results 

are identical for SN and SPN. Furthermore, the one dimensional and two dimensional 

SPN results are identical. Therefore, we conclude that the angular multigrid method 

exhibits exactly the same effectiveness on two dimensional SPN calculations that it 

does one dimensional SPN calculations. 

Table 7.4: Problem Three: Results 

I EDR ( ~ e ~ / c n 3 s )  1 CPU time 1 HWM memory 

2782 K 
6755 K 
14753 K 

7.5 Test Problem Four 

To decrease the uncertainty in the Monte Carlo results of problem three without 

increasing the CPU time, we have formulated a two dimensional space shielding prob- 

lem with reduced shield thickness. This problem is identical to test problem three 
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Figure 7.5: Problem Three: Geometry 

Table 7.5: Problem Three: Sf" Acceleration Scheme Performance 

I acceleration scheme 1 matrix solver I CPU time ( s )  

891 
414 
286 
310 



Table 7.6: Performance of Angular Multigrid and Diffusion Synthetic Methods 

acceleration 

MGA 
DSA 

MGA 
DSA 
MGA 
DSA 

~~ ~~ 

1-D SN 1-D SPN 2-D SP+br 
order Spectral Radius Spectral Radius Spectral Radius 

4 0.36 0.35 0.35 
4 0.36 0.35 0.35 

8 0.47 0.47 0.47 
8 0.81 0.81 0.82 
16 0.54 0.54 0.54 
16 0.95 0.95 0.95 

with the outer aluminum and tungsten regions each reduced to 5 mil thickness. For 

the SPN calculation we have performed order PI, P3, and PT calculations, with 35 

x 35 spatial cells of nonuniform mesh spacing (Ainner~[,si = 2.54 x cm, A, = 

6.684 x cm). For the Monte Carlo calculation we ran 

5 x lo6 histories. We display the results in Table 7.7, and note that the uncertainty in 

the Monte Carlo solution is reduced from f. 8% (test problem three) to f 2% in this 

problem. Recall, the unshielded or free space dose to the silicon region was calculated 

to be 25.8 MeV/cm3s, indicating two orders of magnitude attenuation by the shield, 

and again verifying that the silicon region is well shielded. 

- 

cm, Aouter~l = 1.27 x 

7.6 Test Problem Five 

The fifth problem, Figure 7.6, is a difficult two dimensional, R - Z geometry, three 

region void problem. Again, this geometry-source configuration is characteristic of 

satellite shielding benchmark problems. Deterministic transport problems with a 

void region are often times very slow to converge when using a code with a conjugate 
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SPI 
SP3 
SP7 

Table 7.7: Problem Four: Results 

2.49 x lo-' 
2.62 x lo-' 
2.67 x IO-' 

1 EDR ( ~ e ~ / c m 3 s )  1 CPU time 1 HWM memory 1 

M C  2.48 x 10-1 & 2% 2 hr 23 min 715 K I 
066 s 
145 s 
305 s 

2782 K 
6755 K 
14753 K 

Bdry Source 

0. 

AI 

AI 

.04 .06 
Reflecting Bdry 

Figure 7.6: Problem Five: Geometry 
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gradient solver. We have employed a multigrid matrix solver [17] within our SPlv 

SP7 
M C  

code to handle the ill-conditioned equations that result from the modeling of the void. 

Each region represents a coaxial cylinder of uniform composition. A geosynchronous 

trapped electron source is again incident along the outer periphery. For the Spiv 

calculation we have performed an order P7 calculation with 35 x 35 spatial cells of 

nonuniform mesh spacing ( A A ~ , s ~  = 2.67 x 10-3c7n, A, = 4.0 x cm). Low 

density nitrogen gas (10-7g/cm3) is used to simulate the void region in the SPN 

calculation, while Monte Carlo allows the explicit modeling of a void. For the Monte 

Carlo calculation we ran 2 x lo6 histories. We display the results of the calculation, 

the EDR in the inner aluminum region, in Table 7.8. 

~ 

2.24 478 s 14739 K 
2.25 1% 53 min 13 s 715 K 

Table 7.8: Problem Five: Results 

1 I EDR ( ~ e v / c m 3 s >  1 CPU time I HWM memory 1 

7.7 Test Problem Six 

We conclude with a monodirectional electron beam problem. A cylindrical beam 

is incident along the z axis of an aluminum cylinder, where the beam radius is 1/20 

th of the radius of the cylinder. The cylinder is of dimension radius = height = 10 

mil (2.54 x cm). Electrons are distributed in a flat energy spectrum as shown 

in Figure 7.1. For the SPN calculation we have performed an order PIS calculation. 
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For the Monte Carlo calculation we ran 10’ histories. Axial energy deposition rate 

as a function of penetration is displayed in Figure 7.7. We have observed that the 

S& method appears to be a poor approximation in this case, with an average error 

of approximately 30%. Specifically, the SPN method appears to be too diffusive 

an approximation for beam problems. This result, however, is in agreement with 

theoretical expectations. 
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Figure 7.7: Problem Six: Axial Energy Deposition Rate vs Penetration 
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Chapter 8 

Summary and Discussion 

8.1 Conclusions 

There is a strong need for accurate and efficient numerical methods for solving 

the Boltzmann - CSD transport equations. The purpose of this thesis was multifold: 

Our first major objective was to develop a simplified spherical harmonic method (SPN 

method) for multidimensional coupled electron-photon transport; this is the first time 

that the SPN method has been applied to charged particle transport. The second 

major objective was the development and analysis of efficient solution techniques for 

the multidimensional SPN equations. We have met these objectives. In this chapter 

we review and summarize some important properties of the SPN method in contrast 

to other transport methods, examine and interpret the test problem results of Chapter 

7, and conclude with some possibilities for future work. 

The SPN equations were proposed in the early 1960’s by Gelbard for application 

to neutron transport problems. As has been stated earlier, the SPN method is an 

approximation used to treat the angular variable. This method has been shown to 

produce approximate transport solutions which are significantly more accurate than 

diffusion theory, but significantly less expensive than discrete-ordinates (S,) , or full 

PN methods. The initial derivation of the SPN equations was not rigorous. This lack 

of theoretical foundation has undoubtedly acted as an obstruction to the widespread 

use of these equations. However, a recent paper [I] in the literature shows that the 

SPN equations represent a formal asymptotic solution to the Boltzmann transport 
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equation in the diffusion limit. 

The SPN equations are an approximation in the sense that one does not obtain 

the exact transport solution as N approaches infinity. Such a method is said to be 

nonconvergent. This is in contrast to the S N  and PN methods which are convergent. 

The number of unknowns in multidimensional SPN is of order ( N  + l), while in mul- 

tidimensional PN the number of unknowns is of order ( N  + l)2. Electron scattering 

is highy anisotropic; hence, an accurate representation of the electron flux requires 

high order (P7 - P I S )  flux and cross section expansions. Thus, SPN offers tremendous 

computational savings over PN when N is large, as is always the case in electron- 

photon transport problems. SPN retains the rotational invariance of the PN method; 

hence, ray effects do not appear in the solution. The SPN equations can be put in a 

canonical form which allows the application of standard diffusion discretization tech- 

niques and a source iteration solution strategy. In addition, convergence acceleration 

techniques can be applied to the canonical form. 

We have developed codes for the multigroup SPN equations in one dimensional 

slab, two dimensional X-Y, and two dimensional R-Z geometries. We have performed 

a Fourier analysis of the standard source iteration (SI) solution scheme, and have 

shown the method to be unconditionally stable. The SI method, however, can be 

very slow to converge in optically thick systems where the scattering ratio, c = 2, is 

near one. This behavior is also exhibited by the SN method in all dimensions. We have 

analyzed and generalized two acceleration schemes, PI diffusion synthetic acceleration 

and multigrid in angle acceleration, which significantly reduce the spectral radius and 

accelerate the convergence. We have performed a Fourier analysis of the PI diffusion 

synthetic acceleration scheme (PI DSA) for multidimensional Sf", and have shown 

the method to be stable and effective. Fourier analysis of the one dimensional and two 



dimensional SPN equations produced identical results, The stability of 

two dimensional case is indeed a suprising result. Previous analyses [24] 
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PI DS.1 for 

have shown 

that PI DSA is stable for one dimensional S N ,  but unstable for two dimensional 

SN.  We have generalized the one dimensional PI DSA method to two dimensions 

and have implemented this method in our code. We have developed a multigrid in 

angle (MGA) convergence acceleration routine, and have demonstrated that MGaI is 

more effective than PI DSA when scattering is highly forward peaked. That is, MGh 

becomes increasingly effective, relative to DSA, as N increases. We note for the one 

dimensional SN equations multigrid acceleration is stable. However, since Pl DSA 

is unstable for multigeometry SN and PI DSA is contained in the multigrid method, 

then multigrid is also unstable for multigeometry SN. 

To investigate the accuracy and computational efficiency of the SPN method, we 

have performed numerical comparisons with Monte Carlo, in the form of six test 

problems. We have investigated the applicability of the SPN approximation to two 

different physical classes of problems: satellite electronics shielding from geomagnet- 

ically trapped electrons, and electron beam problems. In the space shielding study, 

the SPN method produced solutions that are accurate within 10% of the benchmark 

Monte Carlo code solutions. We observed that we obtain better agreement with 

Monte Carlo for one dimensional than two dimensional problems. This is intuitively 

satisfying, since SPN and P N  are identical in one dimensional geometry, and P'v is 

convergent. In two and three dimensions, this equivalence between SPN and PN 

does not exist for N > 1. In an examination of computational efficiency, we have 

demonstrated in space shielding applications that the SPN method is often orders 

of magnitude faster than Monte Carlo, with the difference in CPU time particularly 

pronounced in deep penetration problems. For reasonable statistics on the dose in 

- 
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deeply shielded regions, Monte Carlo often requires a large number of histories and 

a corresponding long run time. We observed that SPN often requires more memory 

than Monte Carlo. However, Spiv is capable of producing detailed scalar flux and 

current profiles whereas CYLTRAN is not. 

In deterministic transport calculations, void problems often lead to excessive so- 

lution times when a simple conjugate gradient (CG) matrix solver is used. We have 

successfully modeled quasi-void problems, by implementing a spatial multigrid (MG) 

matrix solver within our code, and have obtained excellent agreement with Monte 

Carlo. In general, if we have a system of well-conditioned equations, CG is the rec- 

ommended method of solution. However, if the equations are ill-conditioned, as in the 

case of strong material discontinuities across an interface, MG can be more efficient. 

We have investigated the effects of positrons in one dimensional and two dimen- 

sional space shielding applications. Specifically, we have performed calculations of the 

energy deposition rates with and without positrons and compared solutions. In the 

comparison study we observed less than 1.5% change in calculated energy deposition 

rates when we included positrons, while the required CPU time increased up to a 

- 

factor of four. To understand this result, we calculated the photon spectrum at the 

midpoint of the silicon region. We found that relatively few photons are present at 

energies greater than the threshold for positron production, which is consistent with 

our results. 

We have calculated the unshielded or free space dose to the silicon region in the 

one and two dimensional space shielding problems. We have observed from two to 

four orders of magnitude attenuation in the scalar flux. Thus we conclude that we 

are in a highly shielded regime. 

We have performed a convergence study of the SPN method for space shielding 



applications. We observed that the largest change in the solution occurs between SPL 

and SP3. The SPN solution changes relatively little for N > 3, while the required 

CPU time increases proportional to N. We conclude that the optimal approximation 

varies from SP3 to SP7 for space shielding applications. Increasing the order does not 

necessarily increase the accuracy of the solution in multidimensional calculations. 

We have further investigated the effectiveness of the angular multigrid (AMG) 

method when applied to two dimensional SPN calculations. By performing certain 

benchmark calculations appearing in the literature [21], we have computationally 

demonstrated that the AMG method exhibits exactly the same effectiveness on two 

dimensional SPN calculations that it does on one dimensional SPN calculations. This 

was suggested by the Fourier analysis we originally performed indicating that the 

diffusion-synthetic acceleration (DSA) scheme exhibits exactly the same effectiveness 

on two dimensional SPN calculations that it does on one dimensional SI" calcula- 

tions. Remember that both the DSA and AMG methods are unstable (with suffi- 

ciently forward-peaked scattering and sufficiently small absorption) for two dimen- 

sional SN calculations, yet are both very effective €or one dimensional SN calculations. 

We have investigated the applicability of the SPN method to beam problems. We 

have observed that the SPN method appears to be too diffusive an approximation for 

beam problems. This result, however, is in agreement with theoretical expectations. 

8.2 F'utureGoals 

Some possible future goals include: 

1. Investigate the biasing of coupled electron-photon Monte Carlo using SPN ad- 

joint solutions. 



2. Replacement of diamond-difference in energy scheme [25 ] ,  which can lead to 

numerical oscillations in transport solutions when the boundary source is mo- 

noenergetic and spatial cells are optically thin. This will require a considerably 

more complex solution strategy. 

3. Extend the method to three dimensional geometry for orthogonal mesh. 

4. Extend the method to three dimensional geometry for unstructured mesh. 

5. Develop optimal v cycle strategy for the use of spatial multigrid in angular 

multigrid scheme. 
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Appendix A 

Iterative Solution of Matrix Equations 

In this appendix we demonstrate that the stability and convergence of a specified 

iteration scheme is determined by the properties of the iteration matrix. Consider 

the inhomogeneous matrix equation 

AZ=y’ (A.1) 

we may split the coefficient matrix 

A = M - N  (A.2) 

and write Equation (A. l )  as 

MZ=NZ+y’ 

To solve the equation iteratively we guess the value of 2 on the right hand side 

of Equation (A.3), defined to be do), and calculate successive iterates d’), d’), . . . 

according to 

M&l> E N,j$l-I) + y’ (A.4) 

or 
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where B = M-lN is called the iteration matrix. We may obtain a recursion relation 

for the error, = 8) - 5, by subtracting Equation (A.3) from ( A . 4 )  

For the sequence of vectors to converge to 2, we then require 

(-4.6) 

(-4.7) 

Next, assume the iteration matrix has a complete, linearly independent set of eigen- 

vectors 6 and associated eigenvalues Xi; this is always true for the symmetric positive 

definite matrices that result in our work. Then, expand the error Z f 0 )  in terms of these 

eigenvectors 

i=l 

Then, substituting Equation (A.lO) into (A.7) and using (A.9), we obtain 

For the error to approach zero as E + 00 we then require 

IlXill 1 a = 1 , 2 ,  ..., J 

(A.lO) 

( A . l l )  

(A.12) 
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This is the stability condition for iteration methods. If we order the eigenvalue moduli 

as 

l l ~ l l l  > I I M  > P 3 1 1  > - .  * (A.13) 

then l f X l / l  is referred to as the spectral radius, and the stability of the iterative scheme 

is determined by the spectral radius 

< 1 stable, convergent 

= 1 stable, nonconvergent (A.14) 

> 1 unstable 

In Fourier analysis, we first derive a matrix equation for the error, expand the error 

in a Fourier series, and then determine the spectral radius of the iteration matrix of 

the resultant equation. 
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Appendix B 

CEPXS Cross Section Format 

The SPN code utilizes multigroup-Legendre cross sections generated by the pro- 

gram CEPXS. CEPXS produces cross sections data in a format where each material 

and each Legendre order (1 = 0, 1,. . . , NLEG) is described by a block of data of 

IHM rows by IGM cohmns. The parameter IHM is determined internally, and the 

parameter IGM is equal to the number of energy groups specified by the user. Son 

scattering cross sections are stored in the 1 = 0 data block. The row position of 

cross sections is specified relative to the total cross section, at (row IHT), and the 

within group scattering cross section, as,g+g (row IHS). The row order for group g is 
-. 

as follows 
cross section 

at 

0 s  ,g f N+g 

- row 

IHT 

IHT + 1 

IHS - 2 

IHS - 1 

IHS 

IHS + 1 

IHS+M 
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M is the number of downscatter groups, and N is the number of upscatter groups. 

The scattering matrix need not be square. Cross sections are stored in a final three 

dimensional array of size IHM x IGM x NSETS, where 

NSETS = NhL4T(YLEG+l) (B-2) 

NMAT is the number of materials, and NLEG is the maximum Legendre order. 

. ... 
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