

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Safety Procedures for the Electron Spectroscopy of Actinides at the ALS

D.K. Shuh, N.M. Edelstein, and J.J. Bucher Chemical Sciences Division MASTER RECEIVED

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

January 1996

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the United States Government or any agency thereof, or the Regents of the University of California.

This report has been reproduced directly from the best available copy.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

LBNL-39909 UC-401

.

Safety Procedures for the Electron Spectroscopy of Actinides at the ALS

D.K. Shuh, N.M. Edelstein, and J.J. Bucher

Chemical Sciences Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720

January 1996

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Safety Procedures for the Electron Spectroscopy of Actinides at the ALS

D. K. Shuh, N. M. Edelstein, and J. J. Bucher Chemical Sciences Division Berkeley Laboratory

Contents

Summary	1
Experimental Procedures	
Sample Preparation	. 2 .
Procedures at the ALS	·4
Emergency Procedures	··· 8 · · ·
List of Figures	. 9
List of Tables	10 -
Figures and Tables	11
ALS Experimental Forms	30
Safety Procedures (Nov.1994)	33

Prepared Jan. 1996

: : [:]

Addendum to the ALS Experimental Safety Form Renewal for Actinide Microspot Experiments

Jerry Bucher, Actinide Chemistry Group, CSD, LBNL, (510) 486-4484 Norman Edelstein, Actinide Chemistry Group, CSD, LBNL, (510) 486-5624 David Shuh, Actinide Chemistry Group, CSD, LBNL, (510) 486-6937

18 Jan. 1996 .

SUMMARY

This is an addendum to the ALS Experimental Safety Form Renewal for the continuation of actinide microspot experiments on beamlines 7.0. There are several modifications to the previously approved procedures. There is an increase in the amount of allowable material of the low activity isotopes ²³⁸U, ²³⁷Np, ²⁴²Pu, and 248Cm. There is also the addition of ⁹⁹Tc and the low activity isotopes ²³²Th and ²⁴³Am to the list of permissible sample materials. All of the materials are alphaemitters with negligible gamma fields with the exception of ⁹⁹Tc which is a betaemitter. There is a series of new experiments that requires the use of a crystal cleaver in the preparation chamber of the ultraESCA endstation. The beamline 7.0 ultraESCA endstation has been suitably modified to permit the safe cleave of YUPd alloy rectangular ingots. All of the sample materials are solids. The exact nature and composition of the samples are delineated in the sample preparation section that follows. A corresponding Radiological Work Authorization (RWA) must be issued for this work at ALS since the material amounts exceed those in the Low Activity Source (LAS) guidelines in Table I and those in the Values for Exemption of Sealed Source Inventory in Table II. The preliminary date for the next run of these sample materials has been tentatively scheduled in early Feb. 1996 and this will be with the uranium cleave alloys, not the transuranic materials.

EXPERIMENTAL PROCEDURES

Sample Preparation

Sample materials sent from institutions outside of LBNL will be shipped to:

Bette Muhammad EH & S Receiving LBNL 1 Cyclotron Road Berkeley, CA 94720 (510) 486-7602

C/O ALS Experimenter Local ALS contact phone #.

The materials will be forwarded to the Actinide Chemistry Laboratory in Building 70A-1145 for preparation, characterization, packaging, and subsequent transport to the ALS via EH&S personnel.

The sample preparation will follow the previously approved procedures and utilize some new preparation techniques that require slightly different experimental procedures. The initial experience gained from sample preparation and experimental work at beamline 7.0 will safely permit a slight increase in the amount of radioactive material employed compared to earlier experiments. Thus, this safety addendum reflects allowable material amounts that are 3-5 times greater than those previously used. Additionally, there are some new elemental isotopes on the list of those permitted. The new amounts and isotopes are shown on the ALS Experimental Modification form. All sample preparation and characterization of the activity of the samples will be done in Bldg. 70A-1129, 1145 under existing RWA procedures (Edelstein #1020). All mounting and physical handling of the samples, except for the loading and unloading into the beamline 7.0 endstation vacuum chamber, will be at this location. All samples will be characterized by alpha spectroscopy to ensure that the amount of activity is within work permit limits and to ensure that any part of the sample holder that comes in contact with the vacuum chamber sample manipulation apparatus is free from activity.

. . . .

Aqueous Preparation

The radionuclides used as sample materials will be prepared by dilution and delivered to the surface of a Pt counting disk or to a graphite disk (with a thin layer of Pt on the backside) using a microliter pipette. The resulting material will be primarily oxides of the particular radionuclide. The aqueous solvent will be removed by inductive heating. The radionuclide will be bonded to the substrate during this process as well. The samples will be observed under a microscope and the radioactivity characterized in a calibrated alpha spectrometer to determine the total activity. The amount of material will be within the limits specified on the ALS Modification form dated 12 Jan. 1996 that are informally derived from Operational Health Physics: Laboratory Operations and Good Work Practices that is attached as Table III. The adhesion of the radionuclide to the substrate will be determined by testing sample structures to ensure that there is no loose active material. The properties of the various isotopes to be used as sample materials are summarized in the Table IV attachments. The sample isotopes are never completely isotopically pure, thus a substantial portion of the total activity of the radionuclide sample may result from trace amounts of isotopic impurities.

Uranium Alloy Cleave Bar Preparation

The cleave bar preparation will entail the examination of the integrity of the ingot mounting on the sample holder and the determination of the total activity of the sample. There may be some cleave bar handling in accordance with procedures in RWA #1020. The uranium alloy cleave bars are about 5 g, with a total uranium content of less than 0.5 g each and will be shipped from the Univ. of Michigan. The exact composition of the uranium alloy is $Y_{1,x}U_xPd_3$

Special Samples

Special samples will be handled on a case by case basis with reference to this document.

Thin Film Samples

Thin film metallic samples of the radioactive materials will be prepared off site on suitable substrates and transported to LBNL. These samples will be mounted to sample holders and the total activity characterized. Similar thin film samples may also be prepared at LBNL.

Sample Mounting and Packaging

The radionuclide substrate and microsample will be affixed with springloaded clips, spot-welded clips, or bolted directly to sample holders used by beamline 7.0. The cleave ingots to be used in the uranium alloy experiments will be mounted as shown in Figure 1 and wired into place (this is common practice for cleaving). All samples will be appropriately labeled and packaged in ice cream cartons for safe transport to the ALS. The EH&S monitor will certify that the container is nonactive and establish that the activity of the sample is within the limits of the approved work permits for the ALS. The sample container will be labeled "CAUTION-Radioactive Material" to warn personnel that a radioactive material is present. The samples will be transported to the ALS, with prior notification of the ALS EH&S monitor, in accordance with EH&S regulations. The samples will be transported, no more than two at a single time, by LBNL vehicle to the ALS.

Procedures at the ALS

General Procedures at Beamline 7.0

There will be no handling of the sample on the experimental floor with exception of unpacking, loading, alpha characterization of, unloading, and repackaging to transport back to the 70A-1145 laboratories. The ALS control room will be notified prior to the commencement of any experimental activities at beamline 7.0. and will be informed upon completion of the experimental program. Only two samples at a time will be brought to the ALS and there will be a maximum of four samples resident on the ALS floor at any time (during a full sample exchange at beamline 7.0) just prior to the removal of two samples from the ALS floor for transport back to radiochemistry lab in Building 70A-1145. All loading and unloading activities will be done with the ALS EH&S monitor present.

The samples will be brought to the ALS from the preparation laboratories in conjunction with EH&S, as per standard operating procedures. The samples will be loaded into the experimental chamber with a procedure utilizing laboratory coats, gloves, alpha meter, TLD/film badges, and beta-gamma meters that will be brought to the ALS by appropriately trained/supervised personnel from the Actinide Chemistry Group. A temporary Radiological Materials Area (RMA) will be

established, labeled, and casual access restricted. The sample/holders will be removed from the ice cream cartons one at a time, placed in the temporary RMA, and an alpha assay performed with an appropriately calibrated survey meter and geometric positioning equipment by the ALS EH&S monitor. The results will be recorded on an approved logsheet form and placed in the laboratory notebook. An example of this form is attached as Fig. 2 and a copy of the logsheets will be provided to the ALS EH&S monitor upon completion of the experiments. The samples will be examined under a microscope with a recording CCD camera. The samples will then be loaded into the sample load lock. A schematic of the beamline 7.0 ultraESCA endstation is shown in Fig. 3. The sample chamber or endstation will be labeled "CAUTION-Radioactive Material" to warn personnel that a radioactive sample is present. Once the radioactive samples are in the endstation, the temporary RMA will be surveyed and re-established as a non-RMA if no activity is found. The sample will be transferred under vacuum into the photoemission spectrometer on beamline 7.0 and the electron spectroscopy begun. Any other specialized in vacuum preparation or handling of the sample materials will be described in a following section that addresses procedures specific to certain sample types.

The beamline 7.0 endstation is an RMA when there are radioactive samples in the chamber, therefore RMA procedures must be employed regarding removal of samples or any other experimental equipment from within the vacuum envelope of the endstation until the endstation is declared a non-RMA. For example, this requires that a non-radioactive sample be handled in the same fashion as a radioactive sample if it is removed from the vacuum chamber while operating as an RMA.

Sample/holders will be removed from the beamline 7.0 endstation by reestablishing the temporary RMA work area and removing the samples/holders (one at a time) from the vacuum system. The respective samples will be characterized by alpha spectroscopy in the temporary RMA to ensure that no material has been lost. If no material has been lost, the experiments may proceed. The samples/holders will be placed in ice cream cartons for transport to the 70A-1145 laboratory. At this time, two new samples/holders may be removed (one at a time) from the ice cream cartons and loaded into the vacuum system as described in the loading procedures above. Thus, there will briefly be four samples on the ALS floor during a full sample exchange. After the new samples have been successfully loaded, the temporary RMA will be surveyed and declared a non-RMA. The samples/holders

removed from the endstation will be re-assayed by alpha spectroscopy in the Bldg. 70A-1145 laboratory.

Upon successful completion of the experiment and the documented removal of all samples as described above, swipe(s) will be taken of the accessible sample transfer apparatus. The beamline 7.0 endstation will be declared a non-RMA and the signs removed after successful swipe(s) results. Swipe(s) of the vacuum chamber will also be taken after the chamber is vented to atmosphere for the first convenient opportunity following the completion of these experiments. The swipes will be performed by the ALS EH&S monitor and recorded on a logsheet.

All of the EH&S assistance will be scheduled as far in advance as experimentally feasible and will be directed through Keith Heinzelman, LBNL ALS EH&S radiation safety monitor (Bldg. 80A, x6212) and Jim Hayes (Bldg. 70A).

Procedures for the Experiments Requiring the Cleavage of Uranium Alloy Samples

A series of new experiments on requires the use of a cleaver, shown in Fig. 4, to cleave a metallic, rectangular bar composed of an uranium alloy to expose a pristine surface for electron spectroscopy (sample/holder shown in Fig.). This uranium alloy sample will contain ~0.5 g of 238 U. This experiment poses additional complications since part of the cleave bar will drop to the bottom of the vacuum chamber upon a successful cleave and will have to be retrieved at some point. Additionally, there will be the generation of some small particles and dust under UHV conditions resulting from the cleave in the chamber. Furthermore, there is sometimes the need to slightly scrape the sample bar with cleaver to prepare the surface and this will result in some small particulates as well. The cleaver must also be made compatible with the existing sample transfer and the cleave must take place in a portion of the vacuum chamber that is remote from the parts that are normally used. The sample/holder will be cooled to 77K in the main spectrometer.

The endstation will be modified to accommodate the cleaver, provide a remote location for the cleave, interface to the sample transfer mechanism, and to provide a landing zone for the cleave bits. The chamber will be modified as shown in Figs. 3 and 5. The sample when cleaved will be held in a horizontal manipulator. A chip funnel will route the large cleave bits into an isolated catcher. The large chips can be removed be closing the 2.75" gate valve after the experiment and can be placed back in service by pumping through the right angle valve.

During the experiment the entire endstation will be labeled as an RMA but as result of the cleaving operation, not all of the active material will exit with the sample/holder assembly. Thus, the normal procedures for alpha counting will continue to be followed but there will not be complete recovery of the sample material or its associated activity. Thus, upon completion of the experimental program, the 2.75" gate valve will be closed and the preparation chamber labeled as a Radioactive Storage Area (RSA) and removed from the RMA designation. It is possible that there may be a extremely small amount of dust or a few tiny sample bits that do not fall into the catcher and remain at the lower portion of the cleaver cross. Designated as an RSA, experimental procedures may proceed without RMA constraints. The cleaver will not be used for any other experiments.

The beamline 7.0 endstation is a multi-purpose endstation and the researchers involved at beamline 7.0 would like to continue experimentation without having to vent the preparation section that includes the cleaver assembly until a later date when beam from the ALS is not available. There are no chemical operation or processes that would affect or mobilize the uranium material that does not fall into the catcher. Therefore, at the first convenient opportunity, the catcher will emptied and the cleaver section vented. The ALS EH&S monitor will swipe the cleaver chamber and remove any loose material therein. The cleaver cross (including the catcher assembly) will then be removed from the rest of the preparation chamber, sealed and bagged, and transported to the laboratory in Bldg. 70A-1145. The cleaver cross (including cleaver)will be thoroughly cleaned in preparation for re-use in the future and will be certified as non-radioactive before connection to the beamline 7.0 endstation. The designation of the chamber as a RMSA will be removed. All waste materials from the experiment will be disposed of by the Actinide Chemistry Group.

Thin Film Samples

The thin film samples will be metallic, oxides, or an alloy that are permanently bonded to a substrate that will be affixed to the sample holder.

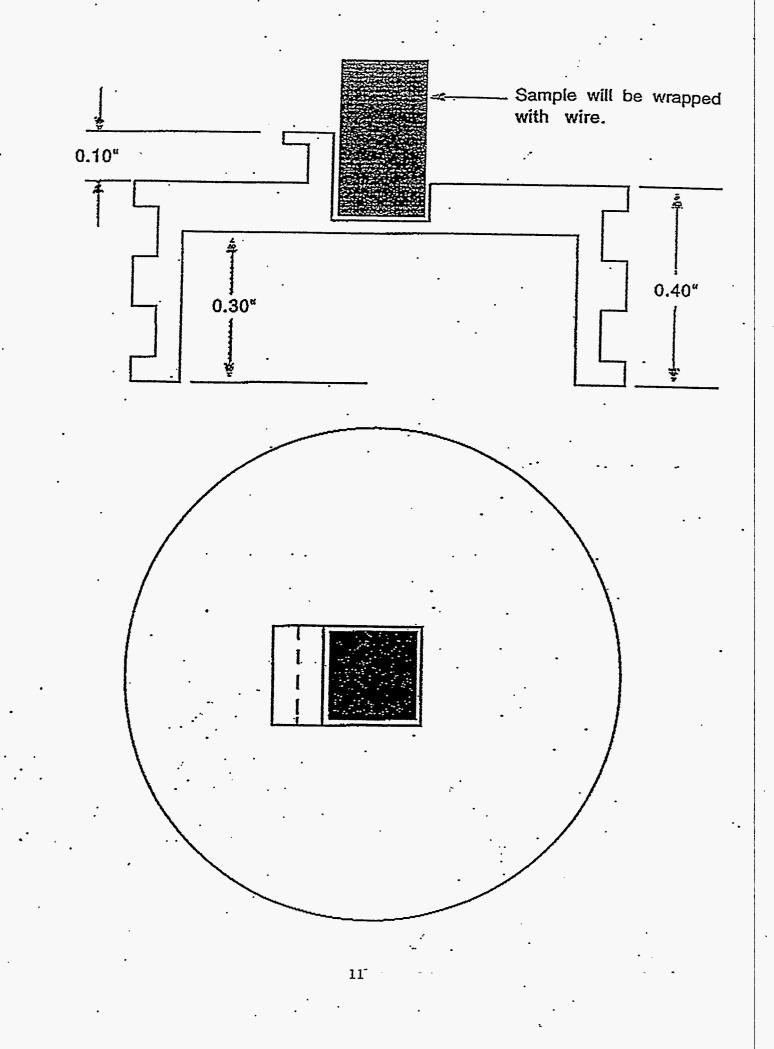
Special Samples

There may be small particulates and other samples. The most important consideration is the mounting or affixing of the radioactive material to the sample . holder such that none is lost during the operations. If significantly different from the work described in this document, each will be handled ion a case by case basis.

-7

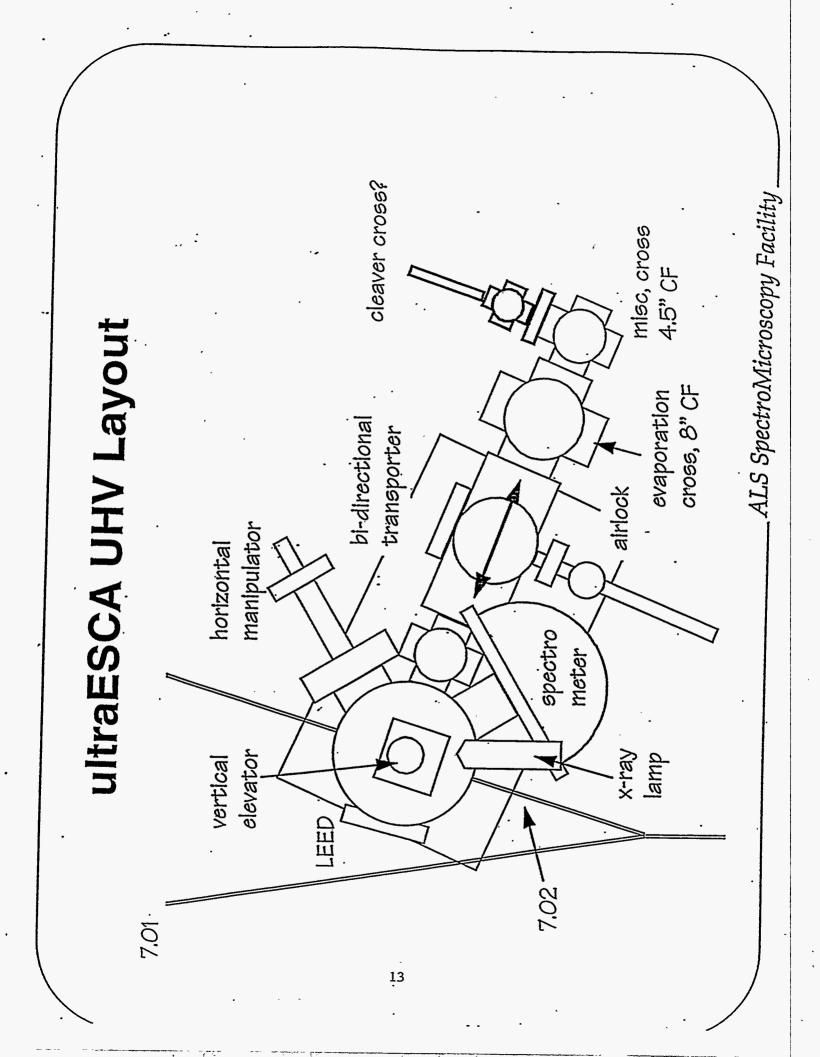
Emergency Procedures

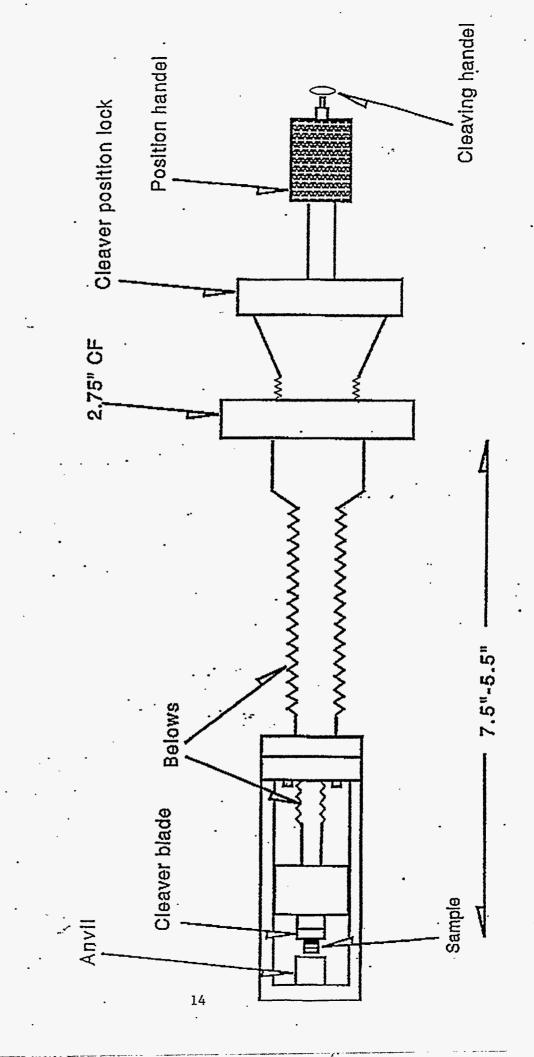
4

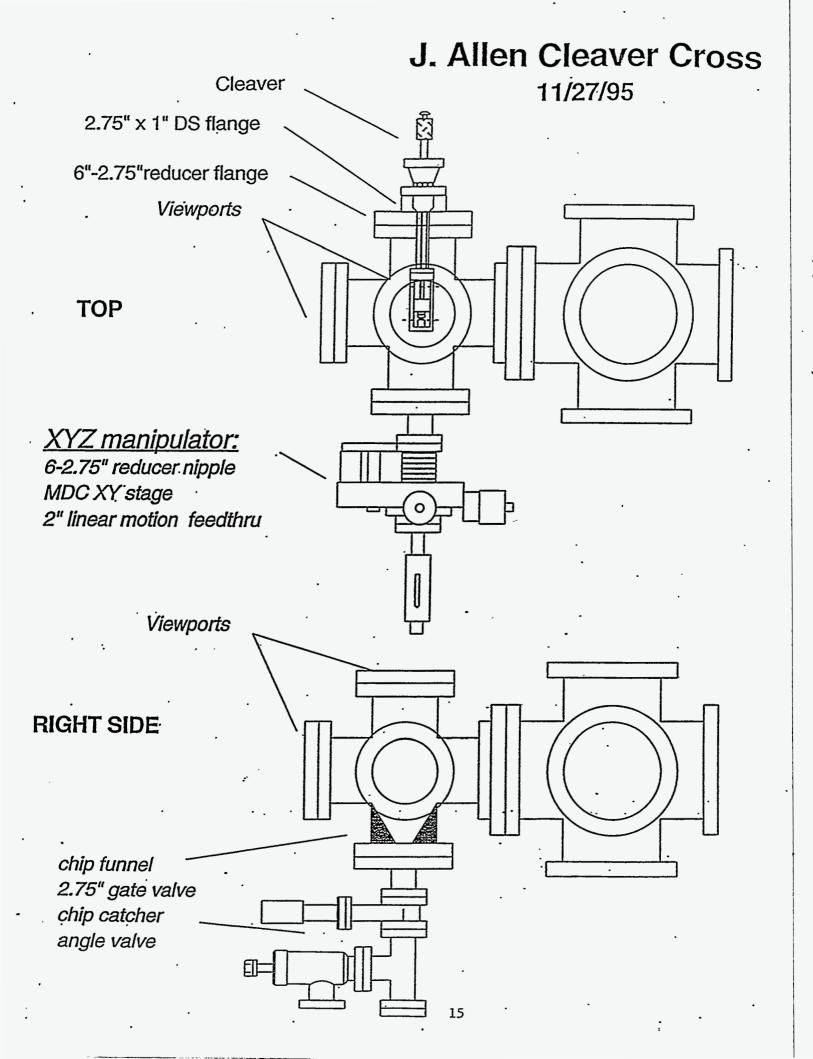

The RWA will be present on the beamline and in case of a spill or other accident involving the radioactive material, EH&S will be immediately notified. A small spill kit will be brought to the ALS.

List of Figures

- 1. Diagram illustrating how the uranium ingot will be mounted on the sample holder for cleavage.
- 2. Example of the radiation survey form to be kept and placed in the experimental notebook.
- 3. General schematic of the ultraESCA endstation at Beamline 7.0 at the ALS.
- 4. Close-up sketch of the crystal cleaver.
- 5. Detailed schematic of cleaver cross used as a preparation chamber in the uranium ingot experiment.


List of Tables


- 1. Summary of low activity source (LAS) parameters that determine the requirements for use of radioactive materials without an RWA.
- 2. Summary of the values for exemption of sealed source inventory.
- 3. Exerpts from a British Handbook of Laboratory Practices classifying the general hazard categories and required safety precautions for working with various radionuclides under specific laboratory conditions.
- 4. Table of Radioactive Isotopes information for the radionuclides to be use in the experiments.


			·· ,
DATE:	METER#:	SOURCE CHECK:	BKG:
LOCATION:		METER READING:	
			•
	•		<u> </u>
SURVEYOR:		- <u> </u>	······································
DATE:	METER#:	_ SOURCE CHECK:	BKG:
LOCATION:			
		·	
	•••		· · · · · ·
	·	-	•
	·		· ·
SURVEYOR:		- · -	
DATE:	METER#:	_ SOURCE CHECK:	BKG:
LOCATION:			•
• .	• •	<u> </u>	•
·		· ·	• .
	·	· ·	•
	· ·		· · · · · · · · · · · · · · · · · · ·
SURVEYOR:	· · · · · · · · · · · · · · · · · · ·		•
DATE:	METER#:	SOURCE CHECK:	BKG:
LOCATION:	•	METER READING:	
	•••	· · · ·	
	· ·		-
	······		

RWA#1007 - CONTAMINATION SURVEY RESULTS - ALS BEAMLINE_

Sketch of the Cleaver

EH&S Proced	ure 707 ·				,	•	Attachme
		Low A	Activity Source	xe (LAS) Qu	antities		•
Less than 30	μ Çi (1· x ·10 ⁷	Bq)			•	•	•
H-3	Ве-7	C-14	S-35	Ca-41	- Ca-45	V- 49	Mn-53
Ge-55	Ni-59	Ni-63	As-73	Se-79	Rb-87	Tc-99	Pd-107
Cd-113	ln-115	Te-123	Cs-135	Ce-141	Gd-152	Tb-157	Tṁ-171
Ta-180	W-181	W-185	W-188	RE-187	TI-204		
Less than 3 µ	Ci (1 x 10⁵ B	(p)					
P-32	P-33	CI-36	K-40	Fe-59	Co-57	Se-75 ·	Rb-84
Sr-85 .	Sr-89	Y-91	-Zr-95	Nb-93m	Nb-95	Tc-97m	Ru-103'
Ag-105	In-114m	Sn-113	. Sn-119m	Sn-121m	Sn-123	Te-123m	Te-125
Te-127m	Te-129m	1-125	La-137	Ce-139	Pm-143	Pm-145	Pm-147
Sm-145	Sm-151	Eu-149	Eu-155	Gd-151	Gd-153	Dy-159	Tm-170
Yb-169	Lu-173	Lu-174	Lu-174m	Hf-175	Hf-181	Ta-179	Re-184
Re-186m	lr-192	Pt-193	Au-195	Hg-203	Pb-205	Np-235	Pu-237
Less than 300	nCi (1 x 10'	Bq)	•	•	•		•
Be-10	Na-22	ÀI-26	Si-32	Sc-46	Ti-44	Mn-54	Fe-60
Co-56	Co-58	Co-60	Zn-65	Ge-68	Rb-83	Y-88	Zr-88
- Zr-93	Nb-94	Mo-93	Tc-95m	Tc-97	Tċ-98	Ru-106	Rh-101
Rh-102	Rh-102m	Ag-108m	Ag-110m	Cd-109	Sn-126	Sb-124	Sb-125
Te-121m	1-129	Cs-134	Cs-137	Ba-133	Ce-144	Pm-144	Pm-146
Pm-148 m	Eu-148	Ėu-150	- Eu-152	Eu-154	Gd-146	Tb-158	Tb-160
Ho-166m	Lu-176	Lu-177,	Hf-172	Ta-182 ·	Re-184m	Os-185	Os -1 94
lr-192m	Ir-194 m	Hg-194	Pb-202	. Bi-207	Bi-210m	Cm-241	
Less than 30 n	.Ci (1 x 10 ³ E	3q)	•	•	•	•	•
Sr-90	Cd-113m	La-138	Hf-178m	Hf . 182	Po-210	Ra-226	Ra-228
Pu-241	Bk-249	Es-254	. •				·
Less than 3 nC	i (1 x 10 ² Bo	ı)	· · ·	•_•			•
Sm-146	Sm-147	Pb-210	Np-236	Cm-242	Cf-248	Fm-257	Md-258
Less than .3 n	Ci (1 x 10 ¹ B	q)		•.		•	· ·
Gd-148	-Th-228	Th-230	U-23 2	U-233	U-234	U-235	Ú-23 6
U-238	Np-237	Pu-236	Pu-238	Pu-239	Pu-240	Pu-242	Pu-244
Am-241	Am-242m	Am-243	Cm-243	- · · ·	Cm-245	Cm-246	Cm-247
	Bk-247	Cf-249	Cf-250	Cf-251	Cf-252	Cf-254	•

16

•

·•

:

.

DOE N 5400.9 12-24-91

Attachment 1 Page 1 (and 2)

TABLE 1.

	Values	for exemp	tion of se	ealed sour	ces from i	inventory*	
Less than	300 µCi	(1 × 10 ⁷ 8	q) .	•	······		
H-3 Fe-55 Cd-113 Ta-180	Be-7 Ni-59 In-115 W-181	C-14 Ni-63 Te-123 W-185	S-35 As-73 Cs-135 W-188	Ca-41 Se-79 Ce-141 Re-187	Ca-45 Rb-87 Gd-152 T1-204	V-49 Tc-99 Tb-157	Mn-53 Pd-107 Ta-171
Less than	30. µCi (1	x 10 ⁶ Bq)	: •	•	•	•
Cl-36 Y-91 Sn-113 I-125 Eu-149 Lu-174 Pt-193	K-40 Zr-95 Sn-119m La-137 Eu-155 Lu-174m Au-195	Fe-59 Nb-93m Sn-121m Ce-139 Gd-151 Hf-175 Hg-203	Co-57 Nb-95 Sn-123 Pm-143 Gd-153 Hf-181 Pb-205	Se-75 Tc-97m Te-123m Pm-145 Dy-159 Ta-179 Np-235	Rb-84 Ru-103 Te-125m Pm-147 Tm-170 Re-184 Pu-237	Sr-85 Ag-105 Te-127m Sm-145 Yb-169 Re-186m	Sr-89 In-114m Te-129m Sm-151 Lu-173 Ir-192
ess than.	3 μCī (Ι :	x•10 ⁵ Bq}	•			•	
8e-10 Co-56 Zr-93 Rh-102 Te-121m Pm-148m Ho-166m Ir-192m	Na-22 Co-58 Nb-94 Rh-102m I-129 Eu-148 Lu-176 Ir-194m	A1-26 Co-60 Mo-93 Ag-108m Cs-134 Eu-150 Lu-177m Hg-194	Si-32 Zn-65 Tc-95m Ag-110m Cs-137 Eu-152 Hf-172 Pb-202	Sc-46 Ge-68 Tc-97 Cd-109 Ba-I33 Eu-154 Ta-182 Bi-207	Ti-44 Rb-83 Tc-98 Sn-126 .Ce-144 Gd-146 Re-184m Bi-210m	Mn-54 Y-88 Ru-106 Sb-124 Pm-144 Tb-158 Os-185 Cm-241	Fe-60 Zr-88 Rh-101 Sb-125 Pm-146 Tb-160 Os-194
ess than	0.3 µĊi (1	L x 10 ⁴ Bq)	•			• • • • •
Sr-90 Pu-241	Cd-113m Bk-249	La-138 Es-254	HF-17.8a	HF-182	Po-210	Ra . 226	Ra-228
ess than (0.03 µCi (1 x 10 ³ B	q) <u> </u>		•	·	· · · · · · · · · · · · · · · · · · ·
Sm-146	Sm-147	Pb-210	Np-236	Cm-242	Cf-248	Fm-257 ·	Md-258
ess than (0.003 µCi	(1 x 10 ² (3q).				•
Gd-148 \$U*238} Am-241	Th-228 Np-237 Am-242m Bk-247	Th-230 Pu-236 Am-243 Cf-249	U-232 Pu-238 Cm-243 Cf-250	U-233 Pu-239 Cm-244 Cf-251	U-234 Pu-240 Cm-245 Cf-252	U-235 Pu-242 Cm-246 Cf-254	U-236 Pu-244 Cm-247
ess than C).0003 μCi	(1×10^{1})	Bą)				•
Ac-227	Th-229	Th-232	Pa-231	<u>Cm-248</u>	<u>Ca-250</u>		

* These activities were selected to yield a committed effective dose equivalent of 10 area (100 µSv) or . less for a credible incident to a member of the general public.

:.

400 THE HEALTH PHYSICS AND RADIOLOGICAL HEALTH HANDBOOK

Table 11.1.1 Classification of Workplaces (Continued)

(From International Labor Office Guidelines for the Radiation Protection of Workers in Industry (Ionizing Radiations) Occupational Safety and Health Series 62 Officerational Labour Organization 1989)

Type II Workplace

- 1. A type II (type B) workplace should be specifically designed, constructed and equipped for work with radioisotopes.
- 2. The levels of airborne activity should be kept as low as reasonably achievable by the use of totally or partially ventilated fume hoods or glove boxes.
- 3. The workplace should have reduced air pressure relative to the surrounding areas. The ventilation exhaust should be via a fume hood. There should be a space for an absolute filter to be put between the fume hood and the ventilation duct allowing for easy change of the filter and for monitoring the negative pressure gradient. Special attention should be given to avoiding the recirculation of air and the dispersion of contamination to other occupied areas.
- 4. The surfaces of the fume hood and the ventilation duct should be smooth and made of non-absorbent material that can withstand the chemicals normally used in the hood.
- 5. The speed of the air flow should be regular, without eddies, and should be such that there can be no escape of air from the fume hood into the workplace under typical operating conditions, including the opening of windows and doors and the suction of other fume hoods. This should be checked using smoke tests. The gas, water and electrical outputs should be operated from outside the hood.
- 6. Fune hoods and glove boxes where "active" work is carried out should be properly marked with the radiation symbol and the appropriate explanatory text.
- 7. A waste bin with a foot-operated lid should be available for the collection of low activity waste. The bin should bear the radiation warning sign. A plastic bottle which could withstand the effects of the various solvents and the effects of radiation should be provided for the temporary retention of liquid waste.
- 8. Facilities for washing hands should be foot or elbow operated.
- 9. A special room should be provided for storing radioactive substances.

Type III Workplace

- 1. A type III (type A) workplace should be specifically designed, constructed and equipped for handling large quantities of radioactive material in accordance with the specifications and requirements laid down by the competent authority.
- 2. Processes involving risks of air contamination should be carried out in completely enclosed glove boxes or hot cells under negative pressure and provided with filters and transfer boxes.
- 3. Radioactive substances should be stored only in a special room equipped with suitable shielding and ventilation, and in accordance with the provisions as regards waste storage.

OPERATIONAL HEALTH PHYSICS 401 LABORATORY OPERATION AND GOOD WORK PRACTICES

Table 11.1.1.1 Toxicity Classification of Radionuclides²

(From International Labor Office Guidelines for the Radiation Protection of Workers in Industry (Ionizing Radiations) Occupational Safety and Health Series 62 Ofinternational Labour Organization 1989)

	,				•				
Very Hig	h Radiotoxi	icity (Group	I)				•		
210Pb	228 _D	22977	232	236Pu	241Pu	.243Am	244Cm	-248Cm	²⁵¹ Cf
²¹⁰ Po	227 4 0	230	233U	2380	242p11	40Cm	245	248/4	252~~
213 _{Ra}	- 227 Th	²³¹ Pa	234U	2390.	241Am	24400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	249~~	2404
ZZ Ka	228.Th	²³⁰ U	²³⁷ Np	240Pu	242mAm	243Cm	247Cm	250 ČŢ	254Es
225 _{Ra}	10	0	Np	Fu	Au	Citt	Cau	~	~~~
226 _{Ra}			,		· .				
High Rad	liotoxicity (Group 2)							
22 _{Na}	⁹⁰ Sr	110mAg	124 _I	140 _{Ba}	170Tm	²¹² Pb -	228Ac	244Pu	253Cf
36~1	91-7	11200 23	125r	144/70	191114	20/0;	Th	. ²⁴² Am	²⁵³ Es
⁴⁵ Ca	93 Zr	11401	1267	152 _C	182	21081	Th Nor	"Cm	20°00 - •
46Sc	94Nb	12ASb	131 ₁	DaE!	192 _{Ír}	21124	230 _{Pa}	²⁴⁹ Bk	255 ₀
⁶⁰ Со	106Ru	125Sb	134Cs	160 Tb	²⁰⁴ 11	224 _{Ra}	236U	246Cf	256 _{Fm}
- C	Ku	00				••••			
Moderate		ity (Group.3)						-	400
7Be	22Fe	. ⁸² Br	97Zr	105Ag	¹³⁴ Te	143Ce	¹⁷¹ Tm	198 _{A11}	237U
¹⁴ C	20154	17K-	20Nb	*** 0 0	120 ₁	142pr	1/202	199Au	240U
18 _F	59 _{Fe}	"Kr	YOUNT.	10°Cd	123 ₁	1430-	1411	. 197Hg	240 _{NI-0}
21 _{Na}	, ²³ Co	°'Kr	SONT	115/24	.130 <u>1</u>	147,574	10100 .	13 10 10	No ·
3157	5600	88Kr	96Nb	IISmr.	132m1	197272	18507	and the	
SZp .	ຸ່າດ	⁸⁰ Rb	MM0	113c_	133 _[15 Dm	18777	2077	237 _{Pu}
33 _P	58C0	້	93MG	1005	135 ₁	AT Den	183 ₀	201-71	Pu
зб _S	⁶³ Ni	Sr Sr	⁹⁹ Mo	1 current	135Xe	141Sm	1000-	²⁰² TI .	238 _{Am}
380	65NT	⁸⁹ Sr	96Tc	121Te	132Cs	Sul	1880	203Pb	240Am
⁴¹ Ar .	65 .	91c-	97mm	12100	136	13200	100	205Bi	244m Am
er .	⁶⁵ Zn	52Sr	9/70	12300	137	· ISSEU	1310	2120:	244 Am
· ok	^{69m} Zn	89Y	⁹⁹ Tc	125ce Te	10102		¹⁹³ Os	220 ₀₋	238~~~
a G		22Y	97 _{Ru}	127m Tc	140La	15901	1907-		200 Bl
"Sc	⁷³ As	93Y		129m Te	134/7	102	1947-		24476
430 **S0	74As	⁸⁶ Zr	105Ru 105ru	¹³¹ Te	135Ce	100004	191 _{D+}	23174	254 _{Fm}
٩v	76As	^{\$8} Zr	105Rh	131mTe		TOOLL	1230+	23476	~~~
SICr	π_{As}^{As}	⁸⁹ Zr	103Pd	· 132Te	139Cc	169Er	197pt	Zup	
SI Ma	75Se	95m	109-1	133mTe	141Cc	171 _{Er}	.196Au	231U	
se Ma	-30	⁹⁵ Zr	109Pd	1c	Ce	E	- 210	U	
MI		•		•			•		
	iotoxicity (G		•	•					
311	^{60m} Co	⁸¹ Kr	91my	^{99m} Tc	120m	127Cs	138Cs	207 _{Po}	243Pu
150	°'Co	osar.	⁸⁸ Nb	103cip1.	121	129	2),ct	44 Da	237Am
31/14	armon a	and the second sec	⁸⁹ Nb	113037-	128 _[13005	13 mille	23577	239 Am
- Ma	JYNT:	8027-	97 _{Nb}	110T	129 ₁	201EI	193cop,	23877	245 Am
·	⁶⁹ Zn	80 _{Sr}	98Nb	14or	134 ₁	134000	197000+	239U	
Ma	"C.	0167	93mMo	1477	131	135Cs	2030	II NAT	270 Am
~Mn	⁷⁶ Kr	85mSr	¹⁰¹ Mo	129 Te	¹³³ Xe	13SmCs	205Po	, 350Pu	249Cm
Sta Co	⁷⁹ Kr	87mSr	^{96m} Tc	133Te	125Cs			- 4	
	111	Sr	10	10	<u>()</u>				

* listed on the classification published in the Official Journal of the European Communities, No. 1246, Vol. 23; Luxembourg: 17 Sep. 1980.

⁶ Une becquerel of natural thorium corresponds to 1 alpha disintegration per second (dps) (0.5 dps of ²³²Th and 0.5 dps of ²²⁵Th). One curie of natural thorium corresponds to 3.7 x 10¹⁰ alpha disintegrations per second (1.85 x 10¹⁰ dps of ²³²Th and 1.85 x 10¹⁰ dps of ²²⁸Th).

19

• ...

R	adionuclide	Type of Workplace				
	Group	Type I	Type II	Type II		
1.	Very high	500 K Bq or less -15 ~ C	500 K Bq-500 M Bq	500 M Bq or more		
	High	5 M Bq or less-150	S M Bq-5 G Bq	5 G Bq or more		
	Moderate	50 M Bq or less < 25 m C	50 M Bq-50 G Bq	50 G Bq or more		
•	Low	500 M Bq or less - 15 mC:	500 M Bq-500 G Bq	500 G Bq or more		
		· · · · · · · · · · · · · · · · · · ·				

Table 11.1.1.2 Activity Limits for Use of Radionuclides in Various Types of Workplace² (From International Labor Office Guidelines for the Radiation Protection of Workers in Industry (Ionizing Radiations) Occupational Safety and Health Series 62 Officernational Labour Organization 1989)

^{*} The above table provides, as precisely as the complexity of the subject will allow, a basis for assessing the type of workplace required for normal operations. According to the nature of the operations, the following modifying factors should be applied:

Operation	Modifying Factor
Storage (stock solutions)	x 100
Very simple wet operations	x 10
Normal operations	x1
Complex wet operations with risk of spills and simple dry operations	x 0.1
Dry and dusty operations	x 0.01

Table 11.1.1 Classification of Workplaces

(From International Labor Office Guidelines for the Radiation Protection of Workers in Industry (Ionizing Rediations) Occupational Safety and Health Series 62 Olaternational Labour Organization 1989)

Introduction

- 1. In view of the extreme diversity of processes carried out with unscaled radioactive sources and the great variety of potential risks, working areas and workshops should be classified according to the relative radiotoxicity of the radionuclides taking into account the nature of the operations and the total amount used.
- 2. Specialized installations should be divided into three types of workplace depending, to the extent practicable, on the factors referred to in paragraph 1 and in accordance with Table 11.1.1.1 for radiotoxicity classification. The types of workplace are commonly referred to as:
 - (a) type I workplace or type C workplace;
 - (b) type II workplace or type B workplace;
 - (c) type III workplace or type A workplace.
- 3. The activity limits for use of radionuclides in the various types of workplace are given in Table 11.1.1.2.

4. Workplaces of all three types should be:

- (a) reserved exclusively for work with radioactive substances and isolated from other workplaces as far as is practicable;
- (b) subject to classification according to the potential risks involved: normally areas where radioactive substances are used will be classified as controlled areas; however, areas where workers are not likely to receive more than three tenths of the dose limits may be either included in a controlled area or defined as supervised areas, if this is duly justified and considered more convenient.
- A changing area should be provided at the entrances of areas where radioactive substances are prepared or used, in order to prevent contamination from being transported by persons to outside areas. The changing area should contain a foot barrier. Places for clean clothes should be left outside the barrier and protective clothing, equipment and containers for discarded, contaminated clothing should be provided on the active side of the barrier.
- 6. Washing facilities should be set up appropriate to the level of radioactivity present in the workplace. The wash basins should be elbow, knee or foot operated.
- 7. Changing areas should contain monitoring and control equipment, appropriate to the levels of radioactive materials present, to monitor the hands, feet, shoes and clothes of workers leaving controlled or supervised areas. Additional check points should be established within controlled areas when necessary, depending on the type of work being carried out.
- 8. Separate rooms should be assigned to different types of work when such work involves widely varying levels of activity, and in accordance with the classification of workplaces as given in this chapter. Counting apparatus should normally be placed in a separate room. The design should take into account, as far as practicable, the transfer of radioactive materials from one workplace to another, where necessary, without passing through the surrounding area.

Type I Workplace

, ...[.]

- 1. The design, construction and equipment of a type I (type C) workplace should be similar to those of a good quality modern chemical laboratory.
- 2. Normal ventilation is usually sufficient, and could be complemented with continuous movement of air into a fume hood.

Atomic Electrons (⁹⁹ Mo) (continued)
c _{bin} (keV) (e)(keV) e(%)
775 - 823 0.0051 0.00065 23
940-986 0.00069 73×10 ⁻⁵ 998-1035 8.0×10 ⁻⁶ 83×10 ⁻⁷
1053 - 1056 7.0 ×10 ⁻⁷ . 7 3 ×10 ⁻⁴ .
Continuous Radiation (⁹⁹ Mo) (β-)=390 keV;(IB)=0.47 keV
E _{bin} (keV) ()(keV) (%)
0-10 β- 0.078 1.55
IB 0.018 10-20 β- 0.233 1.56
IB 0.017 0.119 20-40 β- 0.94 3.12
IB 0.032 0.113 40 - 100 β- 6.6 9.4
IB 0.084 0.13
100-300 β- 57 28,8 IB 0.18 0.105
300-600 β- 141 31.9 . IB 0.112 0.028
600 - 1214 β- 184 · 23.8 IB 0.027 0.0038
Mode: β- Δ: -87324.4 21 keV SpA: 0.0170 Ci/g Prod: fission; daughter ⁹⁹ Mo
Photons (⁹⁹ Tc)
$\gamma_{mode} \gamma(keV) \gamma(\%)$
7E2+29%M1 89.65 # 4.9 #X10 ⁴
Continuous Radiation (⁵⁹ Tc) (β-)=85 keV;(IB)=0.026 keV
E _{tin} (keV) ()(keV) (%)
0-10 β- 0.385 7.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IB 0.0037 0.026 20-40 β- 4.19 14.0
IB 0.0057 0.020 40-100 p- 23.6 34.6
IB 0.0088 0.0146
100-294 β- 55 36.2 IB 0.0031 0.0024
99 43 -0.3% t _{1/2} variation with chemical environment Mode: IT(99.9963 6 %), β-(0.0037 6 %)
Δ : -87181.8 21 keV

-	P	hotons (⁹	⁹ Tc)		
	(7	/)=123.9 7	keV		
	γ_{modc}	γ(keV) ₂ (%) [†]		
T	c L _é	2.133	0.0096 17		
T	۶L	2.249	0.0045 7		
Te	cL_	2.424	0.24 4		
Te		2.576 2.860	0.145 24 0.0103 19		
	.κ.,	18.251	· 2.17 #		
To	: K_1	18.367	4.12 16		
To	K _{st}	20.613	0.98 4		
To	K	21.136	0.177 7		
	г МІ́+1.4%Е г М4	142.658 11			
	E2+MI	232.71 23	8.8 BX10	-6	
	MI+E2	322.36 21	9.87×10 ⁵		
+ u	nœrt(syst):	: 0.57% fo	r IT, 16% f	== or β-	
	Atomic	Electrons	; (⁹⁹ Tc) [*]		
•	< <u> </u>	;)=14.2 3 1	œV		
	c _{bin} (keV)	(c)(kcV)	c(%)		
	3	0.218	79:	-	
•	15 16	. 0.091 0.138	· 0.60 <i>6</i> 0.89 <i>9</i>		
	17	0.0085	0.0495		
	18	0.091	0.515		
	20 · ∵21	0.0077	0.038 4		
	119	0.00150	0.0073 z 8.69 u		
	122	1.00	0.82 #		
	137	1.33	0.965 20		
	138 140	0.126 0.69	0.091 <i>3</i> 0.496		
	142	0.074	0.052 11		
•	143	0.013	0.0092.20		
-		• with IT	· .		
			•.		
	99 ₁	Ru(stal	ole)		
	- 1-1 A.	07610 0 -	2 1037		
	<u> </u>	87618.02 12.71	ZKCY		
	. 70,	1411	•		
	99 _m	n vic	T)		
	45 th	kh(16)	(
M	ode: e A: -8551	0 10 2-37			
c	pA: 8.2X			•	
			_		
Prod: ⁹⁹ Ru(p,n); protons on Cd					
Photons (⁹⁹ Rh)					
(γ)=528 26 keV					
=					
-	Ymode u L _c	γ(keV)	γ(%) [†] /		
R	uL _e .	2.253 2.382	0.125 z4 0.059 so		
R	u L	2.558	3.26		
R	u L _ø	2.731	2.04		
	u L. u K_2	3.029 19.150	0.153		
R	u K_2 u K_1	19.150	27.4 <i>2</i> 2 52.4		
R	и К.,*	21.650	12.6 10 .	22	
R	u K _m	22.210	7 34 10		

	Photons (^{.99} Rh)
	(contin	
$\gamma_{\rm mod}$	de [·] γ(ke	·V) γ(%) [†]
γ	175.4	3 2.35
γ E2+M γ	1 232.7 253.2	
γ(E2) γMI+E	295.9 2 322.3	
γMI+E γ		52 337
7 7	485.8 528.6	25 0.51 6
γ	575.54	23 0.274
7 7	734.7	0.326
7 7	764.4 807.9	3 1.43
r r	850.8. 897 . 5.	0.68 14
r r	940.2 1000.7	
r r	1062.0 : 1089.7 -	
γ	1208.8	0.163
7 7 7	1324.9 1383.1	0.163
Ŷ	1442.9	- 0.080 16
Υ. Υ.	1504.9 5	. 0.080 16
7 7 7 7 7	1532.64 1572.34	0.235
7	1616.64 1662.04	0.060 12
7 7	1749.4 7 1969.9 4	0.163
7	2059.5 1	0.032.6
t	2.5% unce	rt(syst)
Atom	ic Electro	15 (⁹⁹ Rh)
••	(c)=43 5	•
c _{bin} (keV)	(c)(keV)	e(%)
3	2.9 2.8	· 100 B 17.2 m
18-22 68	1.35 24.0	7:1 7 367
86 87	2.8	3.37
89	1.4	1.53
153 - 175 210 - 253	0.37 0.13	~0.23 0.060 21
274 - 322 331 - 353	0.42 1.5	0.14 <i>3</i> 0.44 <i>1</i> 0
421 - 464 483 - 529	0.044 0.6	0.010 4 0.12 s
553 - 596 615 - 618	0.045	0.008 4 0.0010 s
713 - 762 764 - 808	0.0066	0.0009 s 0.0015 7
829 - 875 894 - 940	0.0054 0.011	0.0007 <i>3</i> 0.0012 <i>5</i>
979 - 1001 1040 - 1089	0.0045 0.0029	0.00046 m 0.00028 s
1187 - 1209 1270 - 1303	0.0009	7 3 ×10 ⁻⁵ 0.00020 6
1322 - 1361 1380 - 1421	0.0008	5.7 22 ×10 ⁵ 2.9 10 ×10 ⁵
1380 - 1421 1440 - 1532 1550 - 1640	0.0035	0.00024 6
1659 - 1749	0.0022	0.000143 1.55 ×10 ⁵
1948 - 2037 2056 - 2059	0.00065 1.3 ×10 ⁻⁵	3.3 10 ×10 ⁵ 6.2 20 ×10 ⁷

SpA: 5.2704×10^{6} Ci/g Prod: daughter ⁹⁹Mo 232 89Ac(35 5 s). Mode: β-Δ: 39240 200 keV syst SpA: 1.38×10⁹ Ci/g Prod: ²³²Th(n,p)

 $^{232}_{90}$ Th(1.405 6 ×10¹⁰ yr)

Mode: α Δ: 35444.4 21 · keV SpA: Ci/g Prod: natural source %: 100

Alpha Particles (²³²Th) $\langle \alpha \rangle = 4005 \ 6 \ \text{keV}$ $\overline{\alpha(\text{keV}) \quad \alpha(\%)}$ $3830 \ 10 \quad 0.20 \ \text{s}$ $3952 \ \text{s} \quad 23 \ \text{s}$ $4010 \ \text{s} \quad 77 \ \text{s}$ Photons (²³²Th) $\langle \gamma \rangle = 0.17 \ \text{s} \ \text{keV}$ $\overline{\gamma_{\text{mode}} \ \gamma(\text{keV}) \quad \gamma(\%)}$

γE2 59.0 10 0.190 35 γ(E2) 124 11 ~0.043

²³² ₉₁ Pa(1.31 2 d)	
Mode: β-(~ 99.98 %), ϵ (~ 0. Δ: 35923 11 keV SpA: 4.30×10 ⁵ Cl/g Prod: 231 Pa(n,γ); 232 Th(d,2n) 232 Th(p,n)	••

Photons (²³²Pa) (γ)=941 20° keV

Ymode	γ(keV)	7(%) [†]
UL,	11.620	1.1521
UL.	13.600	193
UL	15.400	0.48 #
UL,	17.130	24∢
υL,	20,295	5.4 10
YEE2	47.579 9	0.21 4
Ye[E1]	80.24 7	0.153
ŬK ₂	94.651	1.104
UK	98.434	1.767
YEE1	105.48 3	1.65 19
YeE2	109.001 #	2.83
U K _{pt}	111.025	0.644 24
UK	114.866	0.217 9
Y.MI.E2	132.24 7	0.013 5
γ ₆ [E1]	139.53 3	0.583

Photons (²³² Pa) (continued)					
γ _{mode}	γ(keV				
Tre El	150.096				
TeEZ TeEZ	164.7 s 175.57 24	0.029 5			
Y. MI.EZ	176.85 7	~0.0039			
Ye El Ye El	184.142.4 282.33 7	· 1.33 ~0.010			
γ E2+4.7%M γ E2+21%MI	1 387.919				
7, E2+12%M1	453.693 5	8.61 19			
YeEI YeEI	472.426 s 515.653 c	5.53 19			
YoEI YoEI	563.231 7 581.427 6				
Ye(E2) YeE2	643.68 24 710.249 7	<0.019?			
γ ₆ [E2]	734.59 7	0.0296			
γ _e E2 γ _e [M1∔E2]	754.863 814.157	0.49 <i>3</i> 0.17 <i>4</i>			
70 E2 70 E2	ہ 819 .2 50 ہ 863.86 ع	: 7.48 H 2.17 H			
YeE2 YeE1	866.829 s 894.390 7	5.77 12 19.8 4			
Ye [M3]	911.443	0.0116 10 ?			
YeE2] YeE1	923.15 7 969.345 6	0.0403 <i>2</i> 5 41. 6 <i>19</i>			
reEl reM2	1003.391 7 1016.924 s	0.158 <i>*</i> 0.0135 #			
re El	1050.969 10 1055.2 3				
reELEZ	1085.289	0.0229 19			
reEl El,E2	1125.53 16 1132.869	0.213 <i>10</i> 0.020 <i>3</i>			
reEl re[M2]	1164.2.3 1173.11 16	0.0153			
+0.1	† 0.52% uncert(syst)				
Atomi	Electron	s (²³² Pa)			
Atomi	c Electron (c)=79 3 k	s (²³² Pa) æV			
Atomic c _{bin} (keV)	c Electron (c)=79 3 k (c)(keV)	s (²³² Pa) ev e(%)			
Atomic c _{bin} (keV) 17 21	c Electron (c)=79 3 k	s (²³² Pa) eeV c(%) 224 193			
Atomic c _{bin} (keV) 17 21 22-26	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47	s (²³² Pa) eV c(%) 224 193 LS9 2			
Atomic c _{bin} (keV) 17 21 22-26 27 30	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2	s (²³² Pa) eV c(%) 224 193 1.89 ± 387 336			
Atomic c _{bin} (keV) 17 21 22-26 27 30 34 42	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5	s (²³² Pa) eV e(%) 224 193 1.8925 387 336 1.642 10.720			
Atomic c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	s (²³² Pa) cV c(%) 224 193 L8925 387 336 L642 10.720 9.417 8.39			
Atomic c _{bin} (keV) 17 21 22-26 27 30 34 42 43	c Electron (c)-79 3 k (c)(kcV) 3.7 3.9 0.47 10.2 10.2 10.2 0.57 4.5 4.1	s (²³² Pa) cV c(%) 224 193 1.8925 387 336 1.642 10.725 9.417 8.39 10.9 11			
Atomia c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87 88 89-91 92	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6	s (²³² Pa) eV c(%) 224 193 1.89 25 387 336 1.648 10.7 20 9.4 17 8.3 9 10.9 11 0.0158 11 7.2 8			
Atomic c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87 88 89-91 92 93-103 104	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	s (²³² Pa) cV c(%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 10.911 0.015813 7.22 0.23520 2.93			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75	s (²³² Pa) eV e(%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 10.911 0.015815 7.22 0.015815 7.22 0.015815 7.22 0.015825 2.0827 2.4216.			
Atomia c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87 88 89-91 92 93-103 104 105 106-155 156-184	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18	s (²³² Pa) cV c(%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 10.911 0.015815 7.22 0.23520 2.93 2.0822			
Atomia c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87 88 89-91 92 93-103 104 105 106-155 156-184 261-306 338-387	c Electron (c)=79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24	s (²³² Pa) cV c(%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 10.911 0.015815 7.22 0.23520 2.93 2.0822 2.4216. 0.0535 0.7114 0.9255			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 387 388 - 437 448 - 495	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791	s (²³² Pa) eV c(%) 224 193 1.89 25 387 336 1.64 2 10.7 20 9.4 17 8.3 9 10.9 11 0.0158 11 7.2 2 0.0158 11 7.2 2 0.0158 11 7.2 2 0.0158 11 7.2 2 0.053 5 0.71 4 0.92 5 0.372 12 0.173 5			
Atomid c _{bin} (keV) 17 21 22-26 27 30 34 42 43 44-87 88 89-91 92 93-103 104 105 106-155 156-184 261-306 338-387 388-437 488-595	c Electron (c)-79 3 k (c)(kcV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45	s (²³² Pa) eV c(%) 224 193 1.892 387 336 1.642 10.720 9.417 8.39 10.911 0.015813 7.22 0.23520 2.93 2.0821 2.4216 0.05335 0.37212 0.1735 0.01013 0.0797			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 387 388 - 437 448 - 495 498 - 546 558 - 595 619 - 666 670 - 717	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532	s (²³² Pa) eV c(%) 224 193 1892 387 336 1648 10.720 9.417 839 10.911 0.015818 7.28 0.23520 2.95 2.0821 2.4216 0.0535 0.714 0.925 0.37212 0.1735 0.0101 5			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 387 388 - 437 448 - 495 498 - 546 558 - 595 619 - 666 670 - 717 729 - 755	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.674	s (²³² Pa) eV c(%) 224 193 18925 387 336 1648 10.720 9.417 839 10.911 0.015811 7.28 0.23520 2.0821 2.4216. 0.0535 0.37212 0.1735 0.01013 0.0797 0.017021 0.1025			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 437 488 - 437 388 - 437 388 - 437 388 - 545 498 - 546 558 - 595 619 - 666 670 - 717 729 - 755 779 - 819 842 - 891	c Electron (c)-79 3 k (c)(kcV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.674 0.889 1.58	s (²³² Pa) eV c(%) 224 193 1892 387 336 1642 10.720 9.417 8.39 10.911 0.015813 7.22 0.23520 2.93 2.0822 2.4216 0.0535 0.714 0.925 0.37212 0.1735 0.01013 0.0797 0.017021 0.113023 0.113023 0.113023			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 387 388 - 437 448 - 495 498 - 546 558 - 595 619 - 666 670 - 717 729 - 755 779 - 819 892 - 940 948 - 996	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.45 0.111 0.72 0.674 0.889 1.58 0.0260 0.294	s (²³² Pa) eV eV (%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 10.911 0.015815 7.22 0.03520 2.93 2.0827 2.4216 0.0535 0.37212 0.1735 0.01013 0.017021 0.113025 0.0905 0.113025 0.0028815 0.003911			
Atomid c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 437 488 - 595 619 - 666 670 - 717 729 - 755 779 - 819 842 - 891 893 - 940 988 - 1047 1049 - 1085	c Electron (c)-79 3 k (c)(kcV) 3.7 3.9 0.47 10.2 10.2 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.674 0.889 1.58 0.0260 0.294 0.0022	s (²³² Pa) eV c(%) 224 193 1.8925 387 336 1.642 10.725 9.417 8.39 10.911 0.015813 7.22 0.23525 2.93 2.4216 0.00535 0.714 0.925 0.37212 0.1735 0.01013 0.0797 0.017021 0.113025 0.113025 0.113025 0.113025 0.00905 0.113025 0.113025 0.00905 0.113025 0.00905 0.113025 0.00905 0.113025 0.00905 0.000288 0.000216			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 437 448 - 495 498 - 546 558 - 595 619 - 666 670 - 717 729 - 755 779 - 819 842 - 891 833 - 940 948 - 996 998 - 1047	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.674 0.889 1.58 0.0260 0.294 0.0050 0.0095	s (²³² Pa) eV eV (%) 224 193 1.8925 387 336 1.642 10.720 9.417 8.39 0.0158 15 7.28 0.0158 15 7.28 0.0158 15 7.28 0.0158 15 7.28 0.0535 0.372 12 0.1735 0.0101 3 0.0170 21 0.0125 0.0309 11 0.00088 6 0.00021 6 0.00021 5 15			
Atomia c _{bin} (keV) 17 21 22 - 26 27 30 34 42 43 44 - 87 88 89 - 91 92 93 - 103 104 105 106 - 155 156 - 184 261 - 306 338 - 437 448 - 495 498 - 546 558 - 595 619 - 666 670 - 717 729 - 755 779 - 819 842 - 891 893 - 940 948 - 996 998 - 1047 1049 - 1085 1104 - 1152	c Electron (c)-79 3 k (c)(keV) 3.7 3.9 0.47 10.2 10.2 0.57 4.5 4.1 4.2 9.6 0.0141 6.6 0.241 3.0 2.18 2.75 0.087 2.02 3.24 1.56 0.791 0.0532 0.45 0.111 0.72 0.674 0.889 1.58 0.0260 0.294 0.0050 0.0095	s (²³² Pa) eV c(%) 224 193 1.8925 387 336 1.642 10.725 9.417 8.39 10.911 0.015813 7.22 0.23525 2.93 2.4216 0.00535 0.714 0.925 0.37212 0.1735 0.01013 0.0797 0.017021 0.113025 0.113025 0.113025 0.113025 0.00905 0.113025 0.113025 0.00905 0.113025 0.00905 0.113025 0.00905 0.113025 0.00905 0.000288 0.000216			

Continuous Radiation (232 Pa) (β ->=92 keV;(IB)=0.034 keV

E _{bin} (keV)	•	<)(keV)	(%)
0 - 10	β-	0.385	7.7
	IB	0.0047	
10 - 20	β-	1.11	7.4
	IB	0.0040	0.028
20 - 40	β-	4.13	13.8
	IB	0.0064	0.023
40 - 100	β-	23.0	33.7
	IB	0.0106	0.017
100 - 300	β-	58	36.9
	IB	0.0065	0.0045
300 - 600	β-	2.29	0.53
	ĪB	0.0018	0.00043
600 - 1289	β-	2.88	0.367
	IB	0.00046	6.4×10 ⁻⁵

²³²₉₂U (68.9 10 yr)

Mode: α, SF(97×10⁻¹¹%) Δ: 345866 keV SpA: 22.4 Ci/g Prod: daughter ²³²Pa; ²³²Th(α,4n)

Alpha Particles (^{232}U) $(\alpha)=5306.52$ keV

a(keV)	a(%)
4502. 4930.		2.47×10 ⁻⁵ 0.00021 3
4948	73 20	0.000173
4997.		0.0029 2
5136. 5263.		0.28 2 31.2∢
5320		68.64
		•••
	Photons (²³² U)
	(γ)=0.24	3 keV
Ymode	γ(keV)	γ(%)
rE2	57.81 5	0.214
E2	129.037	0.075 15
rEI	141.19 <i>1</i> 9	5.423×10 ⁵
E2	191.29 17	3.43×10 ⁵
EI	209.397	L33×10 ⁵
EI	270.26 .	0.0038 s
EL	328.07 9 332.48 9	0.0034 <i>7</i> 0.00051 <i>3</i>
(E1(+M2) Eİ	338.42.6	4.05 14×10 ⁵
(E1)	338.426 478.20 H	1.6 c×10 ⁶
EI	503.7 4	2.0 6×10 ⁵
	546.36 <i>2</i> 5	~1×10
(E1)	540.3023 774.0∢	~8×10
(E2)	816.62 21	~2×10
[M1+E2]	8401	~2×10
[E2]	874.43 24	5.5 u×10 ⁷
232	T / 1 A A	7

7

7

7777

²³²Np(14.7 3 min) ^{Mode: e}

Δ:	37280 100_ keV syst
SpA:	5.51×10 ⁷ Ci/g
Prod:	²³⁵ U(d,5n); ²³⁸ U(d,8n); ²³³ U(d,3n)
•	233U(d,3n)

			PI	iotons (²³⁸] (continued	
²³⁸ ₉₁ Pa(2.3 1	min)		γ _{mode}	γ(keV)	γ(rel)
Mode: β- Δ: 51270 30	0 keV		- γ[M1+E2] γ	765.3 4 769.0 10	4.0 #
SpA: 3.43×10) ⁸ Ci/g ·		γ γ[M1+E2]	797.5 10 805.8 4	44 9
Prod: ²³⁸ U(1,1))		Υ Υ Υ	818.1 10 823.2 s	9.0 18
Photons (²³⁸)	Pa)		י י י	836.7 10 839.6 10	
<i>(</i>]30			γ[EI]	849.1 <i>s</i>	14 <i>3</i> -54 <i>11</i>
γ_{mode} $\gamma(keV)$	γ (rel)		Υ 7[E1]	863.7 <i>s</i> 874.6 <i>s</i>	9.0 18
7[M1+E2] 40.54 7[E2] 44.915 11	•		γ EI γ EI	885.7 4 904.9 s	45 <i>9</i> 23 <i>5</i>
YEI 68.1 5	70	•	γ Mi+E2] γ E2]	911.1 <i>↓</i> 911.8 <i>5</i> ?	194
γ EI 68.8 4 γ E2 103.50 4	· 7.0 14 12.0 24	<i>t</i>	7 [EI] 7	930.6 4 932.5 s	6 •
7 EI 109.3 4 7 MI+EZ 130.8 5			γ [M1+E2]	943.54	7.0 H
γ 142.6 10	3.06		7 El] 7 [MI+E2]	952.6 <i>s</i> 957.1 <i>s</i>	21 <i>↓</i> 18 <i>↓</i>
7[E2] 158.80 <i>s</i>	4.0 5		r r	961.0 10 967.0 10	4*
7 164.9 10 7[MI+E2] 171.3 5 ?	2.0∢ 3.0¢		r r	969.0 10 979.6 10	
γ[M1+E2] 178.5 s γ 189.4 10	11.0 22		γ[M1+E2]	984.3 s 991.1 <i>s</i> 0	7.0 14
γ 193.3 10 γ[MI+E2] 197.7 4	2.0∢ 9.0 <i>1</i> 4		7 7 []]	995.5 <i>5</i>	102
γ 212.9 10 γ[M1+E2] 217.9 5	143			1003.5 <i>5</i> 1014.6 <i>4</i>	100 •
γ 221.9 <i>s</i> ο	4.08		γ M1+E2 γ M1+E2	1015.3 <i>5</i> 1019.06	10 *
γ 228.8 10 γ[E2] 238.3 4		-	γ[E1] γ	1020.4 <i>3</i> 1032.9 <i>1</i> 0	
7 MI+E2 250.6 <i>s</i> 7 MI+E2 258.7 <i>4</i>	7.0 H 8.0 K		· 🛉	1036.1 10	8.0 <i>16</i>
γ[M1+E2] 269.8 s	12.0×	•	γ[M1+E2] γ[2]	1060.25	45 •
γ 289.2 <i>s</i>	4.0 <i>s</i> 12.0 <i>2</i> 4		7[MI+E2] 7	1060.6 <i>5</i> 1071.0 <i>1</i> 0	•.
7 293.0 50 7 301.8 50	2.04		7 7[E1]	1074.0 <i>I</i> 0 ⁻ 1083.4 J	50 10
γ 316.9 <i>5</i> γ <u>322.0</u> 10	7.0 <i>H</i>	•	*	1090.2.10 1094.65	51
7 329.5 10 7 347.1 6			7[E2] 7	1112.0 10	2.04 · ·
7 353.3 10	6†		7 7[E2]	1113.0 <i>1</i> 0 1122.56	4.0 <i>s</i> 5 =
7 374.86	•1		7[E1] 7	1123.9 <i>3</i> 1138.46	-2.04?
γ 377.0 10 γ[M1+E2] 396.44	184		7 7	1159 <i>.5 1</i> 0 1161 <i>.5 1</i> 0	5*
γ 407.510 γ 422.210	9.0 14 6.0 12		7 · ·	1178.96 1214.8 <i>1</i> 0	6.0 11 6.0 11
7 M1+E2 432.667 7 M1+E2 436.94	163		7	1224.0 10	6.0 12
τ 442.9 10 τ[M1+E2] 448.4 4	76 <i>1</i> 5	· .	7 7	1233.5 10 1306.4 10	
γ 455.967	•		7 7	1311.7 <i>1</i> 0 1325.2 <i>1</i> 0	
γ 465.6 10	2.04		γ[MI+E2] γ	1332.06 · 1336.7 <i>i</i> 0	. 51
γ 476.1 <i>5</i> γ[E2] 488.94	194 204		7 7	1359.3 10 1364.0 10	
7 501.9 <i>5</i> 7[E1] 508.06?	26 <i>s</i>		2	1368.8 10 1376.7 6	51 4.02
7 MI+E2] 510.96 7 E1] 519.28		•	· 7 7[MI+E2]	1383.96	7.0 H
7[MI+E2] 547.14	40 \$		7 7.	1394.0 <i>ю</i> 1410.0 <i>ю</i>	3*
7[E1] 569.96	6*	•	7 7	1413.0 <i>4</i> 1420.0 <i>5</i> 0	
τ 572.1 <i>ι</i> ο τ[E1] 583.5 4	41.8		. 7 7	1496.5 <i>5</i> 1507.1 <i>1</i> 0	8.0 16
γ[Mi+E2] 605.7s γ[E1] 615.2s	10 z 8.0 <i>is</i>	• •	Υ.	1516.54 1527.03	4.0 \$
γ 623.6 10 γ[E1] 635.0 4	194 88 <u></u> 18		Υ[E1] . Υ	1600.0 5	3.06
7 Mi+E2 646.2.5 7 659.8 10	9.0 18		Υ Υ	1611.0 10 1620.0 10	3.06
Y 667.56?			TEI TEI	1626.1 4 1630.5 3	
7 E1 678.0 <i>s</i> ? 7 E1 680.0 <i>4</i>	73 IS		τ τ[E1]	1647_5 10 -1729_64	
7 EI 687.04	54:11		Υ	1737.0 10	
7 E2 744.8 s 7 749.2 6			r r	1752.0 10	24 ^{· · ·}

			· ·	
	Ph	otons (²³	⁸ Pa)	
		(continu		
=				=
	fmode	γ(keV)	γ(rel])
<u></u>		19/1 0 /2		
Υ Υ		1841.0 10 1872.5 10		
		1889.2.4	173	
7		1907.0 10		
Υ ~		1976.0 ю 1985.5 ю		
Υ Υ		1996.7 7	4.08	
7		2013.0 10	3.06	
		2018.9 <i>5</i> 2048.0 <i>10</i>	7.0 14	
γ γ		2081.0 10		
Ŷ		2089.0 10		
Ŷ		2126.0 <i>10</i> 2529.0 10	2.0∢	
? =				=
• 00	ombinex + 373	i intensit γ + 375γ	ty for dout $+ 377\gamma$	blet
020	•	•	•	
238	U (4.	468 5	$\times 10^9$	VI)
92	- (5-7
	Mode			
		47306.0)21 keV	
	SpA:	Ci/g		
	Pmd	natural	source	
		99.274		
•				•
	4 Inho	Particle	s (²³⁸ U.)	
	{α	}− 4194 <i>5</i>	kev	
		keV)	<u>α(%)</u>	
	<u> </u>			
			0.237	
•	· 414		34 74	
•		<u> </u>	· :	
			8	
		otons (⁷²		
	(7)	=1.30 <i>15</i>	keV	
		- <u> </u>		
	$\gamma_{\rm mode}$	γ(keV)	່ າ(%)	
	ThL. ThL.	11,118 12,952	0.18∢ 3.0¢	•
	ThL,	14.511	0.083 17	
	ThL	16.161	4.1 #	
	ThL	19.094	0.93 #	
	γE2 γ[E2]	49.556 110.5	0.070 # 0.024 #	
	.[]			
			238++ 1	
	Atomie	e Electro	ns (²³⁸ U)	
		c)= 9.57		•
:				
	cbin(kel	/) (c)(ka	:V) c(%))
•	. 16	0.68	428	
:	20	0.72	3.77	
	· 29 30 ·	0.082 2.6	0.28 <i>5</i> 8.8 <i>1</i> 5	
	30 -	2.6	7.7 13	
	4 4	0.037		4
	45 46	1.04 1.00	2.3∢ 2.2∢	
	48	0.31	0.65 11	
	49	0.43	81 68.0	
	50	0.020	5 0.052 9	

 $^{237}_{93}$ Np(2.140 *10* × 10⁶ yr)

Mode: α Δ: 44868.3 21 keV SpA: 0.000705 Ci/g Prod: daughter²³⁷U

Alpha Particles (²³⁷Np)

(α)=4760 ≼ keV

a(keV)	•	a(%)
4386.25		, 0.020
4513.5 5		~0.04
457 4.7 s		0.05
4577.9 s		0.40 <
4595 2		0.08
4598.4 <i>5</i>		0.34∢
4639.55		6.18 12
4659.2 20		0.6
4664.6 s		3.32 10
4697.1 7	•	0.48 20
4707.1 s		1.0
4712.95		0.13
4741.4.20		0.019
4766.1 5		83
4771.Ss	•	256
4788.4 5		479
4804.05		1.6
4817.35		2.54
4862.9.20		0.24
4866.9 5		~0.3
4873 . 4 <i>5</i>		2.62

Photons (²³⁷Np) $\langle \gamma \rangle$ =32.7 20 keV

{γ}=32.120 KeV				
· Ymode	γ(keV)	7(%) [†]		
PaLy	11.372	1.15 15		
PaL.	13.274	19.2 19		
PaL	14.953	0.476		
PaL	16.632	253		
PaL	19.718	5.88		
7EI	29.378 9	12.9 17		
7[E1] ·	46.57 3	0.133 19		
7E2'	57 . 149 <i>1</i> 5	0.394		
γ[MI+E2]	~62,66∢	~0.012		
γ(E2)	63 <i>.95_,3</i>	0.0164		
7[M1+E2]	70.623	0.016 4 7		
7[MI+E2]	74.464	0.0111 21		
7EI	86.528 H	12.6		
7[E]]	88.05 4	0.183		
PiK ₂	92.279	1.59 <i>u</i>		
ΥEI	94,723 21	0.76 #		
PaK	95.863	2.58 21		
.7[E2]	106.135	0.0566		
PaKa	108.166	0.948		
7MI+<4.6%E2	108.69 3	0.073 13		
Pa Kat	111,897 115,193	0.31 3		
γ[MI+E2] γ MI+10%E2	117.689 22	0.00257? 0.161 H		
7 EI	131.093	0.085#		
γ[M1+E2]	134.233	0.0677		
Y EI	140.61 7	0.01857		
7 MI+14%E2	143.227 21	0.393		
7M1+12%E2	151.423 24	0.243		
7[E2]	153.72 10	0.0069 16		
rei'	155.263 21	0.092.8		
7 [E]	162.51 4	0.0373		
7[EI]	169.18 🗸	0.0727		
γ[Mi+E2]	170.67 5	0.0193		
Y	172.56.20	81 8500.0		
γ[M1+E2]	176.09 4	0.020 4		
TEI	180.801 2	0.023 3		
γ E1 γ M1+E2	186.7 <i>5</i> 191.46 <i>5</i>	0.0067 13 0.027 ∢		
Inneed	171.403	0.0274		

Mode: β- Δ: 47 SpA: 9. Prod: ²³	640 <i>50</i> ke ^v 11×10 ⁷ C	v
	notons (²³⁷)	•
<u>(γ</u>	>=604 <i>5</i> 9 Ⅰ	«ev
γ_{mode}	γ(keV)	γ (%)
Υ Υ Υ	44.887 <i>II</i> 179.05 <i>II</i> 310.09 <i>II</i> 498.64 <i>II</i> 529.32 <i>II</i> 540.71 <i>II</i> 554.91 <i>II</i> 701.05 722.57 <i>II</i> 733.96 <i>II</i> 865.00 <i>II</i> 1333.34 1344.74 1396.04 1407.44	$\begin{array}{c} 0.17 \\ 1.73 \\ 2.43 \\ 2.43 \\ 14.8 \\ 15.3 \\ 0.24 \\ 10 \\ 1.53 \\ 7 \\ -0.14 \\ 0.82 \\ 1.53 \\ 7 \\ -0.14 \\ 0.82 \\ 15.53 \\ -0.17 \\ -0.10 \\ -0.17 \\ -0.10 \\ -0.17 \\ -0.10 \\ \end{array}$
	keV;(IB)=	• •
E _{bin} (keV)	()(ke)	7) (%)
0-10 Ø	- 0.0424	0.84
10-20 ع م	- 0.128	0.85
20-40 ß	- 0.52	0.164 1.74
11 40-100 β	- 3.83	0.158 5.5
ΙΟΟ-300 β		0.19 19.9
ΪΕ 300-600 β		0.170 29 <i>.</i> 9
1Ξ 600 - 1300 β	0.24 ·	0.058 37.7
ін 1300-2250 р. П	0.149 - 68	0.019 4.45 0.00069
237		

$^{237}_{92}$ U (6.75 <i>1</i> d)	•
Mode: β-	
Δ: 45387.2 22 keV SpA: 8.162×10 ⁴ Ci/g	
SpA: 8.162×10 ⁴ Ci/g	
Prod: ²³⁶ U(1,γ); ²³⁸ U(1,21)

(γ)=1449 keV				
γmode	7(ke	N)	γ(%) [†]	
Np L _c 7 M1+0.1%E2	11.871 13.804 /		1.53 0.101∢	
Np L	13.927		54	
Np L			J• 0.487	
	15.861			
Np Ly	17.592		05	
Np L,	20.990		7,2 /2	
γEI	26.3445		2.29 13	
γM1+1.8%E2	33.1920	14	0.115	
γ(M1+~43%E2)	42.64 3	. •		
γM1+14%E2	43.415		0.0333	
γEI	51.013 /		0.209	
γEI	59.5364		2.8 18	
γEI	64.817 1		1.16 12	
7[E1]	69.760 1	0		
γ(E2)	75.83 3			
Np K_2	97.066		53	
Np K	101.059		54.	
γEI	102.952 /		0.00879	
Np K _{p1} •	113.944	9	9.615	
7	114.085			
Np Ka2	117.891		3.35	
7E2	164.593 1		l.836	
γM1+2.4%E2	208.008 9			
7E2	221.812 m		1.0204 13	
γM2	234.3529		10194 13	
7 EI+19%M2	267.544 9).712 H	
7[E2]	292.763		1.0027 4	
γE2	332.361 13		.20 5	
7 M1+18%E2	335.401 14		1.097 s	
γ(E2)	337.727 19		.00867	
γMI(+<8.8%E2)	368.592 14		.0455 24	
7 M1+12%E2	370,919 19		.1086	
† 11%	6 uncert(syst)		
Atomic H	Electrons	(²³⁷ U	J)	
< <u>(</u> c)	=121 9 k	eV	·	
c _{bin} (keV) (c	e)(keV)	c(9	6)	
5-17	7.7 8	83 <i>5</i>		
		193		
	0.78	3.74		
22 :	5.5 2	254		
23-37	4.7 1	14.4 B		
38	6.0 1	15.8+	•	

Photons (²³⁷U)

_					•
c,	in(kel	り	(c)(kcV)		c(%)
	5-17	1	7.7	835	
	18 .		3.4	193	
	21		0.78	3.7	
	22	,	5.5	254	
	23-37		4.7	14.4	
	38 39 - 51		6.0 2.30	15.8	
	54-51	•	4.08	5.4 7.6	
	55-85		1.49	2.3	
	89		50.0	569	<i></i>
	91 - 110	5	0.70	0.7	۲
	42-17		5.02	3.37	
-	186	•	20.4	11.0	
1	90-20	0	0.21	0.11	
-	202	-	4.7	23	6
· 2	03-25	0	3.7	1.7	ริษ
2	52-29	3	0.297	0.11	56
	10-35		0.425	0.13	33
3	63 - 37	L	0.0178	0.00	486 23
=					
· C	ontinn	ώπ	s Radiati	ion É	23711)
					-
(3-)= 6(5 k	cV;(IB)-	-0.01	6 keV
Ebin	(keV)		<)(ke	:V)	(%)
	0-10	ß	- 0.51		10.3
	• ••	Б			
1	10-20	ß			9.7
		'n			0.019
	20 - 40	ß	- 5.2		17.5
		İB	0.0039		0.0140
4	0 - 100	ß			38.2
		ΪB			0.0086
100) - 252	ß			23.9
		IB	0.0010	5	0.00087

242-2

. .

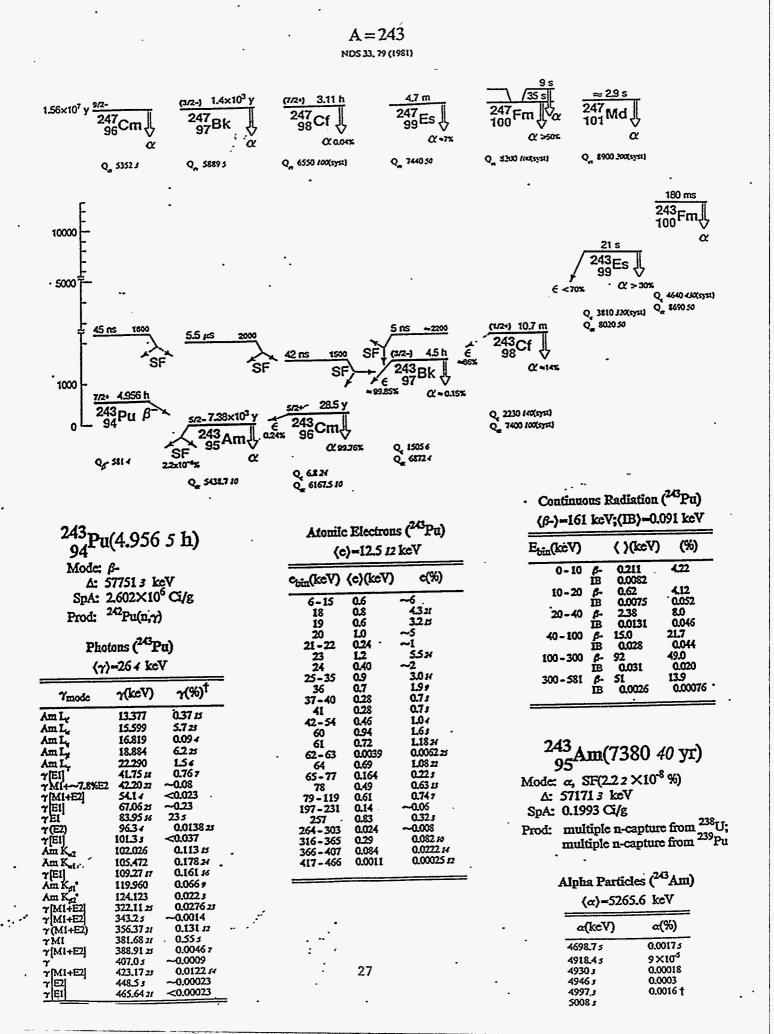
-	D L			
	P D O	tons (²⁴²]	Nn)	
		continued		
~		γ(keV)	· ~(%) [†]	==
Υ _{πο}				
ר ק-		84.8 s 92.4 s	0.05 r 0.20 r	
7		42.7 7	0.04 /	
r r		61.4 10 77.1 s	0.03 <i>t</i> 0.065 <i>ts</i>	· ,
7		01.8	0.060 ts 0.045 ts	
r r	23	58.2 <i>5</i>	~0.050	
7	23	70.8 s	~0.050	_
-	t 8.09	6 uncert(syst)	_
Conti	nuous	Radiatio	n (²⁴² Nj)
<u> </u>	-894 1	keV;(IB)	=2.0 keV	r
E _{bin} (keV)		<) (9	%).
0 - 10	β- IB	0.0288	0.57	
10-20	β-	0.086	0.58	
20 - 40	IB	0.033 0.348	0.23 L.16	
20 - 40	IB	0.064	0.22	
40 - 100	β- IB	2.49 0.18	3.54 0.28	
100 - 300		24.2	12.1	
300 - 600	İB	0.49 82	0,28 18,3	
300+000	B B	0.50	0.119	ı –
600 - 1300	B B	353 0.55	37.9 0.066	
1300 - 2500	B-	428	25.4	_
	IB	0.138 2.90	0.008 0.114	
2500 - 2700	6-			×10
2500 - 2700	β- 1B	3.1 ×105	· • • • • • • •	
242 94 Mode: a, A: 54 SpA: 0.0 Prod: mi da AI	iB (3.7(SF(0. 713.9 00392 ultiple ultiple ughter pha P (α)- α(kcV 598.47	53 20 000550 6 21 keV 6 Ci/g e n-captum r ²⁴² Am(1) earticles (4890 1 k 7) cd 0,00	× 10 ⁵ %) re from ² 6.01 h) ²² Pu) eV %)	уг) ¹³⁸ 11:
SpA: 0.0 Prod: m: da Al Al 4	iB (3.7(SF(0. 713.9 00392 ultiple ultiple ughten pha P $\langle \alpha \rangle =$ $\alpha (kc)$	53 20 000550 6 21 keV 6 Ci/g e n-captum r ²⁴² Am(1) earticles (4890 1 k 7) cd 0,00	×10 ⁵ %) e from ² (6.01 h) ²²² Pu) eV	уг) ¹³⁸ 11:

• •			•	
	,	Photone (²	42p)	
•	Photons (²⁴² Pu) (γ)=1.39 19 keV			
		$(\gamma) = 1.39 I$		
	$\gamma_{\rm mode}$	γ(keV)	7(%) [†]	
-	UL,	11.620	0.205	
	UL UL	13.600	3.37 0.081 <i>18</i>	
•	υĻ	15.400 17.128	4.19	
	UL	20.292	0.91 21	
	7 E2 7 E2	44.915 <i>1</i> 3 103 <i>.</i> 504	0.036 0.0078 s	
	7[2]	158.80 \$	0.00045 15	
•	t	14% uncer	t(syst)	
	Atom	ic Electro	as (²⁴² Pu)	
		⟨c⟩= 8.1 7	keV	
•.	c _{bin} (ke	:V) (c)(kc	V) c(%)	
	17	0.66	3.99	
	21 22	0.66 0.0110	3.1 7 0.051 <i>11</i>	
	23	0.068	0.296	
	∋ ∦ _24 28	2.1 2.1	8.6 17 · 7.5 13	
•	39	0.034	0.087 18	
	40 41	0.91 0.88	2.3 <i>s</i> 2.24	
	43	0.0111	0.025 5	
	44 - 45	0.53 0.16	1.21 x 0.35 t	
	242	Am (16.	01 2 h)	
	242 95	Am(16.	01 2 h)	
Mod	c:β-(8	52.7 <i>3</i> %), ·	e(17.33%)	
4	e:β-(8 :5546	52.7 <i>3</i> %), 53.2 <i>2</i> 2 ke	e(17 . 33%) V	
۵ Sp/	e: β-(8 ι: 5546 \: 8.08	52.7 3 %), 53.2 22 kc 8×10 ⁵ Ci	e(17 . 33%) V	
4	ε: β-(8 2: 5546 1: 8.08 241 _Α	52.7 <i>3</i> %), 53.2 22 ke ³ 8×10 ⁵ Ci 1m(n,γ);	e(17.33%) V /g	8- 1-
۵ Sp/	e: β-(8 : 5546 : 8.08 : ²⁴¹ Α : mul	52.7 3 %), 53.2 22 ke ³ 8×10 ⁵ Ci (m(n,γ); tiple n-cap	(17.33%) V /g ture from 23	⁸ U;
۵ Sp/	c: β-(8 : 5546 : 8.08 : 241 multimultiple : multiple : mu	32.7 3 %), 53.2 22 ke' 8×10 ⁵ Ci 10 ⁵	(17.33%) V /g ture from ²³ ture from ²³	⁸ U; ⁹ Pu
۵ Sp/	c: β-(8 c: 5546 c: 8.08 c: 241 muli muli muli P	52.7 3 %), 53.2 22 kc ³ 8×10 ⁵ Ci 4m(n,γ); tiple n-cap tiple n-cap thotons (²⁴	(17.33%) V /g ture from ²³ ture from ²³ 	⁸ U; ⁹ Pu
۵ Sp/	c: β-(8 c: 5546 c: 8.08 c: 241 muli muli muli P	(2.7 3 %), (53.2 22 kc) $(3 \times 10^5 C),$ $(10^5 C)$	(17.33%) V (g ture from ²³ ture from ²³ ² Am) 5 keV	⁸ U; ⁹ Pu
۵ Sp/	c: β-(8 : 5546 : 5546 : 241 _A mul mul P (γ _{mod}	22.73%, $53.222~kc^{3}$ $53.222~kc^{3}$ 53.210^{5} Ci 32.10^{5} Ci	$\frac{(17.33\%)}{\sqrt{g}}$ ture from ²³ ture from ²³ ² Am) 5 keV ${\gamma(\%)^{\dagger}}$	³⁸ U; ⁹⁹ Pu
۵ Sp/	c: β-(8 : 5540 : 5540 : 241 _A mul mul P γ _{mod} Pu L _y	(2.7 3 %), (3.2 22 kc) $(3 \times 10^5 C)$ $(3 \times 10^5 C)$	$\frac{(17.33\%)}{\sqrt{g}}$ ture from ²³ ture from ²³ ² Am) 5 keV $\gamma(\%)^{\dagger}$ 0.306	⁸ U; ⁹ Pu
۵ Sp/		(2.73%), (3.222 kc) $(3 \times 10^5 Ci),$ $(3 \times 10^5 Ci),$ (3	$\frac{(17.33\%)}{\sqrt{g}}$ ture from ²³ ture from ²³ ² Am) 5 keV ${\gamma(\%)^{\dagger}}$	⁸ U; ⁹ Pu
۵ Sp/	$\begin{array}{c} \beta - \{8, 0\} \\ \vdots \\ 5540 \\ \vdots \\ 241_{A} \\ mult \\ mult \\ mult \\ mult \\ P \\ \hline \gamma_{mod} \\ Pult_{V} \\ Pult_{V} \\ Pult_{V} \\ Cnlt_{V} \\ \end{array}$	(2.7 3 %), (3.2 22 kc) $(3 \times 10^5 C),$ $(3 \times 10^5 C),$ $(3 \times 10^5 C),$ $(1, \gamma);$ tiple n-cap tiple n-cap tiple n-cap $(24, \gamma) = 18.0 I,$ $(24, \gamma) = 18.0 I,$ (24	$\frac{(17.33\%)}{\sqrt{8}}$ ture from ²³ ture from ²³ ² Am) tkeV $\gamma(\%)^{\dagger}$ 0.30 c 0.48 u 4.8 c 7.3 K	⁸ U; ⁹ Pu
۵ Sp/	$ \begin{array}{c} \beta - \{8, 08\} \\ \vdots \\ 5540 \\ \vdots \\ 241_{A} \\ 100 \\ 1$	(2.7 3 %), (53.2 22 kc) (53.2 22 kc) $(53.2 10^5 C),$ $(53.2 10^5 C),$ (53.2 22 kc) (53.2 22 kc) (53.2 2), $(10^5 C),$ $(10^5 $	$\begin{array}{c} (17.33\%) \\ y \\ /g \\ ture from \\ 23 \\ ture from \\ 24 \\ m) \\ 5 \\ keV \\ \hline \hline \\ \hline \\ 0.304 \\ 0.48 \\ 1.4 \\ 4.84 \\ 7.3 \\ 8.4 \\ 7.3 \\ 0.078 \\ 1.4 $	⁸ U; ⁹ Pu
۵ Sp/	$\begin{array}{c} \beta - \{8, 08\} \\ \vdots \\ 554(2, 1) \\ \vdots \\ 241 \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu \\ \mu \\ $	(2.7 3 %), (53.2 22 kc) (53.2 22 kc) $(53.2 10^5 Ci),$ $(53.2 10^5 Ci),$ (53.2 22 kc) (53.2 22 kc) (53.2 22 kc) (53.2 2), (53.3 3), (53.3 3), ((17.33%) (17.33%) (17.33%) (17.33%) (17.33%) (23.	⁸ U; ⁹ Pu
۵ Sp/		(2.7 3 %), (53.2 22 kc) (53.2 2) (53.2 2)	(17.33%) (17.33%) (17.33%) (17.33%) (17.33%) (23%	⁸ U; ⁹ Pu
۵ Sp/		(2.7 3 %), (3.2 22 kc) $(3 \times 10^5 C),$ $(3 \times 10^5 C),$ $(3 \times 10^5 C),$ $(1, \gamma);$ tiple n-cap tiple n-cap thotons ($^{24},$ $\gamma)=18.0 m,$ $(\gamma)=18.0 m,$ (2.124, 12.633, 14.262, 14.939, 16.333, 17.314, 18.082, 19.191, 21.608, 19.191, 21.608, 10.100,	(17.33%) (17.33%) (17.33%) (17.33%) (17.33%) (23%	⁸ U; ⁹ Pu
۵ Sp/		(2.7 3 %), (3.2 22 kc) $(3.2 10^5 Ci),$ $(3.10^5 Ci),$	(17.33%) V /g ture from 23 ture from 23 2Am) $(x)^{2}$	⁸ U; ⁹ Pu
۵ Sp/		(2.73%), (53.222 kc) (53.222 kc) (53.222 kc) (53.222 kc) (53.222 kc) (53.222 kc) (53.222 kc) (52.27) (5	(17.33%) (17.33%) (17.33%) (17.33%) (17.23%) (17.23%) (17.23%) (17.2%) (1	⁸ U; ⁹ Pu
۵ Sp/		(2.7 3 %), (53.2 22 kc) (53.2 21 kc)	$\begin{array}{c} (17.33\%) \\ y \\ /g \\ ture from \\ 23 \\ ture from \\ 23 \\ ture from \\ 24 \\ 107 \\ 24 \\ 107 \\ 1$	⁸ U; ⁹ Pu
۵ Sp/		(2.73%), $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ (3.22), (4.53),	(17.33%) (17.33%) (17.33%) (17.33%) (17.23%) (17.23%) (17.23%) (17.2%) (1	⁸ U; ⁹ Pu
۵ Sp/		(2.73%), $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ $(3.22), kc^{-1},$ (3.22), (4.53),	(17.33%) (17.33%) (17.33%) (17.33%) (17.53%) (17.5%) (17.	⁸ U; ⁹ Pu

Atomic Electrons (²⁴² Am) (c)=19.1 13 keV			
e _{bin} (keV)	(c)(keV)	c(%)	
18	0.93	5.2 10	
19	4.5	245	
21	0.0313	0.1466	
22	1.50	6.8 6	
23	3.6	163	
24	1.3	5.5 12	
25	0.030	0.123	
26	0.92	3.46 13	
36	1.8	4.9 10	
37	1.6	4.28	
38	0.040	0.106 21	
39	0.439	1.13 -	
40	0.391	0.98 -	
41	1.08	2.75	
42 - 86	0.83	1.76 16	
93 - 116	0.128	0.131 11	

Continuous Radiation (²⁴²Am) $(\beta$ ->=159 keV;(IB)=0.30 keV

Ebin(keV)	•	{	·(%)
0-10	β-	0.133	2.66
•	IB	0.0080	
10-20	B-	0.395	2.64
10 - 20	Б	0.0082	0.056
20-40	ß-	1.56	5.2
20040	і́В	0.0134	0.047
40 - 100	ß-	10.5	15.0
	İB	0.108	0.133
100 - 300	B-	74	39.0
	Б	0.150	0.120
300 - 600	p-	71	18.2
300+000		0.0105	0.0029
	B		
600 - 749	β	. 0.401	0.065
	ŤB	7.4×10 ⁵	1.21 × 10 ³


²⁴² ₉₅ Am(141 2 yr)
Mode: IT(99.55 2 %), a(0.45 2 %)
Δ: 55511.8 22 keV
SpA: 10.48 Ci/g
Prod: $^{241}Am(n,\gamma)$

Alpha Particles (²⁴² Am)
$(\alpha) = 23.2 \text{ keV}$

a(keV)	<i>a</i> (%)
5054.2.5	0.0010
5088.5.3	0.0009
5141.3.4	0.026
5207.04.21	0.4
5314.5.4	0.003
5367.37.21	0.005
5409.76.21	0.005

•

t uncert(syst): 1.7% for ϵ , 0.36% for β -

243-2

	Alpha				
		(contin	nued)		
	a(ke	:V)	α((%)	
	5029 3 5037.6		0.0)22 §	-
	5088 3		0.0		
	5112.7. 5179.8:		0.00 · 1.1)5	
	5234.3 s 5276.6 s		11 88		
	5319.4 5350.0	5	0.12		
		997α +)29α +			
	\$ 20	J29α +	2020	x	
	Pho	tons (²⁴³ Ar	n)	
	. (7)	=48.1	9 kc'	v	•
γ.	node	y(ke'	<u>(۷</u>	γ(%)†
7MI+		31.136		0.066 6	
7MI+		43.03 3	1	0.058 1	
7E1 7[E1]		43.537 50.8 #		5.10 <i>2</i> 2 0.0026	
γMI+ γE1	~39%E2	55.40 4 74.672		0.0092	18
7EI		86.57 3 98.43 4		0.303	
γ(E2) γE1		117.70 3		0.557	
7E1 7[E1]		141.97 4 170.14 s		0.114 £	24
ア[E1] ア		195.3 <i>แ</i> 220.0 ю		0.00084	{ 17
Ŷ		544.55 3		1.74X	10 ⁻⁵
7 7		587.579 631.116	18	0.0003	_
۲		662.251		0.0009:	5.8
	t 10	% unce	rt(sy	st)	
2	²⁴³ Ci 96	n(28	.5 2	2 VI)	
Mada	96	6,045	<i>.</i>		
	a(99.7 57177.3	0 + 70), 3 24 ke	αυ γ	24 4 70j	
	51.6 C	i/g			
Prod:	multip	le n-ca	pture	from	²³⁸ U;
	multip	ie n-caj	pture	from	²³⁹ Pu
-			74	3 i	
	Alpha I			-	
	{α) 	-5838	Kev	<u> </u>	
	a(ke	:V)	α(9	6)	
	5226 15 5267 3	;	0.00		
	53163		0.00	10	
	5323 <i>3</i> 5332 <i>3</i>		0.00 0.00		
	5519.7 5532.3		0.00		
	5537 3		0.00	20	
	5569.4 5575 s	?	0.00	7	
	5582.6 5587 3	8	~0.00		
	5593 3 5604.6		0.01 <0.01		
-	56123		~0.03	ю	
	-5622 <i>i</i> 5639 s		0.06		
	5646 s 5681.5		0.03		

5685.6 5

1.6

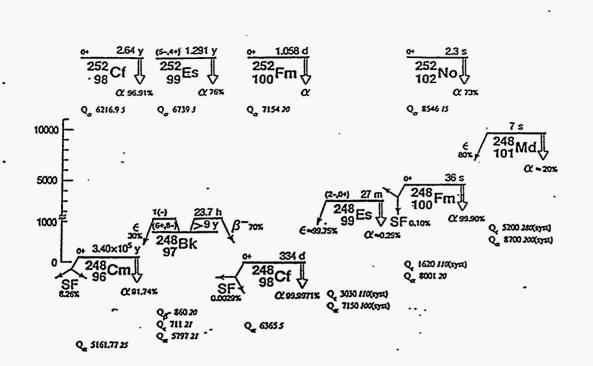
α(k 5713: 5742: 5785: 5876: 5995: 5995: 6010: 6058: 6066: 6058: 6066:	5? <0 05 10 95 72 55 0 25 0 35 1 95 1 95 1 95 1 10 10 10 10 10 10 10 10 10 1	d) x(%) 1.040 1.57 x0 3.3 10 1.6 5.48 x0 1.0 5.48 x0 1.0 5.48 x0 1.0 5.48 x0 1.0 5.48 x0 1.0 5.48 x0 1.0 5.48 x0 1.0 5.5 Cm)
· ···································	γ(keV)	γ(%) [†]
Pu L, Pu L, Pu L, Pu L, Pu L, Pu L, Pu L, Pu L, Y, M1+3.6%E2 Y, E1 Y, E1 Y, E1 Y, E1 Y, E1 Y, E1 Pu K, Y, E1 Pu K, Y, E1 Pu K, Y, E1 Pu K, Y, E1 Pu K, Y, E1 Pu K, Y, E1 Y, E1	12.124 14.262 16.333 18.074 21.624 44.665 3 49.4152 19 57.2759 18 57.2759 18 10.943 5 10.943 5 15.8825 19 322.267 4 334.3136 18 459.7	1.16 14 18.5 17 0.28 4 18.7 24 4.2 6 0.116 12 0.0647 0.090 6 0.024 8 0.0111 18 4 14.4 4 ~-0.009 23.0 6 0.262 28 8.32 24 2.87 9 0.019 8 3.27 9 10.56 25 0.110 8 0.083 7 14.0 4 0.733 18 0.0175 29 0.0183 15 0.0063 21 0.0237 16
t<0.	1% uncert	(syst)
	Electrons =112.9 <i>18</i> (c)(keV) 3.0 3.6 6.2 3.5 5.7	
88 93 - 105	8.1 0.51	9.2 s 0.53 s

Atomic Electrons (²⁴³ Cm) (continued)					
	(0011111100)				
e _{bin} (keV)	(e)(keV)	c(%)			
106	24.7	23.27			
110 - 151	0.491	0.361 18			
156	27.2	17.56			
160 - 166	0.113	0.069 3			
187	3.35	1.79 6			
190 - 204	0.93	0.455 16			
205	8.4	4.09 13			
206 - 253	4.92	2.24 <			
254	7.8	3.07 10			
255 - 304	4.52	1.68 3			
306 - 334	0.0041	0.0013 4			

²⁴³₉₇Bk(4.5 2 h)

Mode: (~ 99.85 %), α(~ 0.15 %) Δ: 58682 6 keV SpA: 2.87×10⁶ Ci/g Prod: 2^{41} Am(α ,2n); 2^{42} Cm(d,n); 2^{43} Am(α ,4n)

Alpha Particles (²⁴³Bk)


 $\langle \alpha \rangle = 9.83$ keV

a(keV)	a(%) .
6182.4	0.0058 4
62103	0.0204 13
6394 25	~0.00030
6446 5	0.0010 3
6502.4	0.0104 10
6542.4	0.0291 #
6573.8 22	0.0384 24
6605 5	~0.0010
66664	~0.0018
6718.0.22	0.0188 13
6758.1 22	0.0231 13
01201122	0.02076.07

Photons (²⁴³ Bk) (γ)=176 41 keV			
Ymode .	γ(kcV)	· . ?(%)	
7.[M1+E2] 7.E2 7.(E1) 7.(E1) 7.(M1] 7. 7. 7. 7.	40.7 s 87.4 1 146.6 s 187.4 4 557 4 755 2 840 40 946 2	~0.006 0.012 <i>s</i> 0.060 <i>ts</i> 0.015 <i>s</i> 10.0 <i>ts</i> 3.0 <i>e</i> ~8	

²⁴³₉₈Cf(10.7 5 min)

Mode: $(\sim 86 \%)$, $\alpha(\sim 14 \%)$ Δ : 60910 140 keV syst SpA: 7.2×10⁷ Ci/g Prod: ${}^{235}U({}^{12}C,4n); {}^{236}U({}^{12}C,5n);$ ${}^{238}U({}^{12}C,7n); {}^{242}Cm({}^{3}He,2n)$

A = 248 NDS 32, 119 (1981)

Alpha Particles (²⁴⁸Cm) (α)=4652.43 keV α(keV) α(%) 47760.8 <0.009⁻ 4931.15 0.079.11 5034.93.25 16.54.17 5078.45.25 75.1.4

248 97 Bk(>9 yr) decay not observed Δ: 68099 21 keV SpA: <160 Ci/g Prod: ²⁴⁶Cm(α,pn) ²⁴⁸₉₇Bk(23.7 2 h)

Mode: β-(70 5 %), e(30 5 %) Δ: 68099 21 keV SpA: 5.33×10⁵ Ci/g Prod: ²⁴⁷Bk(n,γ); ²⁴⁵Cm(α,p)

Photons (²⁴³ Bk) (γ)=55 6 keV						
Ymode	γ(keV)	7(%) [†]				
CmL	12.633	0.40 10				
CL	13.146	~0.28				
Cm L _z	14.939	6.0 H				
CTL_	15.636	~				
Cn Ľ,	17.314	0.079 20				
CL.	18.347	~0.10				
Cm L,	19.083	• 5. 7 н				
CTL _p	20.303	~5				
CmL	22.966	1.33				
CTL,	24.273	~1 _				
Te E2	41.3 10	~0.016				
YE2	43.399 25	~0.002				
Cn K ₂	104.586	6.2 11				
Cn K	109.271	9.820				
CTK_2	109.826	0.0160 6				
CIK I	115.032	0.0249 9				
Cm K _n	123.059	3.67				
CnK	127.344	1.25 25				
CIK a	129.436 133.949	0.0093 <i>3</i> 0.00328 <i>1</i> 3				
YeEI	550.71	5.0 10				

t uncert(syst): 17% for ε, 7.1% for β-29

Atomic Electrons (²⁴⁸Bk) (c)=10.5 15 keV cbin(keV) (c)(keV) c(%) 0.06 1.5 15 16 19 20 21 24 25 26 35 36 ~0.37 10 0.93 49 n 0.93 0.9 1.7 -0.76 1.0 0.018 1.0 Ŧ ~ġ -3.2 io 4.1 # -0.07 ~3 0.8 2 37-39 0.20 0.52# 40 0.6 0.9423 41 - 90 0.53 0.217 m 0.0552 M 0.222 95-129 0.229 416 525 - 551 0.0750 0.0141524

Continuous Radiation (²⁴³Bk) . $\langle \beta - \rangle = 174 \text{ keV}; (\text{IB}) = 0.52 \text{ keV}$

E _{bin} (keV)		()(keV)	· (%)
0-10	ß-	0.095	1.90
	B	0.0085	•
10-20	<i>B</i> -	0.281	1.88
	İΒ	0.0095	0.064
20 - 40	·β-	1.10	3.68
	ÍB	0.0151	0.053
40 - 100	ß-	7.2	10.4
-	IB	0.134	0.162
100 - 300	ß-	53	27.2
	ÍB	0.32	0.26
300 - 600	β-	93	21.9
	IB	0.027	0:0071
600 - 860	β-	20.4 .	3.06
	1D	0 00076	0.000120 -

EXPERIMENT RENEWAL FORM (Please print or type)

.

.

EXPERIMENT:

. Title of experiment:	Electron Spectroscopy of Actinides
LD. Number:	93-012
Beamline:	7.0
Date of Original Form/Experiment:	08 April 1994
Date of Completion of this form:	18 Jan. 1996
• •	

EXPERIMENTER IN CHARGE:

Name:	David Shuh	
Affiliation:	LBNL	
Address:	70A-1147A, LBNL, Berkeley, CA	•
	(510) 486-6937	
Local Address:	MS 70A-1150, LBNL, Berkeley, CA	. •
· Local Phone:	(510) 486-6937	• •
		•
List Schedule	es Attached (from ALS Experiment Form):	•
Schedule A a	and attachments	
÷		
Check box if R	Renewal Request does not include changes:	
Check box if Re	cenewal Request includes changes:	•
Attach E	Experiment Modification Form if changes are included in renewal.	
Signature/Exp	18 Jan. 1996 perimenter-In-Charge Date	

.

EXPERIMENT MODIFICATION FORM

(Please print or type)

EXPERIMENT:

Title of experiment:	Electron Spectroscopy of Actinides
LD. Number:	93-012
Beamline:	
Date of completion of this form:	18 Jan. 1996

EXPERIMENTER-IN-CHARGE:

Name:	David Shuh	۰,	•		•
Office Phone:	(510) 486-6937			·	

List modifications	Туре	of Change	
. (0	Minor	Significant	
Cleaver installed in	special prep chamber to permit cleavage of sample ingot.		
our samples allow	ed on the ALS floor at any one time.		
our builpres anon			
wo samples permit	tted in the vacuum chamber simultaneously.		
Increased amount of	sample materials permitted for experiments:		
	sample materials permitted for experiments.		
· · ·	0.5% limit SpA Allowed Mass		
238 uranium	75 μCi 3.33x 10 ^{-7.} Ci/g ~2 g · ·		
237 neptunium	75 nCi 7.05 x 10 ⁴ Ci/g 100 μg	•	
242 plutonium	75 nCi 3.926 x 10 ³ Ci/g 19 μg	•	
248 curium	75 nCi 4.24 x 10 ⁻³ Ci/g 17 μg	•	
ddition of three new	w elements:		· · · · · · · · · · · · · · · · · · ·
			•
······································	0.5% limit SpA Allowed Mass		
99 technetium	15 μCi 1.7 x 10 ² Ci/g 440 μg		
243 americium	75 nCi 0.199 Ci/g 375 ng	4	
232 thorium	750 nCi 1.1 x 10 ⁻⁷ Ci/g 145 mg	•	

Date

Signature/Experimenter-in-Charge Date

OR

Approval/Operations Coordinator

Approval/ALS EH&S Program Manager Date or Designee

Substance (include samples and CAS No.—if applicable)	Radio Active	Cryogenic*	Flamm.	Corrosive	Carcinogenic	Total Volume	Quantity Required on Floor	State (gas, solid, or liquid)	Point of Discharge (air, water waste, none)
Uranium -238	yes	2 2	50	20	20	NI4CE.	15g	SULID	NONE
nephricin-237	yes	20	20	20	20	14020	200 ng	34(1)	NONE
Autoniun -242	yès	NO	NO	NO	. 20	5.	38.ug	Sais	NONE
Cerium - 248	yes	· NO .	NO	20	20	ζ	35.ug	Sarp	NONE
americium-243	ujes	No	NO	NO	NO	¥.	44ng	2011B	NONE
technetium-99	yes	ND	NO	No	10	BYIDECC	930.ug	Socio	NONE
Horium-232	yes	NO.	20	20	NO	1 ND c.c.	145mg	sino.	NONE
				<u>``</u>					
			·						1999 - L
<i></i>									
· · ·								·	
	·			· ·					•

Cryogenic systems can be portential pressure hazards. Therefore, the design of cryogenic systems must be reviewed by a qualified LBL mechanical
engineer. Precautions when handling cryogenics are described in Chapter 7 of PUB-3000, with additional information found in Chapter 30.

[Schedule A: Materials (Con't.)]

LD. Number:

January 8, 1996

32. US 02-03, Rev. -

.

Page 9

Addendum to the ALS Experimental Safety Form Renewal for Cm Microspot Experiments

Jerry Bucher, Actinide Chemistry Group, CSD, LBL, (510) 486-4484 Norman Edelstein, Actinide Chemistry Group, CSD, LBL, (510) 486-5624 David Shuh, Actinide Chemistry Group, CSD, LBL, (510) 486-6937

02 Nov. 1994

This is an addendum to the ALS Experimental Safety Form Renewal for the continuation of curium microspot experiments on beamlines 7.0 and 10.3.1. There is the addition of the low activity isotopes 238 U, 237 Np, and 242 Pu to the list of permissible sample materials. There will also be continued use of 248 Cm. These materials are alpha-emitters with negligible gamma fields.

The samples to be examined immediately will be ²⁴⁸Cm to complete work on curium and the initial investigation of one or more of the other radionuclides, time permitting. The preliminary date for the next run of these sample materials has been tentatively scheduled on 15-18 Nov. 1994 with beamline 7.0 personnel. All procedures requiring EH&S assistance will be scheduled as far in advance as experimentally feasible.

The previous addendum to the original ALS Experimental Safety Form, an example of the radiation survey logsheet, the previously approved RWA (RWP), and copies of pertinent information relating to the radionuclides of interest are attached to this addendum.

PROCEDURES

Sample Preparation

The sample preparation will follow the previously approved procedures. However, the initial experience gained from sample preparation and experimental work at beamline 7.0, will allow the use of even less radioactive material than before. This

safety addendum reflects material amounts used at the previous levels. All sample preparation and characterization of the activity of the samples will be done in Bldg. 70A-1129, 1145 under existing RWA procedures. The radionuclides used as sample materials will be prepared by dilution and delivered to the surface of a Pt counting disk or to a graphite disk (with a thin layer of Pt on the backside) using a microliter The resulting material will be primarily oxides of the particular pipette. radionuclide. The aqueous solvent will be removed by inductive heating. The radionuclide will be bonded to the substrate during this process as well. The samples will be observed under a microscope and the radioactivity characterized in a calibrated alpha spectrometer to determine the total activity. Each sample will be limited to a maximum of 20 nCi total activity and less material will be used when possible. The amount of material will be typically around 1µg or less. The adhesion of the radionuclide to the substrate will be determined by testing sample structures to ensure that there is no loose active material. The sample will be loaded onto the sample holder to be used on beamline 7.0 or 10.3.1 at this time. Thus, there will be no handling of the sample on the experimental floor with exception of unpacking, loading, unloading, and re-packaging to transport back to the 70A-1129,1145 laboratories. The properties of the various isotopes to be used as sample materials and the allowable (20 nCi) limits are summarized in Table I. The sample isotopes are never completely isotopically pure, thus a substantial portion of the total activity of the radionuclide sample may result from trace amounts of isotopic impurities.

ALS PROCEDURES

Only one sample at a time will be brought to the ALS and there will be only one sample resident on the ALS floor at any time. Sample identification and the results of the alpha spectroscopy (total activity) will be provided to the ALS EH&S monitor, as well as to ALS control room and operations personnel when the sample is brought to the ALS.

The sample will be packaged and removed from the preparation laboratories in conjunction with EH&S, as per standard operating procedures. The sample container will be labeled "CAUTION-Radioactive Material" to warn personnel that a radioactive source is present. The samples will be transported to the ALS, with prior notification of the ALS EH&S monitor, in accordance with EH&S regulations.

Swipes of the sample will be taken by the EH&S monitor upon placement in the chamber and after each use of a sample. The sample will be loaded into the experimental chamber with a procedure utilizing laboratory coats, gloves, alpha meter, TLD/film badges, and beta-gamma meters that will be brought to the ALS by appropriately trained/supervised personnel from the Actinide Chemistry Group. The sample chamber or endstation will be labeled "CAUTION-Radioactive Material" to warn personnel that a radioactive sample is present.

Beamline 7.0

The radionuclide substrate and microsample will be affixed with spring-loaded clips or spot-welded clips to the sample holder from beamline 7.0. The sample will be loaded into the sample load lock immediately. The sample will be transferred under vacuum into the photoemission spectrometer on beamline 7.0 (Eli Rotenberg and Jonathon Denlinger, local contacts). The sample may require a brief ion bombardment to clean the surface, then the electron spectroscopy measurements will be performed.

The sample will be removed from the chamber, swipes taken of the sample transfer apparatus, and returned to 70A-1129,1145 for assay. Swipes of the vacuum chamber will be taken after the chamber is vented to atmosphere for the first convenient opportunity following the completion of these experiments. The total activity of the sample will be determined to ensure that no material has been lost. The sample will be re-counted and the results given to the ALS Safety Officers. Radiation survey logsheets will also be given to EH&S personnel. At this time, another sample may be taken to the ALS by the aforementioned procedures.

Beamline 10.3.1

These experiments are in the process of being scheduled. The procedures for the microprobe beamline experiments will be the same as detailed for beamline 7.0, with the exception that the samples do not have to be placed in a vacuum chamber. Thus, the same counting, transportation, and swiping protocols will be employed. The sample will be brought to the ALS in a closed container already mounted on the microprobe sample holder contained within multiply sealed 0.002" polyethylene bags or other multiply-contained sample holder.