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Determining Constants in Shor’s Discrete Log 
Algorithm over Zp 

J. Mark Ettinger *and Mike Neergaard t 
Los Alamos National Laboratory 

We compute the number of gates and laser pulses required in Shor’s al- 
gorithm for finding T in the equation gT = z(rnod p )  where p is a prime, 
and g and z are given elements of the multiplicative group 2;. Because 
the discrete logarithm algorithm is similar to the factoring algorithm we 
may utilize gates designed for use in factoring. We use the gate configura- 
tions and pulse counts found in [l] and [2]. We use the notation of [2] in 
which [a,b,c,d,e] indicates a use of a Not gates, b controlled-Not gates, c 
controlled-controlled-Not gates, d controlled-controlled-controlled-Not gates, 
and e controlled-controlled-controlled-controlled-Not gates. Similarly [a, b, c] 
will indicate an analogous gate structure where the control bits are limited 
to 2 controls (as in the basic machine model to be discussed below). Recall 
a k-controlled-Not gate requires 2k + 3 pulses. 

Let p be an L-bit prime. We first prepare the state 

1 2L-1 

which requires 2L qubits for register storage and one pulse for each bit. We 
next prepare the state 

2L-1 

la, b’ S ( 4 ,  S(b) > 
a,b=O 

~~ ~ 
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where S(z) = 0 if z 5 p - 2 and S(z) = 1 otherwise. The S comparison 
function may be computed by reversing the plain adder network in [l]. This 
gate requires [0,4L - 1,4L - 21, 48L - 19 pulses, and two qubits to  store the 
comparison results. We observe these latter two bits and restart the entire 
process if we obtain a 1 in either bit. If we observe 0 in both registers we 
then know that we have created the state 

1 0-20-2 

To this point we have used 2L+2 qubits, 50L-19 pulses, and a gate structure 
of [0,4L - 1,4L - 21. The next state we create is 

1 0-20-2 

The requirements for modular exponentiation are varied according to time- 
space tradeoffs and whether or not we permit 3-controlled-Not gates and 
4-controlled-Not gates in our machine (enhanced machine model) or restrict 
the control bit structure to 2-controlled-Not (basic machine model). We 
summarize here the results listed in [2] for convenience. The pairs of equa- 
tions below give the gate structure and pulse count for the average case 
complexity for exponentiation modulo p ,  denoted [EXPP], where the num- 
ber of scratch bits is listed in the subscript. For example, the first equation 
gives the gate count for exponentiation modulo p assumimg the enhanced 
machine model and 2L + 1 qubits of scratch space and is therefore denoted 

The second equation gives the pulse count for expo- [EXPP] enhanced,21+1* 
nentiation mod p assuming the enhanced machine model and 2L + 1 qubits 

of scratch space and is therefore denoted [EXPP] enhanced,2l+l.  

aue gates 

ave pulses 

ave gates [EXPP] enhanced,21+l = (L- 1) [ 10L2 - 14Lt-4, 4L2+8L- 12, 17L2-36L+22, 3 L2 -3, 2L2 -4LS-21 

+[2, L/2 + 1,0,0,0] 

- (L - 1)(198L2 - 270L + 93) + 5L/2 + 7 [EXPP] enhanced,2L+l - 
aue pulses 

[EXPP] awe enhanced,2 gates L+2 - - (L-1) [10L2-14L+4, 5L2+10L-14, 19L2-34L+21, 2L2-4L+2, 01 

+[2, L/2 + 1,0,0,0] 
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- ( L  - 1)(186L2 - 238L + 99) + 5L/2 + 7 ave pulses 
[EXPP] enhanced,2l+2 - 

[ E X P P ] b a s i c , 2 , r + 3  awe gates = (L-1)[10L2-14L+4, 7L2+6L-12, 23L2-42L+25]+[2, L/2+1, 01 

[EXPP];i:i$E3 = ( L  - 1)(206L2 - 278L + 119) + 5L/2 + 7 

[ E X P P ] b a s i c , 2 L + 2  ave gates = (L- 1) [ 10L2 - 14L+4, 5L2+10L- 14, 27L2-5OL+29]+[2, L/2+1,0] 

[ E X P P ] ; ~ ~ ~ ; ~ ~ 2  = ( L  - 1)(224L2 - 314L + 137) + 5L/2 + 7 

[EXPP]  ave baszc,2l+l . gates - - (L-1)[10L2-14L+4, 4L2+8L-12, 49L2-76L+30]+[2, L/2+1,0] 
ave pulses 

[ E X P P ] b a s i c , a L + l  = ( L  - 1)(373L2 - 506L + 154) + 5L/2 + 7 

Notice that to produce the desired state it seems we must do two modular 
exponentiations and then multiply the results. A more efficient technique 
involves modifying the standard exponentiation circuit, which is a series 
of conditional multiplications, to produce a circuit that directly produces 
gaxPb(mod p )  on input a and b by cascading all the conditional multipli- 
cations from both exponentiation calculations. In other words (using the 
notation from [l] we calculate 

gax-b(mod p )  = g xi ai2iZ- cj bj2j = n gai2i x-b.123 

i j 

Therefore we may compute the contents of the third register for the price of 
two modular exponentiations so that the above counts must be doubled once 
the machine model and scratch space has been designated. Let us say that 
we have decided on T scratch bits and a machine model yielding a count for 
modular exponentiation of [Z] gates and P pulses. Then to this point we 
have used 3L + 2 + T scratch bits, 2P + 50L - 19 pulses and a gate count of 

Finally we perform a Fourier transform A,, on each of the first two reg- 
[0,4L - 1,4L - 21 + 2[Zi]. 

isters to yield the state: 

Here q is the power of 2 such that p < q < 2p7 i.e. q = 2 l .  The operation 
A, requires ( L  + 1)(2(L + 1) - 1) laser pulses so the final number of pulses 
is now 2P + 2L2 + 53L - 18. 

The following chart lists the storage and pulse requirements assuming the 
enhanced machine model with 2L + 2 scratch qubits. 
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L qubits pulses 
100 504 3.64 x lo8 
500 2504 4.3 x 10'' 
1000 5004 3.71 x 10l1 

For comparison, note that the estimates in [2] for factoring a 500 bit 
number require 2501 qubits of storage and about 3 x lo8 laser pulses. 
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