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Quantifying Occupant Energy Behavior Using Pattern 
Analysis Techniques 

Ashley F. Emery, University of Washington 
Lisa M. Gartland, Lawrence Berkeley National Laboratory 

Occupant energy behavior is widely agreed upon to have a major influence over the amount of energy used 
in buildings. Few attempts have been made to quantify this energy behavior, even though vast amounts of 
end-use data containing useful information lay fallow. This paper describes analysis techniques developed 
to extract behavioral information from collected residential end-use data. Analysis of the averages, standard 
deviations and frequency distributions of hourly data can yield important behavioral information. Pattern 
analysis can be used to group similar daily energy patterns together for a particular end-use or set of end- 
uses. Resulting pattern groups can then be examined statistically using multinomial logit modeling to find 
their likelihood of occurrence for a given set of daily conditions. 

These techniques were tested successfully using end-use data for families living in four heavily instrumented 
residences. Energy behaviors were analyzed for individual families during each heating season of the 
study. These behaviors (indoor temperature, ventilation load, water heating, large appliance energy, and 
miscellaneous outlet energy) capture how occupants directly control the residence. The pattern analysis and 
multinomial logit model were able to match the occupant behavior correctly 40 to 70% of the time. The 
steadier behaviors of indoor temperature and ventilation were matched most successfully. Simple changes 
to capture more detail during pattern analysis can increase accuracy for the more variable behavioral patterns. 
The methods developed here show promise for extracting meaningful and useful information about occupant 
energy behavior from the stores of existing end-use data. 

INTRODUCTION 

Background 

Occupant behavior is widely agreed to have a large influence 
over the amount of energy used in residences. But human 
behavior is often felt to be too random for serious quantita- 
tive study. This work examines residential occupant energy 
behavior using statistical techniques and shows that behavior 
is not as unpredictable as it is assumed to be. 

Many studies of behavior on residential energy use have 
been done. One of the most prominent is the study of a 
group of townhouses in Twin Rivers, New Jersey, performed 
by researchers at Princeton University (Socolow, 1978). The 
main objective of this study was to observe occupant energy 
consumption and conservation behavior. One analysis of the 
collected data compared the energy use of “movers” and 
“stayers” during two winters. The occupants of the “stay- 
ers” townhouses remained the same for both winters, while 
the “movers” group had new occupants during the second 
winter. The researchers found the standard deviation of the 
“stayers” natural gas consumption to be twice as high as 
that of the “movers” (Sonderegger, 1977/78), indicating 
that most of the variation in energy use was due to occupant 
behavioral differences. Natural gas use between seemingly 

identical townhouses (three-bedroom, interior units with 
double pane windows) during the same winter varied by at 
least a factor of two. 

Similar studies of residential air conditioning use were done 
in Davis and Lodi, California. In the Davis study, summer 
electricity use of houses varied by a ratio of more than 2.3 
to 1 (Cramer et ai., 1984). Modeling the Davis’ buildings 
using the DOE-2 building energy model showed that self- 
reported behavioral variables, such as thermostat setting and 
appliance scheduling, explained 50% of the variation in 
energy use between houses. In the Lodi study, summer elec- 
tricity use varied from house to house by a factor of four 
(Cramer et al., 1985). Inclusion of “social” factors such as 
education level, income, number of household members, and 
knowledge about energy and the environment were found to 
improve the prediction capability of statistical regressions 
for electricity use from a reliability of 51% to 58%. 

Another study of residential energy use was part of the End- 
Use Load and Consumer Assessment Program (ELCAP) 
commissioned by the Bonneville Power Administration to 
study the energy use for space heat, water heaters and energy 
intensive appliances in the Pacific Northwest (Miller et al., 
1990, 1991; Pearson, Miller and Stokes, 1988). Even when 
the houses studied are separated into groups according to 
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climate zone and type of construction, energy. use varies by 
more than 3 to 1 in these groups. A bit of pattern analysis 
was performed on the ELCAP data. Thermostat settings from 
the ELCAP houses were inferred from indoor temperature 
measurements and studied to find the two most common 
patterns of thermostat control (Connor and Lucas, 1990): 

(1) constant temperature setting throughout the day (40% 
of the time), 

(2) nighttime thermostat setback and morning setup (20% 
of the time). 

The monitoring projects referenced above underscore the 
dominant effect of behavior on energy use. Variations in 
energy use between similar residences are typically a ratio 
of 3 to 1 and these variations are attributed to the occupant’s 
energy choices and behaviors. Clearly, a better understand- 
ing of these behaviors will lead to better predictions of 
energy use. 

Many researchers believe the effect of behavioral variations 
will average out when studying buildings in aggregate. This 
was not seen to be the case in the Davis, California study 
of summer electricity use (Vine et al., 1982)./Aggregated 
results from DOE-2 energy models of each house were still 
off from the actual energy use by 18%. This suggests that 
accurate energy use predictions even for aggregated building 
groups cannot be made without knowing more about the 
residents of these groups. Accurate predictions can only be 
made by understanding “average” occupant behavior, and 
this “average” behavior may be different for different 
groups of people. 

Day-typing or day-type segmentation is a statistical classifi- 
cation method often used to classify energy end-use behavior 
(Meagher, 1985). In this method a choice is made to group 
common days together, typically using at least the 2 groups 
of weekdays and weekends. More groupings can be made 
to separate out individual weekdays, Saturdays and Sunday 
and holidays. Day-typing assumes that end-use behavior is 
dependent on the day of the week, which may or may not 
be true of any given data set. In contrast, the classification 
method developed in the study groups daily behaviors 
together based on the similarities of their load shapes. These 
similarities are found from statistical analysis of actual daily 
load shapes. After the grouping is done multinomial logit 
analysis is used to see if the groups correlate with day of 
the week and other time and weather variables. 

Scope 

Four statistical methods have been tested and found useful 
in this study of energy behavior: 

(1) daily time-series averages and standard deviations, 

(2)  frequency distributions, 

(3) assignment of days to pattern groups, 

(4) multinomial logit analysis to examine pattern group 
choice. 

These methods were tested using data from four heavily 
instrumented, occupied houses studied in a University of 
Washington project (Fern’s, 1988). These houses were origi- 
nally built to compare a proposed building energy standard 
with the then-current 1980 building codes for the state of 
Washington. Two of the houses were built to the 1980 codes, 
the other two to the proposed Model Conservation Standards 
(MCS) (Byers, 1991), otherwise they are identical in layout 
and construction. These test houses are heated with electrical 
baseboard heaters, and have a separate forced air ventilation 
system and kitchen and bathroom fans. Each house contained 
an electrically powered water heater, range, refrigerator, 
dishwasher, garbage disposal, clothes washer and clothes 
dryer. Power measurements were made every 4 seconds and 
averaged over each 15 minute period of the day. 

The houses were occupied by graduate students and their 
families. Each family consisted of a husband, wife and two 
or more children. Twelve different families lived in these 
houses during the period from 1987 to 1994, four families 
for three consecutive years and two families for two years. 
Occupants paid their own utility bills, although they did 
receive a break in rent for participating in this study. 
Although the families are demographically similar, they 
were found to have varying energy behaviors. 

The houses were studied during each heating season, 
assumed to last from October through April, from 1988 to 
1994. Data for five different energy behaviors were collected 
from the houses: 

(1) indoor temperature preferences, 

(2) ventilation energy load, 

(3) water heater energy use, 

(4) kitchen & laundry energy use, 

(5) miscellaneous energy use. 

These five behaviors are under direct control of the occu- 
pants, as opposed to space heating energy use which is 
indirectly controlled by the thermostat setting and heat pro- 
duced by other appliances in the house. 
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Indoor temperature preferences are used to estimate thermo- 
stat setting behavior of the occupants, accounting for artifi- 
cial highs due to overheating, and are divined from study 
of simultaneous values of indoor temperature and space heat 
energy use (Gartland, 1995). Ventilation loads are calculated 
from heating load imposed on the house in order to bring 
the ventilation air up to the indoor temperature. Kitchen and 
laundry energy use includes all energy used by the house's 
major appliances except the water heater. Miscellaneous 
energy use includes the energy used by all built-in light 
fixtures and electrical outlets throughout the house. 

These five behaviors were studied for each family separately 
during each heating season of their occupancy. Measured 
data was checked and processed to yield 96 quarter-hour 
values for a complete day for each of the five behaviors. 
These days of behavioral values were manipulated statisti- 
cally to find each families' patterns of behavior. 

METHODOLOGY 

Averages and Standard Deviations 

A simple and effective way to study behavioral data is to 
look at time-series averages and standard deviations. In this 
study, the average of the daily behavioral values are taken 
at each time step during the day to get an average value of 
the behavior versus time of day, 

The standard deviation is found similarly for each time step, 

The average and standard deviation of behaviors can be 
plotted versus time of day to show daily variation with time. 

Frequency Distribution 

It is often useful to know more than just the average and 
the standard deviation of a particular behavior over a daily 
period. The frequency distribution is a way of showing how 
often a particular value of a behavior occurs over the season 
or time period of interest. The frequency distribution is found 
by breaking up the possible values of behavior into equally 
sized bins, and then counting the number of actual behavioral 
values falling into each of those bins. The number of occur- 
rences can be normalized by dividing by the total number 
of values. The frequency distribution can be visualized by 

plotting behavioral values on the x axis, and the number or 
percent of total occurrences on the y axis. 

The frequency distribution can be compared to a normal 
distribution for the behavioral data. The normal distribution 
is found using the average, p, and standard deviation, a, of 
the data in question in the following equation for probabil- 
ity density, 

(3) f (x)  = exp[((x - p)/0)'/2]/2~. 

An example of a frequency distribution for the temperature 
preference behavior is shown in Figure 1. The distribution 
was found separately for different time periods during the 
day-midnight to 6am, 6am to gam, 9am to noon, etcetera. 
The normal distribution is shown in the plots as a dark 
solid line. 

Figure I .  Frequenq 'distribution curve for the temperature 
preference behavior of house 3 in the 1987-88 heating 
season. 

Figure 2. Example of the pattern code assignmentfor Julian 
day 342 in house 3 during the 1987-88 heating season. 

Temperature Preference Pattern 

0 4 8 12 15 20 26 
Tlma of Oay (hounl 
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.Figure 3. Frequency distributioii curve aiid average and sfandard deviation plots for the temperature preference behavior. 
Coilstarit values are illustrated by Family I s  plots, while setup/setback behavior is seen for Family F. 

Family I, House 1. 92-93 Family F, House 2, 89-90 

avcragc and 
std. deviation 

Pattern Group Assignment 

Instead of grouping energy behaviors together based on the 
day of the week, as in day-typing algorithms, a new algo- 
rithm was developed to group together days with common 
behavioral load shapes or patterns (Gartland, 1995). This 
algorithm first assigns each day a pattern code and then 
iteratively groups days with similar codes together. 

Pattern codes are assigned in reference to the frequency 
distribution. For illustration purposes, assume the noma1 
distribution shown in Figure 1 represents the actual data. 
This distribution is broken into six sections of equal area. 
The dividing lines between each sixth for a normal distribu- 
tion are found mathematically to lie at 

maximum value, 
average + 0.97*stand&d deviation, 
average + 0.43*standard deviation, 
average, 
average - 0.43*standard deviation, 
average - 0.97*standard deviation, 
minimum. 

These values are plotted versus time of day in Figure2, 

along with an actual day of data from the period of interest, 
Julian day 327. The day is broken into 7 time periods. To 
assign the pattern code for day 327, the actual day's data is 
compared to the sixth values to see where it falls in each 
time period. Numbering the code values from 1 to represent 
the highest sixth to 6 for the lowest sixth, Julian day 
327 takes the pattern code of 3-3-2-2-2-1-1. Pattern codes 
for each behavior are assigned to each day of collected 
data. 

Note that there is flexibility in the level of detail available 
to the pattern code. Different numbers of sections, and differ- 
ent numbers and designations of time periods can be 
chosen depending on the data and the level of accuracy 
needed. 

Once the pattern codes are assigned to each day, the days 
are iteratively assigned to groups. In the first iteration, days 
with the same pattern code are grouped together. In the 
second and proceeding iteration, groups with similar pattern 
codes and the lowest combination errors are combined. The 
combination error is defined mathematically as, 

A , , ,  = [qm.,l,16~(n~r,rl,l,l + n.c,,l,,,J - qpn,q~~~ .~ml l~~  

- ~smqt?~.c"~l~ lr l l  I 

(4) 
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Figure 4. Frequency distribution curve and average and standard deviation plots for the ventilation load behavior. Family 
C uses little ventilation, while Family E used forced ventilation through the house's ducting systent. 

Family C, Housc 4, 88-89 Family E, House 1.89-90 

where the value of u is the average of the standard deviation 
of all group members at each time step, which for the case 
of 96 quarter-hour time steps for each day is, 

u,,o"p = (utjlncsrV I + . + ~i; lncsicpd96.  (5) 

Pattern groups are combined until there are no more groups 
with sufficiently similar pattern group codes. The test of 
sufficient similarity for this study was deemed to be when 
pattern codes were off from each other by no more than the 
number of digits in the code, for example, 

3 3 4 4 4 4 3  
- 3 4 4 4 4 4 4  

a b s A = O  + 1 + 0 + 0 + 0 + 0 + 1 = 2 .  

Since 2 is less than 7, the number of digits in the pattern 
code, these two groups are deemed sufficiently similar to 
be combined. 

Multinomial Logit Analysis 

In order to predict household energy use accurately with 
behavioral pattern groups, some method must be found to 

predict which behavioral patterns will be used on any partic- 
ular day. The simplest assumption is that each pattern group 
occurs randomly with a distribution equal to its number of 
occurrences -a weighted random sampling distribution. A 
better approach is to find out what variables influence the 
choice of particular behavioral patterns. This is done using 
multinomial logit analysis, a statistical choice modeling tech- 
nique (Kennedy, 1985). 

The multinomial logit model finds utility functions for each 
of the different pattern choices available for any energy 
behavior. Probabilities of the patterns' occurrence can be 
found from the utility functions: 

and, 

Quantifying Occupant Energy Behavior Using Pattern Analysis Techniques - 8.57 



Figure 5. Frequency distribution curve and average and standard deviation plots for the water heating behavior. Family G 
uses a low amount of water heating energy, while Family H is a high energy user. 

FarniIy G, House 2 ,9  1-92 

average and 
std. deviation 

Family H, House 4,92-93 - 
I I 1 .- 

)=In 

where the U's are the utility functions, dependent on vari- 
ables varl, var2, etc., with regression coefficients Blo, Bit, 
etc., and with probabilities of occurrence PI, P2, etc. 

The difficulty inmultinomial logit modeling, as in all statisti- 
cal modeling, is choosing the right independent variables. 
In order for the logit model to be a useful prediction tool, 
the variables chosen need to be easily known or assumed 
for prediction purposes. The variables chosen for this study 
are listed in Table 1. 

RESULTS 

Average & Standard Deviations and 
Frequency Distributions 

Energy behaviors were studied for each of t5e 4 houses 
during each heating season, for a total of (5 behaviors) X 
(4 houses) X (5 heating seasons) = 100 separate cases 

8.52 - Emery and Gartland 
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studied. Figures 3 through 8 show the most typical of the 
average & standard deviation and frequency distribution 
plots for the five behaviors studied. Note that behavior varied 
substantially between households, even though the families 
were demographically similar. 

PIots of temperature preference behavior showed two behav- 
iors, one where the family kept temperatures relatively con- 
stant, and the other where setup and setback of temperatures 
is occurred (Figure3). The average & standard deviation 
plots show at what time of day setups and setbacks typically 
occur. The frequency distribution curve for the setuplsetback 
family does not follow the normal curve, being more heavily 
weighted at higher setup vdues, and carrying a "tail" of 
lower setback values. 

Ventilation Ioad behavior plots show whether or not house- 
holds use the forced ventilation system provided in the 
houses (Figure4). Some families have turned the system 
off, only turning on bathroom or kitchen fans sporadically. 
Other families keep the system running fairly continuously. 
Ventilation load is dependent on the outdoor air temperature, 
so dips in the ventilation load are seen in the afternoons 
when is it typically warmer outside. 

I 



Figure 6. Frequency distribution curve and average and standard deviation plots for the kitchen and appliance energy use 
behavior. Family C's kitchen energy use peaks in the morning, while Family J's energy use peaks in the evening. 

Family C, House 4.90-91 Family 1. House 3,92-93 

Table 1. Percentage of Times Variables Were Found to be Signifcant in the Multinomial Logit Models, 
for Each Behavioral Pattern Type 

Variable 

Outdoor temperature 
Wind speed 
Horizontal insolation 

Day of season 
Day of week 
Weekend day 
Month of year 
Holiday, break, finals 

Temperature 
Preference 

60 

50 

65 

60 

32 

35 

5 

8 

Ventilation 
Load 

56 

63 

44 

50 

26 

293 1 

I729 

17 

Water 
Heating 

35 

45 

50 

20 

13 

25 

13 

5 

Kitchen & 
Appliances 

46 

36 

36 

59 

9 

5 

6 

2 

Lights & 
Outlets 

52 

57 

33 

51 

11 

19 
2 

11 

Total 

50 

50 

46 

50 

18 

22 

10 

8 

Plots of water heating energy show how much energy is 
typically used and at what time of day (Figure 5). The aver- 
age and standard deviation plot differentiate clearly the high 
and low hot water use families. The frequency distribution 

curves for water heating are somewhat less indicative of 
high or low use behavior, mainly because the water heater 
is an on-off appliance. Both high and low use families have 
a spike in the frequency distribution curve at zero energy 
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Table 2. Multinomial Logit Modeling Results, Averaged from Three Models of Each BeIiavioral Type 

Temperature 
Variable Preference 

Number of observations I38 

Number of patterns 8 

Number of variables 43 

Confidence level 85 

% Correctly predicted 43.0 

8 Random weighted 15.5 

Improvement ratio 2.8 

Ventilation Water 
Load Heating 

I 24 1 1 1  

7 12 

39 33 

99 99 

61.4 46.8 

18.3 21.5 

3.4 2.2 

Kitchen & Lights & 
Appliances Outlets 

96 127 

I 1  10 

29 32 

99 88 

46.9 51.4 

18.7 17.8 

2.5 2.9 

Overall 
Averaae 

119.2 

9.6 

35 

94 

49.9 

1 SA 

2.7 

use. For the high use family a second spike is seen at 0.6 
kwh, the maximum capacity of the water heater. The low 
use family does not,use enough hot water at any one time 
to bring keir water heater to peak capacity for a complete 
15 minute time period. 

Kitchen and appliance energy use is illustrated best by the 
average & standard deviation plots, which are able to show 
temporal peaks in energy use (Figure 6). The frequency,dis- 
tributions are not very useful for studying behavior, as refrig- 
erator cycling dominates the bulk of the occurrences. 

. 

Figure 7 shows the average & standard deviation plots of 
lights & outlets energy use for 2 houses over five heating 
seasons, and Figure8 shows the frequency distributions. 
Note that families C and G were each resident for three 
seasons, and family H for two seasons. These plots show 
very distinctive and consistent patterns for each family from 
Season to season. 

Pattern Group Analysis 

Figure 9 shows an example of pattern groups resulting from 
the pattern classification algorithm. The reason for perform- 
ing pattern analysis, is contained in the statistics listed in 
Figure9. The standard error that results by representing 
behavior with multiple patterns is much smaller than the 
standard error for one average pattern. Figure 10 plots a 
normalized standard error reduction versus the normalized 
number of pattern groups. Each of the five behavioral pattern 
types is represented by a different symbol. The standard 
errors are reduced to between 20 and 90% of the single 
pattern group value. The temperature preference and ventila- 
tion load patterns show the largest reductions in standard 
error, on average reduced to 33% of the single pattern value. 

The water heating, kitchen & appliances and lights & outlets 
behaviors have smaller reductions in standard error. 

Multinomial Logit Analysis 

Three multinomial logit models were developed for each of 
the fivebehaviors. Each model looked at one energy behavior 
of one household during a single heating season. The models 
are developed to predict which behavioral pattern type is 
likely to occur on a given day. Behavioral pattern types for 
all days in the heating season were regressed against the 
variables listed in Table 1. The households modeled were 
chosen to cover the spectrum of observed behaviors seen in 
the average & standard deviation and frequency distribution 
plots. Results from the three models are averaged together 
for each of the five behaviors and presented in Table 2. The 
information given in this table is: 

# observations-number of days of data collected in 
each season, 

# patterns-the number of patterns found by the pattern 
classification algorithm, 

# variables-the number of significant variables in the 
final model, 

confidence level-reflects the significance of all vari- 
ables in the final model 

% correctly predicted-the percent of daily pattern 
choices that are estimated to be correctly predicted 
by the logit model, 

%- random weighted-the percent of daily pattern 
choices that would be correctly predicted by a ran- 
dom guesses weighted by the percentage of occur- 
rence of each pattern, 

improvement ratio-the ratio of the correctly predicted 
and the randomly weighted percentages, showing 
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Figure 7. Average and standard deviation plots for the lights and outlets behavioral pattern for the heating seasons from 
1988-89 through 1992-93. Family behavior is strikingly consistent from season to season, and distinct for different families. 

88-89 

89-90 

90191 

91-92 

92-93 
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Figure 8. Frequency distribution curves for the lights and outlets behavioral pattern for the heating seasons from 1988-89 
through 1992-93. Family behavior is strikingly consistent from semen to .season, and distinct for different families. 
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Figure 9. Resulting pattern groups for Family C, house 4, 1988-89 heating season. Temperature preference and ventilation 
behavioral pattern are shown, and statistics on standard errors are included. 

House 4,8849 Season 138 days Family C 

std. error std. error of 1 pattern pattern # patterns 

ventilation 10 0.054 0.169 
water heating 14 0.097 0.3 36 
kitchen 12 0.114 0-1 82 
lights & oullets 13 0.0% 0.071 

temperature 8 1.01 9 3.594 

n 4 I 1 1 1 I I 
0 4 8 12 t s  rn 24 

Tknr of Day (houn) 

f I I I I t I 1 I I 

how much the logit model is able to improve on a 
random weighted guess. 

indicating that for all these models the variables chosen 
are producing valid results. The improvement ratios for all 
behavioral types are 2.2 or higher. This means that the pre- 
diction capability of the multinomial logit models is at least 
twice as good as random guessing. On average, the behav- 
ioral patterns used on a given day are predictable half of 

The logit models contain many variables because each model 
is actually a series of equations, one equation for each pattern 
group. The level of confidence in the models was quite high, 
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Figure IO. Standard error reduction due to pattern group- 
ing, shown separately for the jive behaviors studied. Pattern 
grouping is shown to be more effective for temperature pref- 
erence and ventilation load behaviors. 

the time. These results are very promising when considering + 

the generic attributes of the variables used in the models. 

Not all the variables chosen were significant in all the mod- 
els. Table 1 shows the percentage of times when,each vari- 
able was significant in the choice of an energy behavior. 
Overall, the various weather variables were most often 
important indicators of pattern choice-significant about 
half the time. Interestingly, the day of the weewweekend 
indicators are only significant on average about 20% of time. 
This calls into question the practice of day-type segmenta- 
tion. It may not be realistic for behavior to be similar on 
certain days of the week. Pattern classification and multi- 
nomial logit analysis of pattern choices has the potential to 
group and predict energy behavior more accurately than the 
traditional day-typing schemes. 

CONCLUSIONS 
This four houses and twelve families analyzed in this work 
represent a relatively small data set, but variations in energy 
behaviors were identified and characterized with the statisti- 
cal methods used in this study. The average & standard 
deviation plots uncovered behavioral variations between 
families over a typical day. Frequency distribution curves 
were useful for visualizing behaviors which can vary in 
small increments over a large range, although they may not 
always be helpful when looking at a single end-use with 
on-off behavior (like a water heater), or for a combination 
of end-uses dominated by an on-off appliance (like a 
refrigerator). 

The pattern classification algorithm was shown to work and 
to reduce standard error. The temperature preference and 
ventilation load patterns have the most potential for error 

reduction, with reductions from 20 to 50%. The other three 
patterns showed less promise, with reductions between 50 
and 9096, although the classification method can be enhanced 
by changing the number of time steps or energy value ranges 
to capture more of this variation. 

The methods developed may be more accurate than day-type 
segmentation schemes currently being used. The patterns 
studied in this work were found to depend on day of the 
week on average about 20% of the time. Grouping behaviors 
together based on their load shape similarities eliminates the 
necessity of assuming behaviors are similar on certain days 
of the week. 

Perhaps the most significant finding of this work is how 
predictable the patterns turned out to be. Even with the fairly 
generic set of weather values, days of the week, etc. used 
as variables, the multinomial logit models are able to choose 
the correct behavioral pattern used by each household half 
the time. This is much higher than the -20% of the time 
estimated for weighted random guesses. This is even more 
impressive when it is realized that the behavioral variations 
being detected and predicted are relatively small, since this 
ahalysis was limited to one family at a time. 

.. 
Y 

The strategies used here to analyze one family at a time 
could also be used to classify the combined behaviors of 
many families. Averages or frequency distribution curves 
for individual families or sets of families could be used in 
place of the daily data used in this study. Logit modeling 
could then link family statistics (size, ages, income levels, 
education, etc.), weather variables and day of week variables 
to these new pattern groups. 

6 

These methods show great potential for producing a mean- 
ingful analysis of existing residential end-use data sets. Pat- 
tern analysis could give typical behavior‘alluse patterns for 
and end-use or-set of end-uses, and logit analysis can help 
specify when each of the behaviors are most likely to occur. 
This information could be linked to building-scale or macro- 
scale energy prediction models for an improved modeling 
and forecasting tool. 
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