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DISCLAIMER 

This report was prepared as a n  account of work sponsored by a n  agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or assumes any legal liabili- 
ty or mponn'bility for the accuracy, completeness, or usefulness of any information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or sem'ce by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necesSar- 
ily state or reflect those of the United States Government or any agency thereof. 



EXECUTIVE SUMMARY 

This report supplements Lee et al. (1995), which presents the findings of an impact 
evaluation of the Manufactured Housing Acquisition Program (MAP). Pacific Northwest 
Laboratory conducted the evaluation and prepared both reports. 

This report presents detailed technical information relevant to the MAP impact 
evaluation. It ,is intended to provide the interested reader with enough information to 
answer most technical questions about the analysis and results. 

TIERED ANALYSIS APPROACH 

We used a three-tiered process to analyze the energy consumption of both MAP and 
baseline homes. The information from each analysis was useful for designing our final 
analysis. \ 

The first approach was a comparison of annual billing data, followed'by a simplified 
regression analysis to adjust for major home characteristics. We compared the mean 
annual kWh consumption of MAP and baseline homes, and used the'difference to 
estimate energy savings. We made no adjustments for long-term weather. 

This first analysis showed that MAP homes consumed less electricity than the baseline 
homes used in our analysis, but the differences were'less than the pre-program 
estimates suggested. We identified several factors to examine further. First, non- 
electric supplemental heating was more common in baseline homes than in MAP 
homes. Second, in some cases heat pumps were more common in baseline homes 
than MAP homes and they tended to reduce energy consumption. Third, the average 
baseline home in our sample was smaller than the average MAP home, thus reducing 
the difference between electricity use in MAP and baseline homes. Fourth, we found 
that the distribution of total electricity consumption and consumption per square foot in 
MAP homes exhibited less variance than in, baseline homes. 

The second-tier approach was an application of the PRlnceton Scorekeeping Method 
(PRISM). This methodology uses monthly billing data to estimate coefficients that can 
be used to predict the non-temperature- and temperature-sensitive portions of energy 
consumption. We used PRISM to estimate electricity consumption for a "normal" 
weather year. 
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We used PRISM to analyze several samples. We applied it to billing data for the entire 
sample of homes, all baseline homes only, and all MAP homes.only. We then 
screened the sample to eliminate observations that could not be modeled well by 
PRISM, and repeated the analyses. The results showed that the standard errors of 
the savings estimates declined, in most cases, after the billing data were screened. 
Screening the data, however, considerably reduced the sample sizes and this tended 
to diminish the accuracy and precision of all estimates. 

The PRISM approach, however, could not be applied effectively to produce the energy 
savings estimates needed in this analysis. This was because of the confounding 
effects of non-electric heat, differences in the efficiency baselines of interest, and other 
factors not addressed by the PRISM approach. 

REGRESSION MODEL 

We used a detailed'regression analysis to control for a wide range of possible energy 
consumption determinants such occupant demographics, appliance inventories, and 
weather. This allowed us to estimate energy savings attributable to the MAP features 
under different conditions. 

This approach was applied to all sample homes'for which we obtained billing data. 
Billing-period (usually monthly) data were used. 

Our model used appliance inventories to explain total kWh consumption like a 
conditional demand analysis (CDA), but was formulated around the anticipated 
thermal-physical relationships. It included several appliances and the effects of 
demographic and behavioral variables that were found to be significant. Because 
differences in heating performance were the primary anticipated effect of MAP, we 
focused on coefficients for different types of heating systems and combinations of 
systems in formulating the model. 

Several potential limitations of the model are discussed. These include potential , 

difficulties modeling the space-heating response to temperature and the effect of 
ventilation. Statistical and econometric,details of the model are presented. The 
technique for developing confidence intervals with this model is also discussed. 
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COMPARISONS WITH OTHER STUDIES 

We compared our study and results with the pre-program analysis conducted to 
predict energy savings. The purpose was to help explain differences between pre- 
program expectations and observed results, and to inform the analysis process so that 
predictions of future program energy savings might be improved. 

The pre-program estimates of MAP savings were based on analyses using the 
SUNDAY computer program. They were considerably larger than our estimates. The 
factors most likely to account for the differences included the following: dissimilarities 
between assumed and actual home sizes, differences in ventilation rates, uncertainties 
in internal and solar gain assumptions, occurrence of random vacancies, both 
intentional and implicit zoning of homes, and inaccuracies in modeling temperature 
setbacks. Several of these effects combined might explain much of the apparent 
discrepancy between our findings and pre-program estimates. 

We also examined and compared our study to one by Regional Economic Research 
(RER). It analyzed electricity usage in both MAP and control homes within the service 
territories of three of the region's investor-owned utilities (IOUs). The study employed 
both engineering estimation and econometric estimation using a conditional demand 
model. It produced energy savings estimates that were considerably smaller than 
ours. We identified three possible biases in the RER model that might partially explain 
the differences. 

* LEVELIZED COSTS 

We used levelized costs to assess MAP'S cost-effectiveness. The approach that we 
used was published by Bonneville. Bonneville's methodology focuses on regional 
system cost. We also analyzed cost-effectiveness from Bonneville's system cost 
perspective, based on the cost of MAP to Bonneville. Using our estimated energy 
savings and incremental total costs, we calculated the levelized costs of energy 
savings for MAP homes. 

It is important to note that Bonneville's methodology does not address the market 
transformation effects of programs such as MAP. Trying to account for the effects of 
market transformation considerably complicates the assessment of program cost- . 
effectiveness. Issues of I'free riders" and "free drivers" andh how they affect different 
cost-effectiveness tests merit specific attention. 
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1 .O INTRODUCTION 

This document supplements the Manufactured Housing Acquisition Program (MAP) 
impact evaluation report, Lee et ai. (1995). MAP is a voluntary energy-efficiency 
program for HUD-code manufactured, homes conducted in the Pacific Northwest 
beginning in April 1992. 

Pacific Northwest Laboratory (PNL) prepared this and the impact evaluation reports for I 
the Bonneville Power Administration (Bonneville).'"' Le'e et ai. (1995) presents the 
objectives, methodology, and findings of the program evaluation. This report presents 
more details about specific aspects of the analysis. 

We used a three-tier approach to analyze the energy consumption.of MAP and 
baseline homes. Chapter 2 discusses Tier 1 , the billing. data and simplified regression 
analysis. Chapter 3 presents the details of the Tier 2 analysis, the PRlnceton 
Scorekeeping Method (PRISM). Chapter 4 presents details of the primary analysis 
technique that we used, a comprehensive regression analysis. 

, 

- .  

Chapters 5 and 6 review two other studies of energy savings associated with MAP. 
Chapter 5 discusses the simulation model analysis conducted by Ecotope, Inc. 
Chapter 6 reviews the analysis by Regional Economic Research conducted for three 
Pacific Northwest investor-owned utilities. 

The final chapter, Chapter 7, presents details of the Bonneville levelized cost 
methodology. used to estimate the cost of energy savings associated with MAP. 

Results are presented and discussed in many cases for the three different climate 
zones found in the Pacific Northwest. Climate zone 1 has 6,000 or less heating- 
degree days (HDD); climate zone 2 has <OOO to 8,000 HDD; and the coldest zone, 
climate zone 3, has more than 8,000 HDD. For simplicity, we refer to the three zones 
as CZ 1, CZ 2, and CZ 3. 

I 

(a) 'The Pacific Northwest Laboratory is a multiprogram national laboratory operated 
, for the US. Department of Energy 6y Battelle Memorial Institute under contract 

DE-AC06-76RLO-1830. - 
1 .I 
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2.0 FIRST-TIER ANALYSIS: SIMPLIFIED BILLING DATA ANALYSIS 

This section discusses our first-tier analysis. This was a simplified analysis of the 
annual electricity billing data supplemented with a simple regression analysis to adjust 
for factors likely to influence electricity consumption. 

2.1 APPROACH AND RESULTS 

We applied the first-tier approach to MAP and baseline home samples for which 12 
months of billing data were available. Billing data for the most recent year for 
individual homes were compiled and used in the analysis.'"' Separate databases 
were developed for MAP and baseline homes in each of the three climate zones. No 
adjustments were made for long-term weather. The period analyzed was less severe 
than the long-term weather (heating-degree days, HDD, were below the long-term 
average for each climate zone), so temperature-sensitive energy consumption was 
probably less for all the homes than would be typical. In this analysis, data for all 
homes were combined; all homes were analyzed together regardless of their electric 
heating system type or the presence, or absence, of air conditioners. 

In the initial analysis, we simply calculated the electricity consumption of each home I 

for the selected l-year period. We calculated thesmean consumption by climate zone 
and home category. The difference between the mean consumption for MAP and 
baseline homes provided an estimate of energy savings. Chapter 3 of Lee et al. 
(1995) summarizes these results: 

- 

In the second analysis, we estimated simple ordinary least squares regression models 
for each climate zone. The predictor variables were chosen from a small set of those 
that were expected to affect electricity consumption and that were readily available. 
We investigated several specifications for each climate zone and selected one based 
on the goodness-of-fit, reasonableness of the coefficient values, and residual patterns. 
Table 2.1 presents the regression coefficients for equations to estimate annual 
electricity consumption by climate zone. Table 2.2 presents coefficients for equations 
to estimate annual electricity use per square foot of floor area by climate zone. - 

(a) Some sample homes had billing data for a 12-month period that fell short of 365 
days. These data were extended to 365 days by linear extrapolation of the last 
billing period. The billing periods did not coincide exactly for individual homes, 
but they were almost all over the span from April 1992 through March 1993. 
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TABLE 2.1. Regression Coefficients to Esiimate kWh/year Consumption 
) 

Intercept (kWh/yr/ft2) 

% of heat supplied by 
non-electric fuel ' 

Presence of heat pump 

TABLE 2.2. Regression Coefficients to Estimate kWh/year/ft2 Consumption 

Value t-statistic Value t-statistic 

12.7 27.1 14.4 20.6 

-0.0415 -3.79 -0.0437 -4.08 

-2.25 -2.99 - I 

Variable I .  cz 1' I a c z 2  

Adjusted R-square 

No. of observations 

0.33 0.40 0.52 

110 88. 18 

Single-section home ' 1  3.56 I 4.00 ' I 6.01 I 5.09 

MAP home I -2.39 I -3.89 I -2.31 I -2.92 

CZ 3 

19.5 11.9 

-0.172 -4.52 

I - 
I - 
-4.68 -2.61 
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'Probably because of their simplicity, these equations have relatively low R-square 
values. The coefficients for shell area, percent of non-electric heat, and presence of a 
heat pump exhibit the expected behavior. Table 2.1 shows that the electricity 
consumption is less for MAP homes, with all else being equal. The amount of the 
effect ranges from 2,900 to 5,270 kWh/year for our sample homes. Table 2.2 
indicates that single-section homes consume more per square foot of floor area in two 
of the climate zones. This is consistent with the fact that, given the same floor area, 
shell area would be larger for single-section than multi-section homes because the 
single-section homes would be less square. These results indicate that MAP homes 
use between 2.31 and 4.68 kWh/year/ft2 of floor area less than our sample of baseline 
homes. 

2.2 OBSERVATIONS ABOUT RESULTS . 

The simple comparison of raw billing data suggests that MAP homes consume less 
electricity than the baseline homes used in our analysis, but the differences are not as 
large as pre-program estimates suggested. Looking carefully at the raw billing data 
and other information collected in this study, several factors were identified that . 

influenced the estimated energy savings attributable to MAP. 

First, non-electric supplemental heating was more common in baseline homes than in 
MAP homes. Adjusting for the use of non-electric heat increased the estimated energy 
savings substantially, particularly in CZ 3. Whether the relative lack of non-electric 
heating in MAP homes was a consequence of the program or not is unknown, butin 
this time period the effect of non-electric heat on electricity consumption significantly 
affected the difference between MAP and baseline home energy use. 

Second, in CZ 1 heat pumps were more commpn in baseline homes and they tended 
to reduce energy consumption. Third, in all zones, energy consumption increased 
with increases in shell area and the effect was greater in the colder zones.. Because 
baseline homes were smaller than MAP homes on the average, the shell area 
influence tended to reduce the observed difference between electricity use in MAP and ' 
baseline homes. 

We examined the distribution qf total electricity consumption and consumption per 
square foot in MAP and baseline homes to get a better understanding of the 
consumption patterns. Table 2.3 displays the distributions of raw kWh/ft2 for the two 
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samples in CZs 1 and 2.Ia) The values for the percentiles shown indicate that the 
distributions are narrower for the MAP homes than for the baseline homes. In CZ 2, 
for example, the difference between kWh/ft2 at the 75th and 25th percentiles is 5.3 for 
baseline homes and 4.39 for' MAP homes. The differences in CZ 1 are even larger. 
These results suggest that the energy demands faced by utilities-may be more 
predictable and exhibit less variance for MAP homes than standard efficiency 

' manufactured homes. \ 

~~~ ~~ ~~ 

90th 18.3 , 12.6 ' 18.4 , 17.1. 

75th 14.5 11.7 16.1 13.9 

50th 11.8 9.95 13.8 11.5 

25th , 9.51 8.05 10.8 9.51 

10th 7.55 6.25 8.44 . 8.01 
1' 1, 

TABLE 2.3. Distributions of Raw Electricity Consumption 

90th 

75th 

50th 

25th 

10th 

CZ 1, kWh/ft2 CZ 2, kWh/ft' . 

Baseline 

Percentile 

homes homes homes homes 

18.3 , 12.6 ' 18.4 , 17.1. 

14.5 11.7 16.1 13.9 

11.8 9.95 13.8 11.5 

9.51 8.05 10.8 9.51 

7.55 6.25 8.44 . 8.01 

This first-tier analysis was limited to annual billing data and made no attempt to 
examine space conditioning and other temperature-sensitive end uses. No 
adjustments were.made to normalize the effect of weather. The next chapter begins to 
address these factors. 

(a) There are top few observations in CZ 3 to calculate meaningful percentiles. 
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3.0 SECOND-TIER ANALYSIS: PRISM ANALYSIS 

This section provides details on all of the results generated as part of the PRISM 
analysis. We acknowledge the assistance provided by Margaret Fels, Princeton 
University, and her team in making a pre-release copy of the advanced PRISM model 
available for this study. 

. 

3.1 UNFILTERED PRISM ANALYSIS OF BILLING DATA 

In this subsection, the PRISM results are presented for all homes that could be analyzed, 
without making any judgments about whether or not the model fit the billing data well. 
The unfiltered analysis includes homes that have non-electric heat, a PRISM-estimated 
negative base load, and other homes that may have been poorly modeled by PRISM, 
with the exception of homes that failed to converge on a heating temperature. We 
started by examining the energy usage components for the entire sample. As a second 
step, we broke the sample down into MAP and baseline homes. Third, we segmented 
these components into heating-only (HO) and heating and cooling (IHC) model 
categories to differentiate those homes that had statistically significant air conditioning 

. loads from those homes that had no significant air conditioning load. Finally, we present 
the results categorized by climate zone. 

3.1.1 Calculation of Standard Errors 

In all of the tables in this chapter, we present both annual energy usage and the 
corresponding standard errors of the energy usage in units of kilowatt-hours. The 
PRISM model produces standard errors for the heating, cooling, and total Normalized 
Annual Consumption (NAC) estimates for every customer. To calculate the standard 
error (SE) of the base load estimate for a single customer, we used the standard 
propagation of error technique of taking the square root of the sum of the squares of the 
standard errors for the heating, cooling and total NACs, as can be seen in Equation 

e 

. (34. 

Howeve< the tables in this section present the standard error of the mean heating, 
cooling, base load and total estimates for groups of homes. To calculate the standard 
errors of the mean energy usage for a given end use across homes, Equation (3.2) was 
used. 
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. (3.2) 

where SEsnd-uss, is the standard error for either the heating, cooling, total or base load 
energy component for the ith home from PRISM and n is the number of homes. 

I 

3.1.2 Energy Use for Both Samples Combined, Unfiltered 

For the initial PRISM analysis, we analyzed the sample of 256 MAP and baseline homes 
combined. The base loads were estimated by subtracting the normalized annual 
"heating" and cooling energy consumption from the normalized annual total 
consumption, which are both obtained from the PRISM results.(a1 .The results of these 
analyses are shown in Table 3.1. 

TABLE 3.1. PRISM Results for Entire Study Sample, Unfiltered 

Energy Component Mean Energy Use Standard Error 
(kWh) (kWh) 

"Heating" Energy Use 8,801 8,425 

Cooling Energy Use 110 21 6 

Base Load Energy Use''' 9,098 8,686 

Total Energy Use 18,019 999 

Sample Size 256 

(a) PRISM does not calculate the normalized base load; it was generated by 
subtracting the normalized annual "heating" and cooling energy use from 
the normalikd annual total energy use. 

These results indicate that the average base load energy use across all homes in our 
samples was about 9,000 kWh per year. Because the homes in the samples varied and 

(a) The PRISM "heating" consumption estimates are more properly considered to 
be the consumption component that is sensitive to heating-degree days. We 
report our estimates as "heating" consumption estimates, but ,the reader should 
be aware that this PRISM output can capture other temperature-sensitive 
electricity consumption for end-uses such as ,water heating and lighting. 

3.2 



1 ,  

, 
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Baseline Homes MAP Homes 

Mean Energy Standard Error Mean Energy Standard Error 
Energy Component Use (kwh) (kWh) Use (kWh) (kWh) 

"Heating" Energy Use 9,737 1,298 8,014 4,082 

Cool Energy Use 130 95 94 53 

Base Load Energy Use 9j90 306 9,020 , 4,083 

Total Energy Use 19,057 117 17J28 105 

Sample Size 117 139 

the data were not filtered, the standard error of the "heating" estimated mean was large 
(96% of the mean value). 

3.1.3 MAP and Baseline Home Energy Use, Unfiltered I 

As a second step, we compared the energy use estimates for the MAP and baseline 
home samples; for this analysis we had 139 MAP and 117 baseline homes. As with all 
the "unfiltered" analyses, we removed no homes from the analysis. These results are 
presented in Table 3.2. 

I 

TABLE 3.2. MAP and Baseline Home Energy Use Comparison, Unfiltered 

The base load energy use of both MAP and baseline homes was around 9,000 
kWh/year. The~mean "heating" energy use of MAP homes was about 1,700 kWh/year 
less than the baseline homes, while the total energy use was about 2,000 kWh/year less 
for MAP homes. The standard error of the MAP "heating" use was about half the value of 
the mean. 

, 

3.1.4 Usage Disaggregated by PRISM Model, Unfiltered 

In the third step; we disaggregated unfiltered results for both samples into PRISM model 
categories depending upon whether they were produced by the HO or IHC models. 
Table 3.3 presents these results. - 

' 
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TABLE 3.3. Energy Use Comparison by PRISM Model, Unfiltered 

Total Energy Use 

Sample Size 

PRISM Model 

191 97 I 128 17,041 I 110 

101 125 

HO 

"Heating" Energy Use 

Cooling Energy Use 

Base Load Energy Use 

Total Energy Use 

Samplesize , 

~~~~~ 

9,353 2,302 7,919 2,455 

953 698 931 . 523 

7,868 2,420 9,058 2,536 

181 73 264 17,908 359 

16 14 

Homes MAP Homes 

Standard Standard 
Energy Use 

1,458 8,024 4,531 

9,016 4,532 

IHC 

The results in Table 3.3 show that the estimated base load energy use of baseline homes 
differed considerably, about 1,500 kWh/year, between homes modeled with the HO and 
IHC model. This result might indicate discrepancies in the models or arise from the small 
IHC analysis sample size. Using the HO model, MAP home "heating" energy use was 

, about 1,700 kWh/year less than for baseline homes and total energy use was about 
2JOO kWh/year less. Using the IHC model, "heating" energy use was about 1,400 and 
total energy use was only about 300 kWh/year less for MAP homes. The largest 
standard errors were associated with "heating" energy estimates for MAP homes. 

3.1.5 Energy Use Estimates by Climate Zone, Unfiltered 

As a next step in the analysis, the results were categorized by climate zone. Tables 3.4a, 
by and c present the energy use components by PRISM model and climate zone. 
Comparing the results across climate zones, the largest standard errors were associated 
with MAP homes in CZ 1. In general, there were too few observations analyzed with the 
IHC model to draw reliable conclusions, and there were too few observations in CZ 3 to 
produce reliable results. The results for CZ 1 suggested that MAP homes used about 
2,lOO kWh/year less total energy than baseline homes, and the."heating" estimates 
showed that MAP homes used about 2,300 kWh/year less than baseline homes. 

3.4 



TABLE 3.4a. Energy Use Comparison for CZ 1, Unfiltered 

Baseline Homes MAP Homes 

Standard Mean Energy Standard 
PRISM Mean Energy Error Use Error 

HO "Heating" Energy Use 9,710 1,600 7,417 9,372 

Model Energy Component Use(kWh) . (Wh)  ' (Wh)  (Wh)  

Base Load Energy Use 9,004 1,609 8J 93 * 9,373 

Total Energy Use 18,714 165 1561 1 160 

Sample Size 63 59 

IHC "Heating" Energy Use 8,622 ' 2,465 6,664 4,611 

Cooling Energy Use 675 759 799 777 

Base Load Energy Use 81 20 2,597 8,762 4,689 

Total Energy Use 17,417 301 16,225 340 . 

Sample Size 12 7 

PRISM 
Model 

HO ' 

IHC 

TABLE 3.4b. Energy Use Comparison for CZ 2, Unfiltered 

Baseline Homes MAP Homes 

Standard Mean Energy Standard 
Mean Energy Error ' Use Error 

Energy Component Use (kWh) (kWh) (kWh) (kWh) 

"Heating" Energy Use 9,789 3,350 8J59 2,524 

Base Load Energy Use 10,214 3,358 9,805 2,531 

Total Energy Use 20,003 231 17,965 187 
. 

Sample Size 32 48 

"Heating" Energy Use 11,544 5,484 9,384 1,842 

Base Load Energy Use 7111 5,743 8J73 1,975 

Total Energy Use 20,442 547 18,439 433 

Cooling Energy Use 1,787 1,614 881 566 

~~ ~ ~ ~ 

I 5 Sample Size 4 1 
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TABLE 3 .4~ .  Energy Use Comparison for CZ 3, Unfiltered 

PRISM 
Model Energy Component 

'Base Load Energy Use 

HO "Heating" Energy Use 

Total Energy Use 

Sample Size 

IHC "Heating" Energy Use 

Cooling Energy Use 

Base Load Energy Use 

Total Energy Use 

Sample Size 

Baseline Homes MAP Homes 

Standard Mean Energy Standard 
Mean Energy Ermr Use Error 
Use (kWh) (kWh) (kWh) (kWh) 

10,771 1,082 9,652 91 2 

93 98 1350 9,611 942 

19,969 . 390 19,262 235 

6 18 

- - 8,646 1,855 

- - 1,521 1,002 

- 12,304 2,318 

- I 22,471 963 

0 2 

3.2 PRISM ANALYSIS OF STAGE-ONE FILTERED SAMPLE 

For this stage of the analysis, we examined the unfiltered PRISM results for the billing 
data and excluded those homes that met the following criteria: 

Non-converging heating temperatures in PRISM 

R2 less than 0.65 

PRISM produced a zero heating load 

Survey indicated more than 10% of the heating was provided by a non-electric 
fuel source 

PRISM models indicated a negative base load. 
' 

In this report, we are referring to this level of filtered data as "stage-one" filtering. The 
PRISM developers have indicated that they would exclude homes that have an R2 less 
than 0.70 (Fels, Reynolds, and Stram 1986); however, we would have had to exclude 
another seven observations from our study if we had chosen to use the same cutoff 
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level. Due to our relatively small sample sizes, we chose to use an R2 of 0.65 as the 
cutoff level. We then proceeded with the steps discussed in Section 3.1. 

"Heating" Energy Use 

Cooling Energy Use . 

3.2.1 Energy Use for Both Samples Combined, Stage-One Filtered 

Using the screeniqg criteria, we excluded 64 sites and were left with a total sample of 192 
sites. Results for the remaining sites are described in Table 3.5. 

1 

9,377 393 

107 59 

TABLE 3.5. PRISM Results for Entire Study Sample, Stage-One Filtered 

Base Load Energy Use 

Total Energy Use 

9J36 404 

18,619 74 

I 192 

The major impact of screening out the observations that PRISM did not model well was a 
significant reduction in the standard errors. Both the estimated "heating" and total 
energy use increased by about 600 kWh/year, compared with Table 3.1. 

3.2.2 MAP and Baseline Home Energy Use, Stage-One Filtered 

In the, second step, we examined differences in energy use between the MAP and 
baseline home samples; for this analysis we had 108 MAP homes and 84 baseline 
homes remaining from our original samples as can be seen in Table 3.6. 

\ 

Again, the major difference between these results and the unfiltered results (Table 3.3) 
was a significant reduction in the standard errors. The base load energy use estimated 
for both MAP and baseline homes was around 9,000 kWh/year. The difference between 
MAP and baseline home "heating" and total energy use was about 1,500 kWh/year. 

I 
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TABLE 3.6. MAP and Baseline Home Energy Use Comparison, Stage-One Filtered 

Total Energy Use 

Sample Size 

~~~ 

Baseline Homes 

. Mean Energy Standard Error 
Energy Component Use (Wh) (Wh) 

"Heating" Energy Use 10,232 

Cooling Energy Use 

Base Load Energy Use 9,085 61 7 

I 
~~ - 

19,429 ,102 17,990 104 

84 108 

MAP Homes II 
Mean Energy Standard Emr 
Use (kWh) (Wh) 

8,712 521 

9J 75 538 

, 

3.2.3 Usage Disaggregated by PRISM Model, Stage-One Filtered 

Next, the PRISM results were further broken down by PRISM model (HO or IHC) as seen 
in Table 3.7. Compared with Table 3.3, the major change for HO-modeled homes was a 
significant reduction in the standard errors. The base load energy use estimates for 
MAP and baseline homes were closer than in the results without screening out the poor 
PRISM fits. The differences between MAP and baseline homes total energy use were 
about 1,400 kWh/year using both models. 

3.2.4 Energy Use Estimates by Climate Zone, Stage-One Filtered 

As a final step in the stage-one filtering analysis, the results were categorized by climate 
zone. Table 3.8 shows, again, that standard errors were reduced from the unfiltered 
analysis, particularly for the HO model results and especially in CZ 1. These results 
suggested that several CZ 1 MAP homes had unusual characteristics that affected their 
energy consumption significantly. The base ioad estimates tended to vary less between 
MAP and baseline homes, but showed a tendency to increase in the colder climate 
zones. The results indicated that "heating" energy use in MAP homes was less than in 
baseline homes. In general, the results for CZ 3 and for homes modeled with the IHC 
model were not very reliable because of small sample sizes. 

3.2.5 Energy Savings Estimates by Climate Zone, Stage-One Filtered 

Table 3.9 presents estimated energy savings based on our stage-one filtered PRISM 
results. The savings are shown as normalized annual energy consumption by climate 
zone and PRISM model forthe filtered analysis. 
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TABLE 3.7. Energy Use Comparison by PRISM Model, Stage-One Filtered 

72 

a 10.263 2,336 

783 789 

8,306 2,484 

19,352 309 

12 

Energy Component 
7 1  

96 

8,396 2,738 

921 515 

8,585 1 806 

17,902 332 

. 12 

Total Energy Use 

l ~ C  1 Samplesize 

"Heating" Energy Use 

Cooling Energy Use 

Base Load Energy Use 

Total Energy Use 

Samde Size 

Baseline Homes 

Standard 
PRISM Mean Energy Error 
Model Energy Component Use (kWh) (kWh) 

HO "Heating" Energy Use 9,534 802 

Base Load Energy Use 8,560 81 1 

Total Energy Use 18,094 1 24 

Sample Size 49 

IHC "Heating" Energy Use 9,246 2,636 

Cooling Energy Use 675 859 

Base Load Energy Use 8J81 2,794 

Total Energy Use 18J02 344 

Samplesize ' 10 
, 

TABLE 3.8a. Energy Use Comparison for CZ 1, Stage-One Filtered 

MAP Homes 

Mean Energy Standard 
Use Error 

(kWh) (kWh) 

7,833 752 

8,746 771 

16,579 ' 168 

44 

7,285 5,207 

81 5 838 

8,852 5,287 

16,952 371 

6 
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PRISM 
Model + Energy Component 

"Heating" Energy Use 

Base Load Energy Use 

Total Energy Use 

Sample Size 

"Heating" Energy Use 

Cooling Energy Use 

Base Load Energy Use 

Total Energy Use 

Sample Size 

HO 

IHC 

Baseline Homes MAP Homes 

Standard Mean Energy Standard 
Mean Energy Error Use Error 
Use (kWh) (kWh) (Wh )  (Wh) 

11,324 666 9,249 760 

10,808 703 9,786 780 

221 32 225 19,080 1 76 

19 37 

15,346 4,764 9,384 1,842 

1,328 2,000 881 566 

8,929 5,214 8J73 1,975 

25,603 698 18,439 433 

2 5 

TABLE 3.8b. Energy Use Comparison for CZ 2, Stage-One Filtered 

PRISM 
Model 

HO 

IHC 

Baseline Homes MAP Homes 

Standard Mean Energy Standard 
Mean Energy Error Use Error 

Energy Component Use (kWh) (kWh) (kWh) (kWh) 

Base Load Energy Use 9,666 1,464 9,397 974 

"Heating" Energy Use 13,502 1,377 10;lll 942 

Total Energy Use 231 68 498 19,508 . 245 

Sample Size 4 15 

"Heating" Energy Use - - 10119 4.31 2 

- 1,756 2,200 

9,046 5,443 

- 20,921 2,490 

Cooling Energy Use - 
Base Load Energy Use - I 

Total Energy Use I 

Sample Size 0 1 

TABLE 3.8~~ Energy Use Comparison for CZ 3, Stage-One Filtered 
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TABLE 3.9. "Heating" Energy Savings. for Stage-One Filtered Analysis 

Annual Energy Standard Error PRISM Model cz 
Savings (Wh) 
(Wh) 

HO . 1 1,701 1,099 

2 2,075 1,010 

3 3,391 1,668 

IHC 1 1,961 5,836 

2 5,962 5J08 

3 - - 
'-' Indicates that no data are available - 

The savings estimates in Table 3.9 are based on differences in the "heating" energy. 
estimates. The savings are larger for the colder climate zones, as would be expected. 
For the HO-modeled homes, the standard error is about half the mean savings estimate: 
The IHG-modeled results cannot be considered reliable because of the small sample 
sizes. 

3.3 PRISM ANAWSIS OF STAGE-TWO'FILTERED SAMPLE 

For the next stage of the analysis, we further filtered the sample to remove homes that 
had an air-conditioning load or used any non-electric heating. Stage two includes the 
conditions imposed upon the stage-one analysis plus the addition of two more criteria: 
1) use of a non-electric heat source for any portion of the heating load and 2) a PRISM 
air-conditioning NAC greater than zero. The screening criteria that we used were the 
following: 

Non-converging heating temperatures in PRISM 

R2 less than 0.65 

PRISM produced a zero heating load 

Any non-electric heating fuel use (based on survey responses) 

3.1 1 
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e 

Energy Component 

"Heating" Energy Use 

Base Load Energy Use 

Total Energy Use 

Sample Size 

e 

Mean Energy Use Standard Error 
(kWW (kWh) 

9,452 430 

8,929 439 

18,381 86 

138 

PRISM models indicated a negative base load 

A PRISM air-conditioning load greater than zero 

We refer to this levei of filtered data as stage-two filtering. This filtering should remove 
any distortions in the PRISM results due to use of non-electric heat. 'Because the IHC 
results were based on such small sample sizes and the air-conditioning loads were 
relatively small, elimination of homes with air-conditioning loads should improve the 
reliability of the estimates. 

3.3.1 Energy Use for Both Samples Combined, Stage-Tho Fiitered 

Using the criteria presented in Section 3.3, we excluded 118 sites and were left with a 
total sample of 138 sites. Results for the remaining sites are presented in Table 3.1 0. 
These results did not differ significantly from the aggregate results presented for stage- 
one filtering in Table 3.5. Compared with results for the unfiltered sample, the standard 
errors were significantly less; they were similar to those from stage-one filtering. 

\ 

TABLE 3.1 0. PRISM Results for Entire Study Sample, Stage-Two Filtered 

3.3.2 MAP and Baseline Home Energy Use, Stage-Two Filtered 

As a second step, we compared the energy use of the MAP and baseline homes; for this 
analysis we had 78 MAP homes and 60 baseline homes remaining from our original 
samples as can 'be seen in Table 3.1 1. Again, the results did not differ significantly from 
those from the stage-one filtered analysis presented in Table 3.6. 

I 
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I 

Energy Component 

"Heating" Energy Use 

Base Load Energy Use 

Total Energy Use 

3.3.3 Energy Use Estimates by Climate Zone, Stage-Tho Filtered 

As a final step in the stage-twojltering analysis, the results were further categorized by 
climate zone as shown in Table 3.12. Comparing these results with those presented in 
Table 3.8, most load estimates were decreased as a result'of additional filtering, although 
there were no substantial differences. The results suggested that the base load 

- increased going from CZ 1 to' CZ 2. 

I . .  

Baseline Homes MAP Homes 

Mean Energy Standard Error Mean Energy Standard Error 
Use (kWh) (kWh) Use (kWh) (kWh) 

10,293 671 8,804 . 559 

8,964 681 . 8,902 573 

19,257 115 17,707 124 

3.3.4 Energy Savings Estimates by Climate Zone, Stage-Tho Filtered 

Sample Size 

Table 3.13 presents estimated energy savings based on our stage-two filtered PRISM 
estimates. The savings were calculated by taking the difference between the mean ' 
"heating" estimates for baseline and MAP homes, by climate zone. The estimated 
savings range from about 1,400 kWh/year in CZ 1 to 3,800 kWh/year in CZ 3. The 
standard errors range from 44% to 97% of the estimated mean savings. 1 

c 

60 I I 78 

3.4 ADJUSTED PRISM RESULTS 

For this portion of the analysis, we examined the PRISM results that met the criteria 
previously presented for the stage-two analysis. We then investigated several methods 

TABLE 3.1 1. MAP and Baseline Home Energy Use Comparison, Stage-Two Filtered 
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TABLE 3.12. Energy Use Comparison by Climate Zone, Stage-Two Filtered 

Climate 
Zone 

1 

Baseline Homes MAP Homes 

Standard Mean .Energy Standard 
Mean Energy Error Use Error 

Energy Component Use (kWh) (kWh) (kwh) (kWh) 

"Heating" Energy Use 9,617 981 8J90 969 

Base Load Energy Use 831 9 991 8,008 990 

Climate Zone 

1 

2 

3 

proposed in previous studies (including Roos and Baylon [1993], Hwang [1989], and 
others) for adjusting the PRISM estimates to compensate for known biases. This step 
builds on the data cleaning performed in stage two, by using an empirically derived 
equation to adjust the heating results to eliminate seasonal effects. After a thorough 
review of adjustment procedures, we further examined the only one that used both . 

Annual Energy Savings Standard Error 
(kWh) (kWh) 

1,427 1,379 

1,987 1,072 

3,846 1,679 
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PRISM parameters and took into account the building thermal performance 
characteristics. The equation used to adjust the heating results is based upon a 
previous evaluation study performed by PNL for Bonneville and is presented below (Lee 
et al. 1988). 

, 

I 

where: 
Heat,, = adjusted heating value 
HeatpRlsM = .PRISM estimated "heating" value 
HDD,, = annual he,ating degree days to base 65OF 

Trer = PRISM estimated heating reference temperature 
. UA = envelope UA' ' 

After the adjustment process was completed, we examined the results for accuracy and 
consistency. Our findings indicated that, while the adjustment process appeared to 
produce reasonable heating savings estimates, the results were inconsistent when 
examined across the climate zones. The applicability of the adjustment was questioned 
due to the following observations: 

~. 
The unadjusted heating estimates increased from CZ 1 to CZ 3, while the 
adjusted results showed heating energy decreasing in the colder climates. 

f 

The unadjusted base load estimates ranged from approximately 8,000 to 9,900 
kWh annually, while the adjusted base loads ranged from about 8,000 to 14,000 
kWh annually. 

I 

Due to these discrepancies, we have chosen not to present the adjusted heating.savings 
in this report. 

. ,  , 
I 
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4.0 THIRD-TIER ANAWSIS: REGRESSION ANALYSIS 

This section discusses our third-tier analysis approach, a regression analysis that 
attempts to control for a wide range of possible energy consumption determinants. Our 
purpose is to compare the MAP and baseline sample homes by focusing on the known 
and intentional differences between the two samples. We seek to control for differences 
in occupant demographics, appliance inventories, home sizes, and occupant behavior 
between the two samples. 

We note that some of these differences may be influenced by MAP and should be 
considered in a complete evaluation of the program3 impact. However, this analysis 
focuses on differences in the thermal physics of the MAP and baseline homes; a 
thorough evaluation of the degree to which MAP has influenced home buyer preferences 
or otherwise influenced the manufactured housing market is beyond the scope of this 
study. 

4.1 OVERVIEW OF APPROACH 

This approach was applied to all sample homes for which we obtained any billing data. 
. Billing-period (usually monthly) data were used. Because the number of bills available 

for the homes varied widely, we weighted the data such that each home received equal 
influence in the overall regression. 

Our general approach is to develop a model of total electric consumption that utilizes 
available information about the home in concert with known or anticipated thermal- 
physical relationships. The anticipated thermal-physical relationships include these: 

heating load response to outdoor temperature:'"' this effect is expected to be 
influenced by a home3 thermal integrity (the primary effect of MAP), size, and 
configuration (e.g., number of sections). 

cooling load response to outdoor temperature 

water heating load response to outdoor temperature: many any other end uses 
interact with the water heating load (dishwashers, hot tubs, etc.). 

Both-heating and cooling are also functions of other influences, notably solar 
heat gains. Unfortunately, lack of solar data from most homes' locations 
prevents direct modeling of these effects. 

. .  

(a) 
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seasonal variation of various miscellaneous loads (e.g., lighting is expected to 
increase when days are shorter) .. 

response of various loads to the number of occupants. 

The data for the homes that are available from our survey and supplemental data 
sources. include the following: 

. I 
heating- and cooling-degree days (HDD and CDD) by billing period 

home characteristics (floor area, window area, number of sections, whether the 
home is a MAP or baseline home, and component U-values for'baseline homes) 

appliance inventories 

. occupant demographics (such as income level, age, and education) 

occupant behavior (self-reported thermostat settings, non-electric heat usage, 
daytime occupancy, etc.) . 

I anticipated seasonal variations in certain end-use loads obtained from other 
metering studies. 

r 

4.2 METHODOLOGY 

The model we use is similar to a conditional demand analysis (CDA) in that it utilizes 
appliance inventories to explain total kWh consumption, but is formulated around the 
anticipated thermal-physical relationships. Because differences in heating (and maybe 
cooling) performance are the primary anticipated effect of MAP, we focus on those terms 
in formulating the model. The general framework is as follows: 

, 

k 
kWh1day = /ntercept+c (a,x v;) + p x UAX- HDDxc 

IF1 day 

where the'a, are regression coefficients for various demographic, behavioral, and 
appliance inventory variables (Vi) and the /I is a heating response regression coefficient. 
Note that the HDD term already includes known information about a homes envelope 
conductance, (UA). In this sense, the model has the characteristic of a statistically- 
adjusted engineering model, albeit with a very simple engineering model. The UA used 
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in the regression is based on manufacturers' data on home components for the baseline 
homes and on knowledge of MAP requirements for the MAP homes. The UA includes 
infiltration effects estimated from an air exchange rate of 0.35 air changes per hour 
(ACH) for all homes. The /3 coefficient adjusts the anticipated HDD slope to match the 
data. Thus, if Equation (4.1) were to perfectly model the heating response, the expected 
value of the B coefficient would be unity. Realistically, we expect B to be less than 1 .O, , 
because most homes have lower balance temperatures than the,65 degrees used to 
calculate HDD.'"' The constant, C, adjusts the units of the term to match those of the 
dependent variable. 

In practice, Equation (4.1) is too simple to give meaningful results. The a and B terms 
must be expanded to accommodate the specifics of the study at hand. For example, we 
expect a home5 response to HDD to be different if it has a heat pump rather than an 
electric furnace. Likewise, MAP ventilation requirements are likely to make those homes 
respond differently to the weather than similar baseline homes, but the exact ventilation 
contribution to the UA is not known. Therefore, we 'hest" the UA x HDD term within 
categorical variables for MAP and heating system type. Further, the presence of non- 
electric heating systems in a home can seriously modify the home3 response (in terms 
of electricity consumption) to outdoor temperature. Depending on how such backup 
systems are used, the response may or may not fit the linear form of Equation (4.1). For 
example, if a backup system supplies all the heating requirement for a part of the home, 
the electric response may continue to be linear. lf, on the other hand, the backup 
system intermittently replaces the electric heater, as is common for wood stoves, the ' 
electric response may have no discernible functional relationship to outdoor 
temperature. 

One way of dealing with this uncertainty would be to eliminate homes with backup 
heating systems from the analysis sample. This kind of analysis can be valuable when 
seeking the pure "engineering" effect of MAP on home construction. But it precludes 
evaluating MAP3 real effect on regional electric loads. Our approach is to nest the UA x 
HDD term within a categorical variable defining the heating system type, where the 
system type includes information about backup systems present. This 'approach gives a 
separate B coefficient for each combination of system type (heat pump or electric 
resistance) and backup system (wood stove, other). Note that the coefficients for the 
backup systems do not quite bear the physical significance implied by Equation (44. 
The nested regression formulation is useful, nonetheless, because only the all-electric 

(a) The balance temperature is the outdoor temperature at which the furnace must 
come on to maintain the temperature setpoint. 
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* 

homes influence the electric-resistance-only and heat-pump-only /3 cbefficients, but all 
homes influence the coefficients on the other (non-thermal) terms. 

In interpreting the /3 coefficients, it is important to note that Equation (4.1) may not 
accurately model a home that has substantial cooling loads intermixed with heating 
loads during some parts of the year. This problem is more common in heat-pump 
homes because the thermostat is more likely to provide for either heating or cooling 
without the occupants moving a mode switch. 1 ,  

. Roughly speaking, the Vi terms represent the non-weather-sensitive "base" consumption 
of the home. However, it is well known that many of these base end uses do respond to 
climate variations or vary seasonally. To control for these effects, we adjust the 
appliance inventory variables to account for their expected seasonal variations. We use 
data from the Bonneville Power Administration's Regional End-Use Metering Project . 
(REMP) to supply these adjustments (Cahill, Ritland, and tin-Kelly, 1992). Table 4.1 
shows the anticipated monthly variation in.various end use loads expressed as a fraction 
of the annual mean consumption. 

The final form of the model is shown as Equation (4.2). The terms in the equation are 
defined in Table 4.2. Note that the UA*HDD slope adjustments are obtained for MAP 
homes by regressing for a differential effect, rather than simply by partitioning the data 
into two subgroups (baseline and MAP). Thus the t-statistics of those coefficients better 
test the hypothesis that the MAP effect is non-zero. The terms that begin "Is" or "Has" 

, are to be interpreted as binary (dummy) variables with a value of 1 if the implied 
assertion is true, 0 otherwise. lncorneLow and lncorneHigh are interpreted similarly, 
where income levels are designated as Low, Medium, or High, with Medium defined as 
between $25,000 and $40,000 annually. 

4.3 SUMMARY OF IMPLIED MAP SAVINGS 
\ 

Table 4.3 shows the estimated regression coefficients, obtained by subjecting Equation 
(4.2) to an ordinary least-squares (Om) regression followed by a one-iteration 
transformed regression to adjust for serial correlation. The R-square value for the 
regression is 0.60. The residual standard error of the regression is 10.9 on 2,722 
*degrees of freedom. Section 4.5 discusses specific econometric issues and goodness- 
of-fit indicators. Section 4.6 discusses the estimation of confidence intervals associated 
with this model. 
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TABLE 4.1. Monthly Load Allocation Factors 

Month Water Refri- Freezer Dish- Misc 
Heater gerator washer 

Wash/ 
Dryer"' 

4.5 , 

Dec 1.084 0.925 . 0.983 I 1.131 1.227 1 .lo5 



+ a,,HasElecOnlyxlsMAPxCxUAx - [E) 
+ al,HasElec& WoodxlsMAPxCxUAx 

+ al,HasElec&Othen<lsMAPxCxUAx 

-I- algHasElecOn/yxCxUAx 

+ 

HDD 

+ a,HasHP& WoodxlsMAPxCxUAx 

+ a,,HasHPonlyxCxUA~ 

HDD + a,HasHP& WoodxCxUAx 

+ a,lsVacant . 

' 4.6 

(4.2) 
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TABLE 4.2. Definition of Terms in Equation (4.2) 

Term 

kWh 

Definition 

Total electrici use in the billing period 

Intercept 

b y *  

log 

NO,, 

Nrpplirncs 

AIIOCapptirncs 

Incomelaw 

IncomeHigh 

IsOccDaytime 

IsZonel 

HasAC 

The regression intercept term * 

Number of days in the billing period 

The natural logariihm 

The number of occupants in the home 

The number of the indicated appliances in the home. For some appliances, this is 
always either 0 or 1. 

The monthly load allocation factor for the indicated appliance (see Lee et al. 1995) 

A dummy variable indicating household income is less than $25,000 per year 

A dummy variable indicating household income is greater than $40,000 per year 
A dummy variable indicating the home is occupied during the day 

A dummy variable indicating the home is sited in CZ 1 

A dummy variable indicating the presence of an air conditioner 

HasElecOnl y 

HasElec&Wood 

HasElec&Other 

HasHPonly 

HasHP&Wood 

A dummy variable indicating the home has electric resistance heat with no backup 
system 
A dummy variable indicating the home has electric resistance heat with a wood- 
burning backup system 

A dummy variable indicating the home has electric resistance heat with an 
unspecified backup system 

A dummy variable indicating the home has a heat pump with no backup system 

A dummy variable indicating the home has a heat pump with a wood-burning 
backup system 

4.7. 

CDD 

HDD 

UA 

Coolingdegree days for each month based on NOAA data 

Heatingdegree days for each billing period, reference temperature 6 5 O F  

Building envelope load coefficient plus infiltration UA 

IsMAP 

C 

Isvacant , 

A dummy variable indicating a MAP home ’ 

A constant to give the UA*HDD terms units of kWh/day 

A dummy variable indicating home was vacant during the specific billing period 



, 

Coefficient Value t-statistic Coefficient 

TABLE 4.3. Estimated Coefficients in Equation (4.2) 

Value t-statistic 

ai3 

a9 

0 1  0 

0 1  1 

a1 2 

To assess the performance of this model, we used it to estimate the energy consumption 
of homes as similar as possible to th0s.e in our baseline and MAP home samples. For 
most variables, we substituted the mean value for the region frommr combined sample 
of homes. For heating systems, we used the mean proportion of each heating system 
by climate zone for the combined MAP and baseline home sample. Table 4.4 shows the 
long-term HDD and CDD values used in the analysis. 

3.40 3.1 3 oil 0.1 87 4.06 

1.98 2.41 a22 0.712 3.46 

2.91 2.82 0.583 20.0 

0.056 0.05 0.1 96 1.19 

9.80 5.1 8 a26 -14.1 -9.48 

Table 4.5 compares the results from the model with the billing data for the MAP and 
baseline homes. Evaluating the fitted model with these assumptions resulted in the 
mean annual consumption values and differences between baseline and MAP home 
values (kWh) shown in Table 4.5. 
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TABLE 4.4. Weather Assumptions Used in Sample Home Estimates 

Weather characteristic 

H D D ~ ~ I  

CDD'~'  

1 

4834 

22 

Climate zone 

2 3 

(a) CZs 1,2, and 3 are represented by data from Seattle, Spokane, and Missoula, respectively. 
We note that the HDD in Missoula are less than the threshold defined for CZ 3. Nevertheless, 
Missoula has been used routinely by the Northwest Power Planning Council to represent CZ 3. 
Cooling degreedays are qalculated from National Oceanic and Atmospheric Administration 
"normal" daily temperatures, Le., long-term averages for each day of the year. These normals 
comprise an unnatural "year" in that there are no extreme highs or Im. Thus, the degree- 
days used for these regressions and for projecting savings differ substantially from those 
calculated from data more' representative of an actual year, such as Typical Meteorological 
Year (TMY) data. 

(b) 

The comparisons revealed that 1) the modelS consumption estimates were higher than 
the billing data values in all cases and 2) the amount that thezonsumption estimates 
from the model exceeded the billing data values was much larger for the baseline homes 
'than for the MAP homes. One consequence of these results was that the differences 
between the baseline and MAP home consumption estimates from the model were 
consistently higher than the billing data differences. 

We investigated these differences to determine what factors accounted for them. A 
major reason that the consumption estimated by the model exceeded the billing data 
values was that the weather during the billing period was about 10% warmer than the 
long-term average weather. Estimates from our model were all based on long-term 
weather data as they should be for program evaluation purposes. 

A second reason that the model was likely to produce consumption estimates exceeding 
the billing data values was that we did not attempt to adjust our model estimates for the 
effect of occupants being gone during billing periods. Including the value of in Table 
4.3 would reduce our consumption estimates a few hundred kWh per year. We did not 
attempt to include this effect, however, because we did not have adequate data to make 
an aggregate adjustment for it. 
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TABLE 4.5. Comparison of Regression Model Estimates and 
Billing Data Without Adjustments, kWh/year 

. \  

Baseline homes 

Billing Model 
data estimate 

16,800 18,540 

18,500 22,390 

.19,300 23,770 

17,600 20,380 

. 

MAP homes Difference 

B i I I i n g Model Billing Model 
data estimate . data ’ estimate 

14,500 15,600 2,300 2,930 

17,lOO 18,490 1,400 3,900 

I9,lOO 20,270 200 3,490 

15,800 17,040 1,800 3,340 

Climate Zone 

1 

2 

3 ’ .  

Region 

II Note: Estimated conductive U,B of sample baseline homes were 0.101, 0.093, and 
0.078 in CZs 1,2, and 3, respectively. 

The third, and main, reason that the model produced relatively higher consumption 
estimates for baseline homes than MAP homes was that baseline homes were more 
likely to use non-electric backup heat. We used the mean proportion of heating system 
types to produce our model estimates for both baseline and MAP homes. For baseline 
homes, the proportion of homes with non-electric backup heat in the sample would be 
higher than the proportion we used in our model estimates. Consequently, the modelk 
consumption estimates for baseline homes would be higher than the values from the 
billing data. Because the differences between the use of non-electric heat in MAP and 
baseline homes observed in our sample appeared to be artifacts of the sample, we used 
the average proportions for the combined sample to estimate electricity consumption. 

\ The available data did not permit us to adjust our model estimates consistently for these 
. three factors. We were able, however, to make some partial adjustments to estimate the 

effects. These tests showed that with these three adjustments the model would produce 
consumption estimates within about 3% of the billing data values. This demonstrated 
that the model replicated the measured consumption values very closely. It also showed 
the significance of non-electric heat and weather characteristics in efforts to estimate 
electricity consumption. 

* 

I 
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4.4 DISCUSSION OF REGRESSION COEFFICIENTS 

In this section, we discuss the individual regression coefficients and how they compare 
with our expectations. Most of the coefficients in the model are consistent with 
expectations in terms of sign, although not necessarily in terms of magnitude. Except for 
the UA*HDD terms, which are the primary coefficients of interest, our concern for the 
coefficients is that they appropriately normalize between the two samples for 
consumption determinants not explicitly associated with the MAP program. We kept any 
term in the regression for which the estimated coefficient had the expected sign, without 
regard to its magnitude. 

lncome. The coefficient for low-income households (a,) shows a reduction in annual 
electricity consumption of about 1,000 kWh relative to a middle-income household. A 
high income (a2) is associated with an increase of about 800 kWh/yr. 

Dayfime occupancy. Homes that are occupied during the day (a;) show annual 
consumption about 1,800 kWh higher than homes in which all occupants are gone 
during the day. The direction of this effect is as expected, but the reasonableness of the 
estimated magnitude is difficult to judge. Homes occupied' during the day are expected 
to consume more energy for lighting, cooking, water heating, and other miscellaneous 
uses, but they are also expected to have a lower incidence of daytime thermostat 
setback. This latter effect is not best modeled by a simple indicator variable; however, 
nesting the HDD slope terms within the daytime occupancy variable would considerably 
complicate the already-nested model and the interpretation of its coefficients. The 
fraction of homes occupied during the day is approximately equal in the two samples. 

Appliance Inventories. All appliance count coefficients have the expected positive sign 
indicating additional consumption. Two of the coefficients--waterbed heaters and 
clothes washers/dryers (a4 and a, ,)--have very large standard errors, but were retained 
inthe model because of a strong expectation of a non-trivial impact on consumption. 
The remaini.ng appliance coefficients are at least moderately significant and are 
discussed below. 

Computers (a5) - Presence of a computer in the home increases annual 
consumption by about 1,000 kWh. This is roughly equivalent to a 11 5-Watt device 
running 8760 hours per year. Because this value is larger than the computer 
alone is likely to consume, this term may be acting as a proxy for other end uses. 

Refrigerators and Freezers (a, and a7) - The refrigerator coefficient implies an 
annual consumption of about 850 kWh. This estimate is relatively close to the 
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average for new refrigerators sold in 1992, lying between the sales-weighted 
national average consumption for the two most common refrigerator types sold, 
top-mount freezer and side-by-side refrigerators.'"' Because over 90% of new 
manufactured homes in the Pacific Northwest come equipped with refrigerators 
and they are likely to be smaller than those in site-built homes, this estimate 
appears to be reasonable. However, it is likely that the virtual lack of variationin 
this variable (nearly all homes have exactly one refrigerator) results in a distorted 

. coefficient in this relatively small sample. The freezer coefficient indicates that 
each freezer increases annual consumption by about 800 kWh. This is slightly 
more than half the estimates from Bonneville3 Regional EndUse Metering ' 
Program, REMP (Cahill, Ritland, and Lin-Kelly, 1992), but the higher efficiency 
levels of newer freezers and smaller sizes might explain the smaller consumption 
estimates from our analysis. 

Septic and Well Pumps (a, and a,) - Assuming 2.5 occupants, these coefficients 
imply annual consumption of about 1,500 kWh for septic pumps and 900 kWh for 
well pumps. 

Dishwashers (alo) - Presence of a dishwasher implies an additional annual 
consumption of about 1,300 kWh, assuming 2.5 occupants. The vast majority of 
this is expected to be differential hot water consumption. Average measured 
consumption of the dishwasher itself under REMP was only about 120 kWh/yr. 

r 

Water heaters (al2) - Although we expect hot water consumption to be a stronger 
function ofnumber and type of occupants than number of water heaters, we find 
a significant coefficient indicating about 4,400 kWh/yr per water heater. This 
value is extremely close to the average household electricity consumption by 
water heaters of 4,700 kWh/yr measured in REMP. However, because very few 
homes in our sample have more than one water heater, this correspondence is 

. likely fortuitous. 

Coo/ing Degree-Days. The coefficient on cooling degree-days (al4) of 1.34 implies that 
cooling is responsible for a very small fraction of weather-related electricity consumption. 
The average'number of annual cooling degree-days experienced by the homes in our 
sample is only 141 , implying an annual cooling energy consumption of less than 200 
kWh. It is interesting that the marginal effect on the cooling slope coefficient of a home5 
being located in CZ 1 (al3) is I .66, which more than doubles the effective cooling slope 

(a) Personal communication, July 8, 1995, Association of Home Appliance 
Manufacturers (AHAM), Chicago, Illinois. 
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in that region. This is not unexpected considering that outdoor temperature effects are a 
relatively small determinant of cooling needs compared with solar and internal heat 
gains. Because CZ 1 has extremely small values of annual cooling degree-days, the 
amount of cooling per degree-day is higher in that region. 

Heating Degree-Days. As expected, the coefficients for the terms that incorporate UA 
and HDD are between zero and one, and they vary as a function .of the type(s) of heating 
system present in the home. Electric resistance-only homes have a coefficient (a,*) of 
0.743; homes with electric resistance plus wood as a backup system have a coefficient 
(a,9) of 0.41 8; and homes with electric resistance plus some other type of backup 
system have a coefficient (a2o) of 0.291. As expected, coefficients for heat pump homes 
are lower, indicating the higher efficiency of operation. Heat pump-only homes have a 
coefficient (a23) of 0.583, while homes with a heat pump and -wood back-up heat have a 
coefficient (az4) of 0.196. 

Somewhat contrary to expectations, MAP homes have .a consistently positive and 
statistically significant incremental slope value. To facilitate viewing this, Table 4.6 shows 
the baseline UA*HDD coefficients and the MAP coefficients (obtained by adding the 
baseline coefficients and the MAP coefficients). 

The clear effect of MAP is to increase heating energy consumptiqn relative to what would 
be expected from a simple UA*HDD calculation for'a baseline home with a similar UA. . 

Another way of stating this is that the effective UA of a MAP home tends to be higher 
than engineering calculations would suggest, or the effective UA of a baseline home 
tends to be lower than calculations would suggest. There are several possible 
explanations for this. 

First,,the model usesthe assumption that the response to HDD is linear and proportional 
to UA. This is not necessarily correct over the entire HDD range, however, because the 
balance temperatures of many of these homes are likely to be less than 65OF, the 
reference temperature used here to calculate HDD. There are conditions for which 
monthly HDD (base 65OF) exceeds zero, yet no heating occurs. Our model fits a slope 
to all these observations. It is likely that the fitted slope is estimated to be higher for MAP 
homes because the effect of these non-heating conditions is more pronounced. 
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I TABLE 4.6. Baseline and MAP Home Heating Coefficients by System Type 

- Baseline MAP 

w/ wood backup 

w/ other backup 

Heat Pump 

only 

w/ wood backup 

Second, MAP homes may be influenced more than other homes by the effect of 
ventilation on heating energy consumption. The MAP specifications require installation 
of a whole-house ventilation system capable of delivering from 45 cubic feet per minute 
(CFM) (I-bedroom) to 90 CFM (4-bedroom) of exhaust air controlled by a 24-hour timer. 
Baseline homes have no similar ventilation requirement. However, because we have no 
information regarding the actual use of such ventilation systems, the UAs included in the 
regression equation do not differentiate infiltration between MAP and baseline homes. 
To the extent that MAP homes have higher air exchange rates due to mechanical 
ventilation than baseline homes, we would expect the UA*HDD regression coefficients 
for MAP homes to be higher. 

0.41 8 0.459 

0.291 0.613 

I 0.583 0.770 

OS 96 0.908 

Although the average magnitude of this effect is not known, the energy-use effect of 
mechanical ventilation can be significant. A 90-CFM fan, for example, could increase the 
effective UA of a MAP home by about 50% when it operates. A crude estimate of the 
annual heating effect (in kWh) can be obtained by multiplying the additional UA by the 
heating degree-days for a location. For example, a 90-CFM fan would increase the 
home’s UA by almost 100 Btu/hr-OE If the fan runs 8 hours every day in Spokane, one 
might expect the additional annual heating load (kWh) to be as much as 

Third, many home owners practice a form of zoning by shutting off certain rooms-- 
usually unused bedrooms--during part of the day or even all year. The effect of this 
behavior is to lower the effective UA of the home as seen by the thermostat. The heat- .. 
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flow resistance from the thermostat to the outdoor air includes the doors and partition 
walls of the closed-off rooms. The prevalence of this practice in the MAP and baseline 
homes is not known. However, it can be shown that this zoning effect is present to 
some degree even in homes where it is not actively practiced. Whenever the HVAC 
system fan is not running, there is an additional resistance to heat flow between the 

sthermostat and the outdoor air because of the distance to the ends of the home. The 
calculated UA of the envelope is biased upward because it does not account for this 
added thermal resistance. 

This implicit zoning effect is present to some degree in all homes, but It can be readily 
shown that the fractional reduction in UA is considerably smaller in a better-insulated 
(e.g., MAP) home than in a less-insulated (e.g., baseline) home. This effect is similar to 
the well-known diminishing-returns effect of an increment of insulation having less value 
when added to an already well-insulated structure than when added to a poorly-insulated 
structure. The reduced effectiveness of this implicit zoning in a MAP home would 
manifest itself to the occupants as a more uniform temperature throughout the home. 
This added amenity is often mistakenly attributed to occupant take-back effects, but it is 
purely a consequence of thermal physics, not any change in occupant behavior. 

The magnitude of the effect is difficult to estimate,-given the large variations and 
uncertainties in home layouts and occupant behavior. Miller and Pratt (1990) have 
shown that the effect of active zoning can be significant, reducing the benefits expected 
from a conductive UA change by anywhere from 15% to over 50%, depending on the 

. number of rooms closed off by the occupants. 

4.5 ‘DISCUSSION OF MODELING ISSUES 

The cross-sectional obsewations underlying our estimation of the model parameters can 
give rise to heteroskedastic--or non-constant variance-error terms across units. While 
O B  estimators of the slope coefficients are unbiased in this situation, the estimates of 
the standard errors are not. Weighted least squares methods can be used to transform 
the model so that the classical least squares properties result and the least squares 
estimator is minimum-variance, as well as unbiased. 
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By conventional tests,'"' evidence of non-constant variance in our analysis was 
inconclusive. We examined two generally recognized techniques for this diagnostic. 
First, weighted least squares regressions of the basic model represented in Equation 

' (4.2) were examined with income levels and occupancy level as weighting variables; 
these are customary factors that can account for a non-constant variance in dependent 
variables such as usage. We found only very slight differences in the resulting slope 
coefficients for all variables. Second, we used a straight-forward "robust" least squares 
procedure. This estimator attempts to correct for non-constant variance without a 
weighting variable by using normalized residuals to produce a consistent estimate of the 
model variance. This procedure also produced only a small reduction in the estimated 
model variance and estimated standard errors on the coefficients, in particular for the 
space heat related variables. Without more refined analysis of this issue, it appears that 
while heteroskedasticity may be present, it is not a significant concern in this model. 

In the course of the initial least squares estimation runs of the model in Equation (4.2), 
serial correlation in the model's disturbance terms was a persistent outcome. Although 
least squares regression in this instance still possesses the desirable properly of 
unbiased estimated 'coefficients, the estimator of the variance of the coefficient estimate 
is biased downward. The most suitable estimation procedures to address this problem, 
such as maximum likelihood estimations, were difficult to implement in our sample of 
time series observations of panel data with an unbalanced number of observations. We 
employed the more direct, classical Cochrane-Orcutt procedure instead. The resulting 
estimated serial correlation parameter was similar in magnitude to that obtained in the 
analysis by Regional Economic Research discussed in Chapter 6.'b' 

* 

- 
Frequently, panel data formulated from consumer surveys can be subject to 
considerable response error. The sources of incorrect answers or response error can 
be numerous, and it is customary to pre-test the survey instrument prior to implementing 
it on the targeted sample. This was done in our study (see Sandahl, Lee, and Chin 
[I 9951). Nevertheless, it is possible that significant response error might remain, leading 
to the presence of outliers. The presence of such outliers on least squares estimates 
could have significant effects, especially on the space heating estimates, as well as the 
overall quality of the estimated results. 

To address such problems, we used a procedure called "studentized-t residuals" 
(Belsley, Kuh, and Welsch [1980]) rather than a simple screening of the residuals. The 
technique normalizes the residuals to develop a scaling factor or cut-off level. This 

(a) 
(b) 

Such as the tests due to Gleser (Gujarati [1988]). 
Personal communication with RER staff, July 1995. 
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information helps identify overly influential observations (highly "leveraged"), independent 
of the residual itself. Generally, the tradeoff is in terms of increased sample precision for 
the point estimates in exchange for lost degrees of freedom. There is the added 
limitation that the estimated standard errors are no longer of the minimum variance type, 
conventionally associated with the least squares estimator. Nevertheless, we 
implemented the procedure as a diagnostic tool to analyze whether there was a 
perceptible effect on the estimated slope coefficients. In all instances, the standard error . 

of the regression declined as expected, but this estimator changed the coefficient values 
negligibly from the unfiltered sample values. 

4.6 CONFIDENCE INTERVALS 
-c 

The estimates of energy savings attributable to MAP presented in this report and 
elsewhere typically have been point estimates. Such apparent "precision" belies the 
effects of random error that are inevitably present in impact evaluations using either 
engineering or conditional demand analyses, or other methods. Such error can 
originate in sampling error, measurement error, and error in the structural model. This 
section discusses the development of statistical confidence intervals that give some 
indication of how probable it is that energy savings estimates for the population fall within 
a range of the point estimates. This method could be applied to the estimates in Table 
4.5 and was?extended to the estimates of program savings presented in Lee et al. 
(1995). 

Our simplified method for developing confidence intervals rests on the error variance of 
the regression model. They reflect how precise our estimated heating slope coefficients 
are, given all else held constant in the usage demand equation. Using standard 
statistical procedures, the conventional 1.96 standard deviations from the mean are used 
to establish the range within which there is a 95% probability that the true value lies. 
Algebraically, the confidence intervals are defined as 

[13"" f 1.96 x S'(13'B')] x UA x HDD 

and , 

[R"M' f 1.96 x S'(13(M))] x UA x HDD 

(4.4) 

(4.5) 

where the prime denotes the coefficient estimate and the (B) and (M) superscripts 
denote baseline and MAP units, respectively. S'(t3) represents the estimated standard 
errors of the coefficients, 13, associated with each heating type in the regression model. 
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The next step is to derive the variance for the difference between two, independent 
random variates (one for baseline and one for MAP homes). Since each is assumed to 
be a random variable from a univariate probability distribution, they are independent and 
their covariance is identically equal to zero.'") In this case, the variance of a random 
variable that is the result of taking the difference is equal to the sum of the variances of 
the variables, and the expression for the 95% confidence interval for the estimated 
savings is I h 

D, $2 1.96 x [S2(b,) + S2(m,)lH (4.6) 

D, represents the difference in consumption due to MAP for heat type i in CZ j, and S2(bij) 
and S'(m,) are the variance estimates of the terms related to space heat for baseline and 
.MAP homes. 

The estimated confidence intervals for estimated savings are reported in Table 41 of Lee 
et al. (1995). The implied coefficient of variation (the ratio of the standard error of the 
savings estimate to its mean) is about 0.1 8 for homes heated with electric furnaces. For 
homes with heat pumps the ratio is 0.56, reflecting the larger variance in the 
considerably smaller sample of homes with heat pumps. 

We note that the results in Lee et al. (1995) represent model predictions at values 
different than the means of the data contained in the estimating sample. This creates no 
major difficulties, except that the theory of predictionusing regression methods indicates 
that the error varianee must be augmented with information that reflects this deviation 
from sample means.'b' Several random checks of this possibility and its impact 
revealed, however, only extremely small influences on the width of the cdnfidence bands- 
for the values evaluated. This result is the outcome of the large number of observations 
used in the regression itself and the fact that the assumptions underlying the estimates 
presented in Lee et al. (1995) fall well within the range of sample values. . 

. 

. (a) 

(b) 

If they are from a joint, bivariate distribution, they are either a baseline home or 
not, so the covariance would be zero. 
This is the source of the widening or "flared'J predicted confidence bands as 
extreme values in the set of predictors or explanatory variables are evaluated. 
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5.0 REVIEW OF PRE-PROGRAM ANALYSIS 

In this chapter, we put forth several factors that could contribute to differences between 
~ pre-program engineering consumption and savings estimates and the estimates from 
our MAP evaluation. This information may be relevant to analyses of .other programs as 
well. 

- .  - 

5.1 INTRODUCTION 

The primary purpose of this evaluation was to,assess the performance of homes built to 
the MAP specifications relative to the performance of similar non-MAP homes. Although 
not a,major objective of this study, 'it was informative to compare the evaluation results 
with the pre-program engineering estimates. 

The purpose of this exercise was twofold: to help explain differences between pre- 
program expectations and observed results, and to inform the analysis process so that 
predictions of future program energy savings might be improved. 

Predicting the performance of un-built homes is generally done with thermal energy 
simulation softyare. Such software requires the selection and input of the key thermal 
characteristics of the homes in question as well as numerous assumptions regarding 
occupant behavior and environmental influences. The pre-program estimates of MAP 
savings were based on analyses using the SUNDAY computer program (see Baylon et 
al. [1991] and Baylon and Davis [1993]). 

Selection of appropriate input assumptions to analyze un-built homes is a difficult task at 
best. It is unreasonable to expect that analysts would be able to model accurately all 
important influences on building energy consumption. When data are available, they are 
typically used to establish input assumptions for the most important variables. 
Otherwise, judgment is used to identify reasonable assumptions. 

I 

, 

In assessing the performance of homes actually constructed and occupied, it is 
impossible to measure the energy savings from a program such as MAP. Although we 
can measure the actual energy consumption of a home built to the MAP specifications, it 
is impossible to know how thermally efficient it would have been without the MAP 
influence or, even if that were known, to know how the home would have actually 
performed. Thus, evaluation of program effects involves much the same process of 
establishing assumptions as the pre-program modelling. 

. 
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Establishing the appropriate baseline for comparison is a key source of uncertainty 'in 
evaluating program savings. In this evaluation, we used a random sample of homes built 
immediately prior to implementation of MAP to represent the bqseline for initial analysis 
purposes. There is no guarantee that these homes are at the efficiency level they would 
have been had MAP or the Super Good Cents Program never been implemented. . 
Indeed, there is reason to believe that MAP and its predecessors did influence the 
design of these homes. Judgment is required to account for these effects in a 
reasonable manner. 

Once a baseline is established, its energy performance must be modelled somehow. 
However, when actual energy consumption data are available, assumptions need not be 
made for all the variables required in the pre-program modelling. The influences of 
occupant behavior, for example, are usually implicit in the models used to analyze actual 
energy consumption data. 

5.2 DIFFERENCES BETWEEN PRE-PROGRAM AND PNL ANALYSES 

This section hypothesizes some potential reasons why the MAP energy savings that we 
estimated might differ from the pre-program estimates. The two studies identified earlier 
provided information about the pre-program estimates. 

House size and component characteristics. Pre-program savings estimates 
relied heavily on assumptions aboyt house size, house component (ceiling, wall, 
etc.) sizes, and insulation levels. Baylon and Davis (1993) assumed that the 
average house had 1,568 ft2 of conditioned floor area, which exceeded the 
average we found from our survey by 6.7%. Under the simplistic assumption that 
heating energy use is proportional to shell area, we would expect pre-program 
savings estimates to exceed our findings by over 5%. 

/nfi/tration and ventilation rates. The pre-program modelling analysis assumed 
infiltration and ventilation rates were identical for MAP and baseline homes. Air 
exchange rate measurements were not available for our evaluation, so there was 
no way to either verify the pre-program assumption or quantify any suspected 
differences. However, we do know that all MAP homes are required to have 
mechanical ventilating capabilities not typically installed in non-MAP homes. As 
discussed in Section 4.4, the effect of the ventilating equipment on heating load 
can be quite large. Although there is anecdotal evidence that many occupants 
reduce the ventilating hours or disable the ventilation altogether, we expect the 
overall observed savings to be smaller than estimated by a simulation that 
assumed no difference at all between the two samples. 
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/nterna/ and solar gains. The energy required to maintain a home at a specified 
indoor temperature is the fundamental quantity computed by energy simulation 
models. That energy requirement (the "load") can be met in a number of ways- 
heat introduced by the furnace, heat generated from lights, appliances, and other 
equipment in the home, and solar gains through glazing. The heat introduced by 
the furnace is the quantity of interest. Unfortunately, in the pre-program 
modelling, converting from the calculated load to the heating energy consumption 
requires assuming a level of internal gains--the average Watts of heat generated 
by lights and appliances. Although that estimate can be based on data from .prior 
submetering studies, considerable judgment is required to establish it. Indeed, it 
is often the internal gains assumption that is the primary parameter varied in an 
attempt to match modelled results to metered results. 

The analysis of billing data does not directly indicate how much electricity is 
consumed for heating versus other internal equipment (or outside equipment). 
Our regression analysis attempts to control for non-heating electricity uses, but 
there is no guarantee that the fraction of a home's heating load met by internal 
gains is'the same in the MAP and baseline samples. It is difficult to know whether 
the pre-program assumptions tend to bias the estimates relative to actual home 
usage. 

. 

Solar gains are typically modelled based on the assumption that glazing is equally 
distributed among the four cardinal orientations, an attempt to account for the 
diversity of true home orientations. lWe have no information on home orientation, 
so cannot hypothesize regarding expected orientation biases. The differences 
that we observed in typical window areas for the MAP and baseline homes would 
probably result in our analysis overestimating MAP heating savings by a small 
amount. 

Random vacancies. This is perhaps the most important variable that is not easily 
and accurately incorporated into the pre-program modelling. Most simulation 
software, including SUNDAY; assumes that occupant behavior is regular-- 
scheduled consiste.ntly from day to day, month to month. The pre-program MAP 
estimates are based on an assumption consistent with a house that is conditioned 
year-round, albeit with a night thermostat setback. In reality, some occupants do 
not set back their thermostat, while others set it back at night and during the day 
when unoccupied. People take vacations, during which they usually turn back the 
thermostat and may even turn off the water heater. 

I 

Our understanding of the semi-random nature of occupancy (daytime vacancies,, 
vacations, etc.) is insufficient to allow quantification of its effect. However, 
because the pie-program modelling assumptions did not account for any 
'extended vacancy periods, we expected that the effect of random vacancies 
would be to lower heating energy consumption relative to the engineering , 
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estimates. Our evaluation methodology attempts to control for such vacancies in 
a simplified way, but the diversity of such behavior is not easily treated in a simple 
regression analysis. There is undoubtedly some influence of random vacancies 
implicit in the heating coefficients of our regression. 

Zoning. As with random vacancies, we have no data quantifying the extent of 
zoning practices in the homes under study. But many residents do close off 
some rooms or otherwise arrange to heat only portions of the home at any one 
time. Additionally, as discussed in Section 4.4, there is an implicit zoning effect 
resulting from the distance from a home3 thermostat to the outer walls. While we 
cannot quantify this effect, neglecting it in the pre-program simulations very 
clearly results in an overestimation of MAP heating-savings. 

, 

Thermostat settings. It has often been postulated that owners of higher- 
efficiency homes will "take back some of the potential'energy savings by raising 
thermostat settings in response to a perception of less cost impact. Whether this 
happens in MAP homes is unknown.'"' But if present, the practice clearly would 
reduce program savings relative to engineering estimates because the pre- 
program simulations assumed the same thermostat setpoint for both MAP and 
non-MAP homes. 

A second, and probably more significant, issue is that the pre-program 
simulations assumed a constant thermostat setpoint instead of separate settings 
for daytime and nighttim-e. The constant setpoint chosen was a weighted value 
intended to represent the average daily setpoint behavior of large numbers of 
homes, some of which practice night setbacks and some of which don't.. The 
same average setpoint was assumed for both MAP and non-MAP homes. 

Assuming the same constant setpoint for both samples introduces a bias into the 
pre-program estimates of energy savings. A constant setpoint causes SUNDAY 
to assume that the home is held at that temperature at all times during the heating 
season. However, if two homes, one heavily insulated and the other not, practice 
exactly the same thermostat schedule that includes a night setback, the heavily 
insulated home will maintain a higher average temperature than will the other 
home. When the thermostat setting is lowered at night, the temperature in the 
well-insulated home will decay more slowly than in the other home. So it is an 
error to simulate with a single constant (average) temperature as a proxy for a 
more complex thermostat strategy when homes of differing thermal conductance 
are involved. . ,  

Thermostat setpoint and setback survey data suggested that occupants of MAP 
and baseline homes behaved almost exactly the same. 
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To attempt to quantify the potential magnitude of this bias, we conducted a simple 
test using the SUNDAY software. Two prototype homes were designed to 

. approximately represent non-MAP (UA=404 Btu/hr-O F) and MAP (UA=235 
Btu/hr-OF) homes. Each was simulated with the same night setback thermostat 
strategy (68 O F  with 8-hour night setback to 60° F) to compute annual heating ' 

consumption. We then identified (iteratively) the constant thermostat setpoint for 
each home that would result in the same annual heating consumption. The 
results are shown in Table 5.1. Depending on the climate, the "MAP" home3 
average temperature (equivalent constant setpoint) is between a half degree and 
one degree higher than that of the "baseline" home. If this is not accounted for in 
a constant-setpoint simulation, the effect is always to overestimate the heating 
savings of the MAP home. The savings error ranges from 3.1% in Spokane, to 
over 10% in Seattle when the setpoint appropriate for a MAP home is used in 
simulating both homes. 

Seattle 

TABLE 5.1. 

8,699 I 3 , 277 

Variable 

Spokane 

Seattle 

Heating load with setback strategy 
(kWh) . 

12,071 5,057 

65.78 66.56 Constant setpobt that results in the 
same heating load as the setback I 

strategy ( O  F) 

Heating load error when simujated 
at the other home's equivalent 
setpoint (kWh) 

Heating load error at other setpoint 
("3) 

Spokane 

Seattle 

Spokane 

Error in calculated heating savings . 

("3) 

65.48, 66.1 1 

565 -253 

421 . -218 * 

, 

Seattle 

Spokane 

Setback Effects 

6.5 -7.7 

3.5 -4.3 

Seattle 

Spokane 

10.4 4.7 

6.0 3.1 

I '  5.5 '. 
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5.3 CONCLUSIONS 

We have discussed a number of modelling and evaluation factors and assumptions that 
could cause discrepancies between the pre-program savings estimates and our billing- 
data based estimates. Most bias the initial savings estimates upward, which is 
consistent with our findings. Because most of the specific effects are difficult to quantify, 
however, the overall anticipated bias cannot be calculated. Several of the effects could 
have a potential impact on savings in the 5% to 10% range. If these effects were 
compounded, they might explain much of the apparent discrepancy between our 
findings and the initial pre-program estimates. 



6.0 REVIEW OF UTILITY EVALUATION ANAlYSlS 

Regional Economic Research (RER) conducted an evaluation of MAP (the, "IOU study") 
covering a time period similar to the period that we studied (RER 1994). It analyzed 
electricity usage in both MAP and control homes within the service territories of three of 
the region3 investor-owned utilities (l0Us)--Portland General Electric, PacifiCorp, and 
Idaho Power Company--that participated in MAP. The study employed both engineering 
estimation and econometric estimation using a conditional demand model. 

This chapter serves to put both the IOU study and PNL analysis in a common context, 
given their obvious analytical and sample similarities. The primary intent of doing so is to 
see if additional insights and lessons can be learned for understanding household 
electricity consumption, in general, and conservation program impacts, in particular. 
This discussion is not intended to deem the superiority of one study over the other, 
inasmuch as a more thorough assessment of the studies would be required and 
limitations on project resources, work scope, and data served to constrain both research 
strategies. 

6.1 OVERVIEW 

This review of the IOU study addresses three general areas. First, it discusses the IOU 
study and the PNL analysis (as developed in detail in Chapter 4) within the broad 
taxonomy of models used to explain household electricity demand and to assess the 
impacts of programs such as MAP. Second, it examines the mechanics of the particular 
model formulated in the IOU study. This serves to highlight some of the features that 
distinguish the IOU and PNL studies and helps explain the differences in the results 
produced by the studies. Third, this review compares and contrasts the models in terms 
of their implications for non-space conditioning end-uses. These comparisons can 
provide additional insight into the extent to which the reliance on billing data (which 
aggregates across all end-use demands) can blur end-use differences, even though 
space heating and other end-uses can be treated independently.'"' This review chapter 
also serves to alert the reader to the fact that misspecifications and omitted effects in 
either study, across the range of end-uses, could be the source of bias in the resulting 
program savings estimates, or at least account in part for differences in the estimates. 

(a) Significant exceptions to this independence exist. For instance, internal heat 
' gains from appliances could lower space heat energy consumption slightly, but 
nevertheless systematically, over the seasons. 
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All residential energy demand econometric models rest on the distinction that energy 
use is a derived demand: units of electricity do not yield utility to the household directly. 
Instead, electricity is demanded as an input into household activities that provide direct 
benefits. For example, the entertainment provided by a TV is demanded directly, but the 
demand for electricity to power it is a derived demand. 

. Conditional demand analysis (CDA) pursues this logical structure by explicitly identifying 
all energy using appliances and equipment in a dwelling to account for total eneigy 
usage.. . Early CDAs, constrained primarily because of limited survey information on 
household characteristics, were simply analysis of covariance models (for example, Parti 
and Parti [1980]). With more robust sample information on appliance stocks and 
household demographics, recent approach.es more fully represent the derived demand 
and the factors that affect it. Recent studies permit analyzing the utilization rate of an 
appliance, and the energy it consumes, taking into account the effect of prices, income, 
household demographics, the structure's physical configuration, and climate factors. 
Both the "thermal-behavior integrated" and "statistically adjusted engineering" (SAE) 
models specified in the IOU study are of this variety, as is PNL3 model."' 

Adopting the notation employed in'the IOU study for discussion purposes, we let the 
following represent the essential elements of the ith household5 electricity usage in 
period t (with an underscored variable indicating a vector or array of elements): 

\ 

kWhj,t = electricity use in ith unit in period t . 

AF. = appliance types, differentiated by features, in household i 

EDC, = economic and demographic characteristics of the ith unit 

- 
WCi,t = weather influences at the ith site in period t 

Si,k = the presence of the Mh appliance type in the ith unit 

&,t = a randomly distributed disturbance term for the ith unit at t. 

' 

The traditional CDA model is then summarized as I 

(a) While the IOU study specified and estimated two CDA models, the SAE model 
is used as the preferred model for evaluating program impacts. For this. 
reason, we do not discuss the thermal-behavior integrated model further. 
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Since the usage from a given appliance or end-use is the result of the utilization rate for 
the item, the functions fa have essentially a UEC (unit energy consumption) 
interpretation. Simplified CDA specifications designate the UECk as a fixed parameter or 
constant. The ftk) in Equation (6.1) generalizes the UECs to be functions of a broad 
range of factors. 

SAE versions augment this CDA with extraneous information developed from 
engineering studies. Using the notation of the traditional CDA model from above, the 
SAE model can be written generically as 

kWhi,t = ao,i + 13, x x Si,, + E'klZ.n f'" x Si,k + fi,t I (6.2) 

s where is the extraneous information in the form of an engineering analysis estimate 
of space heat energy consumption-for the heating type (k=l). The estimated 13, 
coefficient "adjusts" the heating load based on the actual total load of the household,, 
including both space conditioning and non-space conditioning uses. A value of a, equal 
to unity indicates no adjustment to the engineering estimate, while an estimate of 13, less 
than unity indicates that the engineering estimate overstates actual space heat usage. A 
value greater than unity suggests that the engineering estimate underestimates the 
space heat use embedded in the actual billed usage and, therefore, the engineering 
estimate would have to be adjusted upward to be consistent with observed behavior. 

, 
Typically, engineering estimates tend to overstate space heating usage in houses 
because behavioral elements that partly determine actual usage are absent in the strict 
engineering simulations. Physical phenomena not adequately modeled in most 
simulations also can contribute to overstated space heat usage. As a result, one would 
normally expect to encounter a B,-estimate that is less than unity.'"' 

An SAE formulation strives to combine the best of both the engineering and the more 
behaviorally oriented CDA approaches. The strength of the pure engineering models 
lies in the rigorous representation of the thermal physics of the building. CDA models . 
permit the explicit incorporation of behavioral responses to a wide range of economic 
and demographic factors, something that the engineering formulations are not intended 
to do. However, special care and assumptions are required for this integration of the 
two to produce reliable program evaluation results: 

Chapter 5 discusses some of the mechanisms that tend to bias engineering 
model estimates of space heat loads upward. 
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6.2 IMPLICATIONS OF THE UTILITY STUDY APPROACH . 

' The IOU study departs some from this general SAE framework. Adopting again some of 
the study& notation for purposes of convenience, the formulation starts out as 

where 

EEBASi,t = 
I timet 

the engineering simulation predicted usage for the ith MAP unit at 

EECTR4,t = the engineering simulation predicted usage for the jth control house 

DMandD, = dummy variables denoting the house type, MAP or control, 
respectively. , * 

The two coefficients, k, and I,, are the estimated adjustment coefficients that scale the 
engineering predictions for both housing types to actual billing usage in the SAE models 
framework. As discussed above, k, and I; would be expected to be less than unity in 
practice and very possibly different from one another. For a number of reasons relating 
to both behavioral factors and physical ones, k, is likely to be greater than I,; that is, the 
engineering space heat estimates for a control home are likely to be farther away from 
the. SAE estimate than for a MAP home."' 

. .  
The IOU study makes .a novel departure from this general formulation. It decomposes 
the predicted space heat electricity consumption for a control house (EECTRL) into two 
components: 1) the predicted consumption had the control house been built to MAP 
specifications and 2) the difference between this value and the predicted consumption 
for the house as built. The second term is a measure of predicted electricity savings. 
Denoting these respectively as EEBASCj,t and EESAVj,t, the identity is 

Behaviorally, takeback effects could contribute to this relationship, but takeback 
affects on k, and EEBAS, not control houses. Takeback effects occur in 
efficient homes if the reduced energy service costs cause consumers to "buy- 
back" more electricity because of the price elasticity in the household's demand 
relation for electric heat. If present, this effect would tend to increase electricity 
use for space heat. 

. 
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EECTRl-j,t = EEBASCj,t + EESAVjj, 

Climate Zone 

cz 1 

c z 2  

Inserting this into Equation (6.3) above produces 

PNL Estimate'") IOU Study Estimate'b' 

2,524 996 

3,522 1,513 

kWhj,t = ao,j + k l  x EEBASj,tX DM + I1 x (EEBASCj,t + EESAVj,J x Dc + ... (6.5) 

cz 3 

The-IOU study estimates this model rewritten as shown in Equation (6.6). This equation .* 
effectively establishes a coefficient restriction that kl = I l  , but the coefficient on EESAV is 
estimated freely. 

~~ 

4,015 I ,788 

kWhi,t = ao,i + k1 x (EEBASj,t x DM + EEBA& x Dc) + 
I l  x EESAVj,, x Dc + ... 

6.3 DISCUSSION OF THE UTILITY STUDY RESULTS 

Table 6.1 compares the MAP savings estimates from the CDA results of the PNL study 
and the IOU study. For consistency, the estimates are for homes heated with electric 
furnaces only and the baseline homes is assumed to be built to thehew HUD code. For 
the PNL estimate, the results are from the "Third-Tier Analysis" discussed in Chapter 4. 
For the IOU study, the results originate from the SAE specification. Under these 
conditions, the savings estimates reported in the IOU study are only a little over 43% of 
the PNL estimates. Given the broad methodological and sample similarities, the 
disparities are substantial and they can affect significantly the impact assessment of 
MAP. 

TABLE 6.1. Comparative Estimates of MAP Savings (kWh/yr) 
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Table 6.2 displays the estimated parameters from the IOU study, by heating system 
type,>which lead to the savings estimates presented in Table 6.1. The estimated kl value 

. of 0.92 for electric resistance heat, with no backup heat, suggests that the engineering 
simulation overstates usage of both MAP and control houses by 8%. The estimated I,, 
or "realization" rate, of 0.27 implies that the savings estimated by the engineering model 
overstates savings by a factor of nearly four, compared with the SAE results. I 

Notwithstanding behavioral elements such as takeback, the study authors view this as a 
substantial deviation from the a priori expectation that k, and I l  should be approximately 
,equal if the'simplified engineering model were correct (RER'[1994, page 3.221). The 
study authors attribute this disparity largely to household takeback effects. 

Heating System k,, Heating coefficient 

Electric resistance, no 0.92 
backup 

Electric resistance, wood 0.61 
backup 

Electric resistance, other 0.74 
backup 

Heat pump, no backup 0.73 

TABLE 6.2. Estimated SAE Parameters from IOU Study 

I,, Savings coefficient . 

0.27 

0.32 

0.45 

0.26 

- However, there are other reasons, related to the SAE model formulation, that may help 
explain these surprising results. The first two are related to the aforementioned 
restrictions imposed on the regression coefficients. . 

First, if the constraint of equal adjustment coefficients for the EEBAS and EEBASC terms 
i s m  true, econometric theory indicates that the estimate of k, is biased (Judge et al. 
[1980]). Our preliminary review suggests that the coefficient is biased downward. The 
restriction could be tested fairly easily, but judging from the results in Table F-6 of RER 
(1994) it is probably not a binding constraint. Imposing the constraint, if it is not true; 
probably introduces a small amount of bias. 
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The second observation is essentially an extension of the first. If one were to "unbind" 
the coefficient on the predicted usage of a control house hypothetically built to MAP 
requirements, then it should be constrained to equal the coefficient on EESAV by virtue 
of the implicit decomposition identity in Equation (6.4). The direction of bias in the 
realization coefficient would be downward if the restriction, if true, were ignored. 
Applying the constraint would increase the realization rate (I,), making it larger than the 
estimated values in Table 6.2. 

The third factor that may contribute to the small electricity savings realization rate implied 
in the IOU study relates to the role played by the EESAV term. The EESAV variable, in 
part, accounts for factors and end-uses not included explicitly in the model. Thus, it acts 
like a balancing quantity or a residual, and typically these can be very susceptible to 
error. In this instance (where engineering models have a known tendency to overstate 
expected energy savings), the problem may be considerable. This is commonly called 
an "error-in-variables" problem in econometric modeling. Under the presumption here 
that it is manifested predominately in only the EESAV variable, econometric theory 
indicates that least squares estimators of its coefficient are likely to be downward biased 
(Maddala [1977], and Judge et al. [1980]). 

Aside from likely takeback effects, the energy savings realization coefficient in the IOU 
study5 SAE model may suffer from one or more of these three sources of bias. The 
essential point raised here is that the probable direction of bias on the realization 
coefficient is downward in all three instances. Our intent is to illuminate this issue and 
not to declare that one model possesses sources of bias and the other is free from them. 
Sophisticated CDA models are rarely, if ever, completely free from all sources of bias, 
.and the PNL specification is unlikely to be an exception in this regard. Instead, since the 
realization coefficients play such an important role in the SAE methodology, 
considerable attention on biases here is warranted from a research standpoint. Other 
than speculation, there is little that can be done to determine the significance of these 
potential biases without further analysis. 

Although the SAE formulation in the IOU study offers significant advantages, the results 
presented in the study and the points raised above suggest that further research should 
be conducted to refine the method for this type of application. More investigation of the 
SAE construct, as'well as further estimation of CDA formulations, should be pursued to 
resolve some of the disparities in the research outcomes to date. 
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6.4 COMPARISON WITH PNL STUDY RESULTS 

A convenient means of partially comparing the results from the IOU study and P N k  
model is through the'estimated UECs for the appliance stocks found in manufactured 
houses in the region. These non-space-conditioning end-uses provide useful 
benchmarks. Because their load shapes can reflect seasonal variations, they are not 

. , , entirely independent of space heating estimates. With simultaneous estimation of all the 
UECs, it is very possible that differences in non-heat end-uses could affect the heating 
coefficients of both models. If the non-heat results are largely comparable, this would 
help reduce concerns about different biases in the models. Similarity between the 
results would also diminish possible 'concerns about the representativeness and 
measurement from both sets of sample data. 8 

Table 6.3 compares the estimated UECs from the IOU study with PNk  estimates. In 
addition, for a broader comparison the table shows the average across several other 
CDA studies at the national level and for the Pacific Northwest. The latter two are from a 
compendium'report for the Electric Power Research Institute (EPRI) by Lawrence and 
Parti (1984). The composite results represent older studies (late 1970s and 1980~)~ as 
well as a wide range of housing types. 

Generally, the UEC estimates from the IOU study SAE model and ourCDA model are 
similar. For kitchen appliances, the estimates are comparable, albeit the IOU study9 

. estimated refrigerator UEC is less than half of our estimate. Our estimate of the 
washer/dryer UEC is much smaller than the IOU study estimate; however, both 
estimates appear to suffer from the problem of multicollinearity.'"' The appliance 
category of 'Auxiliary Pump'' includes pool, spa, and well pumps in the IOU study 
specification, while the PNL model estimated effects of only well pumps and septic 
pumps.'b' 

, 

(a) The coefficients for the independently estimated washer and dryer appliances in 
the IOU study model appear to be simply a linear combination of each other. 
This can occur when variables are highly correlated, which is probable for 
complementary ,appliances such as these. 
Recreational equipment pumps such as for pools, spas, and hot tubs were 
estimated, but the coefficient was consistently negative. This was counter to 
our a priori expectations and this term was deleted from the final estimating 
.equation. 

(b) 
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. TABLE 6.3. Comparison of UEC Estimates (kWh/day) 

N A  not estimated or not available. Note that P N k  intercept term is related to the "Miscellaneous" 
load, but k p s  slightly negative and not statistically significant. 

In sum, there appear to be only modest differences between the models in terms of their 
estimates of specific non-space conditioning end-uses. Therefore, to the extent that 
estimated UECs for space conditioning and other end-uses are interdependent, 
differences between our space heat savings estimates and those from the IOU study do 
not appear to be driven by differences in non-space heat estimates.'") 

(a) The thermal-behavior integrated model (TBI) advanced in 1 parallel with the SAE 
model in the IOU study is probably a closer "substitute" for the CDA 
specification adopted in our analysis. In this regard, the inferences for the 
estimated UECs largely still hold, with the exception of the electric water heat 
estimate. Here, the IOU study TBI model estimates a very low UEC (nearly 
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Comparing the IOU study and our study with the other UEC estimates, the differences 
are typically larger, although fewer pairwise comparisons by appliance types are 
possible. Generally, the other studies (summarized in the last two columns of Table 6.3) 
indicate considerably higher UECs for the end-uses presented. This is probably due, in 
part, to significant appliance efficiency improvements that have occurred in the past 
decade. 

6.5 CONCLUSIONS 

This chapter highlights the common methodological origins of both the PNL and IOU 
study approaches. It also discusses differences in the approaches that might account 
for some of the differences in the results produced by the two methods. Similarities in 
the samples and variables used in the two approaches minimize the likelihood that 
characteristics of the samples or variables used in either study could account for much 
of the difference in the results. 

Our examination of the restricted SAE specifications, as used in the IOU study, flags 
some possible sources of bias. If the biases exist, our review suggests that they would 
all tend to diminish the apparent realization rate. Because of fundamental differences in 
the approach, the PNL analysk is not likely to share exactly these same biases. 
Although biases are likely to be present in the PNL model (Chapter 4 discusses several 
possible sources), the biases explored here are linked to features unique to the IOU 
study approach. Consequently, they may be one source of differences between results 
from the two studies. 

Our review of estimated UECs for non-space conditioning end-uses shows that the two 
studies produce fairly similar results. Because the differences that are observed are 
relatively small, they do not appear to be a major factor in explaining the substantial 
differences in energy savings estimated by the two studies. 

I 

42% lower than our CDA estimates and about 6!& lower than the IOU's study 
SAE model results). Given the inherent seasonal behavior of this type of usage, 
the IOU study's higher MAP saving estimates with the TBI specification should 
be expected. 
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’ 7.0 LEVELIZED COST ANAlYSlS DETAILS 

Conservation Capacity Seasonality On/off peak Resource 
Program adjustment adjustment adjustment tife 

adjustment 

MAP -0.03 -0.1 8 -0.02 -0.62 

- 
This chapter presents some detailed information on the levelized cost methodology used 
in this. analysis. We assessed the cost-effectiveness of MAP through a procedure 
specified by Bonneville,(BPA 1993). Bonneville determines the cost-effectiveness of 
demand-side management programs by comparing the levelized price of the energy 
saved with the levelized avoided cost of Bonneville’s alternative electricity resource. , 

Total 
system cost 
adjustment 

-0.85 

The cost-effectiveness measures we used are described in detail in Bonneville’s Energy 
Conservation Guidebook (BPA 1993). Bonneville’s methodology focuses on system 
cost: a resource’s real levelized cost plus or minus four adjustments that quantify 
indirect cost effects of a resource. These four system cost adjustments account for 
capacity, seasonality, on/off peak, and resource life, and are determined by Bonneville 
for every conservation program. Table 7S shows the system cost adjustments for MAP. 

TABLE 7.1. System Cost Adjustments in C/kWh (1 993$) 

Bonneville recommends analyzing system costs from two perspectives. The regional 
system cost is used to determine whether or not MAP, or any other energy efficiency 
acquisition program, is cost-effective for the region as a whole. Regional system cost is 
the program’s regional real levelized purchase price, including customer contributions, 
and is adjusted with the factors listed in Table 7.1. This program cost-effectiveness test 
is basically equivalent to the Total Resource Cost test, which is a benefit-cost analysis 
that compares the direct costs of a conservation program with the utility5 avoided costs. 
The regional system cost is compared with the program cost-effectiveness limit 
maintained by Bonneville. This limit is defined as the sum of Bonneville’s long-run 
avoided cost and avoided environmental cost plus a 10% Regional Act credit for energy 
efficiency programs. The current cost-effectiveness limit prescribed by the Energy 
Conservation Guidebook is 4.3C/kWh (1993$) (BPA 1993). MAP3 regional system cost 
should be equal to, or less than, this cost limit for the program to be cost-effective from 
the acquisition perspective alone. 
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The second cost perspective, Bonnevi//e’s; system cost, is based on the cost of the 
energy efficiency program (in this case, MAP) to Bonneville. It is simply Bonnevillei real 
levelized purchase price, adjusted by the factors in Table 7.1. This cost is then 
compared with the Bonneville Cost Target established in the Energy Conservation 
Guidebook (BPA 1993). For FY 1994, this target is 2.5C/kWh (1993$). The Bonneville 
publication is not explicit about how this test should be applied to specific programs. For 
our purposes, we assume that the Bonneville system cost should not exceed this target 
for MAP to be cost-effective from this perspective. 

A real levelized purchase price to be used in the cost-effectiveness analysis expresses all 
the payments for the resource as an equal payment per kilowatt-hour of energy savings 
(BPA 1993). The levelized purchase price is calculated by dividing the present value of 
all program costs by the present value of program savings. To calculate a real levelized 
purchase price, we must determine how much energy the program saves over the 
period of time the MAP measures last. Determining an accurate and reliable baseline is 
a crucial step in estimating program savings. Consequently, we dedicated considerable 
effort to establishing a sound basis for selecting the baseline used in our analysis. 

Using our estimated energy savings and incremental total costs, we calculated the 
levelized costs of energy savings for MAP homes. We used the Bonneville spreadsheet 
described earlier to analyze both the regional and Bonneville system cost. To calculate 
the finance costs and present discounted values we used the following assumptions for 
Bonneville: 

8.35% finance interest rate 

. 3% real discpunt rate 

4% inflation rate 

20-year finance term 

1993 base year. 

For the consumer, we used the following assumptions: 

E l  

10% finance interest rate 

7.2 

10% real discount rate 



0 13-year finance term 

45-year home life. 

It is important to note that the methodology in BPA (1993) does not address cost- 
effectiveness in market transformation programs. Trying to account for the effects of 
market transformation considerably complicates the assessment of program cost- 
effectiveness. Issues of ''free riders" and "free drivers" and how they affect different cost- 
effectiveness tests merit specific attention. Chapter 5 in Lee et al. (1995) discusses 
some of the cost-effectiveness implications of market transformation associated with 
MAP. A comprehensive framework for analyzing the cost-effectiveness of market 
transformation programs does not exist yet and should be a high priority for future 

r programs. 
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