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DISAGGREGATING TIME SERIES DATA 

Shirley Bleasdale Joubert, Tom Burr, and James C. Scovel 

ABSTRACT 

This report describes our experiences with disaggregating time series data. Sup- 
pose we have gathered data every two seconds and want to guess the data at one- 
second intervals. Under certain assumptions, there are several reasonable disaggre- 
gation methods as well as several performance measures to judge their perfor- 
mance. Here we present results for both simulated and real data for two methods 
using several performance criteria. 

1. Introduction 
The reader can probably imagine many situations in which we would be interested in disaggregat- 
ing time series data. Our interest in disaggregation began while we were analyzing satellite-based 
sensor data.’ Some detector counts were not exhibiting the relationships we anticipated, which led 
us to investigate the time scale. Suppose we expect channel 1 counts to be positively related to 
channel 2 counts, but that we record channel 2 counts every two seconds and channel 1 counts 
every second. In our earlier work’ we aggregated the channel 1 counts to form two-second inter- 
vals, and then failed to see the anticipated relationship between channel 1 and channel 2 counts at 
two-second intervals. There is reason to believe that the relationship between channel 1 and chan- 
nel 2 counts depends on the time interval, so we would have liked to observe one-second interval 
counts for both channel 1 and channel 2. The methods presented in this paper are applicable in 
such a case. In a sense we can consider disaggregation to be interpolation (to “missing data”). 
Therefore, whether one method is better than another will depend on the model for the process 
that is generating the data. 

Some natural questions to ask about any disaggregation procedure are as follows: 
1 .  How should we measure how well the procedure performs? 
2. What are the required sample sizes for the disaggregation method to perform well? 
3. What range of time series models can be allowed (theoretically and practically)? 
4. How much model departure can be tolerated before the performance degrades too much? 
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In this report we begin to answer these four questions. In Section 2 we give a simple (naive) 
method and a model-based method that uses a Kalman filter approach (dynamic linear model, 
dlm) to represent the aggregation process. In Section 3 we consider performance measures. In 
Section 4 we give performance results for some simple autoregressive moving average (ARMA) 
models. In Section 5 we give performance results for some models that differ somewhat from 
ARMA models but that are treated as though they followed an ARMA model. Section 6 gives 
results on some real data sets. Section 7 is a summary. 

2. Two Disaggregation Methods 
In our problem we are given a series of aggregates, y(t), t=I,2,  ..., n, where each aggregate is the 
nonoverlapping sum of k observations from an unobserved series, x(i). Our y( t )  series can then be 
written 

t k  

Y W  = x ( i )  . 

In the work presented here, we summed two values together, so k = 2 ,  but these methods can be 
extended to any k. We are interested in estimating the x(i)’s given the y(t)’s. 

Let y( t )  for t=I ,2 ,  ..., n denote the aggregates for each time step t. We assumed that the underlying 
series x(i)  can be represented as a stationary ARMA process or a non-stationary auto-regressive 
integrated moving average (ARIMA) pr0cess.2~~ A stationary ARMA(p,q) process can be 
expressed as 

where , . . . , O p  are the autoregressive parameters, 6 , . . ., 8, are the moving average parame- 
ters, and { E ~ }  is a Gaussian white noise process. Here the level of the underlying process x(i)  is 
constant, whereas in an ARIMA model the underlying process is nonconstant. An ARIMA(p,d,q) 
model can be expressed as 

(3) (1 - ($ lB  - ... - +,BP) (1 - B )  d * xi = e,+ (1 + 8,B + ... + 6 , B 4 ) .  Ei  , 

where 6, is a constant which is usually referred to as a trend parameter. Thus, if we are summing 
over two time-steps, y ,  = x, + x2 , y 2  = x3 + x4 ,..., y t  = x2r -  + x ~ ~ ,  where the x(i) s are from 
some ARMA or ARIMA process. 

The simple (or naive) method to estimate the x(i) series is to divide each value in the y(t) series by 
the number of time-steps aggregated and use this value k times as our estimate of the x(i)’s. That 
is, if the y(t) series is formed by summing two values together, the naive estimate of the x(i)  series 
would be 
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This method is well known and is used in many applications. 

Our second approach was to write our model as a state space model with aggregation and then 
apply the Kalman filter to obtain the x(i)  series. This method uses recursive estimation to find the 
disaggregates. The method that we used was outlined by AI-Osh; who referred to it as a dynamic 
linear model method. The theory behind the dynamic linear model, which is based on the state 
space representation of models and the Kalman filter, can be found in both the engineering and 
statistics literature. See References 3,5, and 6 for examples. 

Let y ( t )  for t=I,2, ..., n denote the aggregate for each time-step t. Let Z(t) be an rn x 1 vector, 
m 2 k ,  where k is the number of disaggregates for each period t, x(tk), x(tk-I), ..., x(tk-k+I) and m 
is defined by letting Y = max@,q+I) and m = k+r - I .  The remaining m - k elements of Z(t) that 
constitute the state space form can be functions of the disaggregates or constants. The relationship 
between y( t )  and its disaggregates x(tk), ..., x(tk-k+l) is linear and can be specified by 

y(t) = H’Z( t ) ,  t = 1, 2, ..., n , 

where H is a m x 1 vector with the k elements that correspond to the disaggregates in Z(t) being 
1’s and the remaining m - k elements being 0’s. The unobserved Z(t)’s are dynamic and change in 
accordance with the equation 

where F and G are m x rn and m x k matrices of fixed coefficients. The term c( t )  is a k x 1 vec- 
tor of multivariate normal noise terms with an expected value of zero and covariance matrix Q. It 
is also assumed that the c(t)’s are uncorrelated for t # s . These equations are usudly referred to as 
the observation (or measurement) equation and the system (or transition) equation, respectively. 

For a simple example, let us assume that given our y(t) series we have reason to believe that our 
x(i) series can be represented by an AR( 1) model, xi  = @xi - + si. The state space representation 
for an AR( 1) series is very simple with H = 1 , F = $, and G = 1 . If we aggregate by two, 
such that yt = x2, - + x,, , then our state space model for the aggregation can be formed from 

and 

where A is a 2 x 2 matrix formed from the state space representation of the basic model with the 
other elements picking up the disaggregates in time-step t with A = I ,  ,? the 2 x 2 identity 0 
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matrix. C is an 2 x 1 vector with elements 
stacking the columns of A’C for i = 0, 1, . .., 
for our example 

and 

giving a system equation for Z(t) of 

Our observation Equation (5) will have H = 
A generalized formulation for all state space 

‘ because it corresponds to the disaggregates. 
s for disaggregates can be found in Ref. 4. 

To estimate the disaggregate series, let us assume that all matrices in Equation (6) are known as 
well as the covariance matrix Q. Under the assumption of a linear system and Gaussian white 
noise components, we can compute z(tlt) and its covariance matrix P(tlt) by a recursive algorithm 
known as the Kalman filter. We slightly modified the computational steps set forth in Ref. 4 for 
our use as follows. 

(1) Obtain the starting estimates of 2,,, , Po,@ and estimates of matrices F and Q. 

(2) Compute the projected covariance matrix 

(3) Compute the estimated variance 

(4) Compute the filter gain matrix 

K ,  = Pip- 1H(f,)-* . 
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(5) Compute the state vector estimate using the previous estimate and the observation at time t 

(6) Compute the error covariance matrix for 2,1, 

(7) Set t = t+l and return to step (2). 

To find the estimate of the parameters in F, we minimized the likelihood function 

J t  t =  1 t = l  

using the recursion Equations (12)-( 16) given above and a minimization search routine based on 
the golden section search method. We rewrote the likelihood equation as a function of the $’s and 
8’s for this procedure. Note that the A’s and the 2 i s  depend on each model so they must be 
computed each time the parameter is changed. We assumed that the covariance matrix was known 
in this work. After obtaining the estimated parameters for the F matrix, the disaggregates are 
obtained from the values of 2,It found using the recursion with this estimated F matrix. 

One of the major challenges with this method is obtaining the correct model for the underlying 
series x(i) when we see only the aggregated series y( t )  because aggregation changes the model in 
most cases. There is discussion and guidelines for this in the literature, but further work still needs 
to be done. Additionally, after a candidate model is obtained, the correct state space formulation 
for aggregation is also of the utmost importance for the success of this method. Much care must 
be taken to assure that the state space representation, as well as the likelihood formulation, is 
correct. 

3. Performance Measures 
In most instances, the goodness of fit of a statistical model to a data set is evaluated by comparing 
the observed values with the corresponding fitted values obtained from the model. If the fitted 
model is suitable, then the difference in the observed values and the fitted values, referred to as 
residuals, should be acceptably small and exhibit no patterns. However, we have an unusual 
situation here in which it is unlikely that we can remove the serial correlation in our residual 
sequences, as we will explain at the end of this section. Also, in our case we have several features 
in the true series that we would like to preserve in the estimated series, as we now describe. 

To measure the performance of the naive method and the dynamic linear model method, we 
defined three types of goodness of fit. We then used two summary statistics for the first two good- 
ness of fit measures and one summary statistic for the third measure. The three goodness of fit 
measures we defined are (1) nearness of the estimated X values to the true X values, (2) nearness 
of the estimated autocorrelation function of the estimated X values to that of the true X values, and 
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(3) nearness of the estimated parameters in a linear model relating the estimated X values to an 
observed sequence Z to that of the estimated parameters in a linear model relating the true X 
sequence to Z sequence. We will explain each of the three measures in more detail. 

Let the original series before aggregation be denoted by X and the estimated values for our two 
methods be denoted by Xnaive and Xdlm, respectively. 

For summary statistics for the first two methods, we used both the average squared residual differ- 
ence and the average absolute residual difference in residual. 

The first performance measure is the most obvious one: 

where %j is either the naive or the dlm estimate of Xi, and the average is over the length of the 
original series X. 

Also, we define 

again where the average is taken over the indices of the original series. Because we performed 
several simulations, we also average over simulations when appropriate. 

Concerning the second performance measure, it is also very important for our estimated series to 
“model” the original series. In other words, if the underlying series is an AR( 1) process, then the 
estimated series 2,1, should also be an AR( 1) series. Because the estimated autocorrelation func- 
tion (acf) provides clues about the amount of differencing needed in an ARIMA process as well as 
the proper choice of orders for p and q for the autoregressive and moving average parameters, 
respectively, the difference in the autocorrelation functions was used as a performance measure. 
The equations are 

and 

where the average was taken over the number of lags we considered. The number of meaningful 
lags in the acf was only about 10, so the average is over lags 1 to 10. 

This third measure was defined as follows. We simulated the Z series according to 

Z = a X + b + e r r o r ,  
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where the error was normally distributed with mean 0 and variance 1,  a = 3 , and b = 1 .  We then 
used both the X series and the estimated X series (Xnaive and Xdlm) to estimate a and b. For each 
simulated data set we get one estimate of a and b from each method. 

The third performance measure had two parts, one for the estimated slope a and one for the esti- 
mated intercept b. So we defined 

and 

for the naive estimator, and similarly for the dlm estimator, and where in this case there is only 
one estimated a and b for each data set so there is no need to compute an average. However, we do 
average over simulations when appropriate, as we report in Section 4. 

The fourth performance measure is simply the nearness of the estimated MA( 1) or AR( 1) coeffi- 
cient to the true coefficient 

for the MA( 1) case, and similarly for the AR( 1) case. 

In some sense, the “best” method should have the smallest performance measure for all four per- 
formance measures. 

4. Performance Results on Simulated Data 
Individual AR( 1) and MA( 1) series were simulated with varying sample sizes and parameters to 
test the methods. The innovations variance for all of the simulated series was equal to one. Series 
were simulated with different sample sizes to see whether sample size was a factor in the perfor- 
mance of the methods. Original series with sample sizes of 20,50, 100, 1000, and 2000 were sim- 
ulated and then aggregated by two to obtain series of sizes 10,25,50,500, and 1000. It was 
thought that the small sample sizes may give poor results in the dynamic linear model method. 
Also, series with both positive and negative parameters were simulated because the AR( 1) series 
with negative parameters are much smoother after aggregation, making disaggregation of these 
series more difficult. For the AR( 1) model, the AR coefficient ranged from -0.85 to 0.85 in steps 
of 0.2 and for the MA( 1) model, the MA coefficient ranged from -0.85 to 0.85 in steps of 0.2. We 
performed 10 simulations for each sample size and parameter value. Because we only performed 
10 simulations (computations are slow for our current implementation of the dlm), we computed 
paired t-tests between the calculated performance measures to see if there was any statistical dif- 
ference between the two methods in the 10 simulations. A paired difference t-test was used 
because the individual performance measures were computed using the original series X with 
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both Xnaive and Xdlm, so the independence criteria for two sample t-tests was violated. The dif- 
ferences in the paired performance measures, i.e., p m  1.naive - pml .d lm,  are used to obtain the 
statistic which has a student’s t-distribution with n - 1 degrees of freedom, where n is the number 
of pairs of observations. Consider the paired t-test to be one way to assess the significance of the 
differences when a relatively small number of simulations is run. A summary of some of our sim- 
ulations can be found in Appendix A. 

The tables in Appendix A give in columns 1-4: the average estimated coefficient values, the stan- 
dard deviation of the estimated coefficient values, the range of the estimated coefficient values, 
and the average estimated variance of the innovations process for Xnaive and Xdlm for the 10 
simulations. Column 5 is the average sum of squared residuals (performance measure one). Col- 
umn 6 is the average squared distance between the acf of the true series X and the acf of the esti- 
mated series 2 (performance measure one). Columns 7-9 involve performance measure three. 
Columns 7 and 8 are the means for the estimated coefficients a and b for the regression model, 
and column 9 gives the mean of the estimated variances from the regression model. The p-values 
from the paired t-tests are displayed in the line below. We consider a t-test “significant” if the 
p - value 50.05. Thus, a p - value 50.05 tells us that there appears to be a significant differ- 
ence between Xnaive and Xdlm for that performance measure. Even though the mean values are 
very close in many instances, the paired t-test shows that there is a statistical difference between 
all the individual pairs in the 10 simulations. All values in Appendix A are rounded to two decimal 
places. Also, to conserve space, we have not displayed the performance measures that use the 
mean absolute deviation. For our purposes here it is sufficient to consider the performance 
measures that use the mean squared deviation. However, in Appendix C we do include some of 
the results for performance measures that use the absolute deviations. 

4.1 Performance Measure One 
Performance measure one is the “closeness” of the estimated series to the true series. The dlm is 
nearly always either closer to the true series or not farther from the true series than is the naive 
method. The exception is for negative coefficients in the AR( 1) case with small sample size (see 
Tables 3 and 6 for this exception). 

4.2 Performance Measure Two 
Performance measure two is the “closeness” of the acf of the estimated series to that of the true 
series. The dlm method consistently is “nearer” in terms of estimated and actual acf than is the 
naive method. The exceptions appear to be explainable by chance in the case that there is no 
meaningful difference in the “true” performance measure two. 

4.3 Performance Measure Three 
Performance measure three measures the ability of the estimated series to estimate the slope, 
intercept, and residual variance between the original series X and the Z = aX + b + error series. 

The naive and the Kalman methods perform quite well and very nearly equally in terms of esti- 
mating the slope a and the intercept b. Both methods fail miserably at estimating the variance of 
the error term, though the dlm method does significantly better than the naive method. We are cur- 
rently investigating the reason for this poor performance (true value of error variance is l and typ- 
ical estimate is about 10). 
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It is worth noting that the parameters are estimated quite well for all of the MA( 1) series with the 
Kalman method except for the case where n I 100. The innovations variance is not estimated very 
accurately by either the dynamic linear model method or the naive method for these series. 

The AR( 1) models gave similar results. The dynamic linear model method consistently did better 
than the naive method, except occasionally when n I 100, with our first four performance 
measures. See Appendix A for an example. Once again, none of the series showed a significant 
difference in the estimation of the coefficients in the regression performance measure. The param- 
eter values for the underlying models are estimated quite well for series with n 2 100 and above. 
The dynamic linear model method seems to do a better job of estimating the innovations variance 
than the naive method does in all of these series, although neither do really well. (Fifteen simula- 
tions for each sample size with various negative parameter values were done to determine whether 
simulation size may be a factor here. Results similar to those stated were obtained.) 

4.4 Performance Measure Four 
The naive method is not designed to be good at estimating the MA or AR coefficient. For exam- 
ple, if the true model were MA( 1) with a coefficient nearly equal to 0, then the original data 
behaves almost like independent and identically distributed observations from a Gaussian distri- 
bution. However, the naive method would introduce strong serial correlation because successive 
estimates are identical. And, in our simulations, the dynamic linear model method consistently 
performed better than the naive method in all of the moving average cases and in all of the auto- 
regressive cases. It was a surprise, however, to observe the good performance of the dlm method 
for n 2 100 and fairly good performance even for the n = 20 case. The dlm method estimates the 
AR( 1) or MA( 1) coefficient very well. It should be noted that we could also estimate these coeffi- 
cients using an algebraic relation between the coefficient of the aggregated series and the original 
series. We have done this for the MA( 1) case and can estimate the MA( 1) parameter reasonably 
well, though not as well as the dlm method can. Also, the tables clearly indicate that the variance 
of the dlm-based estimate of the coefficients depends on the true coefficient as well as on the sam- 
ple size. The standard deviation (column 2) for the dlm method for 0 = 0.65 is 0.20, while that 
for 8 = 0.65 is 0.34. 

The dlrn method estimates the innovations variance better than the naive method does in all of 
these series although both methods underestimate the variance. The true variance is 1 and the esti- 
mated variance is typically about 0.5 or less. Fifteen simulations for each sample size with various 
negative parameter values were done to determine whether simulation size may be a factor. 
Results similar to those stated were obtained. 

5. Performance Results in Presence of Model Departure 
Because the dlm relies heavily on the assumed ARIMA model, it is important to study how much 
model departure can be tolerated. We have begun an investigation of the sensitivity to model 
departure by simulating two modeIs: ( 1 )  a random coefficient AR model and (2) a random coeffi- 
cient MA model (the AR or MA coefficients are random variables having a long-term stationary 
mean and variance). In both cases we treat the data as if it arose from non-random coefficient AR 
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and MA models. Our interest here is not in developing disaggregation methods for random coeffi- 
cient AR or MA models, but in studying how much model departure our method for standard AR 
or MA models can tolerate. 

In the results reported in Appendix B, we considered random coefficient MA( 1) 
( x i  = 0 ei - + e i ,  with 0 random) and random coefficient AR( 1) ( x i  = xj  - + with @ 
random) models. We used the same average values for the coefficients as we did for the results 
described in Section 4 (the MA and AR coefficients ranged from nearly -1 to nearly 1 in steps of 
0.2), and at each time step we generated a new (independent from all previous values) normally 
distributed coefficient. We used two variances for the normal distribution of the random coeffi- 
cients: 0.1 and 1 .O for all cases. 

By comparing the tables in Appendix B to the appropriate tables in Appendix A (for example, 
compare Table 7 in Appendix B to Table 1 in Appendix A), we see that the dlm results for the 
lower variance case (. 1) are quite similar to those for the ordinary AR and MA results, but that the 
results for the higher variance case (1 .O) are quite different from those for the ordinary AR and 
MA results. Qualitatively, we can say that for the cases considered, it is not possible to use perfor- 
mance on the ordinary AR and MA models to predict performance on the random coefficient AR 
or MA models if the variance of the random coefficients is as large as 1.0. It would be useful to 
include additional cases in future work. 

6. Performance Results on Real Data 
Two of the series which motivated this work were counts from satellite-based gamma detectors. 
These gamma counts were reasonably well fit by an ARIMA(O,l,l) model.7 Both series contained 
approximately 1800 counts before aggregation. The counts in the individual series were summed 
by two to form the aggregated series. As before, the estimates obtained for the x( i )  series from the 
two methods were compared with the original series to obtain the performance measures. 

The first series (gammal) before aggregation was fit with an ARIMA(O,l,l) model where 8 was 
estimated to be -0.97 and the variance of the innovations, E, was estimated to be 87.37. The 
dynamic linear model method estimated 6 to be -0.97 and the estimated innovations variance was 
39.78. A coefficient for the naive method was estimated to be 1.0. The innovation variance for this 
method was estimated at 14.48. The dynamic linear model method gave lower estimates on all of 
the performance measures. There was an extremely large difference in the variance of the regres- 
sion models. Results are displayed in Appendix C ,  and Figure 1 shows the first 50 counts and the 
estimates of those counts using both the naive and the dlm methods. We see in Figure 1 that the 
dlm method tends to produce estimates that are closer to X than does the naive method. 

The gamma2 series was originally fit with an ARIMA(O,l,l) model where 8 was estimated to be 
-0.93 with an innovations variance of 126.76. The estimate for the dynamic linear model method 
was 8 = -0.93 with an innovations variance of 65.12. Once again the naive method estimated 6 
to be 1 .O. The innovations variance for this model was estimated at 30.82. This is essentially the 
same kind of performance as with the gamma1 data set. The dynamic linear model method gave 
lower estimates on all of the performance measures. The estimates from the dynamic linear model 
method are closer to those from the original series than are the naive estimates for both of these 
gamma series. 

10 



il 
T 

0 10 20 30 40 50 

Index 

FIGURE 1. Gamma counts from gamma1 data. T is true gamma counts, N is naive estimate, 
and K is Kalman filter estimate. 

Several other data sets, which are available with the standard release of Splus, were also analyzed. 
The results from three of these are also displayed in Appendix C .  

The data set denoted air has 1 10 observations and is reasonably well fit by an MA( 1) model 
where 8 was estimated to at -0.39 and the innovations variance was 34.10. The dynamic linear 
model method gave an estimate of -0.41 for 8 and 20.44 for the innovations variance. The naive 
method gave an estimate of 1.00 for 9 and an innovations variance of 7.84. The dynamic linear 
model method gave lower estimates in all of the performance measures once again. 

The last two data sets were reasonably well fit by AR( 1) models. The data set Zh is taken from 
Venables and Ripley’ and has 48 observations of luteinizing hormone levels for a human female. 
The dynamic linear model method’s estimate gave lower estimates for all the performance 
measures. 

The only real data set in Appendix C in which the dynamic linear model method did not perform 
well is the geyser data set. The AR( 1) parameter was not estimated well, and consequently, the 
dlm method did very slightly worse in estimating the original data as the naive method did (com- 
pare 11.23 to 1 1.39). This may be due to the fact that this data set is better fit with an AR process 
of order 2 than an AR process of order 1. In other words, the AR( 1) fit was only marginally 
acceptable on the geyser data, so it is likely that the model departure is more than the dlm method 
can tolerate. 

On the whole, the dynamic linear model method seems to provide fairly good estimates of the 
original series even in series with n = 50. Further testing needs to be done on this, however. 
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7. Summary 
The dynamic linear model method seems to perform well in the estimation of the disaggregates 
when the underlying model is an MA( 1) or an AR( 1) in aggregated series with n 2 50. Also, we 
have seen that small amounts of model departure seem to be tolerated reasonably well, though 
further work needs to be done in this area. We also plan to extend the method to multi-dimensions 
(higher lags) and to estimate the innovations variance for the underlying white noise series. We 
could also ask the following questions: 

1. Why does an iterative procedure such as the one outlined in Ref. 4 fail to find the parameter values that mini- 
mize the sum of squared errors (this failure is why we resorted to a direct search for the minimizing parame- 
ters)? Is there a form of the EM algorithm that could be implemented instead of the grid search currently used 
to find the parameters? Define the conditions needed for an iterative procedure such as outlined in Ref. 4 for 
the EM algorithm to find the global minimum. 

2. How is this problem related to hidden Markov models? 

3. Apply the method to more real data sets in a variety of settings, especially ones in which it makes sense to 
aggregate the original data, then try to recover the original data. How well will this work on a wider variety of 
real data sets? Can we anticipate the performance on the basis of some measure of goodness of fit to the 
assumed ARMA model? 
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Appendix A 

TABLE 1. MA(1) with 9 = -0.65. 

avg stddev range 
n=20 coeff Coeff coeffk avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.99 0.00 .99,.99 0.13 0.80 0.34 2.97 0.98 8.72 
Xdlm -.77 
P-Val 0.00 

0.20 
NA 

-.99,-.40 0.27 0.74 
NA 0.00 0.3 1 

0.08 
0.00 

2.61 
0.26 

0.96 
0.12 

7.90 
0.14 

avg stddev range 
n=100 coeff Coeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.99 0.04 .99,.99 0.22 1.02 0.08 3.00 1 .oo 10.65 
Xdlm 
P-Val 

-.68 
0.00 

0.08 -.76,-.52 0.52 
NA NA 0.00 

0.93 
0.01 

0.02 2.93 
0.00 0.37 

1 .oo 
0.61 

9.57 
0.00 

avg stddev range 
n=1000 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 1.00 0.00 1.0,l.O 0.18 1.01 0.07 3.01 0.99 10.10 
Xdlm -.65 
P-Val 0.00 

0.02 
NA 

-.68,-.62 0.47 
NA 0.00 

0.9 1 
0.00 

0.15 
0.00 

2.99 
0.34 

0.99 
0.44 

9.16 
0.00 

avg stddev range 
n=2000 coeff coeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 1.00 0.00 1.0,l.O 0.20 1.02 0.07 3.00 I .oo 10.24 
Xdlm 
P-vaI 

-.65 
0.00 

0.03 -.70,-.60 0.50 
NA NA 0.00 

0.9 1 

0.00 
0.02 3.01 
0.00 0.77 

1 .00 
0.80 

9.20 
0.00 

Column 1 : Average (over all simulations) of 6 .  Column 2: Standard deviation of 8's over all sim- 
ulations. Column 3: Range of 9's over all simulations. Column 4: Average Estimate of innovations 
variance (true is 1). Column 5: Average rss between XHATand X.  Column 6: Average rss between 
acf (lags 1-10 only) of XHAT and acf of X. Columns 7,8, and 9: Average of estimated intercept, 
slope, and residual variance in linear model, 2 = aX + b + error.  True values are 3, 1, and 1, 
respectively. 
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TABLE 2. MA(1) with 0 = 0.65. 

avg stddev range 
n=20 coeff COeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.98 0.07 .78,1.0 0.50 0.47 0.02 2.99 1 .oo 5.74 
Xdlm 0.65 0.34 -. 17,.99 0.55 0.46 0.03 2.97 1.01 5.59 
P-Val 0.02 NA NA 0.12 0.55 0.01 0.69 0.65 0.54 

avg stddev range 
n=100 coeff COeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.97 0.04 .88,1.0 0.53 0.37 0.01 3.00 1.04 4.42 
Xdlm 0.65 0.21 .20,.94 0.61 0.37 0.0 1 2.97 1.04 4.42 
P-Val 0.00 NA NA 0.00 0.66 0.07 0.0 1 0.63 0.00 

avg stddev range 
n=1000 coeff COeff coeffs avgvar avgrss avgacf coeff a coeff b varreg 
Xnaive 1.0 0.00 .99,1.0 0.53 0.40 0.00 2.98 1 .o 4.67 
Xdlm 0.66 0.05 .58,.73 0.61 0.40 0.00 2.98 1 .o 4.44 
P-Val 0.00 NA NA 0.00 0.00 0.00 0.52 0.92 0.00 

avg stddev range 
n=2OOO coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 1.0 0.00 .99,1.0 0.51 0.38 0.00 3.01 1 .O1 4.44 
Xdlm 0.63 0.05 .56,.71 0.60 0.35 0.00 3.01 1.01 4.2 1 
P-Val 0.00 NA NA 0.00 0.00 0.00 0.79 0.08 0.00 
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TABLE 3. AR(1) with 8 = -0.65. 

avg stddev range 
n=20 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.47 0.15 .31,.76 0.22 1.45 0.53 2.98 0.89 14.90 
Xdlm -.68 0.36 -.99,-.09 0.38 1.44 0.19 2.98 0.85 13.85 
P-val 0.00 NA NA 0.00 0.04 0.01 0.05 0.66 0.05 

avg stddev range 
n=100 coeff COeff  coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.43 0.07 .33,.54 0.26 1.60 0.18 3.00 0.99 15.70 
Xdlm -.59 
P- Val 0.00 

0.2 1 
NA 

-.97,-.28 0.51 1.66 
NA 0.00 0.69 

0.11 
0.03 

2.7 1 
0.39 

0.99 
0.98 

14.98 
0.08 

avg stddev range 
n=1000 coeff C O e f f  coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.45 0.02 .41,.48 0.25 1.46 0.15 3.01 1 .oo 14.1 1 
Xdlm -.63 
P-Val 0.00 

0.15 
NA 

-.83,-.42 0.54 1.35 
NA 0.00 0.00 

0.05 
0.00 

2.90 1 .oo 13.04 
0.50 0.9 1 0.00 

avg stddev range 
n=2000 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive .44 0.01 .42,.47 0.22 1.42 0.14 3.01 1.01 13.88 
Xdlm -.66 
P-val 0.00 

0.08 
NA 

-.78,-.54 0.54 
NA 0.00 

1.31 
0.00 

0.04 
0.00 

2.9 I 1.01 
0.19 0.73 

12.87 
0.00 
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TABLE 4. AR(1) with 0 = 0.65. 

avg stddev range 
n=20 COeff  COeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.75 0.1 1 .63,.95 0.67 0.25 0.03 3.02 0.96 3.17 
Xdlm 0.53 0.25 -. 11,.78 0.59 0.23 0.03 3.02 0.97 3.03 
P-Val 0.01 NA NA 0.07 0.24 0.02 0.74 0.54 0.49 

avg stddev range 
n=lOO coeff C W f f  coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.79 0.07 .66,.90 0.55 0.26 0.00 3.02 1.01 3.42 
Xdlm 0.67 0.09 .53,.84 0.49 0.24 0.00 3.01 1.01 3.20 
P-Val 0.00 NA NA 0.00 0.02 0.59 0.72 0.92 0.01 

avg stddev range 
n=1000 coeff Coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.77 0.02 .75,.79 0.58 0.30 0.00 3.02 0.98 3.79 
Xdlm 0.65 0.02 .61,.67 0.54 0.28 0.00 3.02 0.98 3.56 
P-val 0.00 NA NA 0.00 0.00 0.00 0.89 0.79 0.00 

avg stddev range 
n=2000 coeff COeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.76 0.01 .74,.78 0.58 0.30 0.00 3.00 1 .00 3.67 
Xdlm 0.64 0.02 .61,.67 0.54 0.27 0.00 3.00 1 .oo 3.44 
P-val 0.00 NA NA 0.00 0.00 0.07 0.93 0.64 0.00 
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TABLE 5. MA(1) with 8 = -0.85, -0.45, -0.25,0.25,0.45,0.85 and n = 100. 

avg stddev range 
-0.85 COeff CWff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 1.0 0.00 1.0,l.O 0.17 1.19 0.1 1 2.97 1 .oo 11.83 
Xdlm 
P-val 

-.84 
0.00 

0.08 
NA 

-.99,-.73 0.38 
NA 0.00 

0.95 
0.00 

0.02 
0.00 

3.07 
0.45 

1 .oo 
0.17 

9.59 
0.00 

avg stddev range 
-0.45 COeff Coeff coeffs avgvar avgrss avgacf coeffa coeff b varreg 
Xnaive 1.0 0.01 .97,1.0 0.18 0.84 0.08 3.03 0.98 8.64 
Xdlm 
P-Val 

0.52 
0.00 

0.17 
NA 

-.go,-.25 0.45 
NA 0.00 

0.81 
0.06 

0.03 
0.00 

2.92 
0.32 

0.98 8.28 
0.88 0.02 

avg stddev range 
-0.25 COeff  COeff  coeffs avgvar avgrss avgacf coeffa coeff b varreg 
Xnaive 0.99 0.02 .95,1.0 0.19 0.66 0.07 2.95 0.95 6.90 
Xdlm 
P- val 

0.20 0.15 
0.00 NA 

-.43,.09 0.44 0.64 
NA 0.00 0.12 

0.05 
0.0 1 

2.97 
0.59 

0.95 
0.67 

6.78 
0.14 

avg stddev range 
0.25 COeff coeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.99 0.02 .94,1.0 0.35 0.38 0.01 2.99 0.98 4.36 
Xdlm 
P-Val 

0.28 
0.00 

0.26 
NA 

0.00,.70 0.52 
NA 0.00 

0.38 0.0 1 2.98 
0.88 0.01 0.5 1 

0.99 
0.09 

4.36 
0.98 

avg std dev range 
0.45 COeff COeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.98 0.04 37,l.O 0.40 0.36 0.01 2.92 1.02 4.28 
Xdlm 
P-Val 

0.4 1 0.18 
0.00 NA 

0.03,.66 0.53 
NA 0.00 

0.35 
0.16 

0.01 2.91 1.02 
0.07 0.60 0.49 

4.17 
0.06 

avg stddev range 
0.85 C i f f  COeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.97 0.03 .94,1.0 0.65 0.48 0.01 3.02 1.04 5.40 
Xdlm 
P-vai 

0.82 
0.00 

0.17 
NA 

.55,.99 0.70 
NA 0.01 

0.44 
0.00 

0.0 1 3.02 
0.24 0.83 

1.04 
0.46 

5.05 
0.00 
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TABLE 6. AR(1) with 8 = -0.85, -0.45, -0.25,0.25,0.45,0.85 and n = 100. 

avg stddev range 
-0.85 Coeff Coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.49 0.07 .39,.61 0.20 3.78 0.39 2.99 1.05 35.94 
Xdlm -.85 0.12 -.99,-.63 0.52 4.21 0.1 1 2.73 1.03 29.62 
P-Val 0.00 NA NA 0.00 0.70 0.00 0.55 0.44 0.0 1 

avg stddev range 
-0.45 COeff COeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.44 0.10 .29,.59 0.28 0.83 0.09 3.00 0.98 8.76 
Xdim -.46 0.20 -.85,-. 1 1 0.52 0.83 0.06 2.77 0.97 8.63 
P-Val 0.00 NA NA 0.00 0.97 0.00 0.18 0.39 0.44 

avg stddev range 
-0.25 COeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.48 0.07 .37,.56 0.30 0.60 0.06 2.97 0.97 6.54 
Xdlm -.32 0.26 -.95,-.02 0.50 0.64 0.05 2.76 0.98 6.59 
P-Val 0.00 NA NA 0.00 0.34 0.10 0.25 0.29 0.67 

avg stddev range 
0.25 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.59 0.06 .49,.68 0.42 0.40 0.2 1 2.99 0.96 4.54 
Xdlm 0.21 0.15 -.05,.42 0.48 0.40 0.22 2.99 0.96 4.51 
P- Val 0.00 NA NA 0.00 0.10 0.00 0.59 0.03 0.39 

avg stddev range 
0.45 Coeff COeff  coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.67 0.05 .60,.75 0.53 0.34 0.01 2.97 0.94 4.15 
Xdlm 0.47 0.09 .34,.61 0.53 0.33 0.01 2.96 0.94 4.05 
P-Val 0.00 NA NA 0.46 0.17 0.00 0.62 0.15 0.28 

avg stddev range 
0.85 C W f f  coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.89 0.04 .83,.95 0.66 0.28 0.00 3.02 0.98 3.56 
Xdlm 0.85 0.04 .78,.92 0.55 0.24 0.00 3.02 0.97 3.23 
P-Val 0.00 NA NA 0.00 0.00 0.00 0.9 1 0.18 0.00 
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Appendix B 
Results with a random coefficient MA(1) model treated as if it were an ordinary MA(1) 
model. 

TABLE 7. MA(1) with 8 - N(-0.65,O.l). 

avg stddev range 
n=20 coeff Coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 1.0 0.00 1.0,l.O 0.20 0.97 0.35 3.10 1.04 10.88 
Xdlm -.67 0.29 -.99,-. 12 0.37 0.90 0.13 2.9 I 1.03 10.15 
P-Val 0.00 NA NA 0.00 0.24 0.00 0.00 0.33 0.22 

avg stddev range 
n=100 coeff Coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 1.0 0.0 1 .97,1.0 0.23 1.07 0.08 2.94 1.04 10.72 
Xdlm -.60 0.09 -.73,-.44 0.56 0.95 0.03 3.02 1.04 9.49 
P-val 0.00 NA NA 0.00 0.00 0.00 0.25 0.23 0.00 

TABLE 8. MA(1) with 8 - N(-0.65,l.O). 

avg stddev range 
n=20 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.98 0.05 .87,1.0 0.48 1.54 0.28 3.1 3 1 . 1  1 17.37 
Xdlm 0.12 0.81 -.99,.99 0.71 1.57 0.2 1 2.88 1.08 17.77 
P-Val 0.00 NA NA 0.00 0.72 0.23 0.07 0.04 0.58 

avg stddev range 
n=100 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.99 0.12 .96,1.0 0.44 1.62 0.07 2.98 1.02 15.76 
Xdlm 0.43 0.39 -.31,.84 0.62 1.67 0.08 2.88 1.02 16.15 
P-Val 0.00 NA NA 0.00 0.07 0.22 0.02 0.83 0.08 

Column 1 : Average (over all simulations) of 6 .  Column 2: Standard deviation of 6' s over all sim- 
ulations. Column 3: Range of 0' s over all simulations. Column 4: Average estimate of innovations 
variance (true is 1). Column 5:  Average rss between XHAT and X .  Column 6: Average rss between 
acf (lags 1-10 only) of X H A T  and acf of X .  Columns 7 ,8 ,  and 9: Average of estimated intercept, 
slope, and residual variance in linear model, Z = a X  + b + error.  True values are 3, 1, and 1, 
respectively. 
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TABLE 9. MA(1) with 8 - N(0.65,O.l). 

avg stddev range 
n=20 coeff coeff coeffs avgvar avgrss avgacf coeffa coeff b varreg 
Xnaive 0.96 0.07 32,l.O 0.41 0.45 0.05 3.14 1.12 5.23 
Xdlm 0.40 0.50 -.50,.99 0.52 0.47 0.06 2.98 1.12 5.5 1 
P-Val 0.0 1 NA NA 0.04 0.40 0.19 0.03 0.78 0.21 

avg stddev range 
n=100 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.97 0.03 .91,1.0 0.57 0.43 0.0 1 2.95 1 .oo 5.19 
Xdlm 0.74 0.14 .52,.99 0.63 0.4 1 0.0 1 2.93 1.01 5.09 
P-Val 0.00 NA NA 0.00 0.18 0.23 0.22 0.24 0.42 

TABLE 10. MA(1) with 8 - N(0.65,l.O). 

avg stddev range 
n=20 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.93 0.1 1 .71,1.0 0.59 0.77 0.08 2.97 1.03 8.59 
Xdlm 0.65 0.45 -.44,.99 0.74 0.79 0.08 2.84 1.06 8.69 
P-Val 0.07 NA NA 0.01 0.75 0.81 0.15 0.29 0.85 

avg stddev range 
n=100 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.99 0.04 .89,1.0 0.72 1.01 0.02 3.00 0.95 10.09 
Xdlm 0.91 0.15 .62,.99 0.78 0.95 0.02 3.02 0.95 9.50 
P-Val 0.17 NA NA 0.00 0.0 1 0.0 1 0.39 0.49 0.01 
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Results with a random coefficient AR(1) model treated as if it were an ordinary AR(1) 
model. 

TABLE 11. AR(1) with 6 - N(-0.65,0.1). 

avg stddev range 
n=20 Coeff C O e f f  coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.51 0.1 1 .35,.66 0.27 1.49 0.47 3.07 1.04 16.5 
Xdlm -.55 0.46 -.99,.33 0.44 1.58 0.20 2.46 1.09 16.3 
P-val 0.00 NA NA 0.00 0.46 0.16 0.09 0.33 0.69 

avg stddev range 
n=100 coeff C O e f f  coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.45 0.05 .36,.54 0.31 1.76 0.17 3.02 I .04 16.76 
Xdlm -.37 0.29 -.96,-.06 0.52 1.68 0.12 3.02 1.04 15.92 
P-Val 0.00 NA NA 0.00 0.03 0.15 0.96 0.95 0.03 

TABLE 12. AR(1) with 6 - N(-0.65,l.O). 

avg stddev range 
n=20 Coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.55 0.20 .20,.93 113.91 198.92 0.27 3.07 0.87 1986.74 
Xdlm 0.30 0.60 -.97,.95 109.48 212.21 0.23 2.77 0.7 1 21 12.83 
P-Val 0.16 NA NA 0.33 0.34 0.56 0.20 0.25 0.34 

avg stddev range 
n=100 coeff coeff coeffs avgvar avgrss avgacf coeffa coeffb varreg 
Xnaive 0.42 0.10 .31,.55 7.58 18.49 0.11 2.99 0.97 171.41 
Xdlm 0.38 0.19 0.65 7.12 20.50 0.13 2.83 1 .00 188.42 
P-Val 0.48 NA NA 0.20 0.16 0.00 0.08 0.23 0.16 
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TABLE 13. AR(1) with e - N(0.65,O.l). 

avg stddev range 
n=20 coeff Coeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.71 0.14 .51,.88 0.68 0.41 0.02 2.91 0.90 4.67 
Xdlm 0.51 0.27 0,.84 0.59 0.38 0.02 2.91 0.90 4.44 
P-Val 0.00 NA NA 0.04 0.09 0.01 0.94 0.88 0.18 

avg stddev range 
n=100 coeff COeff coeffs avgvar avgrss avgad coeffa coeffb varreg 
Xnaive 0.75 0.04 .70,.84 0.61 0.36 0.0 1 3.00 1.02 4.26 
Xdlm 0.61 0.1 1 .44,.74 0.56 0.33 0.01 3 .oo 1.01 4.03 
P-Val 0.00 NA NA 0.02 0.02 0.05 0.90 0.59 0.04 

TABLE 14. AR(1) with 8 - N(0.65,l.O). 

avg stddev range 
n=20 coeff coeff coeffs avgvar avgrss avgacf coeff a coeff b varreg 
Xnaive 0.68 0.15 .43,.90 2.78 2.14 0.05 2.97 1 .os 21.2 
Xdlm 0.60 0.2 1 .33,.90 2.26 1.99 0.07 2.98 1.08 19.8 
P-val 0.12 NA NA 0.2 1 0.23 0.00 0.72 0.85 0.2 I 

avg stddev range 
n=100 coeff coeff coeffs avgvar avgrss avgacf coeff a coeffb varreg 
Xnaive 0.61 0.14 .44,.88 8.88 3.48 0.01 3.00 0.99 32.83 
Xdlm 0.67 0.12 .55,.91 8.05 3.85 0.01 2.92 0.99 36.07 
P-Val 0.00 NA NA 0.0 1 0.12 0.01 0.00 0.74 0.12 
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Appendix C 
TABLE 15. Summary of Results on Real Data. 

gam1 coeff var avgrss absrss avgacf absacf coeffa coeffb varreg 
Xnaive 1.0 14.48 127.15 9.02 0.08 0.16 2.99 1.01 1147.13 
Xdlm -.97 39.78 93.96 7.80 0.00 0.02 2.93 1 .oo 84.75 
X -.97 87.47 0 0 0 0 3.00 1.01 1.07 

gam2 coeff var avgrss absrss avgacf absacf coeffa coeffb varreg 
Xnaive 1.0 30.82 173.31 10.26 0.08 0.16 3.00 0.96 1562.02 
Xdlm -.93 65.12 125.46 8.77 0.00 0.03 2.96 0.96 1 130.1 1 
X -.93 126.76 0 0 0 0 3.00 0.96 1.06 

air coeff var avgrss absrss avgacf absacf coeff a coeffb varreg 
Xnaive 1.00 7.84 22.85 3.48 0.06 0.16 3.00 1.08 2 14.43 
Xdlm -.41 20.44 20.67 3.24 0.03 0.13 3.09 1.08 193.87 
X -.39 34.10 0 0 0 0 3.02 1.08 1.01 

Ih Coeff var avgrss absrss avgacf absacf coeffa coeffb varreg 
Xnaive 0.65 0.14 0.06 0.18 0.01 0.08 3.25 0.96 1.71 
Xdlm 
X 

0.52 
0.58 

0.13 0.05 
0.2 1 0 

0.15 
0 

0.01 
0 

0.07 
0 

3.29 
3.25 

0.96 
0.96 

1.58 
1.02 

geyser coeff var avgrss absrss avgacf absacf coeffa coeffb varreg 
Xnaive 1.00 25.06 167.62 11.23 0.23 0.37 3.00 0.97 1520.65 
Xdlm 0.99 24.5 173.31 11.39 0.24 0.37 2.58 3.1 1 1567.54 
X -.70 97.86 0 0 0 0 3.00 0.9 1 0.94 

Note: The first three data sets are acceptably well fit with MA( 1) models and have n = 1770, 1770, and 100, 
respectively. The last two data sets are acceptably well fit with AR( 1) models and have n = 48 and 299, respec- 
tively. The geyser data set is better fit by an order 2 AR process, but the fit with order 1 is acceptable. 
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