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ABSTRACT 

PRECISION MEASUREMENT OF THE NEUTRON 

SPIN DEPENDENT STRUCTURE FUNCTIONS 

FEBRUARY 1997 

YURY G. KOLOMENSMY, B.S., ST. PETERSBURG TECHNICAL UNIVERSITY, 

RUSSIA 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

PH .D., UNIVERSITY 0 F  hlASSACHUSETTS AMHERST 

Directed by: Professor Gerald A .  Peterson 

In experiment E154 at the Stanford Linear Accelerator Center the spin de- 

pendent structure function s:(., Q’) of the neutron was measured by scattering 

longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3He target. 

The high beam energy allowed us to extend the kinematic coverage compared to the 

previous SLAC experiments to 0.014 5 x 5 0.7 with an average Q2 of 5 GeV’. \Ve 

report the integral of the spin dependent structure function in the measured range 

to be ~ ~ ~ l l d x  g:(2,5 GeV2) = -0.036 f 0.004(stat.) f 0.005(syst.). We observe 

relatively large values of g; at low x that call into question the reliability of data 

extrapolation to z + 0. Such divergent behavior disagrees with predictions of the 

conventional Regge theory, but is qualitatively explained by perturbative QCD. lye 

perform a Next-to-Leading Order perturbative QCD analysis of the world data on 

the nucleon spin dependent structure functions gr and gr paying careful attention to 

the experimental and theoretical uncertainties. Using the parameterizations of the 

helicity-dependent parton distributions obtained in the analysis, we evolve the data 

to  Q’ = 5 GeV’, determine the first moments of the polarized structure functions 

of the proton and neutron, and find agreement with the Bjorken sum rule. 
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C H A P T E R  1 

M o TIVATI o N 

1.1 Introduction 

The mystery of the structure of the nucleon is one of the most fascinating 

challenges facing modern physics. Deep inelastic scattering data helps us to meet 

the challenge. Like a powerful microscope, it allows us to look inside the sub-nuclear 

particles at a much deeper level and check our ideas of what nucleons consist of and 

how they behave. 

Deep-inelastic scattering (DIS) experiments provide perhaps our cleanest win- 

dow on hadron structure at large momentum transfer squared Q2. The original DIS 

experiments in End Station A at the Stanford Linear Accelerator Center (SLAC) 

in the 1960s showed that the form factors in ep scattering exhibit approximate 

scaling at large Q2.f1] This remarkable observation was celebrated when the 1990 

Nobel Prize in Physics was awarded to the experimenters Friedman, Kendall, and 

Taylor.i2] It gave rise to the original parton ideas of Feynrnz~n[~] and of Bjorken and 

P a s c h o ~ . [ ~ * ~ J  Precise data revealed the logarithmic scaling violations and also the 

gluon distribution that were predicted by QCD. 

While the theoretical grounds for understanding unpolarized deep inelastic scat- 

tering are well established and surprises are rare, experimental polarization data 

have often challenged the theory. It is more than two decades since the first polarized 

deep inelastic scattering experiments were done at SLAC.[6g7] This work became 

the subject of renewed interest when EMCIS] extended the SLAC measurements 

to  smaller x and announced their results on the spin-dependent proton structure 
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function gl. The naive parton model interpretation of their data is that the quarks 

contribute very little to the proton’s spin - in contradiction with quark models. 

Since that measurement, much more data have become available from SLAC[’-’l] 

and CERN.[l2*l31 The work described in these pages is a further step in studying 

the dynamics of quarks and gluons inside the nucleon. In experiment E154,[l4I we 

have measured the spin structure functions of the neutron g;(z, Q2) and g;(z, Q’) 

by scattering longitudinally polarized electrons off longitudinally or transversely 

polarized 3He nuclei. High statistical precision and broad kinematic coverage of the 

experiment gives us a stronger basis for understanding the structure of the nucleon. 

The experiment was carried out in October-November of 1995 by a collaboration 

of 80 physicists from 23 institutions in End Station -4 at SLAC. 

1.2 Structure functions 
1.2.1 Definitions 

Our primary concern is with deep-inelastic scattering from polarized targets. Ex- 

periments at SLAC and DESY use polarized electrons while experiments at CERN 

by the European Muon Collaboration (EMC) and the Spin Muon Collaboration 

(SMC) utilize naturally polarized muon beams. Consider a DIS experiment where a 

lepton beam with definite polarization and momentum k@ = ( E ,  c) scatters from a 

polarized proton target. ‘This is shown in the one photon exchange diagram of Fig. 1.1 

to leading order in the electromagnetic interaction. We work in the laboratory frame 

so that the proton target P has momentum pi’ = ( M ,  0) and polarization Si’. The 

lepton L is scattered through an angle 6 and emerges with momentum k‘i’ = (E’ ,  2). 
The exchanged photon carries four-momentum qi’ = (k-k’)@. The scattering process 

is then characterized by the two invariants Qz = -q2 and u = p . q / M  [u = ( E  - E’)  

in the LAB frame] or, equivalently, by Q2 and the Bjorken variable x = &. We 

measure the inclusive hadronic cross section so that hadronic final states X with 



3 

Fig. 1.1. Deep inelastic scattering. 

the same invariant mass squared, W 2  = ( p  + q ) 2 ,  are not separated. The kinematic 

variables are summarized in Table 1.1. 

The differential cross section for the one photon exchange process (Fig. 1.1) is 

given by[’’] 
a’ E’ 

dRdE’ Q4 E -- L,, wpu. -- - d2a 

Here, a is the fine structure constant and L,, and W,, describe the leptonic and 

hadronic vertices respectively. Since the lepton is elementary we can write down an 

exact expression for L,, from the Feynman rules, 

L = Ls + iL;, = 2 k , k l +  k ~ k ,  - g,,(k - k‘ - m2) + irnt,,,,q (1.2) [ w - ,u 

where we split the leptonic tensor in two parts: L;, is symmetric under ,u (j v, and 

L;”y is antisymmetric and contains the lepton spin. 

The hadronic tensor W,”” contains all of the information about the hadronic 

target that one can extract from such inclusive measurements. Its form is constrained 

by symmetry arguments. Again, we write W,, as a sum of symmetric and antisym- 



Table 1 .l. Kinematic variables and invariants of lepton-nucleon scattering. 

Variable 
E 
E’ 
i 
i‘ 
19 
m 
kfi 
k’ @ 

Sc” 

M 
Pc” 
S” 
qc” 
Q 2  
v 

X 

Expression I Lab Frame 

arccos (G) 

(k - 
-q2 

P q/2M 
Q2/2Mu 

4 E E’ si n2 9 /2 
( E  - E’) 

4:5;11:”;:) 

Meaning 
Incident lepton energy 
Scattered lepton energy 
Incident lepton momentum 
Scattered lepton momentum 
Lepton scattering angle 
Lepton mass 
Incident lepton 4-momentum 
Scattered lepton 4-momentum 
Incident lepton polarization vector 
Nucleon mass 
Nucleon 4-momentum 
Nucleon polarization vector 
4-momentum transfer 
4-momentum transfer squared 
Energy transfer 
Bjorken x ;  
the fraction of nucleon momentum 
carried bv a struck parton 

4 

metric contributions; W,, = Wfv + zW$v. Then the requirements of covariance, 

parity, charge conjugation, and current conservation (qpW,, = 0) imply the form 

and 

The form factors in Equations 1.3 and 1.4 contain all of the target dependent 

informat ion. 

One has to  use both polarized beam and polarized target in order to measure 

spin-dependent structure functions g1 and 92 since combinations with mixed sym- 

metry vanish LZ,,W;” = Lt,Wl” = 0 and only combinations LZ,Wl” and L ~ v W ; ”  
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survive. For this experiment, the unpolarized structure functions Fl and F2 are 

considered to be known. 

Deep inelastic scattering is defined by the kinematic limit where both Q2 >> M 2  

and W 2  >> M 2 ,  so that we are beyond the resonance region (where W 2  may coincide 

with the mass squared of one of the excited nucleon resonances). In the DIS limit 

the form factors F; and g; in W,, exhibit approximate scaling. That is, they behave 

as structure functions of the single variable x - modulo a slow logarithmic variation 

in Q2,  which is described by perturbative QCD. The scaling property reveals a local 

interaction between the hard photon and charged elementary partons (quarks) inside 

the proton. It is the same effect as in Rutherford’s a particle scattering experiments 

which revealed the nucleus inside the atom.[’6] 

We now turn to the measurement of the spin dependent structure functions. We 

will consider leptons longitudinally polarized and targets longitudinally or trans- 

versely polarized with respect to the incident beam direction. We will let TJ. denote 

the longitudinal lepton polarization and fil) [e) denote longitudinal (transverse) 

polarization of the target nucleon. Then the differential cross sections are 

I9 M 29 Tl-t 80’(E’)2 
- +- - ks in2  - F ~ ( x ,  Q2) + - cos’ - F ~ ( x ,  Q2)]  (1.5) 

d2 (T ” d2a 
dCldE’ d0dE’ MQ4 2 v 2 

and 

for longitudinally polarized leptons and nucleons, and 

for longitudinally polarized leptons and transversely polarized targets. 

The structure function a2 is suppressed in Ea. (1.6) with respect to a1 bv a factor 

$ x 0.02, for the beam energy of 50 GeV. The transverse asymmetry in Eq. (1.7) 

primarily measures 9’. 
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The experiments usually do not measure cross section differences of Equations 

(1.6) and (1.7) directly, but measure longitudinal and transverse asymmetries 

and 

Then, if the beam and/or target polarizations are reversed frequently, all slow- 

varying factors (beam properties, detector efficiencies and acceptance, etc.) cancel 

between different polarization states, and one can write the asymmetries in terms 

of detector counting rates: 

(1.10) 

and 

(1.11) 

Here N and Q are the number of events and beam charge for each helicity state, 

respectively, Pb and Pt are the beam and target polarizations, and the factor f is 

the dilution factor, the ratio of scattering rates from the polarized nuclei to the total 

number of target nuclei: 

(1.12) 

The polarized nucleus (3He, H, or D) is denoted by P ,  and U stands for unpolarized 

material. The scattering cross sections are ~T, (x ,  Q’), and n; are the nucleon densities. 

1.2.2 The virtual photon-nucleon asymmetries 

Deep inelastic scattering is composed of two processes. One, represented by the 

top vertex in Fig. 1.1, is the emission of the virtual photon by the incident lepton, and 

is completely calculable in QED. The bottom vertex represents the absorption of the 
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photon by the target nucleon. The optical theorem relates the total photoabsorption 

cross section to the imaginary (“absorptive”) part of the forward ( t  = 0) virtual 

photon-nucleon Compton scattering amplitude (where t is the momentum transfer 

Mandelstam variable). 

Let us denote the Compton amplitudes Mab-,cd where a and b are the inci- 

dent photon and nucleon, and c and d are the final photon and nucleon helicities, 

respectively. These amplitudes are derived from the hadronic tensor W,, through 

(1.13) 

where @(A) is the polarization vector of the virtual photon. 

There are four independent helicity amplitudes (just as there are four indepen- 

dent structure functions defined in Section l.2.1):[17] 

M ~ L + ~ L ,  M ~ - I + ~ - L ,  M ~ L - , ~ L ,  M ~ L + . ~ - L +  (1.14) 

Using Equations (1.3) and (1.4), we get for the virtual photoabsorption cross 

2 2  2 2  2 2  

sections: 

where the photon flux K is defined according to Hand’s convention as 

Q 2  = y - -  
W 2  - M 2  

2M 2M‘ 
I- = 

(1.15) 

(1.16) 

The quantities 0 1 1 2  and 0312 are the virtual photoabsorption cross sections when the 

total photon-nucleon spin along the photon direction is 1/2 and 3/2 respectively. 

The total transverse photoabsorption cross section is defined by 

(1.17) 
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The cross section for the longitudinally polarized photon is OL,  and the interference 

term between transverse and longitudinal amplitudes is OTL. 

The virtual photon-nucleon asymmetries are defined by 

and 

(1.18) 

(1.19) 

where y = ,/v. We can also define the ratio of the longit,udinal to transverse 

cross sections 

(1.20) 

which links two unpolarized structure functions 

The virtual asymmetries satisfy the unitarity conditions[’’] 

(1.21) 

(1.22) 

1.2.3 Structure functions and experimental asymmetries 

Finally, we can express the structure functions and virtual photon-nucleon asym- 

metries in terms of the experimentally measured asymmetries 

(1.23) 

and 

(1.25) 
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The kinematic factors used above are 

1 
1 + 2(1 + ( v2 /Q2) )  tan2(8/2) ’ € =  

(1.26) 

(1.27) 

where y = ( E -  E’ ) /E  is the fractional energy transfer from the electron to hadrons. 

1.2.4 The parton model and polarized parton distributions 

The parton model began with Feynman who showed that the early SLAC deep 

inelastic scattering experiments could be explained in terms of the hard photon 

scattering incoherently from elementary parton constituents in the proton. The 

structure functions measure the probability for finding a quark with momentum 

fraction z = pparton/p~rrotonl f in the proton and which is polarized either in the same 

or the opposite direction to the proton’s polarization. This is usually called the naive 

parton model; it has no gauge degrees of freedom. 

In the naive parton model the structure functions are described by the four 

linearly independent parton distributions. There are two spin-independent distribu- 

‘Here, p+ denotes the light-cone momentum; see Appendix A for details 
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tions (one for a quark and one for an anti-quark), and two spin-dependent distribu- 

tioris. The charge conjugation even combination 

occurs in the structure functions F1(x,Q2) and F2(x,Q2). It is measured in the 

unpolarized lepton-nucleon scattering. In tbe naive parton model one finds 

where e, denotes the quark charge. The relationship between F1 and F2 is called the 

Callan-Gross relation. 

The polarized (spin-dependent) quark and anti-quark distributions occur in the 

spin-dependent structure function gl (x), which in the naive parton model is written 

as : 

(1.30) 

where 

is the polarized quark distribution. It is helpful to rewrite gl(z) in terms of the 

SU(3) flavor combinations: 

Aq3(2) E AIL(.) - Ad(z), 

A q 8 ( ~ )  E AIL(X) + Ad(z) - ~ A s ( z ) ,  

AE(5) 5 Au(x) + Ad(x) + As(.). 

Combi 

Aq8 are non-singlet. 

tion AX (also refered to as Aqo) is a singlet distributic w he ea 

(1.32) 

21n Eq. (1.28), q t (z )  ($(z$) denotes the distribution for helicity aligned quark (anti-quark), and 
q$(z) (ql(z)) stands for helicity anti-aligned distributions. By convention, the parton distributions 
are given for the proton, and one can get the corresponding neutron distribution functions using 
isospin symmetry. These distributions are often written in the literature as G p , ~ ( x ,  A,  Q) where p 
denotes the parton (quark or gluon), H stands for the hadron, and X is the parton helicity. 
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Calculation of the z-dependence of the structure functions requires precise knowl- 

edge of the nucleon wave function. The moments of structure functions, on the 

other hand, can be calculated and provide a testing ground for our understanding 

of nucleon structure in QCD. The first piece of experimental evidence that showed 

that we needed to go beyond the naive parton model came when it was observed 

that quarks contribute only 50% of the proton's momentum. This was naturally 

accommodated with the advent of QCD where the gluons in the limit of infinite Q2 

carry the momentum fraction 

where 1Vj is the number of quark flavors.[lg1 

(1.33) 

(1.34) 

In the naive parton model, 
1 

& =  1 dx A q W  

determines the fraction of the proton's helicity which is carried by quarks (and 

anti-quarks) of flavor q .  Thus, we write 

1 1 1 2 
12 36 9 9 

1 

I?; d z g f ( z )  = - (Au-Ad)+-(Au+Ad-2As)+-(Au+Ad+As)+-Ac.  

(1.35) 

Assuming isospin symmetry, the neutron integral is obtained by interchanging u 

and d quarks in Eq. (1.35). The singlet term AX = Au + Ad + As denotes the 

light-quark spin, or more strictly speaking, helicity content of the nucleon3 

In operator language, Aq is defined by the proton matrix element of the axial 

current. We write 
A" 

2MS,AQa =< P ,  s l P Y , Y 5 p l P ,  s > 

for a = 3,8,0. The non-singlet matrix elements also arise in the neutron and hyperon 

(1.36) 

beta decays. Current algebra relates the spin dependent (strong interaction) struc- 

31n Eq. (1.35), we have explicitly written a contribution from charm quarks Ac, which is present 
above the charm threshold. It is usually ignored in the numerical analysis. 
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ture of the proton measured in polarized deep inelastic scattering at high energies 

to the quantities needed in low-energy weak-interaction physics. The currents which 

measure Aq3 and Aq8 do not renormalize, so these quantities are scale independent. 

They are determined as Aq3 = g A  = F + D and Aq8 = &(3F - 0) within SU(3). 

The axial coupling constant of the neutron beta-decay is g A ,  and F and D are the 

antisymmetric and symmetric SU(3) couplings. One finds[20t21] 

AU - Ad = g A  = 1.2601 f 0.0025 

and 
1 A U  + Ad -   AS = - (3F - D )  = 0.688 f 0.035. 
& 

(1.37) 

(1.38) 

Since Aq3 and Aq8 are determined from other experiments, by measuring the integral 

r‘: or I??, we can extract the singlet “spin content” of the proton AE as well 

as individual quark contributions Au, Ad, and A s  (this assumes that there is a 

negligible charm component Ac in the data.) 

1.2.5 Sum rules 

The angular momentum of a fast-moving nucleon has three sources, the angular 

momentum carried by the quarks, the angular momentum carried by the gluons, 

and the orbital angular momentum carried by any of the constituents. Angular 

momentum conservation for J ,  at a fixed light-cone time implies the sum rule[24]4 

1 1 - (Au + A d +  AS) + AG+ < L,  >= -. 
2 2 (1.39) 

The sum AE = Au + Ad + As is interpreted as the proton helicity carried by 

quarks, and AG 3 Jt dxAG(z) is the helicity carried by the gluon where AG(x) 

is the difference between the helicity-aligned and anti-aligned gluon distributions 

4Such interpretation is not gauge- or Loren~-invariant[’~], so one commonly assumes the infinite- 
momentum frame (in which the nucleon moves with an infinite momentum along the z direction), 
and the light-cone gauge (see Appendix A ) .  A gauge-invariant treatment of the spin sum rule has 
been derived in Ref. [25]. 
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G+(x)  and G-(z). The unpolarized gluon distribution G(z) is the sum of these two 

functions, G(z) E Gf(z) + G-(z). By definition, the anti-quark contributions are 

included in A q ( x )  and q ( x ) .  

There are two sum rules for g1 which can be tested in spin dependent deep 

inelastic scattering. The Bjorken sum gives a relation for the difference 

between the first moment of g1 for a proton and neutron target. In the scaling 

limit, it reads: 

The Bjorken sum rule was derived using current algebra before the advent of QCD 

and is a test of isospin symmetry. 

At the finite Q2 of an experiment one must include perturbative QCD (pQCD) 

Wilson coefficients. Including corrections to order cui, the Bjorken sum rule becomes 

(1.41) 

where C2 = -3.5833 and C3 = -20.2153 in the three-flavor theory.[28] The cor- 

responding expansion for the first moment of the proton spin structure function 

reads 

(1.42) 

where the perturbative coefficients are quoted to O ( C X S ) . [ ~ ~ ]  

The second sum rule for gl is the Ellis-Jaffe sum and is a test of Zweig’s (or 

OZI after Okuba, Zweig, and Iizuka) rule in the flavor singlet channel. If we assume 

that strange (and heavy) quarks do not play a significant role and set As = 0, then 

the quark “spin content” would be determined by the hyperon beta decays. In this 

scenario we would have AE = Aq8 = 0.688 f 0.035, where the rest of the proton’s 
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spin would be carried by the gluons and also by quark and gluon orbital angular 

momentum. Substituting this value into Eq. (1.42) we find 

.I' dz $(x) = 0.189 f 0.005 (1.43) 

(at 10 GeV2). The Ellis-Jaffe sum rule involves a model-dependent assumption that 

the OZI rule is obeyed, whereas the Bjorken sum rule should hold exactly in QCD. 

Experiments up to now have found Ellis-Jaffe sum rule to be violated by more than 

two standard devia t ion~[~J~- '~]  and confirmed the Bjorken sum r ~ l e . [ " ~ ' ~ ~ ~ ' ' l  

1.2.6 Transverse spin-dependent structure function g2 

The nucleon transverse spin-dependent structure function 9 2 (  z, Q') has only 

recently been rneas~red,["~'~~ and there have been few theoretical studies of it. 

As we mentioned above, it is strongly suppressed in the longitudinal asymmetry 

measurements and has been customarily neglected in the analysis of the early 

experiments. However, precise measurements of 91, like the one described in this 

thesis, require taking into account all associated corrections. 

One of the first theoretical observations was the Burkhardt-Cottingham sum 

6' dx 92(z, Q2)  = 0 . (1.44) 

It was originally derived using Regge theory and dispersion relations,[32] raised 

many questions and induced a lively theoretical d i s c ~ s s i o n . [ ~ ~ - ~ ~ ]  The experimental 

measurement of the sum rule could provide a test of Regge theory in DIS. 

A reliable method for exploring the properties of structure functions in the 

DIS limit is the operator product expansion (OPE) on the light-cone, 2.e. in the 
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space-time region xpxp 5 Q-2 + 0 in the Bjorken 

of two electromagnetic currents forming the hadronic tensor 

Using OPE, the product 

(1.45) 

can be expanded in terms of the renormalized local operators with singular coeffi- 

cients. In the Bjorken limit the importance of an operator is determined by its twist, 

or light-cone singularity of the coefficient function (see Section 1.3.2.2). As it is shown 

in Ref. [35], while higher-twist operators ( for instance, twist-three operators that 

reflect finite quark masses and quark-gluon interactions in the nucleon) have only 

correcting impact on 91, their contribution to g2 is rather big and can be measured 

experimentally. In general, 92 can be written as 

2 - ww ~ 2 ( x ,  Q 1 - g2 (x, Q 2 )  + gFT(x, Q 2 )  ) (1.46) 

where the first term proposed by Wandzura and W i l c ~ e k [ ~ ~ ]  contains only twist-:! 

matrix elements and is determined entirely by gl : 

( 1.47) 

The second term, g F T ,  receives contributions from the quark-gluon interactions 

inside the nucleon and non-zero values of quark masses (twist-3 operators). In 

principle, twist-3 contributions can be big because of the strong confining interaction 

and the appreciable value of the s-quark mass. Bag model calculations support 

such an assumption.[35] If so, experimental measurements of 9 2  directly measure 

the interaction-dependent higher twist matrix elements and could provide us with 

important information about nucleon structure. 

1.3 QCD-improved parton model 
1.3.1 Spin structure functions in QCD 

In the “naive” parton model, the nucleon spin structure function gl defined by 

Eq. (1.30) is a weighted sum of the quark helicity distributions that depend only 
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on the scaling variable x. In the QCD-improved parton model, quark distributions, 

and hence gl evolve with Q2 due to gluon bremsstrahlung and gluon-induced quark- 

antiquark pair creation. In the leading order (LO) in the strong coupling constant 

as Eq. (1.30) simply becomes 

(1.48) 

The spin structure function g1 is again defined by the quark contributions, and 

gluons couple to it only indirectly via the evolution of the quark distributions. In 

higher orders, g1 is defined as 

(1.49) 

where again both quark and antiquark contributions are included into definition 

of Aq E Sq + &j. The sum is over all active flavors ( N j  = 3 is only light and 

strange quarks are taken into account), and the symbol @ in Eq. (1.49) denotes the 

convolution integral 

(1 5 0 )  

The perturbative Wilson. coefficients C q , ~  represent QCD radiative corrections, and 

are written as series in powers of CYS 

(1.51) 

The leading order expression Eq. (1.48) is obtained by dropping higher-order Ci:A 

terms and having CAo)(x) = S ( l  - 2) and Cio)(x)  = 0. The next-to-leading (KLO) 

spin-dependent coefficients Cil) and C g )  in the modified minimal subtraction (E) 
renormalization scheme are given[37] by 

l $ x 2  
-- lnx  + 3 1  cy(.) = C F  

(1 3 2 )  
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(1.53) 

and their moments are given in Appendix B. Here CF = 4/3 and Tj = N j / 2  are 

Casimir invariants for the quark representation of SU(3)j~,,,,, and (1-z)+ is defined 

(1.54) 

The charm contribution is usually ignored, so the number of flavors N f  = 3. 

As it  follows from Eq. (1.49), in the NLO analysis, the gluon density directly 

affects the spin structure function 91. Precision measurements of gl can therefore 

reveal information about the gluon contribution to the nucleon helicity. 

1.3.2 Q2 dependence of the polarized parton distributions 

In the simple “naive” parton model with no gauge degrees of freedom, the quark 

distributions are functions of only one variable - Bjorken x. This is not the case in 

QCD which predicts systematic deviations from this simple picture. 

There are several sources of scaling violations. At  high values of Q2 quarks 

are likely to radiate gluons (Fig. l.2’), and gluons, in turn, create quark-antiquark 

pairs. The gluon emission reduces the momentum of the quark effectively shifting 

the quark distribution to lower values of X. At high J: the structure functions should 

then decrease with increasing Q2, whereas at low J: they are expected to increase. 

Thus, QCD predicts the evolution of the parton distributions with Q2 that produces 

the logarithmic Q2 dependence of the structure functions. 

Another source of the scaling breaking is the effect of “higher twist” contribu- 

tions, or corrections that arise from the subprocesses which involve more than the 

minimal number of interacting fields, such as the processes of Fig. 1.3. Although 

5The figure shows virtual Compton scattering since its amplitude is related to the deep inelastic 
cross section via the optical theorem. 
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Fig. 1.2. Gluon emission results in logarithmic deviations from Bjorken scaling, as de- 
scribed by the DGLAP equations. 

Fig. 1.3. Examples of higher twist corrections to the virtual Compton scattering amplitude. 

these corrections are suppressed by powers of Q2, they turn out to be significant a t  

fixed (1 - X)Q~.[~ ' ]  

1.3.2.1 Evolution of the parton distributions 

Having the initial distributions at some value of Q2 = Qi as the boundary 

conditions, one can obtain the distributions at higher Q2 using the Dokshitzer- 

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution e q u a t i o n ~ [ ~ ~ - ~ ~ ]  that read: 

[Sqi @ AP,, + AG 8 AP,G] and d M x c , Q 2 )  - - 
dln Q2 27r 

dAG(x, Q2) 1 
(1.55) 
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where (unlike the definition of A in Eq. (1.31))) 64; = qy(z,Q2) - q:(z ,Q2) is the 

spin distribution for a quark (antiquark), AG = G'(z, Q 2 )  - G"z, Q 2 )  is the gluon 

distribution, N j  is the number of active quark flavors, and @ denotes the convolution 

integral of Eq. (1 .SO). 

Like the perturbative Wilson coefficients of Eq. (1.51)) the splitting functions 

are calculated as a series in the strong coupling constant 

The leading order spin-dependent splitting functions are[41 343] 

+ -J(Z - 1) ) 1 4 1 + z 2  3 
3 (1 - z ) +  2 

AP$)(z)  = - [ 
1 
2 AP$)(z) = - [ z2  - (1 - z ) ~ ]  ) 

4 1 - (1 -2)2 
A f ) $ ( z )  = - 3 [ ] ) and 

(1.56) 

(1.57) 

The next-to-leading order spin-dependent splitting functions have been calculated in 

Ref. [37], and their moments are given in Appendix B. The evolution equations for 

the unpolarized distributions can be easily obtained by changing Jq, + q;, A G  + G, 

AP,, -+ P2,, and the unpolarized splitting functions P!,"' given in References [41,43] 

(LO), and References [38,39] (NLO). 

It is not possible to find an exact analytic solution to the Equations (1 .55) .  

However, numerical calculations and approximations are fea~ible.1~~1 It is clear from 

Eqs. (1.55) that the evolution of the quark distributions is sensitive to the gluon 

polarization; thus studying the Q2 dependence of the polarized structure functions 

can provide us with the experimental constraints on the polarized gluon distribution 

functions. For the presently available experimental data, such a program is carried 

out in Chapter 5 .  
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It should be noted that in the leading order, qq elements of the evolution matrix 

are equal in both polarized and unpolarized cases: AP$)) = P$), Thus, if the gluon 

contribution is small (such is the case at high x), the evolution of the unpolarized 

and polarized structure functions is similar, and the ratio gl/Fl (or the asymmetry 

AI) is approximately independent of Q 2 .  This observation, supported within the 

precision of the data, has been used by the experimental collaborations to evolve 

data taken at different values of Q2 to a common scale. This assumption is clearly 

unjustified at low x where the gluon densities, both unpolarized and polarized, rise 

sharply. As the quality of the data improves, the Q2-coverage increases, and even 

lower values of 2 are probed, a consistent pQCD-based approach should be used. 

1.3.2.2 Higher twist effects 

The diagrams involving interference terms between different quark currents as 

well as the quark-gluon correlations (Fig. 1.3) are responsible for the contributions 

to the structure functions that are suppressed relative to the leading contributions 

by the powers of Q2.  These corrections, however, become important at fixed values 

of W 2 .  Taking the higher twist corrections into account leads to the following series 

expression for the unpolarized structure 

(1.58) 

where the coefficient A rz O(rn2,) is set by the wavefunction scale. Unpolarized 

data from SLAC show substantial higher twist contributions at high One can 

therefore assume that higher twist contributions to the polarized structure functions 

are not negligible at low W 2 .  

Higher twist corrections modify the structure function sum rules as follows: 

(1.59) 
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r 
I 

where D, are the higher twist coefficients. There is no firm agreement on the size 

of the correction for the Bjorken sum rule; the recent is 

DI = -0.02 f 0.01 GeV2 (1.60) 

so the effect is quite small but comparable to the size of the current experimental 

errors . 

1.4 
1.4.1 Helicity-dependent quark distributions 

Shape of the polarized parton distributions 

The Q2-evolution of structure functions is well predicted by perturbative QCD 

DGLAP e q u a t i o n ~ . [ ~ l - ~ ~ ]  The initial shape of these distributions, however, is not 

directly calculable and reflects the non-perturbative dynamics of quarks and gluons 

inside the nucleon. Nevertheless, the end-point behavior of the structure functions 

can be accurately predicted from perturbative arguments. In this section, we will 

constrain the behavior of the structure functions in the regions of z % 0 and z x 1. 

The predicted forms can be combined to form a parameterization of the polarized 

structure functions. 

The polarized quark and gluon distribution functions Gq,H(z, A,  Q) and 

G g / ~ ( x ,  A,  &) of a hadron are most conveniently represented as overlaps of the 

light-cone wave functions $ n ( x ; , k L ,  A;), where6 x; = 1, and Cy=1 kl = 0. 

As shown in Appendix A, the region of x + 1 represents a very far off-shell 

configuration of the bound state wave function. Assuming that the bound state 

wave function is dominated by the lowest invariant mass Fock state, one can conclude 

that a constituent can get z x 1 only by exchanging hard gluons. Thus, the leading 

behavior of the amplitudes in the region of x x 1 can be computed from the simple 

minimally connected gluon-exchange diagrams (Fig. 1.4) calculable in perturbative 

QCD. 

6see Appendix A 
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Fig. 1.4. Leading-order diagram for G q , ~ ( x ,  A, Q) at x x 1. 

The limiting power-law behavior at 2 + 1 of helicity-dependent distributions is 

(1.61) 

Here n is the minimal number of spectator quark lines, and AS, =I 5’: - Sf I= 0 , l  

for parallel or anti-parallel quark and proton helicities, respectively.[50] This counting 

rule (cf. Eqs. (A.13), (A.14), and (A.15)) reflects the fact that the valence Fock 

states with the minimum number of constituents give the leading contribution to 

structure functions when one quark carries nearly all of the light-cone momentum; 

contributions from Fock states with a higher number of partons fall off faster at 

5 t l.i4’] The helicity dependence of the counting rule also reflects the helicity 

retention properties of the gauge couplings; a quark with a large momentum fraction 

of the hadron also tends to carry its helicity. The anti-aligned helicity quark is 

suppressed by a relative factor (1 - x ) ~ .  Similarly, in the case of splitting functions 

such as Q + qg or g + qq , the sign of the helicity of the parent parton is transferred 

to the constituent with the largest momentum The counting rule for 

valence quarks can be combined with the splitting functions to predict the 2 t 1 

behavior of gluon and non-valence quark distributions of non-exotic hadrons; they 

fall off faster by at least one power of (1 - 2) than the respective quark distributions. 

The counting rules for the end-point-behavior of quark and gluon helicity dis- 

tributions can also be derived from duality, i.e. a direct relationship between the 
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physics of exclusive and inclusive channels at fixed invariant mass.f5’] As shown by 

Drell and Yan,[52] a quark distribution function behaves as 

Gd H N (1 - 5 ) -  (1.62) 

at x -+ 1 if the corresponding form factor falls off as 

f‘(Q2) - (VQ’)” (1.63) 

at large Q2. Measurements of elastic electron-proton scattering at SLAC[5?] are com- 

patible with the perturbative QCD for both the helicity-conserving 

Fl(Q2) and helicity-changing F2(Q2) form factors: Q4F1(Q2) and Q6F2(Q2) become 

approximately constant at large Q2.  This behavior corresponds to the threshold 

behavior of helicity-parallel and helicity anti-parallel quark distributions: (1 - x ) 3  

and (1 - x ) ~  as x + 1, respectively, in agreement with the counting rules. The 

leading exponent for quark distributions is odd in the case of baryons and even for 

mesons in agreement with the Gribov-Lipatov crossing rule.[41] 

I 
, 

The counting rule predictions for the quark and gluon distributions are relevant 

at low momentum transfer scales Qo z A Q ~ D  in which the controlling physics is 

that of the hadronic bound state rather than the radiative corrections associated 

with structure function evolution. 

At high Q’ the radiation from the struck quark line increases the effective 
, 

power law fall-off (1 - x)” of structure functions relative to the underlying quark I 

(1.64) 

where CF = 4/3 and a, = 11 - ( 2 / 3 ) N j .  Thus, the counting rule predictions for 

the power p provide a lower bound for the effective exponent of quark structure 

functions at high Q2 > Qi. However, in the end-point region z x 1, the struck 

quark is far off-shell and the radiation is quenched since one cannot evolve Q’ below 
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Qi EY kg = -(p2/(l - x ) ) ,  the Feynman virtuality of the struck parton[40] (here, p 

is the invariant mass of the spectator quarks). 

Thus pQCD can give useful predictions for the power law fall-off of helicity- 

aligned and anti-aligned structure functions at 5 M 1. Higher order contributions 

involving additional hard gluon exchange are suppressed by powers of os(k;). 

Further iterations of the interaction kernel will give factors of fractional powers 

of log(1 - 2 )  analogous to the anomalous dimensions log'" Q2 which appear in the 

pQCD treatment of form factors at large momentum transfer.ls41 

The fact that one has a definite prediction for the x M 1 behavior of leading twist 

structure functions is a powerful tool in QCD phenomenology, since any contribution 

that does not decrease sufficiently fast at large IC is most likely due to coherent multi- 

quark and quark-gluon correlations. As discussed in Ref. [55], such contributions are 

higher twist, and they are significant at fixed (1 - x ) Q 2  M M 2 .  

1.4.2 Helicity-dependent gluon distributions 

At x -+ 1 the gluon distribution function is constrained by the counting rule 

arguments (see Fig. 1.5) and obeys the Gribov-Lipatov crossing rule[41]: 

GglP N (1 - x ) ~ ,  IC + 1. (1.65) 

It is known in QED["] that in e + ey" processes the polarization of the initial 

electron is retained by the photon at high momentum transfer; the same behavior 

is expected for any gauge theory including QCD. Thus, 

(1.66) 

At low IC quarks radiate coherently (Fig. 1.6), and one has to take into account 

interference terms. Brodsky, Burkardt, and Schmidt have obtained the following 

constraint on the gluon distribution functions at IC z Oi4']: 

(1.67) 
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Fig. 1.5. The leading contribution to the gluon distribution function at high 2. 

E 
Fig. 1.6. The low-z behavior of the gluon distribution function is determined by coherence 
effects . 

Here ( l / y )  stands for the first inverse moment of the quark light-cone momentum 

fraction distribution in the lowest proton Fock state. For this state ( l / y )  e 3 .  

For baryons, a simple form of the gluon distributions, which incorporates the 

limiting behaviors presented above, is[49] 

(1.68) 
N 

AG(x) = -[I 5 - (I - 5)*](1 - x ) ~ ,  

N G ( x )  = -[I + (I  - ~) ' ] (1  - x ) ~  , 
X 

(1.69) 

where N is a normalization constant. In this model the momentum fraction carried 

by the gluons in the proton is 

12 
35 

1 

(Xg) f 1 dx zG(5) = --, (1 3 0 )  
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and the helicity carried by the gluons is 

11 
30 

dzAG(z)  = - N ,  (1.71) 

Taking the momentum fraction (zg) to be 1/2 yields A G  = 0.54. 

1.4.3 The axial anomaly 

The prediction, found in the previous section, that AG 2 0.5 is phenomenolog- 

ically interesting. If one also accepts the experimental suggestion from EMC that 

the quark helicity sum Au + Ad is small, then this implies that gluons could carry 

a large part of the proton helicity J ,  = 1/2. The angular momentum conservation 

requires then significant (and, most likely, negative) orbital angular momentum L,  

which arises, for example, from the finite transverse momentum associated with the 

q + qg gluon emission matrix element. 

Several authors have a r g ~ e d [ ~ ~ - ~ ' I  that the gluon polarization may explain the 

small quark helicity content of the proton observed by EMC and rescue the Ellis- 

Jaffe assumption of A s  = 0.[59] Gluons could contribute to proton helicity via the 

y5-triangle anomaly that breaks, at the quantum level, the conservation of the axial 

current Qyp75q: 

(1.72) 

where Fpu is the gauge field strength tensor in QCD. The intuitive meaning of 

Eq. (1.72) is that the anomaly induces a mixing between gluons and the flavor-singlet 

axial current of quarks. One can then redefine the quark helicities measured in the 

experiment to be 

(1.73) 

The authors of Ref. [60] have calculated, based on the recent experimental data,that 

QS 

27r 
Aq -+ Aq - -AG. 

the As = 0 assumption requires AG M 2. This number is not as big as claimed in 

Ref. [59], but still requires a large negative orbital angular momentum contribution. 
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Equation (1.73) demonstrates the intrinsic ambiguity associated with the in- 

terpretation of the quark distribution function. This is the manifestation of the 

factorization scheme dependence of the parton  distribution^.[^^-^^] Although the 

structure functions measured in the experiment are unambiguous, their factorization 

in Eq. (1.49) into non-perturbative parton distributions A f; and hard cross sec- 

tions AC, is definition-dependent. One therefore always has to specify a particular 

prescription ( s c h e m e )  according to which the factorization is performed. In fact, 

if the calculation is done using the dimensional regularization in the conventional 

scheme, the gluon contribution to the first moment of gl vanishes[61] (due to 

the fact that Ji dzCc(s) = 0 in Eq. (1.49)[371). We will discuss more details of the 

scheme dependence as well as other theoretical uncertainties in extracting the parton 

distributions in Chapter 5. 

1.5 Low and high J: phenomenology 

No experiment can measure the full range 0 5 z 5 1,  and every experiment must 

make some assumption in order to extrapolate to  the full z range. The contribution 

from the high z is typically small since the structure functions decrease rapidly. 

From the perturbative QCD arguments outlined in Section 1.4.1, the valence quark 

contribution to g1 falls off at least as (1 - x ) ~  at z -+ 1,  and the sea and gluon contri- 

butions are suppressed by additional powers of (1 -2). The helicity-antialigned quark 

distribution is suppressed by (1 - 2)' relative to the helicity-aligned distribution, so 

one can write on general grounds for the virtual photon-nucleon asymmetry 

(1.74) 

Experiments commonly use Eq. (1.74) to extrapolate data to z = 1, or extrapolate 

g1 directly assuming the pQCD predicted power fall off 

91 Aq (1 - x ) ~ ,  2 -+ 1.  (1 .75)  

Both extrapolations are consistent with the data within experimental errors. 
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The situation is much less clear for the small x extrapolation. At fixed Q 2 ,  the 

x t 0 limit corresponds to the infinite photon energy u + 00, or, equivalently, 

(1.76) 2 1  - x s - ( P + q )  r - W 2  = M 2  - Q 2  + 2 M v  = M 2  + Q - +oo 
X 

for the photon-nucleon center-of-mass energy s. This limit has been traditionally 

described by the theory of complex angular momentum (Regge theory). In Regge 

theory, one assumes that the high energy limit of the s-channel amplitude for the 

scattering ab + cd is determined by the singularities of the t-channel amplitude 

in the complex angular momentum plane; in the case of a simple pole (associated 

with an exchange of a particle - "Regge~n"~) .  the corresponding contribution to the 

amplitude can be written as 

dab+cd(s , t )  = , 0 ( t ) ~ " ( ~ ) ,  s + 00 , (1.77) 

where ~ ( t )  is the Regge trajectory. The optical theorem relates the total cross section 

to the imaginary part of the forward ( t  = 0) amplitude: 

Im&b+cd ( s , t  = 0 )  = slT;:pCd(s), (1.78) 

and we have . 

The Regge intercept ~ ( 0 )  is determined experimentally, for instance, in x N  or NA' 

scattering. 

Regge theory has been very successful in describing a wide variety of high energy 

unpolarized cross sections.[64] Since it provides a simple and economical (in terms 

of free parameters) description of the total cross sections, Donnachie and Landshoff 

conclude that[64] "Regge theory remains one of the great truths of particle physics". 

'Such a particle can possess quantum numbers of a real meson, or vacuum, in which case it is 
called a P~meron[~*] .  
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In Section 1.2.2 we have shown the relationship between the virtual nucleon 

photoabsorption cross sections and the spin structure functions. For v -+ 00 and a 

fixed Q’, the leading expression for gl is 

(1.80) 

(ignoring terms constant or decreasing with v). Since s e 2Mv at large v and fixed 

Q 2 ,  

gl w P(&’)v* - z-O, z -+ 0 , (1.81) 

where CY is the dominant Regge intercept and ,0(Q2) is the pole residue. It is 

believed[65] that the leading behavior of gl is controlled by the a1 meson trajectory 

with the intercept CY,, = -0.14 rt 0.20.[65,66] Thus gl converges at low z according to 

the traditional Regge picture. Experiments so far have used the upper limit CY,, = 0 

to extrapolate data to z = 0 and evaluate sum rules; the variation in CY,, is used to 

estimate the extrapolation error. 

There are several problems with this simple description. It is not certain at which 

values of z, and at what Q’ the Regge theory is applicable. Strictly speaking, it works 

at the low hadron scales, i.e. Q2 below 1 GeV2. At high v and Q2 and finite z the 

structure functions are, in general, not determined by the rightmost singularities in 

the complex angular momentum plane; one has to include all relevant contributions. 

One therefore has to assume[32] that there is a smooth transition from the scaling 

regime (v -+ 00, Q’ + 00, z fixed) to the Regge regime (v -+ 00, Q’ = const) 

at small z. This is an additional hypothesis. In the unpolarized case, it has been 

shown[32] that the residues of the dominating Regge poles ,l?(Q’) have to have a 

special Q’ dependence. Even if the Regge regime is not truly set in, the unpolarized 

analysis benefits from the fact that the residues of different poles are generally of the 

same sign (positive), whereas in the polarized case this may not be the case and one 

cannot ignore possible “interference effects” that could mask the true asymptotic 

behavior . 
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Several authors a r g ~ e d [ ~ ~ i ~ ' ]  that the double-Pomeron cut contributes to gl at 

low x ;  it then induces a singular behavior' 

1 
, x -+o.  

x log2 x 91 (1.82) 

Again, the kinematic domain where such behavior applies is not specified; moreover, 

it has not been observed in the unpolarized data.[69] 

A model of the Pomeron based on the non-perturbative gluon gives 

a softer, but still singular behavior: 

(1.83) 

The coherence arguments based on perturbative QCD and outlined in Section 

1.4.2 imply that at some low hadron scale the polarized gluon distribution AG(x) 

is related to the unpolarized one G ( x )  according to the Eq. (1.67), i .e. 

AG(x )  N xG(z ) ,  x -+ 0. (1.84) 

Since the evolution mixes quark singlet and gluon distributions (see Section 1.3.2.1), 

the most singular of the two controls the behavior of the structure functions at low 

x and moderately high Q 2 .  Thus, if the behavior of G(z) is harder than l / x ,  AG(z) 

and consequently gI(x) is singular at low x .  

Finally, instead of relying in the theoretical predictions, one can fit the data 

to a phenomenological model. A power-law dependence similar to Eq. (1.81) but 

with power cy varying freely is a reasonable choice. On general grounds, one should 

distinguish between isospin 1 and isospin 0 states (or, in QCD language, between 

non-singlet and singlet contributions to 91). In this case, the fit of the following form 

is performed: 

91 = bNSx-aNS -+ bSx-as , (1.85) 

where S stands for singlet and NS for non-singlet quark distributions. 

'There are also counter-arguments, see, for example Ref. [32] and Ref. [66] .  
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There exists a theoretical estimate[71] of the powers U N S  and as based on the 

summation of the contributions of the form crs log2(l/a:). It was shown to produce 

a very divergent behavior 

(1.86) 

This is much more singular than the dependence induced by the GLAP evolution. 

Clearly, precise experimental data at high energies are needed to  determine the 

low x behavior of the polarized structure functions. So far the data have not been 

able to constrain it well, which poses certain problems in evaluating the polarized 

sum rules. We will return to this issue in Section 4.4.3. 

1.6 Extracting gy from 3He data 

In the experiment E154, we scattered polarized electrons off a polarized 3He 

target. To a very good approximation, 3He nucleons are in the spatially symmetric 

S state. The two protons are in a symmetric isospin state, and therefore, due to the 

Pauli principle, they are in the antisymmetric spin state. The total spin of 3He is 

thus carried by the neutron in this approximation, and asymmetries measured on a 

3He target are directly proportional to the neutron structure functions. 

In a more realistic model, other components of the 3He wave function are 

included. Besides the S-wave, the three-body wavefunction contains percentages 

of the S’ wave, arising from the differences in the tensor T = 0 and T = 1 forces 

distorting the primary S state, and the D wave.[72] The P-wave is suppressed due 

to its opposite parity. The admixture of S’ and D partial waves reduces the net 

neutron polarization pn in 3He and introduces finite proton polarization p, .  The 

proton and neutron polarizations can be calculated by considering the quantities 

Pat",, representing the probability to have a proton (neutron) with spin parallel (+) 

or antiparallel (-) to  the 3He spin. In a pure S wave state Pi’) = 1, Pi-) = 0 and 
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Pi+) = P(-)  P = 1 2 '  whereas for a three-body wave function containing S, S' and D 

waves, one has[72*73] 

(1.87) 
1 Pp'*) = 5 FA',  

where A = ~ [ P S ,  + ~ P D ]  and A' = ~ [ P D  - Ps,]. Here we introduced PSJ and Po as 

probabilities of S' and D state, respectively. 

From published calculations on the three body system one obtains, in correspon- 

dence of the experimental value of the binding energy of 3He, A = 0.07 f 0.01 and 

A' = 0.014 f 0.002.[72] In the approximation of independent  scattering off unbound 

nucleons, one can write: 

g13He(Z) = 2ppgy(s) + Pd;"(z) (1 38)  

and 

A3He = (2fpppAp + fnpnAn) 7 (1 3 9 )  

where A is the measured asymmetry All or A l ,  and fp(n) = F $ " ' / [ ( ~ F , P + F ; ~ ) ~ E M C ]  is 

the proton (neutron) dilution factor. The nuclear effects in the unpolarized scattering 

are taken into account by the EMC effect factor.[74] Taking into account the S' and 

D state probabilities, the effective nucleon polarizations are: 

PP - -- Pp") - Pp'-) = -0.028f0.004 and 

pn = PA') - PL-) = 0.87f0.02. (1 .90) 

In the assumption of independent scattering, one neglects nuclear binding effects 

and effects of Fermi motion and nuclear shadowing. It was shown by the authors of 

Ref. [73] that for the polarization observables these effects are only noticeable for 

z > 0.9 and II: x 0 in the deep inelastic scattering regime Q2 > 1. We use Eq. (1.89) 
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to extract neutron asymmetries from the 3He data. Thus, polarized 3He is good 

model of polarized neutron. 

1.7 Experimental status 

The deep inelastic scattering program at SLAC was started in the late 1960's 

with the SLAC-MIT experiment that led to  the discovery of the quark-parton 

m ~ d e l . [ ~ - ~ ]  The first experiment on spin-dependent deep inelastic scattering was E80 

at SLAC in 1976.[6] The experiment used a polarized electron beam with energies 

of 9.7 and 12.9 GeV and a polarized butanol target to  measure the photon-nucleon 

asymmetry A:. The technique of Dynamical Nuclear was used to 

polarize protons to M 50%. The experiment was repeated in 1980 by the same 

SLAC-Yale collaboration (SLAC E130)i7] with higher electron energies (16.2 and 

22.7 GeV). Both experiments used fixed-angle magnetic spectrometers to detect 

scattered electrons, centered at 9" (ESO) and 10" (E130). They found good agreement 

with the quark-parton expectations over the covered z range. The main parameters 

of E80 and E130, as well as of other experiments to be described in this Section, are 

summarized in Table 1.2. 

After the early series of the experiments on the spin-dependent deep inelastic 

scattering ended at SLAC in early 19SO's, the experimental program was continued 

at CERN. The EMC experiment took data in 1984/5, and the first results became 

available in 198S.['] EMC scattered a p+ beam with energies between 120 and 200 

GeV off a polarized ammonia target. The muon beam is naturally polarized to 

E 80% since it is produced in the T+ decay. The high muon energy allowed the 

measurement to extend to much lower 2 than in original SLAC experiment, i .e.  

values of z = 0.01. The EMC results was in good agreement with the naive quark 

model expectations and SLAC results for 5 > 0.1, but the data lay significantly 

below the prediction at lower values of 2. Consequently, combining EMC and SLAC 



Table 1.2. Parameters of polarized deep-inelastic scattering experiments. 

pt 
50% (PI 
60% (P) 

75% 
33% 
80% 
40% 
40% 
80% 

40% (3He) 

Experiment 
SLAC E80 
SLAC E130 
CERN EMC 
SLAC E142 
SLAC E143 

CERN SMC 

DESY HERMES 

SLAC E154 
SLAC E155 

Events (IO') 
2 
1 
1 

300 
200 

E20 

z 6  

1992- 
1996 
1995- 

years 
1976 

1995 
1997 

target, Eb (GeV) 
butanol 9 -  12 

1980 
1988 
1992 
1993 

16 - 22 
190 
23 
29 

190 

27 

48 
48 

butanol 
ammonia 

3He 
ammonia (p) 
ammonia (d) 
butanol (d) 

ammonia (p) 
atomic 

3He, 'H, 'D 
3He 

ammonia (p) 
'LiD (d) 

pb 
50% 
80% 
80% 
35% 
80% 

80% 

60% 

80% 
80% 

38% 100 
80% ??? 
50% 
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data and using a smooth Regge extrapolation gy - x0.l2, x + 0, EMC obtained for 

the first moment of g: 

I‘y(EMC) = 0.126 f 0.010 (stat.) f 0.015 (syst.) (1.91) 

at an average Q’ = 10 GeV’, about a three standard deviation disagreement with 

the Ellis-Jaffe prediction. Assuming SU(3)fl,,, symmetry and using Eq. (1.42), one 

can find that the total quark contribution to the proton spin is small: 

AX = 0.12 i 0.17. (1.92) 

This result came as a surprise, and the effect was even dubbed “the proton spin 

crisis” in the community. It has inspired a large amount of theoretical work aimed at 

understanding the spin structure of the proton. It has also been the genesis of a new 

experimental program in polarized DIS. The interest shifted towards experimental 

tests of the Bjorken sum rule, and precision determinations of the spin structure of 

the nucleon. 

The SLAC spin structure program restarted in the Fall of 1992 with the experi- 

ment E142.f9] The experiment used a AlGaAs polarized electron source developed for 

the SLC which produced a high-intensity beam of 40% polarization. The beam was 

delivered to the End Station A with energies of 19, 22, and 25 GeV. A high-density 

polarized 3He target was developed for this experiment, for which 3He gas was 

polarized using optical pumping and spin exchange techniques (see Section 2.5) 

to yield an average polarization of 33%. Scattered electrons were detected in two 

independent magnetic spectrometers centered at 4.5” and 7°.[76] The experiment 

collected approximately 300 million deep-inelastic events over the kinematic range 

0.03 5 x 5 0.6 at the average Q 2  of 2 GeV2, which resulted in the most precise 

determination of the neutron structure function gy, prior to E154. Unlike the original 

SLAC experiments, the transverse asymmetry AL was also measured to minimize the 

systematic error in extracting 91”. An additional advantage of the SLAC experiments 
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was the ability to flip the electron helicity pseudo-randomly on the pulse-by-pulse 

basis. Combined with the regular reversals of the target spin orientation, this feature 

resulted in the strong suppression of the beam-related systematic effects. 

Experiment E143 at SLAC ran in the winter of 1993/4.['0911] The development of 

strained Ga As photocathodes resulted in high beam polarization (80%) available to 

E143. The beam energy was raised to 29 GeV; data were also taken at lower beam 

energies of 9 and 16 GeV to study the Q2 dependence of the spin-dependent structure 

function gl .[77] Polarized ammonia and deuterated ammonia targets were used to 

measure the spin dependent structure functions of the proton and deuteron. The 

spectrometer setup was essentially unchanged from E142. The experiment collected 

approximately 200 million deep inelastic events, and both the longitudinal['O~"~ and 

the transverse[22] structure functions were measured over the range 0.03 5 z 5 0.7 

at an average Q2 of 3 GeV2. 

The program at CERN continued with the SMC e ~ p e r i m e n t [ l ~ * ' ~ ]  that took 

data with polarized deuteron targets in 1992, 1994, and 1995 (deuterated .butanol 

was used as a target material), and with a proton target in 1993 and 1996. Like 

EMC, SMC used the highest energy 190 GeV muon beam, and the butanol target 

was superseded in 1996 by an ammonia target. Due to the high beam energy, the 

experiment reached lower values of z and higher Q2 than the SLAC experiments. 

The measurements covered the z range of 0.003 5 2 5 0.7 at an average Q2 of 10 

GeV2. However, the muon intensity was low, and statistics limits the precision of 

the SMC measurements. 

A new spin structure program was started recently at DESY. The HERMES 

experimend'q operates in the HERA storage ring utilizing the 27 GeV positrons 

(electrons) and polarized internal gas targets. The novel technique is used to inject 

the polarized atoms into the windowless target chamber inside the storage ring, 

thus allowing to have the dilution factor very close to unity. The main feature 
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Target 
P 
P 
d 
n 
P 
d 

Table 1.3. Values of the first moments of gy, gy, and gf reported by experiments at SLAC 
and CERN. 

Q' (GeV') rl 
10 
10 
10 
2 
3 
3 

0.126 f 0.010 (stat.) f 0.015 (syst.) 
0.136 f 0.011 (stat.) f 0.011 (syst.) 
0.041 f 0.006 (stat.) f 0.005 (syst.) 
0.031 f 0.006 (stat.) f 0.009 (syst.) 
0.129 f 0.004 (stat.) f 0.009 (syst.) 
0.042 f 0.003 (stat.) f 0.004 (syst.) 

CERN SMC 
CERN SMC 
SLAC E142 
SLAC E143 
SLAC E143 

of the experiment is the ability to identify the final state hadrons simultaneously 

with scattered positrons. By tagging the flavor of the leading hadron ( L e .  doing a 

semi-inclusive measurement), one is able to probe directly the valence and sea quark 

distributions inside the nucleon. The first inclusive results from the 1995 run with 

the 3He target have been released in the preliminary form[''] and are expected to be 

published soon. The experiment will continue to run into the next century. 

The summary of the data available prior to E154 is given in Table 1.3 and 

Figures 1.7 and 1.8. The consistency of the data taken in different experiments and 

at different kinematics, is outstanding. Not only the tests of sum rules are possible, 

but information about the shape of the structure functions, and the underlying 

parton distributions has begun to  emerge. 

Barring difficulties with the low-z extrapolation and the Q' evolution of the 

structure functions, the values of the moments in Table 1.3 can be used to test the 

Bjorken sum rule and extract the total quark contribution to the proton helicity 

AX. Ellis and Karliner['*] performed a global fit to the data and obtained 

1' dx [gy(z, Q 2 )  - gy(x, Q')] = 0.164 f 0.011 (1.93) 

at Q' = 3 GeV', in perfect agreement with the prediction. They went even further. 

and assuming the validity of the Bjorken sum rule, extracted the value of QS from 

the Q' dependence of the measured quantity (Eq. (1.41)): 
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Fig. 1.7. World data on zgf(z). 

f0.026 as(3 GeV2) = 0.328- 0.037 7 (1.94) 

which is quite competitive with other determinations which are 

quark helicity contributions, Ellis and Karliner obtainedls2I 

For the 

Au = 0.82 f 0.03 

Ad = -0.44f0.03 (1.95) 

AS = -0.11 f 0 . 0 3  

and 

AX = Au + Ad + As = 0.27 f 0.04. (1.96) 

One has to keep in mind, of course, that the theoretical errors associated with the 

low x extrapolation, Q2 dependence of asymmetries, higher twist effects, etc. have 
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not been included in Equations (1.96) and (1.96). 

Several pQCD fits to the polarized deep inelastic data have been made in the 

leading[60>83-851 and n e x t - t ~ - l e a d i n g [ ~ ~ @ ~ ~ ~ ~  orders in QS. The first information on the 

polarized parton distributions have become available. We will discus ,s this program 

in Chapter 5 .  



C H A P T E R  2 

EXPERIMENTAL APPARATUS 

2.1 Overview 

In SLAC experiment E154 the spin dependent structure functions gp(x, Q') and 

g;(z, Q') of the neutron were measured in the kinematic range 0.014 5 z 5 0.7 and 

1 GeV' 5 &' 5 17 GeV2 using a polarized, optically pumped 3He gas target and a 

longitudinally polarized 48.3 GeV electron beam. The average target polarization of 

38% was achieved in the longitudinal direction, and the average beam polarization 

was determined to be 82%. Scattered electrons were detected simultaneously in 

two independent large acceptance magnetic spectrometers centered around 2.75" 

and 5.5" relative to the beam line. Results for gF were obtained by measuring the 

asymmetry between the cross sections in which the target and beam polarizations 

were parallel versus anti-parallel and using existing measurements of the unpolarized 

structure functions FI and F2. 

The experiment was a collective effort of 80 physicists from 22 institutions. It 

ran for two months in Qctober-November, 1995. In this Chapter, we describe the 

apparatus used to perform the measurement. 

2.2 
2.2.1 Polarized electron source 

Polarized electron source and beam transport 

The polarized electrons were produced by photoemission from a strained GaAs 

photo~athode.[~***~] The photocathode was illuminated by a flashlamp-pumped Ti :sap- 

phire laser that produced M 10 ,us long pulses at a wavelength of 850 nm with a 120 

Hz frequency. The pulses were then sliced by the Laser Pulse Chopper (LPC) to 
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YAG-pumped 
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Fig. 2.1. A schematic of the  polarized source at SLAC. The setup shown is for the SLC 
operation. The E154 setup was very similar with one of the lasers changed to flashlamp- 
pumped Ti:sapphire. 

200 - 250 ns and shaped slightly non-uniformly to compensate for the beam loading 

effects in the accelerator and to obtain uniform pulses in the end of the linac. A 

schematic of the polarized source is presented in Fig. 2.1. 

The laser light was polarized with a linear polarizer and a combination of two 

Pockels cells, the quarter-wave plates that can change the optical axes depending on 

the applied high voltage. The axes of one of the Pockels cells were rotated by 45% 

relative to the axes of the linear polarizer and the other cell. This cell (CP Pockels 

cell) was used to generate the circularly polarized light; the sign of the high voltage 

determined the helicity of the light incident on the photocathode (and hence the 

helicity of the electrons). The second cell (PS Pockels cell) was used to control the 

charge asymmetry of the beam. 
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Fig. 2.2. Energy levels in strained GaAs. 

The energy levels of a strained GaAs are illustrated in Fig. 2.2. The strain is 

induced by growing a 0.1 pm layer of GaAs on a substrate of GaAsP. The difference 

in the lattice constants of GaAs and GaAsP creates the compressive strain and 

splits the degeneracy of the J = 3/2 valence band by N" 50 meV. Photons with 

positive helicity and energy 1.43 eV < E? < 1.48 eV excite the transition from 

the m3 = -3/2 valence band level to the m3 = -1/2 conduction band level. The 

electrons then diffuse from the conduction level into the vacuum. The quantum 

efficiency (QE) of the cathode is increased by growing a thin layer of Cesium that 

lowers the bulk conduction band. 

The extracted electrons have the same helicity as the incident photons since they 

exit in the direction opposite to that of the photons. The maximum polarization of 

100% could be achieved from a strained GaAs cathode, compared to regular GaAs 

which is limited to 50% polarization due to degeneracy of J = 3/2 state. In practice, 

polarizations of up to 85% were achieved from the strained cathode. 

After photoemission the electrons were accelerated across the 60 kV potential of 

the gun, creating a 200-250 ns pulse of e 0.5-2 x lo1' electrons which were bunched 



43 

and accelerated down the linac. The source operated at 120 Hz, but typically only 

119 were used by E154. One in every 120 pulses was a short, high-intensity 3 ns pulse 

used for accelerator diagnostics and tuning. This "witness" pulse was deflected in 

the Beam Switchyard and did not enter the End Station A. 

2.2.2 Beam acceleration and transport 

The electrons created at the source entered the 3.2 km linear accelerator. The 

accelerator structure consists of 30 sectors, each containing eight klystrons, steering 

dipoles, a quadrupole, and additional elements for monitoring the beam position 

and current. 

Each of the 240 klystrons feed microwave radiation at 2856 MHz into copper 

cavities. During E154 (and during the SLC running) a technique called SLAC Energy 

Doubling (SLED) was used that involves reversal of the microwave phase during the 

pulse. This results in a sharp increase in the accelerating voltage in the cavities at 

the expense of reducing the pulse length to 200 - 300 ns (compared to M 2 ps in 

the normal, non-SLED mode). The maximum beam energy achievable in the SLED 

mode is M 52 GeV. 

At the end of the linac, the beam is deflected by 0.5" into the A-line by two 

magnets in the Beam Switchyard (BSY). The A-line consists of twelve identical 3 m 

long dipole magnets operated in series, each of which bends the beam by M 2" from 

the linac towards End Station A (ESA). Twelve quadrupoles are used to  control the 

beam divergence and the spot size at the target. 

2.2.3 Spin precession and beam energy 

The helicity of electrons entering the linac is the same as that of photons hitting 

the photocathode and it remains constant during acceleration to the end of the 

linac. Two dipole magnets located in the BSY deflect the beam by 0.5" north into 
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the A-Line where the set of twelve dipole magnets bend it by 24.0” north into the 

End Station A. During deflection, the spin of the electrons precesses by an amount 

where y = E / m ,  A6bend := 24.5”, and g is the gyromagnetic ratio of the 

For beam energies which are even multiples of 3.2374 GeV, the electron helicity at 

the target in ESA is the same as it is at the source. E154 ran at the linac energy of 

48.56 GeV which is an odd multiple, and the helicity of the electrons at the target 

was opposite to that at the source. 

At high beam energies, synchrotron radiation becomes important. In general, 

the energy loss due to the synchrotron radiation is given by 

where p = 85.927 m is the bending radius. Taking into account the synchrotron 

energy loss, the “magic energy” corresponding to 1 5 ~  spin rotations is E = 48.362 

GeV. Experiment E154 took polarized data a t  a beam energy E = 48.325 GeV with 

an uncertainty on the value of % 0.05 GeV.[’O] It was determined by measuring the 

energy dependence of the beam polarization in the Meiller polarimeter.[g1] 

Synchrotron radiation also resuIts in the growth of the beam emittance and 

therefore a larger spot size at the target. In order to reduce the spot size to the 

required x 1 mm, a quadrupole (Q41) was placed in the alcove of the ESA. The 

focal point was at the target, and the beam gradually diverged after the target. 

2.2.4 Electron beam helicity reversal 

The ability to reverse the beam polarization on a pulse-to-pulse basis with 

the Pockels cell was very important for reducing systematic errors. Possible false 

asymmetries due to slow changes in spectrometer acceptance and detector efficiencies 

were averaged out by the rapid beam helicity reversals. Also, by changing the target 
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polarization direction periodically, we could further reduce the effect of asymmetries 

induced by possible helicity-dependent differences in the beam properties. The ab- 

solute helicity of the light was determined by the sign of the asymmetry measured 

by the Meiller polarimeter. 

The beam helicity was chosen on a pulse-to-pulse basis using a pseudo-random 

bit generator. The sequence began when a 32 bit random number was chosen, with 

the last (32nd) bit determining the helicity of the beam. For the next pulse, the 

19th and 32nd bit determined the new first bit via a logical XOR, and the remaining 

bits were shifted up. The new 32nd bit determined the helicity of this pulse, and 

the cycle was repeated, The sequence of the 33 consecutive polarization bits thus 

determined the polarization state of all consecutive spills. The generator was running 

continuously even when the source was off. Thus, we could predict the polarization 

state of each spill knowing the spill number and could test the integrity of the 

The polarization state of the beam was sent to the Data Acquisition System 

via four physically distinct pathways: the PMON line, Mach line, Pockels Cell High 

Voltage Line, and the Veto Bits. Each pathway delivered a two-bit combination, 

where the combination ’01’ referred to positive helicity photons and ’lo’ meant that 

the photons incident on the photocathode were of negative helicity. Combination 

’00’ in the PMON meant that the beam is unpolarized, and ’11’ marked an error 

condition. Typically, all five (four hardware signals and the predictor) methods of 

determining the polarization state of the spill agreed[92] and we discarded the pulses 

if a disagreement was detected. If the rate of mismatches exceeded a conservative 

limit of 5 the entire run was discarded (see Section 3.7.2). 
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2.3 Beam monitoring 
2.3.1 Beam energy 

The energy of the beam was monitored continuously and recorded at every 

checkpoint (typically, three or four times per half an hour run). A flip-coil was 

located in an off-line dipole, identical to the twelve used in the A-line and placed in 

series with them. The current induced in this flip-coil is proportional to the magnetic 

field in the dipoles. In turn, the magnetic field strength determines the momentum 

of the electrons passing through the A-line to about 0.1%. The absolute energy scale 

was also determined independently by measuring the energy dependence of the beam 

polarization (see below). The energy spread of the beam, A E I E ,  entering ESA was 

restricted to 1% full width by using three adjustable slits located in the A-line. 

2.3.2 Beam current 

On a pulse-to-pulse basis the beam charge was measured with two independent 

ferromagnetic toroids. One was located about 38 m upstream of the target, and 

the second a few meters upstream. As the beam passed through the ferrite core of 

the toroid, a signal was induced in loops of wire wrapped around the toroid, which 

in turn was sent to a resonant LC circuit, The induced current was amplified and 

integrated, and hence the total charge was proportional to the beam current. Each 

toroid was calibrated by discharging a precisely charged capacitor through the toroid 

and measuring the induced charge. The calibration coefficients were extracted several 

times a day for each toroid, and the total beam charge of each spill was measured 

to about 0.5%. 

2.3.3 Beam position and steering 

The beam position and width were monitored with a wire array positioned 

10.5 m downstream of the target. Each of the 24 wires in both (x and y) projections 

were made of 0.127 mm diameter CuBe, with a spacing of 1.1 mm. The wire 
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arrays were read out on a pulse-to-pulse basis by the beam branch of our Data 

Acquisition System (DAQ); this information was also available to linac operators at 

the Main Control Center (MCC) to perform minor steering corrections to the beam. 

Two mylar roller screens, coated with fluorescent ZnS and observed with television 

monitors, were placed periodically into the beam and allowed a coarse centering and 

focusing of the beam. The first screen was placed x 25 m upstream from the target 

right after the quadrupole Q41. The second roller screen was in front of the target. 

Additional information about the beam quality came from two scintillator coun- 

ters. The first one (dubbed a “bad spill monitor”) was located upstream of the target 

in the End Station alcove and was sensitive to beam scraping. The second counter 

(a “good spill monitor”) was downstream of the target, several meters away from the 

beam pipe. It was sensitive primarily to particles created at the target and served as 

a good indicator of the time structure of the beam. Signals from both counters were 

displayed on oscilloscopes (both in the Counting House and MCC) and monitored 

continuously. The signals were also integrated by ADCs and stored on tape to be 

used in the data analysis. 

Other monitors of the beam included two traveling wave beam position moni- 

tors (TWBPM) located in front of the target. One cavity produced an RF signal 

proportional to the deviation of the beam from the horizontal center of the cavity, 

the second was sensitive to vertical displacement. A final system used for the target 

protection was a secondary emission monitor (SEM) made of a thin aluminum foil 

with a circular aperture of 2 cm for the beam that matched the diameter of a 

target cell. It was placed immediately upstream of the target. Large signals from 

the SEM indicated a potentially destructive displacement of the beam, prompting 

an automatic beam shutdown. This prevented the beam from hitting the thick side 

walls of the target. 
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2.4 MGller polarimeter 

The beam polarization was measured periodically by a single arm Maller po- 

larimeter. The polarimeter was located upstream of the target, and consisted of 

the polarized iron foil target, momentum-analyzing magnet) and a set of finely- 

segmented silicon detectors. The polarimeter was also used to optimize the beam 

energy and the source laser wavelength with respect to the beam polarization. 

2.4.1 MGller asymmetry 

The cross section for polarized eve- scattering is fully calculable in QED: and 

in the center-of-mass frame is given 

for longitudinally-polarized beam and target, where the asymmetry is 

(7 + cos2 6) sin2 6 
'4,*(6) = - 

(3 + cos2 6)* 

(2.3) 

Here s and 6 are the CM energy squared and the scattering angle, E': and E': 

are the beam and target foil longitudinal polarizations, respectively. By measuring 

the Msller scattering rate for the electron beam and target spins aligned, o++, and 

anti-aligned, ut&, we can form the asymmetry 

( 2 . 5 )  

If the target polarization is independently known, a measurement of the Msller 

asymmetry determines the beam polarization. 

The asymmetry maximum is at OCM = 90" where the unpolarized laboratory 

cross section is 0.179 b/sr and A,, = -7/9. With a typical foil polarization of 0.08 

(that corresponds to 2 outer-shell electrons of Fe aligned with the external magnetic 

field) and beam polarization of 0.8, the expected asymmetry is roughly 0.0j.[91] 
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2.4.2 Polarimeter apparatus I 
The polarimeter consisted of polarized target foils, a mask to define the az- 

imuthal and vertical acceptance, a magnet to analyze the momentumof the scattered 

electrons, and detectors to measure the scattering rate. The mask selected M d e r  

scattered electrons in the vertical plane and the magnet deflected them horizontally. 

The beam vacuum pipe went through the magnet and was enclosed in an iron 

septum to eliminate the field inside the beam pipe. The elastically-scattered Mdler 

electrons have correlated momenta and scattering angles, and form a stripe at the 

plane of the detector. The top silicon detector contained 48 channels placed on two 

4 x 6 cmz pads to produce a segmentation of 2.18 mm in the vertical (0) direction. 

It was mounted on a remotely-controlled mover and could be positioned anywhere 

within the Meiller acceptance. Four separate silicon detectors with coarser pitch were 

mounted side by side at fixed positions in the bottom aperture. 

The E154 polarimeter was an evolution of the previous End Station A Mdler 

Polarimeters[94] and utilizes many ideas and components of previous designs. The 

top and side views of the polarimeter are shown in Fig. 2.3. 

2.4.3 Foil polarization 

The foil polarization was determined by measuring its magnetization M.[951 

Ramping the external field H, induces a voltage in a pickup coil wound around 

the foil J Vdt = @ j  - ai. The flux has contributions from the foil and air: 

(2.6) 

where NtUrn, = 500 is the number of turns of the pickup coil. By integrating the 

induced voltage with and without the foil, and noting that Bf0;, = H + 47rM, we 

obtain . 

(2'7) 
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Fig. 2.3. Top (top picture) and side (bottom picture) views of the E154 Mdle r  Polarimeter. 
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The magnetization is related to the foil polarization by 

where g is the gyromagnetic ratio of the g' = 1.916 f 0.02 is the 

gyromagnetic ratio of Permend~r,[ '~] n is the number density of electrons, and p~ 

is the Bohr magneton. 

Six foils of approximate thicknesses 20, 20, 30, 40, 40, and 154 p m  were installed 

at a 20.7" relative to the beam line. The majority of E154 Msller data were taken 

with a 40 pm foil. The foils were magnetized to saturation by x 100 G field produced 

by Helmholtz coils. The polarity of the coils was typically reversed between the 

Msller runs to reduce systematic effects. The magnetization of the foils was measured 

before and after E154. Both measurements agreed within 0.6% with an average 

change of less than 0.1%. A relative systematic error of 1.9% was assigned to the 

foil polarization. 

2.4.4 Beam polarization results of the Mgjller runs 

Mgller data were taken periodically throughout the experiment for a total of 

about 140 runs. The signals from the silicon detectors were pre-amplified and read 

out by the ADCs. In each run, the average pulse heights in every channel were 

recorded for the two beam helicities, from which the (R-L) and (R+L) line-shapes 

were formed. The background under the unpolarized (R+L) Mdler line-shape was 

estimated by fitting the (RSL) line-shape to a quadratic polynomial plus the line- 

shape expected from unpolarized Msller scattering.[g1] The unpolarized Msller line- 

shape was obtained by using the (R-L) shape with the corrections for the atomic 

motion of target and was in a very good agreement with a Monte 

Carlo calculation. The (R-L) and (R+L) line-shapes were integrated and the Msller 

asymmetry was formed. The background subtraction increased the measured asym- 

metry by 17-24%. The statistical errors on the beam polarization were typically 
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Table 2.1. Measured longitudinal beam polarization for different running periods. The 
error is statistical only. 

Run range 
1329-1411 
1456-1 684 
169 1-23 1 1 
23 16-337 1 
3377-3788 

Polarization 
0.759 f 0.004 
0.775 f 0.005 
0.814 f 0.002 
0.824 i 0.001 
0.826 f 0.002 

Table 2.2. Systematic error contributions to the beam polarization measurement. 

Systematic error contribution Value 

Kinematic acceptance 0.3% 

Fit range 0.3% 
TOTAL 2.8% 

Foil magnetization 1.9% 

Background correction 2.0% 

0.003 - 0.006 per run. The history of the beam polarization measured by the 

polarimeter is shown in Fig. 2.4 and is given in Table 2.1. The average beam 

polarization (weighted by statistics of All) was 81.8%. 

2.4.5 Systematic errors 

The overall systematic error has contributions from the foil polarization, uncer- 

tainties in the expected Mdler asymmetry for each detector, and uncertainties in 

the background subtraction. The various contributions to the systematic error are 

summarized in Table 2.2.[”] 

2.5 Polarized 3He target 

The polarized 3He target was one of the major factors that determined the 

success of this experiment. It was very similar to the polarized target used in E142.[98] 

The target was a two-chambered 30 cm long glass cell containing 3He at densities of 
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Fig. 2.4. Measured longitudinal beam polarization versus E154 run number. Errors are sta- 
tistical only. "Jumps" in the  measured value of polarization indicate various adjustments 
made to the source during the run. 

2.6 x lo2* atoms/cm3. The 3He nuclei were polarized in the spin exchange collisions 

with optically pumped Rubidium atoms. Target polarizations of nearly 50% were 

achieved with an average polarization of 38%. 

2.5.1 Optical pumping and spin exchange 

Optical pumping is an effective technique for achieving high polarizations in a 

high density noble gas target.[''] The process is illustrated in Fig. 2.5 .  For exam- 

ple,for a positive helicity, circularly polarized laser light at 794.7 nm excites the 

5s1/2(bfJ = -1/2) ground state to the ~ P , / ~ ( M J  = $1/2) in Rubidium vapor 

(the D1 line). Radiative decays to the ground state favor the 5S1/2(M~ = - l /2 )  

state over 5Sl /z(M~ = +1/2) state by a factor two. By adding 65 torr of K 2 .  as 
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Fig. 2.5. Schematic of the optical pumping and spin exchange processes. 

in our target cells, the 5 P l p ( M ~  = i 1 / 2 )  states are collisionally mixed at a rate 

exceeding the radiative decay. The relaxation into the 5S1/2 ground states occurs 

equally into the two sub-states, and only two photons are required to increase the 

5S1/2(M~ = +1/2) population by one. The polarization of the valence electrons of 

Rb competes with several depolarizing mechanisms, the most of important of which 

are from Rb-Rb and Rb-3He collisions (the latter is dominant at high pressures), 

as well as Rb-target cell wall interactions. However, with sufficiently high Rb va- 

por density (1014 atoms/cm3) and high laser power, the optical pumping rate of 

l/y,,,, x s exceeds the l/yrelax x s relaxation rate, and almost 100% 

Rubidium polarization could be achieved. 

The polarization of the Rb atoms is transferred to the 3He nuclei in the spin 

exchange collisions due to the hyperfine interaction of the Rb electron magnetic 

moment and the magnetic moment of the 3He nucleus, as shown in Fig. 2.5 .  The 
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spin exchange rate, ~ S E ,  is proportional to  the relative velocity between the 3He and 

Rb, v, and to the number density of Rb, [Rb] 

YSE r< USEV > [Rb] 

where the velocity averaged cross section is x 1.2 x 1O-l’ crn2/s.[loo] With [Rb] M 

1014 ~ m - ~ ,  polarization times for 3He are very long, 1 l - y ~ ~  x 25 - 40 hours. 

Various processes are responsible for depolarization of the 3He atoms. Collisions 

between 3He atoms can cause the exchange of the nuclear spin and orbital angular 

momentum. Paramagnetic impurities, both gaseous and embedded in the cell walls, 

contribute further to the spin relaxation. Factors external to the cell also play a role. 

Polarized 3He diffusing through regions in which the holding field is inhomogeneous: 

precesses about the local field and the spin direction is randomized. This effect is 

usually minimized by keeping the gradients perpendicular to the alignment field 

small (< 20 mG/cm). Nuclear relaxation is also induced by the ion production in 

the cell by the electron beam due to creation of non-zero electron spin states in 

the ionized 3He atom.[lO’] The cumulative effect of these relaxation processes can be 

characterized by 

(2.10) 
1 1 1 

r R  = -+ - + -, 
Tcell TVB Tbeam 

where ?-,-ell7 TVB,  and ?-beam are intrinsic cell relaxation time, and relaxation times 

induced by the magnetic field gradients and the electron beam. Typical relaxation 

times for our target cells were on the order of 40 - 60 hours. 

The time dependence of the 3He polarization is given by a simple model of the 

competing spin exchange and relaxat ion processes 

PRb  [ 1 - exp (-( Y S E  + r R ) t ) ]  (2.11) YSE 
P3He(t) = YSE + rR 

assuming P3He(t  = 0) = 0, and where P R ~  is the equilibrium polarization of Rb 

x 100%. The polarization buildup (“spin-up”) observed in one of the best cells, 

Picard, is shown in Fig. 2.6. The maximum polarization of 47.9% was achieved. 
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Fig. 2.6. The on-line p a t  of the polarization buildup in the target cell Picarc 
calibration constant was reduced by M 2% in the post-run analysis. 

The 

2.5.2 Target apparatus 

The target cell was made of Corning 1720 aluminosilicate glass, which has low 

3He permeability. It used a two chamber design where the upper, pumping cell with 

a volume of 70-80 cm3 contained 3He and a few tens of mg of Rb. This chamber was 

enclosed in a plastic oven and heated to 170-200" C to create a Rb vapor density 

of about 1014 atoms/cm3. Three 20 W' diode lasers and four Argon-ion pumped 

Ti:sapphire lasers were located in a specially constructed laser hut near the target. 

The lasers pumped the target continuously, resulting in a total of almost 80 watts 

of power' on the pumping cell. The light from each laser passed through the various 

optical components including a quarter-wave plate to produce circularly polarized 

light, before reaching the pumping cell which was about 3 m away. A schematic of 

the target is shown in Fig. 2.7. 

'The spectrum of the diode lasers is quite broad so the total power absorbed by Rb at 795 nm 
was somewhat smaller. 



E- 154 Target Schematic 

x 4  

x3  

e’ 

50 GeV 
...-, 

57 

Fig. 2.7. The  schematic of the E154 polarized target setup. 
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The 3He atoms polarized in the upper cell diffused through a 60 mm long transfer 

tube to the lower, target cell, with a time constant of about 10 minutes. This cell 

was a cylinder x 30 cm long, 1 cm in radius, with x 50 pm thick endcaps of 

concave shape. Since the glass is stronger under compression than under tension, 

the concave design allowed thinner windows than the traditional convex, shape for 

the same 3He pressure. E154 benefited greatly from this feature since the dilution 

factor (the scattering rate from polarized 3He relative to the total rate) was increased 

by almost a factor of 2 compared to E142. Cooling jets of 4He were directed at the 

endcaps to relieve the heating caused by the beam. The target cell temperatures were 

monitored with 6 Resistive Thermal Devices (RTDs) mounted in various places on 

the target and pumping cells. The temperature throughout the target cell remained 

at 60 - 80 “C (depending on the position). The residual Rb density was of the order 

10l1 atoms/cm3, which is insignificant in comparison to the 2.6 x lo2* atoms/cm3 of 

3He and the 2.4 x 10” molecules/cm3 of N2 which were the primary components of 

the target cell. The target holder had three positions with the reference cell placed 

below the polarized cell (the third position was empty). The reference cell was used 

for the experimental studies of the dilution factor (see Section 3.10), and the “no 

target” runs were used to monitor the beam halo2. The precision mover placed 

either of two cells into the beam with a sub-millimeter accuracy. A large scattering 

chamber enclosed the target assembly, and was kept under vacuum of a few mtorr. 

Outside of the scattering chamber was a set of 1.4 m diameter Helmholtz coils 

which produced a 10-30 G holding field to align the nuclear spins of 3He. A similar ~ 

set of coils perpendicular to the beam direction was used to achieve the transverse 

polarization for measurements of AL. 

’The initial estimates of the beam halo were obtained with a special “dummy” cell t,hat had 
no windows. Since such a cell was not in the target holder during most of the run, results of the 
“no target” runs were used for monitoring the halo, and the “dummy” cell runs were used as a 
calibration. 
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2.5.3 Target cells 

The thin target windows could not sustain the high intensity electron beam for 

more than a week. Several effects could be blamed for breaking of the windows, 

but the exact cause is unknown. A total of nine polarized target cells and four 

reference cells were used in the experiment. The catalog of the cells with the relevant 

dimensions is given in Table 2.3.[lo2I 

The target windows thickness was measured by three independent methods: by 

a micrometer, by X-ray absorption (using 55Fe source), and using the interference 

of the laser light reflected from two surfaces of a window. The optical method is the 

most precise and gives an uncertainty of 3%, limited by the non-uniformity of the 

windows. The windows that broke in the beam were not measured by the optical 

technique, and the uncertainty in their thicknesses is 5%. 

The 3He density was measured during the filling of the cell, and later using the 

pressure broadening of the Rb absorption line. The fill density was corrected for the 

difference in the pumping and target cell temperatures. The error on the density is 

2%. 

2.5.4 Target polarimetry and polarization results 

The 3He polarization was determined by two independent techniques.[lo31 The 

traditional method, the adiabatic fast passage (AFP) NMR, was used during the 

A set of 42.75 cm diameter Helmholtz drive coils above and below the 

target provided a 72 mG RF field at 92 kHz, while the main holding field was 

swept from 18 G to 36 G, through the Larmor resonance at 28.4 G. The field sweep 

rate was optimized to minimize the polarization losses. The rate of 1.2 G/s was 

slow enough for the nuclear spins to follow the changing field, but fast enough to 

avoid the de-phasing of the spins while passing through the resonance. The resulting 

nuclear spin flip induced a signal in a set of 200 turn copper pickup coils, wound 
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Fig. 2.8. Typical 3He and water AFP-NMR signals. 

on a 76.2 mm by 25.4 mm Teflon form and centered around the target cell. Using a 

100 pF capacitor, an LC resonant circuit was formed. The signal was pre-amplified, 

then went through a lock-in amplifier that subtracted the 92 kHz modulation. The 

resulting NMR signal was proportional to the 3He polarization. The proportionality 

constant was determined from the thermal equilibrium Boltzmann polarization of 

protons in a water sample. The water signals were lo5 times smaller compared to 

the 3He signals, so typically many sweeps were averaged. Typical 3He and water 

signals are shown in Fig. 2.8. 

The primary sources of the systematic uncertainty in the AFP-NMR polarimetry 

were the height of the water signal (1.8%), proton polarization in water (1.0%)) and 

3He density (1.9%). The total systematic error of the AFP method is 3.4%.[lo31 

The second method, used to calibrate the AFP-NMR polarization measurement, 

was based on the Electron Paramagnetic Resonance (EPR) technique.[lo5] It used 
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Fig. 2.9. EPR frequency shift due to reversal of 3He polarization. 

the shift of the Rb Zeemari resonance due to the magnetic field created by the 

polarized 3He. The shift is quite substantial (about 20 kHz out of 8 MHz) and easy 

to measure. If the Rb polarization is very high, most of the atoms are in F = 3, 

M = A3 state (where F and M are the total angular momentum and its projection 

for the nuclear and electron spins of 95Rb). By applying the RF frequency, one can 

induce the transitions between neighboring M sublevels of the F = 3 manifold. 

The EPR resonance is observed by monitoring the rate of fluorescence at the D2 

Rubidium line as a function of RF frequency.[lo31 The RF field was created by a 

coil mounted on a side of the oven. The fluorescence was detected by a photodiode 

with a &line filter. The magnetic field was measured to one part in lo5 by a 

Flux-Gate magnetometer. The frequency shift due to 3He polarization was detected 

by reversing the 3He polarization. A typical EPR signal is shown in Fig. 2.9. The 

quality of the data is very good and the size of the frequency shift was extracted 

with an error of less than 0.5%. 

The frequency shift is proportional to the 3He polarization where the coefficient 

of the proportionality K O  is specific to the Rb-3He This coefficient was 

measured['03] with an uncertainty of 1.0%. The errors in the EPR measurement 
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mostly came from K O ,  the polarization gradient between the pumping (where the 

polarization is measured by EPR) and the target cells (1.5%), and the spread of the 

data (1.3%). The total systematic error of the measurement is 3.0%. 

The AFP and EPR polarization measurements disagreed by 5.4%. If the uncer- 

tainties of each measurement are treated as independent and the shapes of prob- 

ability distributions are Gaussian, the probability of such a disagreement is 23%. 

However, an unknown systematic effect could alter one of the measurements. We 

therefore increase the polarimetry error so that it covers both measurements and 

their errors. The final error also includes a 1.7% drift in AFP calibration constants 

measured before and after the run. The final target polarimetry error is 4.8%. 

2.5.5 3He polarization direction 

The direction of the 3He polarization relative to the magnetic field was deter- 

mined in three ways.[lo6] The first method used the sign of the AFP-NMR signals. 

Protons and 3He have magnetic moments of opposite sign, so if their spins are in 

the same directions initially and are swept through a resonance with d lB l /d t  of 

the same sign, the NMR resonance signals are of opposite sign. This determines 

the 3He polarization direction with respect to the proton, which is preferentially 

aligned parallel to the external fields. The second method relates the sign of the EPR 

frequency shift which is proportional to the 3He polarization. The third method was 

based on the observation of the masing effect during AFP due to  the coupling of 

3He spins to the pickup coils. All three methods were consistent. 

The direction of the holding field was determined by a flux-gate magnetometer, 

by a Hall probe relative to the spectrometer magnets, by compass, and finally by the 

direction of the current in the Helmholtz coils. Again, all methods were consistent. 

In addition, liquid crystal circular polarizers determined the laser helicity, which 

determines the angular momentum transferred to the 3He nuclei, and hence the 

polarization direction. 
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2.6 Magnetic spectrometers 
2.6.1 Introduction 

Design of the magnetic spectrometers for the 50 GeV spin structure program at 

End Station A was driven by the physics requirements. The goal of the experiments 

is to measure the spin structure functions of the neutron and proton down to the 

lowest possible z and over a more extensive Q2 range than compared to the previous 

ESA Design choices reflect the requirements of high counting 

rates, while keeping the ability to unambiguously identify scattered electrons and 

determine their energy in the presence of large background of charged hadrons and 

low energy neutral particles. An important factor is a short SLED beam pulse, which 

leads to  a factor of 10 - 20 increase in the instantaneous rates compared to E142 

and E143 (if the rate per spill is kept the same). 

The system consists of two independent magnetic spectrometers centered around 

2.75" and 5.5" relative to the beam direction, The 48.3 GeV beam combined with 

the choice of angles allows the measurements in the kinematic range 0.014 5 z 5 0.8 

and 1 GeV2 5 Q2 5 17 GeV2 (Fig. 2.10). This is the most extensive kinematic range 

ever achieved by polarized electron scattering experiments to date. The 2.75" spec- 

trometer covers a momentum range from 10 to 44 GeV, and the 5.5" spectrometer 

covers a momentum range from 10 to 39 GeV. The low momentum cutoff is dictated 

by the requirement of y = ( E - E ' ) / E  < 0.8 imposed by radiative corrections (which 

increase rapidly at high y), and the desire to  keep the charged hadron background 

at a tolerable level. The high momentum cutoff is set by the standard deep-inelastic 

cut W 2  > 4 GeV'. The theoretically calculated differential cross sections d2u/dRdE 

for the two spectrometers are-plotted in Fig. 2.11. 

A system of two independent "closed-geometry" magnetic spectrometers has 

several advantages. First, the neutral background is highly suppressed with the 

so-called "double-bounce" geometry that prevents neutral particles from reaching the 
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Fig. 2.11. Double differential cross section for 2.75' and 5.5" spectrometers a t  beam energy 
48.3 GeV (3He target, cross section per nucleon). 
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detectors without bouncing at least twice off the magnets and collimators. Second, 

unlike the typical open-geometry detectors used in particle physics experiments, 

we can choose the reIative acceptances of two spectrometers in such a way that 

the electron rates, and therefore statistical errors, are comparable at low and high 

2. Two spectrometers also provide the lever arm essential for studies of the Q2 

dependence of deep-inelastic spin asymmetries. 

The conceptual design of the spectrometer systems is described in Ref. [107,108]. 

The spectrometers are similar to the 4” and 7” spectrometers used in E142/E143.[76] 

Both spectrometers use two conventional dipole magnets bending in opposite direc- 

tions achieving a so-called “S-bend” , or “reverse-bend” configuration introduced for 

E142.i761 In addition, the 2.75” spectrometer features the quadrupole defocusing of 

scattered particles in the horizontal direction, thus reducing the instantaneous rates 

per detector element. It also provides focusing in the vertical (bend) plane. The 

detector system consists of a pair of gas Cherenkov detectors, planes of highly seg- 

mented plastic scintillators, and a lead glass calorimeter in a fly’s eye configuration. 

The schematic plan of the spectrometers is shown in Fig. 2.12. 

2.6.2 Optics model 

In the following, we will use the “spectrometer” coordinate system. It is a right- 

handed coordinate system with the target as origin. The line along the 2.75” (or 5 . 5 ” )  

direction is taken as the i axis. The 6 axis is vertical, and the i axis is horizontal 

and perpendicular to the i direction (2 points north in ESA). The dipole magnets 

bend electrons in the vertical direction, so we will call the zj - i plane a bend plane. 

The angles in the bend plane will be denoted as 4. The non-bend plane is horizontal 

(i - i ) ,  and the angles are defined as 0. 
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2.6.2.1 Magnets 

In order to cover the desired range in Bjorken 2, the momentum acceptance of 

the spectrometers had to extend over the broad range of momenta with large solid 

angles to ensure a reasonable counting rate. An additional design consideration was 

to suppress the large neutral background, mainly photons from bremsstrahlung and 

TO decay. The momentum resolution was not a major constraint, it had to be good 

enough to ensure that the resolution in Bjorken x is much smaller then the bin 

width. 

The “reverse-bend” spectrometer design, achieved with two dipole magnets 

bending in the opposite directions, has two main advantages. First, unlike con- 

ventional systems with bends in the same direction, it allows one to maintain a 

relatively large solid angle over the broad range of momenta, and hence extend the 

kinematic coverage of the experiment. A solid angle of 0.3 - 0.5 msr for 10 - 40 GeV 

particles was achieved for 5.5” spectrometer; the solid angle of the 2.75” spectrometer 

was variable from 0.05 to 0.1 msr for 9 < p < 40 GeV. Second, a proper choice of 

bending strengths and detector geometry achieves a so-called “two-bounce” system 

where the photons from the target are not allowed to hit the detector elements 

without bouncing at least twice off the collimator or the magnet. Thus, the neutral 

background originating at the target is reduced to a tolerable level. 

The optics of the magnetic spectrometers is usually related to an imaginary 

ray called the “central trajectory”. The trajectory of a charged particle is defined by 

specifying its position and momentum vector relative to this central trajectory. Since 

the curvature of a charged particle in a magnetic field is (inversely) proportional to 

its momentum, scaling the field of all magnets in the system scales the central 

momentum, but does not change the optics of the system relative to the central ray. 

It is convenient to choose the central trajectory in such a way that the optics of 

the spectrometer is approximately symmetric around it. For our spectrometers, the 
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central trajectory is defined by (0 = O,c$ = -1") (2.75") and (8 = 0 , d  = -0.48") 

(5 .5')  at the target and the central momentump, = 20 GeV. 

The main characteristics of the spectrometer magnets are given in Table 2.4.The 

front dipoles of both spectrometers are almost identical3, they are copper-coil beam 

line magnets 18D72. Both magnets bend the central ray downwards by 3.7". The 

rear dipoles, also quite similar, are B81 and B82 magnets from the SLAC 8 GeV 

spectrometer. They bend the electrons upwards. In addition to the dipole magnets, a 

quadrupole placed between the dipoles in the 2.75' spectrometer defocuses electrons 

in the horizontal plane so as to reduce the instantaneous rate of particles per detector 

element. In the bend plane, it also results in focusing (at p = 18 GeV at the shower 

counter) and spreads the low momentum particles over the large range in $. The 

latter fact is important in reducing the probability of electron-pion overlaps at the 

shower counter. The optics of two spectrometers is shown in Fig. 2.13. 

The magnet currents were maintained to within 0.1% of the set point and 

monitored at every checkpoint (a few times a run). In addition, NMR probes were 

placed inside each dipole magnet and were read out every shift. The field in the 

quadrupole was monitored by a Hall probe. 

2.6.2.2 Collimators and acceptance definition 

The acceptance of the spectrometers is defined by the collimators and is matched 

by the active areas of the detectors. The front collimators, 2SC1 and 5SCl in 2.75" 

and 5.5" respectively, are placed in front of the first dipoles B1 and B3. They define 

the horizontal and vertical entrance apertures. They are identical in design. Both 

consist of two sets of "jaws" which are movable independently in i and ij directions. 

The aperture is defined by 1 inch thick tungsten "lips" succeeded by 4 inches of 

3The only difference is in the amount of steel that was cut from the flux return plates in order 
to clear the beam line. 
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Fig. 2.13. Optics of the 2.75" (left) and 5.5" (right) spectrometers in the bend (top) and 
non-bend (bottom) planes. 
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Table 2.4. Characteristics of the spectrometer magnets used in E154. 

Magnet 
Type 
Name 
Length (cm) 
Aperture (cm) x: 

Y: 
Pole radius (cm) 
Center x (cm) 
Center 9 (cm) 
Center z (cm) 
Pitch (") 
Roll (") 
Yaw (") 

Bend angle (") 
BdZ (pole, kG-m) 

Current (Amps) 

5.5" 
B1 B2 

Dipole Dipole 
18D72 B82 
182.88 345.44 
15.24 34.29 
45.72 55.56 

1.16 

620.75 

0.017 
-0.761 
43.105 
-3.7 

2658.8 

-5.17 

-2.322 

-0.23 
-53.32 
1294.28 
-0.009 
-0.017 
0.056 
79.486 

6.8 
2538.9 

2.75" 
B3 Q1 B4 

Dipole Quadrupole Dipole 
18D72 Q203 B81 
182.88 130.18 345.44 
15.24 34.29 
45.72 55.56 

19.36 
-0.53 0.01 0.04 

1190.91 1555.59 1887.91 
-2.804 -4.713 0.006 
-0.009 0.009 0.007 

64.183 

20.77 -50.81 -78.09 

0.347 -0.019 -0.003 
(1) 13.682 

-3.7 5.5 
43'105 (2) 9.874 

1960.8 (1) 2190.4 
2684.3 (2) 1580.8 

(1) Runs 1 - 3383; (2) Runs 3384 - 3788 (Picard) 

Table 2.5. Apertures and positions of the spectrometer collimators 2SC1 and 5SC1. 

(1) Runs 1 - 3383; (2) Runs 3384 - 3788 (Picard). 

lead. The jaws move symmetrically in i. In the vertical direction, the bottom lip 

is fixed and defines the double-bounce geometry; the top lip is movable and defines 

the low momentum acceptance. The apertures of these collimators are summarized 

in Table 2.5. 

The second set of collimators that define the double-bounce geometry and affect 

the high momentum acceptance in both spectrometers is 2SC3 (2.75") and 5SC2 
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Table 2.6. Apertures and positions of the spectrometer collimators 2SC3 and 5SC2. 

2SC3 5SC2 
2 (cm) 1662.1 1067.9 
Width (cm) 31.5 31.4 
Height (cm) 36.3 45.4 
ytop (cm) -50.3 -25.6 
Pitch, " -2.4 -2.2 

(5.5"). They are positioned in front of B2 and B4. These are fixed lead collimators 

4.25 inches thick. Both of them were used in E142/E143, and we adopted them 

without major modifications. The horizontal aperture is big and does not constrain 

the acceptance. The top lip is pitched by -2.2" (2SC3) and -2.4" (5SC2). The 

collimators are positioned in such a way that the acceptance is cleanly defined by 

their apertures, L e .  the accepted electrons do not go through the magnet coils. The 

double-bounce line is defined by the bottom lips of the front collimators (2SC1 

and 5SCl) and the top lips of 2SC3 and 5SC2 (cf. Fig. 2.13). The hodoscopes are 

positioned above this line, so that neutral particles must bounce at least twice off 

the collimator (or magnet) apertures before hitting the detectors. The positions of 

2SC1 and 5SC1 are given in Table 2.6. 

The collimator 2SC2, positioned in front of the quadrupole Q l ,  is designed to 

control the peak electron acceptance of the 2-75" spectrometer. Its vertical jaws. 

which have 1 inch thick tungsten lips in front of 4 inches of lead, could be moved 

independently. Three fixed 4 inch thick lead collimators (old E142/3 collimators) 

are placed behind the jaws to help stop low energy pions. These collimators are 

always behind the "shadow" of the movable jaws and thus do not affect the electron 

acceptance. Placed between two dipoles in the region where the electron y position 

is almost insensitive to the momentum, the collimator 2SC2 provides effective means 

of tuning the peak electron acceptance. The acceptance could be adjusted from 0 to 

0.1 msr at the peak without change in the momentum range. Starting with target 
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Runs 

Table 2.7. Apertures and position of the adjustable collimator 2SC2 in the 2.75' spec- 
trometer. 

1304- 2312 2644- 3101- 3122- 3372- 
2311 2643 3100 3121 3371 3788 

2 (cm) 
ytop (cm) 
Ybottom (Cm) 

1417.5 
-37.0 -33.0 -30.0 -33.2 -32.0 -25.8 
-42.0 -44.0 -49.0 -43.9 -47.0 -53.9 

cell Hermes, the aperture of 2SC2 was adjusted for every cell to compensate the 

differences in target window thickness and achieve roughly constant electron rate of 

0.5 electrons per spill. Table 2.7 lists the vertical positions of the collimator lips for 

all run intervals. 

The positions and sizes of the detectors were matched to the optics to achieve 

maximal acceptance while preserved the double-bounce system. The main con- 

straints were a desire to have sufficiently long Cherenkov detectors (to keep high 

efficiency for electrons), the need to keep the separation between the rear hodoscope 

and the shower counter at least 2 meters (for efficient tracking), and the physical size 

of the End Station. Small scattering angles further complicated the design since the 

magnets had to clear the beam line and the detectors had to be sufficiently far from 

it to allow for adequate shielding. The positions and sizes of the detectors (typical) 

are listed in Table 2.8. The detector apertures do not limit the electron acceptance, 

except €or the low momentum region (where the top of the shower counter defines 

the low-momentum cutoff). The acceptances of two spectrometers are shown in 

Fig. 2.14. 

2.6.2.3 Reconstruction of the  kinematic variables. 

For a given set of magnetic fields, the trajectory of a charged particle in the spec- 

trometer is determined by six variables: the vertex position at the target (zo. yo, zo )  

and the initial momentum 3-vector (pas, pay, p o z ) .  Only four variables are measured 
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Table 2.8. Typical positions and apertures of the detectors. The smallest hodoscope 
apertures are quoted. For the shower counter, the quoted apertures exclude half of the 
edge block on each side. The quoted z position of the shower counter is 5 radiation length 
inside from the surface. 

1 2.75" I 5.5" 
Front hodoscope 

Zcenter (cm) 0.0 0.0 
gcenter (cm) -62.0 -14.4 
Zcenter (cm) 2673 2109 
Width (cm) 36.0 43.0 
Height (cm) 41.0 69.0 

Rear hodoscope 
xcenter (cm) 0.0 0.0 
Ycenter (cm) -41.5 4.0 
Zcenter (cm) 3394 2618 
Width (cm) 57.2 51.0 
Height (cm) 122.6 107.0 

Shower counter 
Zcenter (cm) 0.0 0.0 
gcenter (cm) -36.2 13.1 
Zcenter (cm) 3628 2902 
Width (cm) 57.2 57.2 
Height (cm) 122.6 122.6 

in the detector hut: track slopes 0 = d z / d z  and = dy/dz, and track intercepts 

with z = 0 (Xo  and Coordinates ZO and yo are the beam coordinates at the 

target and are measured by the wire array and the traveling wave beam position 

monitor (TWBPM). Moreover, since for E154 the magnetic field at  the target is 

negligible, one of the variables (for instance, ~ 0 )  is not independent. Furthermore, 

the beam spot size was typically on the order of 1 mm and the fluctuations of the 

* 

beam position were small, so we can neglect the dependence of the trajectories on yo 

and eliminate the second target coordinate. We now have four measured quantities, 

and four parameters we would like to extract: track momentumpo, track angles 8 and 

*Tracks are straight in the detector hut since there are no magnetic fields. See Section 3.5 for 
the description of tracking algorithm and definition of variables. 
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Fig. 2.14. The acceptances of the 2.75' (left) and 5.5' (right) spectrometers. The accep- 
tance of the 2.75' spectrometer was adjusted several times during the run  to maintained 
the rate of detected electrons approximately constant at different beam currents and target 
window thicknesses. We show the smallest acceptance (runs 1304-2311, current of 9 .  lo lo  
electrons/spill), the biggest acceptance with the standard setting of Q1 (runs 3372-3383, 
current of 5 lo1' electrons/spill), and the acceptance with the new setting of Q1 (runs 
3384-3788, current of 3 . 1O'O electrons). See Table 2.4 and Table 2.7 for details of the 
magnet and collimator settings. 

# at the target, and the position to (the latter is not actually used in reconstruction 

of the kinematics of the DIS event). The spectrometer can be thought of as an 

instrument that transforms the vector of initial variables (po t  6, #, to) into the vector 

of track parameters ( X o , @ , & , @ ) .  The problem can thus be formulated with a 

matrix notation[log] where the coefficients that are used to calculate ( p o ,  6 . 4 , z o )  

from the track parameters in the spectrometer are called inverse matrix elements 

(as opposed to direct elements that do the forward transformation). 

Since the sextupole components of the magnetic field are small (as will be shown 

below), the equations of motion are almost decoupled in the bend and non-bend 

planes. 'The dependence of the trajectories on zo is quite weak in the vertical plane, so 

we can reconstruct po and # using only two track parameters: Yo and Q .  Traditionally. 

this is done with a Taylor expansion 
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- -  Po - E aFYi@j and 
Pc  i , j = O  

(2.12) 
i , j = O  

where pc is the central momentum. Such expansion was used for E142 and E143,[76] 

and during the E154 run in the on-line analysis. It works well when the momentum 

bite of the spectrometer A p / p c  and the deviations from the central trajectory are 

small (and the expansion is justified). However, the convergence of the expansion is 

rather poor for spectrometers with a wide momentum acceptance such as ours, so 

the matrix elements have to be calculated up to the fourth or fifth order (we used 

ATp = 5 and Nb = 4 online). Even then, the bias in the momentum reconstruction on 

the edges of acceptance ( L e .  at low and high momenta) was too big to be acceptable 

(up to 4%). For the analysis of the Data Summary Tapes (DST), we tabulated the 

dependence of po and 4 on the spectrometer coordinates (Yo,@). We used a grid 

with 5 mm spacing in Yo and 1 mr spacing in a; the linear interpolation was used 

between the grid nodes. The comparison between the momentum obtained with the 

look-up table and the Taylor expansion of Eq. (2.12) is shown in Fig. 2.15. In order 

to further eliminate the bias in the momentum (which was due to the finite size of 

the grid) a small correction was applied to the reconstructed momentum. 

The track parameters in the non-bend plane ( X 0 , O )  are used to determine the 

angle 0 and the target coordinate 20. Again, we use the grid with the spacing of 

10 mm in Xo and 1 mr in 0. We neglect a gentle momentum dependence of Xo 

and 0 in the 2.75" spectrometer (introduced by the quadrupole5). This results in 

somewhat deteriorated angular resolution at low momentum (0.6 mrad compared 

'The quadrupole effect in the 5.5' spectrometer due to the pole face rotations is even less 
import ant. 
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Fig. 2.15. The momentum bias for the tabulated matrix elements (closed circles) and 
the power series of Eq. (2.12) (open circles). The error bar represents the momentum 
resolution. 

to 0.3 mrad at high momentum); it is however significantly better than what is 

required to measure the Bjorken 5 of the event. 

2.6.2.4 Resolution 

The reverse bend design results in a moderate momentum resolution that ranges 

from NN 2% at low momentum to M 4% at high momentum. The resolution of 

the spectrometers was calculated by a Monte Carlo simulation (see Section 3.5) 

using a detailed optics model and taking into account multiple scattering and 

bremsstrahlung as well as background effects. The momentum resolution is plotted 

in Fig. 2.16 as a function of momentum. The average momentum resolution is 2.4% in 

the 2.75" spectrometer and 2.7% in the 5.5" spectrometer (weighted by acceptance). 

The average angular resolution is x 0.4 mr in both spectrometers. For the original 

quadrupole setting in the 2.75" spectrometer (pre-Picard runs), the resolution in the 

bend plane (both momentum and angular) degrades rapidly at low momentum. This 
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Fig. 2.16. Momentum dependence of the tracking momentum resolution. Standard optics 
configuration of the 2.75' spectrometer is shown by solid circles, Picard optics by open 
circles, and that of the 5.5" spectrometer by open crosses. 

is due to a strong quadrupole focusing that results in almost ambiguous optics in the 

upper part of the spectrometer. Conversely, the angular resolution in the non-bend 

plane (a (@))  is almost constant with momentum and is determined primarily by the 

segmentation of the front hodoscopes and shower counter spatial resolution. The 

parameterizations of the momentum and angular resolutions in the bend plane are 

given in Section 3.5. 

2.6.3 Magnetic measurements 

An optics model of the spectrometers can be constructed with the information 

given in Table 2.4 assuming pure dipole and quadrupole fields. However, in order to 

eliminate biases in momentum reconstruction, a detailed and accurate field map of 

the magnets is needed. Prior to E154, we have performed magnetic measurements in 

two of the magnets, B1 and B3. Part of the flux return plates had been removed in 

these magnets in order to place the magnets more closely to the beam line. The parts 
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were not removed symmetrically, and certain non-uniformities were introduced to 

the fields. Such non-uniformities introduce sextupole (and higher order) components 

in addition to the pure dipole component of the field. The sextupole component 

induces mixing between the i and projections of the particle trajectories which 

are otherwise decoupled. The effect could be potentially very important since the 

front magnets B1 and B3 have a long lever arm to affect the particle trajectories. 

The magnetic field was measured on a grid with 2 inch spacing in i direction and 

0.5 - 1 inch spacing in 2 and 6 directions. Total of 2720 points were measured in B1 

(which is symmetric around the median ii - i plane), and 4320 points were taken 

in B3 (where the cut distorts the symmetry). 

2.6.3.1 Magnetic maps 

The horizontal component of the field B,(z, y,  z )  was measured by a Hall probe 

which was calibrated periodically against the NMR probe. The Hall probe reading 

was corrected for temperature effects by a feedback system and showed stability of 

better than 0.1%. The precision of individual measurements was x 0.1% at high 

fields and x 3 G at low fields. The primary uncertainty was the position of the 

probe relative to the magnet which was estimated to be 1.6 mm in 2 and 6, and 3.2 

mm in i. 

In the absence of field sources, the components of magnetic field are derived 

from a scalar potential function which obeys the Laplace equation 

(2.13) 

where B = *@. The components of the vector B are coupled; by measuring the pri- 

mary field component Bz(x, y, z ) ,  we can determine the scalar potential (neglecting 

a trivial constant,) 

@(x, Y, 2 )  = LX Bz(z’, Y, 2)dz’ 

and thus obtain other components of B, 

(2.14) 



80 

The components o the magnetic field are reconstructed in the following way. 

We assume that the solution of Eq. (2.14) has a separable form: 

q. ,y,z> = @1(4@2(.,Y) (2.15) 

We use the standard multipole expansion (up to the sextupole component) in the 

i - ij plane for each measured z;. The coefficients of the multipole expansion are 

fitted to the measured values of BE(., y, z): 

(2.16) 

Coefficients u3 (z) are interpolated between the nodes and their derivatives determine 

the i component of the field*. 

The primary and secondary field components B, and B, are shown as functions 

of x and y at the center of B3 in Fig. 2.17. The field map of B1 is very similar. 

The deviation from the pure dipole field (B, = const, B, = 0) is mainly due to the 

sextupole component and does not exceed 1% in both B1 and B3. The quadrupole 

component is highly suppressed. The z dependence of the dipole and sextupole 

components of the field is shown in Fig. 2.18. 

The magnetic properties of the rear dipole magnets, B2 and B4, were measured 

prior to E142.[11'] The higher-order components were found to be quite small (.: 

O . l % ) ,  so we approximate the field in B2 and B4 to be dipole. The z dependence of 

the field was re-measured in both magnets to correct for the environmental effects 

(such as a mirror plate of Q1 that affects the fringe field of B4), and to check 

consistency of the two sets of measurements. In general, a good agreement with the 

data of Ref. Ell01 was found. The z dependence of the dipole field in B2 and B4 is 

shown in Fig. 2.19. 

6Note that the effect of B, on electron trajectory is suppressed due to a very small transverse 
component of electron momentum. 
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Fig. 2.17. B3 field map in the center of the magnet. B, (left) and B, (right) are normalized 
to  the dipole component of the field. 
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Fig. 2.19. The t dependence of the magnetic field in B2 (left) and B4 (right). Note the 
drop in the front fringe field of B4 due to the mirror plate of Q1. 

The quadrupole Q1 (Q203) was mapped prior to E142 by the SLAC Metrology 

Department. The magnet is essentially a pure quadrupole with the field gradient 

constant up to the radius of 15.2 cm (at bigger radii the integrated gradient drops at 

a rate of 0.13%/cm). The magnetic center of Q l  is shifted relative to the geometrical 

center by 0.368 cm towards the utility (upstream) end where the mirror plate is 

farther from the magnet steel. 

2.6.3.2 Magnetization curves 

The dependence of the magnetic field on the current was also measured for all 

dipoles. The integrated field strength J Bdl is plotted in Fig. 2.20 as a function of 

current. The dependence was fitted to the polynomial function 

(2.17) 

where the current I is in Amperes and J BdZ is in kG-m. For Q1, the current is given 

by I = 30.994 J Gdl, where the integrated gradient Gdl is in kG. The coefficients 

a; for the dipole magnets are given in Table 2.9. 
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Fig. 2.20. The  magnetization curves for B1 and B3 (left) and B2 and B4 (right). 

Table 2.9. Coefficients a; of the polynomial expansion of the current versus field for the 
E154 dipole magnets. 
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2.6.3.3 Fringe field effects 

Due to the small angles of the spectrometers, the magnets of the 5.5" spectrom- 

eter are close to the 2.75" line. The fringe fields of B1 and B2 can therefore affect 

the particle trajectories in the small angle spectrometer. The fringe fields from these 

two magnets measured along the 2.75" line are shown in Fig. 2.21. One can clearly 

see the effects of the front coil of B1 ( z  M 520 cm), the rear coil of B1 ( z  M 720 cm), 

and the front coil of B2 ( z  M 1120 cm). The fringe fields could be approximated 

in the optics model by introducing two additional dipole magnets into the 2.75" 

spectrometer: one centered at z = 580 cm with B,dZ = -70 G-m, and another 

at  z = 720 cm with JBydl = -120 G-rn. The fringe field results in a shift of the 

reconstructed momentum of M 0.4% at low p = 10 GeV, and smaller at higher 

moment a. 

2.6.4 Calibration 

The optics model and the inverse matrix elements are generated solely by Monte 

Carlo simulation using the measured field maps and the precision alignment data for 

the magnets and detectors. The shower counters are calibrated with real electrons 

using momentum information, and no independent experimental calibration was 

attempted. Consequently, the reconstruction of the kinematic variables (Bjorken 2 

and Q 2 )  relies heavily on the accuracy of the Monte Carlo results and alignment 

data. 

Two tests were performed to check the integrity of the optics model. In one 

of them, we put a tungsten mask with small holes (dubbed a 'yjailbar", or more 

appropriately, a '&sieve slit") in front of the spectrometer so that the angles of the 

scattered electrons were well-defined. After determining these angles using tracking, 

we checked for biases in the angle reconstruction and compared the resolution 

with the model. The jailbar data do not determine how accurate the momentum 



85 

i !  
.. . .. .A.. . . .... . ..... . . .. ... . .. .. . . 

I 

Fig. 2.21. The  2 (top) and y (bottom) components of the  fringe field of the  5.5' magnets 
along the 2.75' spectrometer line. 



86 

reconstruction is. However, the reconstruction of momentum and the bend plane 

scattering angle are closely related, and if the angle reconstruction is correct, the 

momentum is also right. Secondly: we took data with the beam energy of z 8 GeV 

and reduced the central momentum of the spectrometers, so the elastic peak could 

be observed. The position of the elastic peak (or the shape of the cross section near 

the end point if the elastic peak is not visible) directly determines the momentum 

scale. This method relies on the assumption that the magnetic fields simply scale 

with the central momentum ( i . e .  the x , y , z  dependence remains the same as at 

pc  = 20 GeV). This assumption is a source of uncertainty in the interpretation of 

the data. 

2.6.4.1 Jail bar runs 

The principle the jailbar calibration is illustrated in Fig. 2.22. The mask con- 

structed of tungsten that is sufficiently thick to stop electrons, had precisely ma- 

chined holes and was located before the first dipole of the spectrometer. The po- 

sitions of the holes determined the angular acceptance; only electrons with certain 

values of 8 and 4 reached the detectors. These reconstructed angles can be compared 

to the known positions of the holes. The difference between the reconstructed and 

real hole positions determines the bias in the reconstruction of scattering angles; the 

width of the distribution checks the angular resolution. 

The 1 inch thick tungsten masks were positioned in front of the dipoles B1 

and B3 (behind the collimator 5SC1 and in front of 2SC1). Fifteen round holes were 

drilled in the 2.75" mask (only twelve holes were actually visible in the spectrometer), 

and the 5.5" mask had 25 holes equally spaced in i and ij (15 holes visible). The 

positions of the holes are given in Table 2.10. 

The ideal case for the jailbar calibration is a point-like target. We did not 

have such a target at our disposal, so the empty reference cell was used. The 
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Fig. 2.22. The jailbar (sieve slit) calibration. 

2.75" 5.5" 
1050 515 
0.64 0.48 

-2.3, 0.1, 2.6 
-22.2, -17.3, -11.3, -4.6 

-9.1, -4.6, -0.2, 4.3, 8.8 
-13.6, -4.8, 4.0 

Table 2.10. Positions and sizes o 
to the target center zo = 0. 

the jailbar holes. The positions o 
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the holes are relative 
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Fig. 2.23. Images of the reconstructed jailbar holes in the 2.75" (left) and 5.5" (right) 
spectrometers. 

difference between positions of two target windows created a parallax which was 

most noticeable in the horizontal direction. The apparent angular position of the 

jailbar holes was displaced from the values given in Table 2.10, and the direction 

of the displacement was opposite for two windows. This can be seen in Fig. 2.23 

where two images are reconstructed for every hole in the 2.75" spectrometer. The 

effect was so big in the 5.5" spectrometer that images of two adjacent holes merged. 

For example, electrons scattered from the downstream window at 8 M -6.5 mr went 

through the hole 8hole = -9.1 mr and merged with electrons scattered by 8 M -7.2 

mr from the upstream window that went through the hole oh& = -4.6 mr. Thus. 

one sees only 12 hole images in Fig. 2.23 for the 5.5" spectrometer. 

The comparison of the jailbar data with Monte Carlo is shown in Fig. 2.24. 

We have applied a cut of p > 14 GeV in the 2.75" spectrometer to eliminate the 

contamination by pions that penetrate the tungsten mask. These pions can be seen 

as a continuum background at # > -10 mr (low momenta) in Fig. 2.23 (left). Due 

to the cut, the top row of the jailbar holes in the 2.75" spectrometer cannot be seen. 
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Fig. 2.24. Comparison of the Monte Carlo (open histograms) and the jailbar data (hatched 
histograms). 

The agreement between the data and Monte Carlo results is generally quite 

good. The biggest disagreement is in 5.5" reconstruction of 8 (0.3 - 0.4 mr) which is 

most likely due to a misalignment (the displacement is in the same direction for all 

the holes and is independent of momentum). The deviation of the data from h4onte 

Carlo results in 4 for the 2.75" spectrometer is M 0.3 mr. These errors are negligible 

compared to the required resolution in Bjorken x. 
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2.6.4.2 8 GeV runs 

The 8 GeV data were taken with the reference cell filled with 10 atm of hydrogen. 

The energy of the beam was set to 8.095 GeV['OI (where the error quoted by Ref. [go] 

is < 0.04 GeV). The data in the 2.75'spectrometer were taken with the jailbar mask 

in front of the 2SP1 collimator (the positions of the holes were reproduced in the 

data to 0.2 mr). The central momenta of two spectrometers were set at 5, 7 ,9 ,  and 

11 GeV. The distribution of events near the end-point of the cross section is shown 

in Fig. 2.25 (for the 7 GeV spectrometer central momentum). The average Qz in the 

5.5" spectrometer was too high and the elastic peak could not be clearly separated 

from the DIS background. In the 2.75" spectrometer the elastic peak is clearly seen, 

however, the data are statistics-limited. Also shown in Fig. 2.25 is the calculated 

cross section at E = 8.095 GeV convoluted with the spectrometer resolution. A 

fit to the end-point behavior yields the beam energy of 7.91 GeV (2.75') and 7.94 

(5.5"). Corrections to the shape of the magnetic field (increase in the effective length 

of the magnets at lower currents) and to the Bdl of B1 and B3 change the fitted 

beam energy by $0.23 GeV and $0.04 GeV in the 2.75' and 5.5" spectrometers, 

respectively. The final results for the beam energy are E = 8.16 f 0.16 GeV (2.75') 

and E = 7.95 k 0.16 GeV (5.5') where the errors are dominated by systematics. 

These values are in agreement with the beam energy of 8.095 GeV. As a result, we 

will include a 2% error on the energy of the scattered electrons into the systematic 

error on g;. 

2.7 Detectors 
2.7.1 Cherenkov counters 

Each spectrometer was equipped with a pair of gas threshold Cherenkov coun- 

ters that provided electron identification. The existing E142/E143 counters were 

modified (extended) for E154, and many parts (mirrors, mounts, exit and entrance 
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2C2 19 6.5 
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90 c 

Radiator Mirror Pressure &e 

Length Curvature (psi) (scaled E143) 
(4 (4 
5.3 1.2 1.4 4.3 
6.1 1.6 1.4 5.0 
5.6 1.2 2.0 6.4 
4.0 1.6 2.0 4.6 

80 

70 

60 

50 

40 

30 

20 

10 

0 
7 7.5 8 8.5 9 

2000 

1750 

1500 

1250 

1000 

750 

500 

250 

0 

Fig. 2.25. Electron rate in the 2.75' (left) and 5.5' (right) spectrometers near the end-point 
of the cross section for a beam energy of 8.095 GeV and a central momentum of 7 GeV. 
Data (histogram) are compared to the calculated cross section (curve) convoluted with 
the spectrometer resolution. 

windows, vacuum system, phototubes, etc.) were reused. The counters were filled 

with N2 at sub-atmospheric pressures. Higher beam energy and higher pion produc- 

tion rate (compared to the electron cross section) required raising the Cherenkov 

threshold for pions to 19 (16) GeV in the 2.75" (5.5') spectrometer, and there- 

fore lower pressures compared to E142/3. The relevant Cherenkov parameters are 

summarized in Table 2.11. 
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The pion threshold for the Cherenkov radiation is given by the requirement 

1 - < 1  
P=n 

(2.18) 

where pT = p X / E T  = 1/J1 + (rnn/pT)’ and n is the index of refraction of the 

radiator. The number of Cherenkov photons emitted by a charged particle above 

the threshold is proportional to Lradsin26&, where the Cherenkov cone angle is 

given by 
1 
1  COS^,-^ = - , 

Pn 
(2.19) 

and Lrad is the radiator length. Since the phototube signal (number of photoelectrons 

emitted from the cathode Npe)  is proportional to the number of Cherenkov photons, 

the expected average pulse height for electrons is given by 

(2.20) 

where pth is the pion threshold, rn, is the pion mass, and C is a proportionality 

constant. The E143 data suggests this constant is C x 1.6 x lo4 pe/m for our coun- 

ters. Since the average number of photoelectrons drops rapidly with increasing pion 

threshold, large counter lengths were necessary in order to keep electron efficiency at  

acceptable level. The expected number of photoelectrons for our counters (obtained 

by scaling the E143 data) is given in Table 2.11. The actually observed numbers 

were somewhat higher (cf. Table 3.1). 

The pion pulse height above the threshold is given by 

(2.21) 

where p > pth is the pion momentum. The pion signal increases very slowly with 

momentum and reach 75% of the electron signal only at p x 2pth x 40 GeV, where 

the pion production rate is zero. 

The Cherenkov counters consisted of an aluminum vessel with thin ( 1  - 1.5 mm) 

aluminum entrance and exit windows. The spherical mirrors mounted inside near t,he 
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exit window focused the Cherenkov photons on a single 5 inch Hamamatsu R1584 

phototube. To prevent arcing at low pressures, the phototube base was placed in a 

sealed can and kept under atmospheric pressure. The phototube was coated with a 

wavelength shifter to increase the sensitivity to the UV Cherenkov photons. 

The phototube anode signals were digitized by a Struck DL515 VME Flash 

ADCs and read out by the Data Acquisition System. Four channels of the 250 

MHz Flash ADC were interleaved to produce an effective resolution of 1 ns. The 

digitization of the pulses allowed a clear particle identification even at high rates 

and short x 250 ns beam pulses (see Section 3.3). The signals from the last dynode 

were fanned out and went to the coincidence scalers in the Counting House and the 

multi-hit TDCs (4 discriminator/TDC channels per phototube). A combination of 

LeCroy 623B discriminators and LeCroy 2277 TDCs was used. The TDC signals 

were used to synchronize the FADCs (see Section 3.3). 

Two sets of scintillator hodoscopes, placed in front of and behind the rear 

Cherenkov counter, provided the tracking capabilities. The hodoscopes were finely 

segmented to keep high efficiencies at high instantaneous rates. The hodoscope 

fingers were grouped in planes with 6(4) planes in the front and 4(4) planes in 

the back hodoscopes in the 2.75" (5.5") spectrometer. The E142/E143 hodoscopes 

were used in the 5.5" spectrometer (where the rates were sufficiently low) without 

major modifications. Six new planes were built for the 2.75" spectrometer. Four 

of them (2H3X and 2H4Y in the front and 2H7X and 2H8Y in the rear package) 

were split in the middle (with a piece of black plastic placed in between to prevent 

cross-talk) and had the phototubes attached at both ends to further reduce the 

rate per element. Two other new planes (2HlU and 2H2V) were tilted by 15" 

relative to the horizontal direction. In addition to the new planes, four E142/E143 
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hodoscope planes were used (2H5Y, 2H6X, 2H9Y, and 2H10X)7. Fingers in most of 

the planes overlapped by 1/3 of the width to create a finer effective segmentation. 

The parameters of the E154 hodoscopes are given in Table 2.12. The hodoscope 

planes in the 2.75" spectrometer were tilted by 30 mrad towards the target and were 

almost perpendicular to the central trajectory of the spectrometer. The planes were 

vertical in the 5.5" spectrometer. 

The fingers were made of Bicron BC404 plastic scintillator that has a fast rise 

time and short pulse length. The fingers were wrapped with aluminum foil and black 

electrical tape (2HlU and 2H2V fingers were taped and enclosed in a light-tight box). 

Most of the planes used the 1/2 inch Hamamatsu R4014 phototubes. The signals in 

the 2.75" (5.5") spectrometer went through LeCroy 3412 (4413) discriminators and 

were read out by LeCroy 3377 (2277) multi-hit TDCs. 

2.7.3 Shower counters 

The energy of the electrons was measured by a total absorption calorimeter 

(shower counter) in fly's eye configuration located in the rear of the spectrometer. 

The counters in both spectrometers consisted of 200 6.2 x 6.2 x 75 cm3 F2 lead 

glass blocks (from the ASP experiment at PEP['"]) stacked in an array of 20 rows 

by 10 columns. Each block was wrapped in aluminum foil and two layers of black 

tape ( Z  1 mm total thickness). The F2 lead glass is a Cherenkov radiator with the 

refractive index of n = 1.62. The radiation length is Xo = 3.17 cm, so the blocks are 

approximately 24 radiation lengths thick. The Molikre radius R, = 5 cm, and the 

electron shower occupies on average 9 blocks (cf. Section 3.4). The 2 inch Amperex 

XP2212PC photomultipliers were attached to the blocks on the downstream end. 

The signal from the phototube anode was split by a passive splitter and went 

to the LeCroy 2282 12-bin ADC and to discriminators and TDCs. Most of the 

7The active area of these planes was bigger than the particle envelope in the 2.75' spectrometer. 
and some fingers were not used 



Table 2.12. Parameters of the E154 hodoscopes. 

Name 

2IIlU 
2H2V 
2H3X 
2H4Y 
2H5Y 
2H6X 
2H7X 
2H8Y 
2H9Y 
2H10X 
Tot a1 

Angle 
("> 

t 1 5  
-15 

90 
0 
0 

90 
90 

0 
0 

90 

Width 
(mm> 

360 
360 
363 
362 
430 
430 
513 
512 
510 
510 

430 
430 
430 
430 
527 
510 
510 
527 

15 
15 
13 
13 
30 
20 
13 
13 
30 
30 

Height 
(mm) 

5 
5 
1 
1 
10 
7 
1 
1 
10 
10 

370 
370 
412 
413 
589 
589 
992 
993 
1070 
1070 

690 
690 
690 
690 
1064 
1070 
1070 
1064 

Channels 

44 
44 
64 
72 
31 
34 
90 
90 
55 
27 
55 1 
25 
23 
36 
25 
21 
27 
55 
21 
2.33 

~ 

25 

30 10 
75 25 

I 

Scint. 
thickness 

6 
6 
13 
13 
6 
6 
13 
13 
6 
6 

(mm> 

6 
6 
6 
6 
10 
6 
6 
10 

Locat ion 

2.75" front 
2.75" front 
2.75" front 
2.75" front 
2.75" front 
2.75" front 
2.75" back 
2.75" back 
2.75" back 
2.75" back 

5.5" front 
5.5" front 
5.5" front 
5.5" front 
5.5" back 
5.5" back 
5.5" back 
5.5" back 
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blocks had one discriminator/TDC channel while 64 blocks in the 2.75" spectrometer 

had three channels with increasing discriminator thresholds. We used LeCroy 4413 

discriminators and 2277 multihit TDCs in the region of 1 channel/block, and LeCroy 

3412 discriminators with 3377 TDCs in the region of 3 channels/block. The TDCs 

were operated in the "burst-guard" mode so both leading and trailing edges of the 

discriminator output were detected. This allowed the use of timing information in 

the reconstruction of the overlapped events (see Section 3.4). 

2.8 Electronics and DAQ 

Most of the detector electronics was CAMAC-based, so we kept the modules 

used in E142/E143. Unlike those experiments, all spectrometer electronics modules 

were placed inside the 2-75" spectrometer hut, so long cables and associated signal 

deterioration were avoided. The main elements of the detector electronics have 

been described above. The discriminators for the hodoscopes were located near the 

detectors, and all other modules were placed in the general electronics racks in the 

south-east end of the 2.75" hut. The signals were brought by coaxial cables to the 

discriminators and by twisted-pair cables to the TDCs. 

The short SLED beam pulses made it impractical to set up a trigger. The only 

trigger for the detector electronics was the A2N accelerator timing signal generated 

at the source at 120 Hz. It was used to generate the TDC and FADC starts and 

stops and the ADC gates. The gates were set z 400 ns wide so the full phototube 

signals could be integrated. 

Experiment E154 was the first ESA experiment to use the VMEbased Data 

Acquisition system (DAQ). The previous system, based on the "Qbus" CAMAC 

interface run on a DEC MicroVAX 4000-200 and was limited to a data transfer rate 

of about 300 kBytes/s, which was not adequate for the 50 GeV experiments. The 

diagram of the VME-based DAQ system developed for E154 and E155 is shown in 

Fig. 2.26.f1l2I The front end of the system was implemented in three VME crates. 
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Fig. 2.26. The block diagram of the VME-based DAQ system for ESA. 

Two of the VME crates contained the real-time components of the DAQ system and 

were located in the Counting House (the local VME crate) and in the 2.75" detector 

hut (the remote crate). The third, UNIX VME crate, was located in the Counting 

House and contained the Unix processors and interfaces to the data logging systems. 

The crates were linked by a reflective memory subsystem that allowed the data to 

be shared and processed by all three crates. 

The local and remote VME crates contained interfaces to three CAMAC branches, 

the beam branch, that was read out by the local crate, and two spectrometer 
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branches that ware handled by the remote crate. The Flash ADCs were VMEbased 

and were read out by the remote VME crate. Each real-time crate contained a 

Motorola MVME166 processor that controlled the raw data readout and writing to 

the reflective memory. The Unix crate had two Motorola MVME197 processors one 

used for logging the data, and the other used for application software development 

and downloading into the real-time processors. The maximum data transfer rates 

achieved by the DAQ system during E154 were on the order of 0.7-0.8 MBytes/sec, 

somewhat below the design goal of 1 MBytes/s, and were limited by the CAMAC 

readout. However, the actual data rates were sufficiently low that truncations of the 

data due to the DAQ system were negligible. The detailed description of the DAQ 

system is given in Ref. [112]. 

During the course of the experiment, the Unix crate logged the data remotely 

in the SLAC Computer Center (SCS) staging system. The connection was via the 

FDDI network that provided the data transfer rates on the order of 2 MBytes/sec. -4 

separate process running on an IBM RS6000 workstation in the SCS wrote data onto 

a temporary disk storage, and then after the run completion issued the command 

to write the data to tape in the robotized silo. An alternative system was available 

that could allow writing the data locally onto an 8 mm tapes in case of a FDDI link 

failure or other difficulties with the remote logging. This system was never used in 

E154. In addition, the process running in the Unix crate could serve the data over 

the network (using the TCP/IP protocol) to any number of on-line analysis jobs 

running on separate workstations. 

The data were stored in the SCS silo on 1 GByte tapes and was available for the 

off-line analysis through the automated staging system. The full data set was also 

copied onto 5 GByte 8 rnm tapes and was used in the off-site data analysis based 

at Caltech. 
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The on-line control and monitoring processes were running on a MicroV.4X 

4000-200 workstation that was connected to the DAQ Unix crate via the TCP/IP- 

based network. These processes were used to  start/stop the runs, issue data logging 

commands, set and monitor high voltages, magnet currents, set run types, etc. Two 

IBM RS6000 workstations were dedicated to  the on-line analysis; they received data 

from the DAQ Unix crate over the network. The off-line analysis will be discussed 

in the following Chapter. 



C H A P T E R  3 

DATA ANALYSIS 

3.1 Overview 

Data were taken in experiment E154 in October and November of 1995. The deep 

inelastic data were taken. at the beam energy of 48.3 GeV and at three nominal beam 

currents: 3 .  lo1', 5 .  lo1', and 9 e 10" electrons per pulse. Nine polarized target cells 

and four reference cells were used through the course of the experiment. The typical 

electron rate was 0.5 electrons per pulse in the 2.75" spectrometer and varied from 

0.07 to 0.2 electrons per pulse in the 5.5" spectrometer. The data were collected in 

runs which were each typically 200,000 spills long (or approximately half an hour). 

The data set consisted of more than 1800 runs that included asymmetry data (in 

parallel and perpendicular target polarization configurations), reference cell runs to 

determine the dilution factor, runs with the magnet polarity reversed to measure the 

charge symmetric backgrounds, and miscellaneous calibration and test runs. About 

1.4 TBytes of data were stored on magnetic tapes. After all cuts, about 100 million 

deep inelastic events were used in the analysis. 

The analysis was done in two steps. First, the raw data tapes were analyzed 

and the Data Summary Tapes (DSTs) were produced. The DST tapes contained 

the information about the Cherenkov hits, shower clusters, and tracks found in 

each spectrometer, as well as beam information. The DST production took seven 

weeks on four DEC Alpha 600 5/266 computers. A separate program was used to 

process the DST tapes and place electron events in z and Q2 bins for each beam 

helicity. The summary files produced in this process were used to calculate the 

physics asymmetries and structure functions. 
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The analysis was done independently by two groups based at SLAC and Caltech'. 

The results of both groups agree to a very high degree, and for the publications we 

have chosen to average the results of two groups. We will primarily present the 

analysis and results obtained at Caltech, and describe the main differences with the 

SLAC analysis. After first describing the analysis of the raw data, our attention will 

be turned to the DST analysis and physics results. 

3.2 Coordinate system 

In the following discussion, we will use the "analysis" coordinate system that 

is related to the central trajectory in the spectrometer. This is a natural system 

since trajectories of all particles in the detector hut are roughly symmetric around 

the central ray. The i axis of the analysis frame coincides with the central ray in 

the detector hut which is pitched up by dCr = 0.81' (2.65') and offset down by 

Aycr = 104.9 cm (114.3 cm) in the 2.75' (5.5') spectrometer relative to the regular 

"spectrometer" system (cf. Section 2.6.2). The rotation is around the i axis, so it is 

the same in both frames. The origin of the is chosen in such a way that the target 

is at z = 0 in the new frame. Hence, the transformation from the spectrometer to 

the analysis frame is given by 

0 0 

analysis ( ({cr) . (3.1) 

Two coordinate systems are illustrated in Fig. 3.1. 

3.3 C herenkov analysis 

In E154, each of the four Cherenkov counters was equipped with a Flash ADC 

(FADC) to digitize the phot.otube pulses. The four channels of the F,4DC, running 

'The "off-site" analysis based at Caltech was a collaborative effort of physicists from Caltech, 
UMass, Princeton, Syracuse University, and Temple University. 
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Spectrometer 

Analysis 
frame 

Fig. 3.1. The “spectrometer” and “analysis” coordinate systems. The prisms denote the 
dipole magnets. 

with internal clock frequency of 250 MHz, were interleaved to produce effective time 

bins of 1 nsec. .4n example of the waveform recorded by a Flash ADC is shown in 

Fig. 3.2. The primary purpose of the Cherenkov code was to single out separate 

phototube pulses and determine their time and amplitude (or total charge) which 

is proportional to the total number of photoelectrons emitted from the cathode of 

the phototube. 

A brief outline of the algorithm follows. First, we calculate the time derivative of 

the waveform and find all local maxima. Then, we determine the flat background for 

the waveform in the regions sufficiently far from all pulses and subtract it from the 

waveform. For each pulse found, we determine the pulse height (later to be related 

to the number of photoelectrons) and integrate the pulse to find the total charge. 

Corrections are made: if necessary, to account for saturated pulses (pulses higher 

than FADC range of 255 bits (about 2 V) are truncated to 255 bits), truncated pulses 

(that are late in the spill so the full charge is not recorded), and overlaps. The time 
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Fig. 3.2. A typical event (spill) in the Cherenkov detector recorded by a Flash ADC. 

of the pulse is determined by the time at the half height. The average signal shape, 

scaled by the height of the processed pulse, is used to separate overlapping pulses. 

The time resolution of the Cherenkov FADCs was found to be x 1.3 ns (see 

Fig. 3.3, left). This is quite below par for the Hamamatsu R1584-01 phototubes, 

and is explained by the time jitter of the F.4DC clock. The clocks of each FADC, 

running at 250 MHz, were not synchronized. This produced a random jitter of 

4 nsec and contributed x 4 / 0  = 1.2 nsec2 to the time resolution. The solu- 

tion,[ll31 implemented in the Caltech analysis3, was to use TDCs clocked at 1 GHz 

to synchronize the FADCs. The resolution improved to x 0.8 nsec (Fig. 3.3, right), 

reducing the accidental background in tracking and thus helping to reduce the pion 

contamination. 

The algorithm was found to be reasonably robust with an intrinsic dead time of 

less than 5 nsec. A typical response of a Cherenkov counter to electrons and pions is 

shown in Fig. 3.4. The response to electrons (the average number of photoelectrons) 

2We here loosely use the RMS of the uniform distribution that is given by 4/m for a fixed 
width of 4. 

3The problem was solved too late to be implemented in the SLAC DST production. 
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Fig. 3.3. Time resolution for a FADC alone (left), and for a FADC with TDC synchro- 
nization (right). 

Table 3.1. Average Cherenkov response to electrons. 

Tank 2C1 2C2 5C1 5C2 
# of photoelectrons 5.7 5.1 6.2 5.0 

I Cv2oe I 16.8 14.1 12.1 13.6 I 

of all counters is summarized in Table 3.1.[”*1 The relation between the Cherenkov 

peak voltage and number of photoelectrons is given by 

where coefficients CvZpe are also given in Table 3.1. 

The Cherenkov efficiency for electrons was found to  be x 95%f1l51 and was 

limited by the intrinsic pulse height cutoff of the algorithm (4-6 FADC units) and 

Cherenkov dead time. Efficiency for a typical Cherenkov cut used in the analysis 

(see Section 3.7.3.2) is about 90%. 
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3.4 Shower analysis 
3.4.1 Introduction 

The shower code is one of the major parts of the raw analysis that was different 

from the one used in the SLAC DST production. The shower counters provide 

electron identification via energy, E / p ,  and shower profile (shape, neural net) cuts. 

The cluster information is the basis for the tracking algorithm (see Section 3.5); 

in addition, the shower position resolution directly affects momentum and angular 

resolution. The shower analysis meets certain challenges in the high rate environ- 

ment of E154 due to the overlaps of the electron and pion clusters (Fig. 3.5) .  

Such overlaps create rate-dependent biases in energy and position reconstruction 

and calorimeter-based electron identification, and thus have a potential to alter 

experimental asymmetries. It is important to have an analysis algorithm that is 

robust in the high rate environment; it is also necessary to  study and correct for 

any possible rate dependence. 

The code benefited greatly from the experience with the existing SLAC 

At the same time, it was an entirely new code, and therefore provided an important 
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Fig. 3.5.  Number of overlaps per electron cluster versus momentum of the  electron in 2.75' 
(closed circles) and 5.5' (open circles) spectrometers for the typical running conditions (run 
3366, beam current of 5 lo1' electrons/spill). A sharp rise at low momenta corresponds 
to increasing pion production rate. 
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cross-check of the existing algorithm. In addition, the spatial and timing resolutions 

were improved, and biases in the cluster position and energy reconstruction were 

eliminated. Also, as an alternative to the neural network used in the SLAC analysis, 

a particle identification (ID) method based on the information about the lateral 

shower profile was developed (the “shape cut”). The clustering algorithm and the 

shape analysis will be discussed in the following pages. 

In this Section, we follow the definitions adopted in the SLAC shower code.[116g1171 

An elementary cell is a signal induced by one particle in one block. Each cell is 

characterized by its time and energy. We record times of both leading (LE) and 

trailing edges (TE) of the photomultiplier pulses. Cell time is determined by its LE 

time. Cell energy is determined by the difference between T E  and LE times as will 

be discussed below. Energies of all cells in one block always add up to the total 

energy deposited in that block in one spill. If a block does not have any TDC hits 

within one spill, we create one cell which carries full energy deposited in the block; 

the time of such a cell is undefined. A cell with a definite time is required to have 

a LE, but it does not always have a T E  (misses of T E  happen less than 1% of the 

time). A cluster is a collection of cells with common time that are grouped according 

to the set of rules to be discussed below. 

3.4.2 Clustering algorithm 

3.4.2.1 5 x 5 clusters 

Contrary to the standard SLAC analysis which employs the cellular automa- 

ton[”’l technique, we have chosen a simpler and faster method sometimes referred 

to as “vector approach”.[”’] As a first step, after the data from the TDCs and ADCs 

are copied into the local common blocks, we search the 10 x 20 shower array for the 

local energy maxima (“central blocks”) that pass the following criteria: 

1. There is at least 1 TDC hit in the central block; 
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2. The sum over 9 blocks around the central block 

3x3 

The first requirement ensures that the cluster candidate has timing information. 

Electron energy deposition in the central block is always higher than the TDC 

threshold; the lack of a timing hit signals either a DAQ failure or an event affected 

by an overlap. Such clusters cannot be used in the further analysis. The second 

requirement provides a simple and effective pion rejection at the very early stage of 

the analysis. The value pmin(row) is determined by the lowest momentum of electrons 

that hit the particular block after passing through the spectrometer. This value is 

in principle different for every row (and is increasing from top to bottom of the 

calorimeter). In practice the value of 9 GeV was used for every block. The constant 

Ccut was chosen to be 0.7, safely below any reasonable E / p  cut value4. Thus, most 

pions that deposit energy of less than 6.3 GeV are cut before the main clustering 

and tracking started, significantly reducing the precessing time. 

Having found the central block, we share its energy among its cells. The cluster 

is started with the highest energy cell of the central block. We add to the cluster 

cells from the surrounding 5 x 5 matrix that 

a among 8 blocks closest to the center and 

1. Are in time with the central block, or 

2. Have no TDC hits 

0 among the outer 16 blocks and 

1. Are in time with the central block, or 

2. Have no TDC hits and no other cIuster nearby 
- 

4 F ~ r  the dedicated pion DST production, this value was lowered to 0.05. 
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Fig. 3.6. The pulse height as a function of the difference between the leading and trailing 
edge times for different discriminator levels. The error bars represent the RMS of the 
distribution. 

The time window is set to be / A t /  5 5 nsec. 

3.4.2.2 Energy sharing 

When two or more particles hit one block, energies are added in the '4DC. 

To separate them, we use the correlation between the pulse height and the time 

difference between the leading (LE) and trailing edges (TE) of the pulse (Fig. 3.6). 

For all pairs of leading and trailing edges (cells), we calculate the expected energy 
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e; = f ( t r E  - tc”) and error 0;. We then minimize 

with a constraint 

E; = Etot , 

(3.3) 

(3.4) 
z 

where Etot is the full energy deposit in the block, and solve for cell energies E,. The 

benefit of such an approach is obvious. For any TDC level, the dynamical range 

for the energy sharing is limited; from Fig. 3.6 one can see that the meaningful 

information can only be extracted if the ratio of the pulse height to threshold 

E/Ethres 5 4. Electron pulses are often much higher than that, especially for the low 

thresholds ’. Pion pulses, on the contrary, are predominantly small. Thus, combining 

the pion and electron information reduces the error in electron energy determinat.ion. 

This is important to minimize the rate dependence associated with the E / p  cut. 

3.4.2.3 Cluster time and position 

An energy-weighted average used by SLAC analysis 

blocks x i  2 =  
C b I o c k s  

(3 .5)  

is known[’lg] to give a biased estimate of the cluster position due to the relatively 

coarse transverse segmentation of the calorimeter. It results in a bias towards the 

coordinate of the central. block, as could be clearly seen in Fig. 3.7 which shows 

the difference between the cluster position and the position of an associated track 

for the SLAC code. The position offset is as large as 1 cm, and maximizes when 

electrons hit the boundary of the block (xtr - X& = f 3 2  mm). Alternatively, we 

5The values of the discriminator thresholds are summarized in Table 3.2. Note the thresholds 
were set in mV, and the spread of thresholds in GeV corresponds to the spread of calibration 
constants. 
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Table 3.2. Range of discriminator thresholds. 

Runs Spec mi' GeV 
min max average 

2.75" 20 0.08 0.6 0.3 
125 0.4 2.8 1.6 

1304-2058 800 2.7 20.0 9.9 
50 0.16 1.2 0.3 

2.75" 20 0.08 0.4 0.2 
2059-2543 2.75" 125 0.4 1.9 1.12 

2.75" 800 2.7 15.4 6.7 
2.75" 50 0.15 1.16 0.4 
2.75" 20 0.09 0.23 0.15 

2544-2902 2.75" 125 0.5 1.4 0.8 
2.75" 800 2.8 8.0 4.7 
2.75" 50 0.16 1.2 0.5 
2.75" 20 0.09 0.23 0.15 

2902-3788 2.75" 125 0.5 1.4 0.8 
2.75" 500 1.8 5.5 3.1 
2.75" 50 0.16 1.2 0.5 

1304-3788 5.5" 50 0.0 0.8 0.4 

Table 3.3. Parameters of Eq. (3.6). 

calculate the cluster position using a phenomenological fit to the data (see Fig. 3.8) 

z = A, [2 - exp(-c,(r - b,)) - exp(-d,(r - b,))] (3.6) 

where T- = Eside/Ec.b. is the ratio of the energies in the side and central blocks. 

Coordinates determined by the blocks on either side of the central block are weighted 

by the uncertainties to calculate the cluster position. The parameters of the "double- 

spinup" function in Eq. (3.6), determined from the data (Fig. 3.8), are listed in 

Table 3.3. The spatial resolution of the 2.75" and 5.5" shower counters is shown in 

Fig. 3.9. The resolution in J: was determined to be 5.9 mm (2.75') and 7.9 mm 
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Fig. 3.8. Cluster position versus the ratio of energies in the  side and central blocks. Error 
bars represent the RMS of the distribution. 

(5.5'), and in y direction the resolution is 7.5 mm (2.75') and 7.9 mm (5.5'). 

This is to be compared to cr, = 9.7 mm and crg = 9.3 mm for the SLAC code 

(see Fig. 3.7, top). The improvement in the position resolution results in a better 

angular and momentum resolution (see Section 3.5). Note that the resolution was 

determined by comparing the coordinate of the shower cluster with the coordinate 

of the electron track at the z position of the shower counter. The tracking spatial 

resolution without cluster constraints (i. e. for class 3 tracks used to determine the 

resolution) is expected to be 4 - 5 mm at the shower counter, so the actual position 

resolution of the clustering might be even better than the numbers quoted above. 

The wings of the distribution are due to effects of accidental and correlated (delta 

rays) backgrounds in tracking. Figure 3.10 shows the distribution of the electron 

clusters in the calorimeter and the difference between the track position and the 

cluster position plotted versus the position of the track. Notice that there are no 

significant biases in either x or y direction (cf. Fig. 3.7, bottom). 
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Fig. 3.11. Time resolution (in ns) for electrons in 2.75" (left) and 5.5" (right) calorimeters. 
The fit is gaussian. 

The time of the cluster was determined by averaging TDC times of all blocks 

for which the energy deposited was at least 10%'of the central block energy: 

( 3 . 7 )  

where a@,) is the time uncertainty for each block. The energy cut minimized the 

effect of timing jitter for the small pulses. Another potential problem with using 

blocks with small energy deposit is that they are usually on the tails of the shower 

and the effective z position of the particles in the shower tail is significantly deeper 

than the core of the shower. The light from the shower tails reaches the phototube 

earlier than the light from the core (since the shower develops with the speed of 

light in the vacuum c whereas the light propagation speed is c/n with the index 

of refraction n = 1.62. The energy cut minimizes this effect so no correction is 

necessary. 

The time resolution of both calorimeters is shown in Fig. 3.11. With the tech- 

nique described above we achieved the resolution of % 0.7 nsec (for electrons). 

compared to % 0.9 nsec for the SLAC code. 
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3.4.2.4 Shower shape 

The differences in the transverse profiles of the showers produced by electrons 

and pions (to which we will loosely refer as electron or pion "shapes") are frequently 

used to separate the particles in the electromagnetic calorimeter. While the electrons 

develop electromagnetic showers, the pions undergo the strong interactions that 

lead to the hadronic showers, wider and less symmetric than electromagnetic ones. 

Charged pions may also convert to the neutral pions via the charge exchange 7r-p 

Ton, where the no decays instantly into two photons. In that case the shower is 

electromagnetic and its profile is almost indistinguishable from the electron shower. 

However, even in this case (and in case of the hadronic showers), pions rarely deposit 

their full energy in the electromagnetic form, and a simple E / p  cut can be used to 

separate them from electrons. 

The standard measure of the electromagnetic shower cross section is the scaling 

variable referred to as the MoliCre radius R,["91; for ASP(F2) lead glass used in our 

calorimeters R, M 5 cm. For electromagnetic showers, 90% and 95% of the shower 

energy are contained in the cylinders with radii R, and 2R, respectively. A simple 

approximation of the lateral shower profile is a single-exponential 

A(R) = A(O)exp(-R/Ro) ? (3.8) 

where R is the transverse shower dimension and Ro = 0.25Rm is the damping 

constant. A more realistic model is a double-exponential shape['20] 

where the first exponent describes the narrow shower core, and the second corre- 

sponds'to a longer tail of soft electrons and photons. For a finite calorimeter block of 

size 2s. one can calculate the energy deposited from the shower centered at (20, yo): 
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Table 3.4. Parameters of the shower shape in Eq. (3.11). 

1 34.0 0.872 0.3 4.0 19.0 2.9 I 

where a(R)  is a normalized shower profile of Equations (3.8) or (3.9) and Eo is the 

total cluster energy. The resulting distribution is fitted to the following functional 

form: 

(3.11) r[1 - exp(-s/R2) cosh(d/&)] } (dl 5 s 
h { sinh(s/R1) exp(-d/RI)+ 

T sinh(s/Rz) exp( -d/R2) } Id1 > s 3 

E 
- = S ( x  - x0,y - yo) = 
EO 

where 

d = (I. - x0lP + (y - yo(P)l’P , (3.12) 

(x, y)  is the center of a given block, and (zo, yo) is the shower position. The electron 

shower profile is shown in Fig. 3.12. The parameters of Eq. (3.11) are given in 

Table 3.4. The pion hadronic showers are wider on average (Fig. 3.12), and the 

individual pion clusters are much less symmetric than the electron ones. 

3.4.2.5 Iterating the cluster shape 

The energy sharing using the LE and T E  information is not always perfect. First 

of all, it has a limited dynamic range. Pions with energy deposit below threshold 

are not detected by TDCs. Secondly, if electron energy deposit in one block is much 

bigger than the threshold, the time information is not reliable and leads to large 

errors in energy sharing. The latter effect is potentially more important: if the energy 

of the cluster is underestimated due to energy sharing, the event may not pass the 

E / p  cut (typically, E / p  > 0.8 cut is a part of electron definition). Another important 

factor is the cluster position bias due to overlaps that translates into the error in 
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momentum reconstruction. All these effects are rate-dependent and thus can bias 

the measured asymmetry. 

In order to further reduce the rate-dependent effects in the cluster energy and 

position reconstruction, we developed an iterative procedure using the typical elec- 

tron shape of Eq. (3.11)6. It works in two steps. First, we calculate the cluster 

position (z0,yO) using Eq. (3.6) and the initial estimate of the cluster energy 

(3.13) 

where E, and (zc,yc) are the energy and position of the central cell. We then 

calculate 

(3.14) 

where the sum is over all cell in the cluster. Here E!’) is the initial energy of each 

cell determined as described in Section 3.4.2.2. Eback = 50 MeV is the average 

background noise, and CY-$ is the uncertainty of the block energy given by 

x ’ = c (  I 0, IZ E,(’) - E(’)S(ti - 20, yI  - 90) - Eback 

(3.15) 

where CTShare is the uncertainty in energy sharing. A fit to the data yields a = 0.15 

GeV, b = 0, and c = 0.2. 

Minimizing x2, we find a new estimate of energy E = E(’) and position ( 5 0 ,  yo)(1) 

(we linearize the problem by treating Ax = z!) - x!) as a perturbation). The 

energies of each cell E, are allowed to vary within their uncertainties. The cell is 

“frozen” ( i e .  its energy is fixed) if change in its energy exceeds the uncertainty. The 

x2 minimization is repeated with new cell energies E!’). The iterations converge if 

one of the following conditions is met: 

Cluster position does not change 

61t is not used for special pion DST production. 
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All cells are frozen 

Number of iterations exceeds 10 

The convergence is typically achieved in 1-2 iterations. Cluster position (q, (n)  , yo b )  

and its uncertainty are copied to the output common block and used in tracking. 

After a track has been associated with the cluster, the electron coordinates at 

the shower counter are determined quite accurately. We can now fix the cluster 

position (z0,yo) in Eq. (3.14) to be the track position at the shower counter, and 

minimize shape residuals varying only the cluster energy E.  

3.4.2.6 Energy measurement 

Three energy variables and corresponding uncertainties are reported by the 

shower code and are written to DSTs: 

Eg: Sum of cells in 3 x 3 matrix around the central block. 

Ed: Sum of four most energetic blocks in the cluster (the central block, the 

most energetic blocks in IZ: and y directions, and 1 diagonal block). The sum is 

scaled by a factor of 1.05 to normalize it to Eg. 

El:  energy determined in iterative process (after tracking). 

The ratios E,/Eg and &/E9 and their momentumdependence are shown in Fig. 3.13. 

E9 is a basic energy definition and is used for shower calibration. The advantage of 

E4 and El over E9 is reduced sensitivity to overlaps. E4 samples a smaller number 

of blocks than E9 and therefore the pileup probability for E4 is lower. The drawback 

is that E4 is an approximation that is reasonably good up to energies of M 30 GeV. 

At higher energies, the shower broadens and energy deposit into other blocks of 

the 3 x 3 matrix becomes increasingly important. This is evident from Fig. 3.13: 
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the ratio E,/& deviates significantly from 1 starting at p 30 GeV. The iterated 

energy El does not exhibit such a behavior (Fig. 3.13). 

The shower counter blocks were calibrated using a sample of electrons identified 

by a high threshold cut in the Cherenkovs. Low rate runs (empty reference cell runs 

at x 1 . lolo electrons/pulse beam current) were used to minimize the rate-dependent 

effects. The calibration constants were adjusted interatively until the mean of the 

Gaussian fitted to the distribution of the ratios Eg/p reached unity for every block. 

This method could not be directly applied to the the blocks on the edges of the 

calorimeter and blocks with low phototube gain. For the edge blocks, we used the 

ratio E 4 / p  which is less sensitive to the leakage of the shower outside the detector. 

We also used a clean sample of muons and pions that do not produce a shower in 

the calorimeter. Such particles leave a single Cherenkov track in one shower block. 

and are seen as a monochromatic line with E = 0.92 0.15 GeV in our calorimeter. 

Figure 3.14 shows the ratio E / p  for electrons in both spectrometers. Left plots 

correspond to E9 energy, and right plots are for El energy. The energy resolution 

is comparable to that of the SLAC code. In Fig. 3.15 we show the ratio El/p in 

the 2.75" calorimeter for four special cases: clusters with no overlaps (top left), 

clusters with an overlap in any of the blocks (top right), clusters in overlaps in 

the central block (bottom left), and clusters with the central block on the edge of 

the calorimeter. No significant degradation of energy resolution and no significant 

bias is observed for either case. Fig. 3.16 shows the same plots for the low 2 (2.75' 

spectrometer, 9 < p < 12 GeV). Again, energy determination is reasonably stable. 

3.4.3 Shape cut 

The difference between pion and electron shapes (Fig. 3.12) can be used to 

separate electrons from pions using only shower counter information. The SLAC 

analysis uses the algorithm based on a multi-layered neural network.[118J21] A set of 

input parameters (discriminating variables), e. g. energy deposited in  each cluster 
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block, cluster position, etc., combined in a non-linear fashion, identifies the event. 

Due to  its non-linear nature, the properties of the network highly depend on the 

environment (rate, pion to electron ratio, etc.) and the event sample on which the 

network is “trained” (i.e. the way the relative weights of the input parameters are 

determined). Thus, the neural network efficiency is potentially rate dependent,[121,1221 

especially at low momentum where the rate of pion-electron overlaps is high. The 

overall efficiency is about 90% at low z,[lZ1] and increases with momentum. 

We discriminate between electron and pion showers by calculating the  deviation 

from the electron shower shape x 
I 

(3.16) 

where the summation is over all cluster blocks, except for four most energetic ones 

used in the definition of Ed. The electrons are identified by the requirement )i 5 
0.045. The distribution of the variabIe x for electrons and pions is shown in Fig. 3.17. 

The efficiency was defined as a ratio of events that passed the cut to the total number 

of events. The electron and pion efficiencies are shown in Fig. 3.18. The electrons 

were selected by requiring a track with Cherenkov pulses in both tanks higher than 

4.5 photoelectrons and a good match with the shower cluster. The pions were defined 

as class 2 (no Cherenkov signals and a good match with a shower cluster) tracks. 

Open circles in Fig. 3.18 show the efficiencies for the electron and pion samples that 

included the additional cut E / p  > 0.8. 

Several observations can be made. First, the pion rejection power of the x cut is 

about 1 O : l .  However, for the pions that have E / p  > 0.8, it is at best 2:1, comparable 

to the SLAC neural network performance under the same conditions.[’’ll The reason 

is that pions usually deposit large amount of energy if they undergo a charge 

exchange x-p + xon. The xo decays instantly into two photons and develops an 

electromagnetic shower; such a cluster is almost indistinguishable from an electron 
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Fig. 3.17. Distribution of the shower shape variable x for electrons (open) and pions 
(hatched). 

cluster. Since the shape or neural net cut is optional and is usually applied in addition 

to the E / p  cut, it is the latter rejection power that is relevant for the background 

analysis. 

Electron efficiency ranges from 92% to 95% at low 2 (depending on the run). 

and slowly increases with momentum. It is comparable, if not slightly higher, than 

the neural network efficiency.[l2'I The variations with the run conditions are smaller 

than quoted for the SLAC code[121] that implies smaller rate dependence7. The 

reason for a sharp drop at about 30 GeV is use of the variable E4 in Eq. (3.16). As 

was shown above (Fig. 3.13), it deviates significantly from the true cluster energy 

'The rate dependence of the overall shower efficiency, including the shape cut, was studied by 
Piotr Zyla[1231 and was found to be small (see Section 3.6). 
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tracking information. The momentum of an electron track is used to calculate the 

kinematics (5 and Q 2 )  of the event. Thus, tracking is an important component of the 

physics analysis. In this note, we will describe the algorithm and its implementation, 

and discuss the efficiency and rate dependence. 

3.5.2 Tracking algorithm 

3.5.2.1 Track classes 

In the following, we will often refer to the track class , L e .  a particular combi- 

nation of detector systems used to fit a track. We recognize 4 track classes: 

1. A shower cluster, at least one Cherenkov hit, and at  least a minimum number 

(see below) of hodoscope hits. 

2. A shower cluster and hodoscope hits; no Cherenkov hit is found within the time 

window. 

3. At  least one Cherenkov hit and hodoscope hits. No shower clust.er is found 

within time and space limits. 

4. Hodoscope hits only. 

The track classes are exclusive, i.e. one track cannot be a member of two classes. 

Tracks of class 1 are electron candidates, and class 2 tracks are most probably pions. 

Tracks of class 3 are used primarily for the calibration of the shower counter (when 

cluster information is deliberately removed from tracking to eliminate biases), they 

are never used in the asymmetry analysis8. Class 4 tracks are used for diagnostic 

purposes. 

8Class 3 tracks could be identified as real particles, for example, muons or pions with momentum 
above the Cherenkov threshold (12 GeV for muons and 19 GeV for pions in 2.75' spectrometer) 
that deposit a small amount of energy into the calorimeter and are therefore undetected. In the 
high rate environment of E154, however, most of such tracks are random coincidences. 
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3.5.2.2 Initialization 

The tracking subroutines are called every spill for each spectrometer. As a first 

step, we copy information from the Cherenkov, hodoscope, and shower counter 

common blocks into the local data banks. For every detector hit, we calculate the 

target time 

r; = ti - Z i / C ,  (3.17) 

where z, is the z position of each detector and t ;  is the actual time of the hit. By 

convention, the z position for the Cherenkov hits is taken in the center of the mirror, 

the z position of a hodoscope finger is in its geometrical center, and the z position 

of the shower cluster is associated with the center of gravity of the electron shower 

which is located approximately 5 radiation length deep.[124] 

Each hit is characterized by its time T ,  and the time resolution a(r) .  Hodoscope 

and shower hits also have the coordinate information. For the shower hit, we keep 

(zc,y) positions of the cluster and the position uncertainties (a2,ay). For the ho- 

doscope hits, we calculate the coordinate 

u = zcos8, + ysin8, , (3.13) 

where 0 5 8, _< 7i- is the angle between the longest side of the finger and the zj 

axis (counting countercl~ckwise)~. The direction 6 is perpendicular to the finger 

direction; thus, u is the coordinate measured by the finger. The finger resolution 

a(u)  = w/m, where w Is the finger width. The hodoscope planes are grouped in 

"packages" - the front hodoscope package (HlU,  H2V, H3X, H4Y, H5Y, and H6X in 

the 2.75" spectrometer and HlU, H2X, H3Y, and H4V in the 5.5" spectrometer) and 

the back hodoscope package (H7X, H8Y, H9Y, and HlOX in the 2.75" spectrometer 

and H5U, H6X, H7Y, H8V in the 5.5" spectrometer). 

gThe finger tilt in ( g ,  2 )  plane is not important numerically and is ignored. 
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3.5.2.3 Optics cuts 

One of the main strengths of the E154 tracking code is the use of optics cuts 

to reduce the combinatorial background in the hodoscopes, important in the high 

background rate environment. We employ the following strategy. The search for 

track candidates starts with the shower cluster, For charged particles originating 

from the target, the direction of the momentum is strongly correlated with the 

impact point at the shower counter. This can be clearly seen in Fig. 3.20. The 

correlation is strongest in i direction, where the effect of the magnetic field is small. 

In fact, the main reason for a non-zero width of the ? distribution in the 5.5" 

spectrometer is the finite target length since there is almost no vertical component 

to the magnetic field. Even in the 2.75" spectrometer the correlation is strong. The 

correlation is not so strong in the ij direction in both spectrometers; the peculiar 

shape of the 6 distributions is due to the reverse-bend optics of the spectrometers. 

Clearly, the optics cuts are strongest at the top of the spectrometer, i .e.  at low 

momentum. The random background, that is thought to be caused by low-energy 

photons and neutrons, is roughly (within a factor of two) uniform across the face of 

the hodoscopes. Thus, the optics information enhances the signal/noise ratio in the 

search region of the hodoscopes. 

The cut is implemented in the following way. The maps Omin(xsh), Omax(Zsh) ,  

@min(Ysh), and @max(Ysh) are generated using a Monte Carlo program. Here (E) E 0 

and (2)  E @ are track slopes, and min and max denote the minimum and maximum 

slopes for a particle scattered at the target and with a coordinate at the shower 

counter (Zsh, Ysh). w e  take into account the spatial resolution of the shower counter 

by increasing the slope range: 

0 . -  mln - min(@rnin(xsh f cLfl(~sh))> 

e m a x  = max (@ma,( xsh f c L f l (  xsh)) )  (3.19) 
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and analogously in direction. The “confidence level” factor CL was chosen to be 5 

to optimize efficiency”. Now for every hodoscope plane we determine the range of 

allowed coordinates: 

(3.20) 

where Cx = 3 is a factor that allows for the finite hodoscope resolution and w is 

the hodoscope width (the combination of these two factors makes the search area 

bigger by one finger in each direction). Finally, the combinations u1, u2, u3, and u4 

are 

(3.21) 

where 8, is defined in Eq. (3.18). Corners of the region allowed by optics are 

where AZ = (zhod - &h). 

(3.22) 

1°This. factor also reflects a non-gaussian shape of the calorimeter resolution due to multiple 
scattering and bremsstrahlung in the spectrometer. 
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3.5.2.4 Track candidates 

We will discuss the algorithm for the first two track classes. Algorithm for classes 

3 and 4, that do not include clusters, is a simple extension of the main algorithm 

and will be discussed later. 

We loop first over the shower clusters that are identified as electrons by the 

shower particle ID algorithm (neural net for SLAC analysis and shape cut for 

Caltech), and then over all remaining clusters. For every cluster, we look for time 

coincidence with a Cherenkov signals. We first select Cherenkov hits that are within 

a time window 

(3.23) 

from the shower cluster. Here T is the “target” time (see Eq. (3.17)), and O(T&) and 

c r ( ~ ~ h )  are shower time and Cherenkov resolutions. Factor CT is typically set to 3. 

Among all selected hits, we pick two (or one, if hits from only one tank are found) 

that minimize x 2  
(3.24) 

where the summation includes the shower cluster and Cherenkov hits from each 

tank. The average time ( 7 )  is given as usual by 

This average time and its uncertainty 

(3.25) 

(3.26) 

are used to  define the time window for the hodoscope hits. If no Cherenkov hits 

are found to match the cluster, the track is a class 2 candidate; time ( T )  and its 

uncertainty are then taken from the shower cluster. 
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3.5.2.5 Hodoscope mini-clusters 

After the Cherenkov and shower cluster match is found, we select the hodoscope 

hits that pass the optics cuts and are sufficiently close in time to the average time 

(7) to be with the window ( T )  k AT,  where 

(3.27) 

The next step is to arrange the hits within a hodoscope package (front and rear) 

into local clusters. The idea is to eliminate combinations of fingers that cannot 

geometrically belong to one track. To reduce the pattern recognition problem to 

two dimensions, we first project all fingers onto a common plane (taken at the z 

position of the last plane of the package). We use a stereographic projection along 

the line connecting the center of a given finger and the shower cluster: 
I 

I . z  - 2  

(3.28) 
I z - 2  

zsh - z 
w + w’ = w + (W& - w)- 4 

Here (x,,y,) is the position of the finger center, z is the finger z position, and z’ is 

the position of the plane of projection. Note that the finger width w is also modified; 

the shower width u)& is given by 

Now the problem is reduced to selecting sets of overlapping rectangles (fingers). 

This is done iteratively. We first find all crossings among all hit fingers in the first 

two planes of the package. Crossed fingers are replaced by a rectangle that represents 

the area common to both fingers. This is shown in Fig. 3.21. For simplicity, we make 

the resulting box parallel to the 2 - ij axes. Every such finger overlap makes a new 
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Fig. 3.21. Possible two-finger mini-clusters. 

hodoscope mini-cluster. We then loop over fingers in the next plane of the package 

and look for fingers that cross either an existing cluster, or a finger in the first 

two planes. In the former case, the finger is added to the existing mini-cluster, in 

the latter, a new mini-cluster is created. The procedure is repeated until all possible 

mini-clusters are found. Examples of hodoscope mini-clusters are shown in Fig. 3.22. 

3.5.2.6 Fitting 

The track candidates are formed from the shower clusters, Cherenkov hits, 

and all combinations of hodoscope mini-clusters. All tracks are straight in the 

detector hut, so for every track we calculate 5 parameters: line intercepts and slopes 

(xo,O,  yo, a), and track time at the target 70. This is done by minimizing 

) 2 + F  (-)2 . (3.30) 
(20 + ztO) COS 6, + (yo + zi@) sin 6, - u; 

+ i >  

The first sum in Eq. (3.30) includes the hodoscope hits and the shower cluster (for 

the latter we have two entries: u E x and u E y). The second sum also includes 

Cherenkov hits. The resulting system of linear equations can be factorized into the 
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Fig. 3.22. Three mini-clusters are formed from five hit fingers. Cluster (1) consists of fingers 
(a) and ( c ) ,  (2) of (a), (d), and (e), and (3) of (b), ( c ) ,  (d), and (e). 

space and time parts. The time of the track TO is then readily found as an average of 

all hits, weighted by the uncertainty o(T,). In order to increase performance, we in 

fact first do the fitting in the time domain only, remove all hits with times T~ outside 

the &ax cut (see next section), and then repeat the fit in both space and time. 

The detector time T~ needs to be corrected for the time of the light propagation 

from the point where the track crosses the detector (hodoscope finger or Cherenkov 

mirror) to the phototube. For the hodoscopes, it is the time of light propagation 

inside the finger. By convention, the time offsets for the hodoscope fingers are 

calculated for a track that passes through the geometrical center of the finger, 

so such tracks need no propagation time correction. Therefore, the correction is 

proportional to the distance from the finger center to the track: 

1 
AThod = - [-(zo + ZC@ - Z,) Sin 8, + (yo + ZC@ - yc) COS e,] , (3.31) 

2, 

where (zc, yc, 5,) is the geometrical center of the finger. The correction is positive 

(the track passed later than ~ i )  if the track position is closer to  the phototube than 
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the finger center. The constant is the effective light propagation speed along the 

finger. It is a phenomenological constant that reflects the geometry of the fingers 

and peculiarities of the light collection, and is unique to every plane. It ranges from 

135 mm/ns to 213 mm/ns”. 

For the Cherenkov detectors, we correct for the light propagation from the mirror 

to the phototube. The time offsets for the Cherenkov counters correspond to the 

geometrical center of the mirror. Thus, the correction is related to the dzference 

between the distance from the track position at the mirror to the phototube and 

the distance from the mirror center to the phototube: 

(3.32) 
J 

where ( zm ,  ym, z m )  is the center of the mirror, ( z p ,  g p ,  z p )  are the phototube positions, 

and c is the speed of light. We neglect mirror curvature and yaw. 

3.5.2.7 Selecting the best track candidate 

After the track parameters are found, we calculate the time and spatial residuals 

for every hodoscope and Cherenkov hit, and find the hit with the worst 

) 2 +  (-)2 . (ZO + z,O) cos 6, + (yo + z f @ )  sin 6, - u, 
4%) xz2= ( (3.33) 

For the Cherenkovs, there is indeed no spatial residual. We set the limit xkax = 8 

for the fit in the time domain and xkax = 16 for the combined space-time fit. If 

xtorst > x:,,, the worst hit is removed from the track candidate unless 

0 The number of hits in the hodoscope package drops below the threshold. The 

minimum number of hits was set to 4 for the front hodoscope package in 2.75” 

’ ’lKote that the physical light propagation speed for Bicron BC404 is 190 mm/ns that corresponds 
to the refractive index of 1.58. 
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spectrometer and to 3 for the back package in 2.75” and for both packages in 

5.5” spectrometer. This number is half the expected average number of hits 

per package if the hodoscopes are 100% efficient (except the back hodoscope 

package of 2.75” spectrometer where the expected average number of hits is 5 ) .  

0 One of the sums 

planes planes 

drops below the threshold of 0.5 for one of the hodoscope packages. This 

requirement assures that both i and $ projections are determined. 

If one of the conditions above is met, the entire track candidate is dropped. Other- 

wise, the worst hit is removed and the fit is repeated. The fitting converges if either 

all hits are within xiax limit, or the candidate is dropped. Out of all successful 

track candidates (combinations of hodoscope mini-clusters), we pick one with the 

best total x2 per degree of freedom. 

If the track is fitted successfully, the hits are marked to prevent them from being 

used on another track12. 

3.5.2.8 Class 3 and 4 tracks 

The algorithm for class 3 and 4 tracks (that do not include a shower cluster) 

is an extension of the general algorithm discussed above. First, the spill is divided 

into 6 nsec time intervals. Let TO denote the center of an interval. We find the 

time slice with the most Cherenkov and hodoscope hits within f 9  nsec around ro 

(preference is always given to the intervals with most Cherenkov hits). Then, a 

“fake” shower cluster is created with time 70, time uncertainty ~/CT nsec ( CT is the 

time “confidence level factor” of Eq. (3.27))) and infinite position resolution. From 

12For Caltech DST production. we disabled marking of Cherenkov hits and reduced rate 
dependence by about 0.5%. 
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this point, the algorithm proceeds exactly as described above for classes 1 and 2 

with the following trivial modifications: 

0 The minimum and maximum track slopes are used to define the stereographic 

projection in Eq. (3.29). 

0 The “fake” shower cluster is not used in fitting. 

The search for class 3 and 4 tracks stops when track candidates in all time slices are 

exhausted. 

3.5.3 Performance 

Typically, an electron track in the 2.75” spectrometer is constructed of 16-17 

hits (including all detectors, Fig. 3.23). The average number of hits per hodoscope 

package is found to be close to the expectation (8 for the front package and 5 for the 

rear package) that implies that the hodoscope inefficiency is not big. We estimate the 

tracking efficiency by comparing the number of shower clusters with the number of 

associated tracks. The inefficiency, defined as the ratio (Nclusters - Ntracks)/Nclusters, is 

shown in Fig. 3.24 for all clusters (top left), and for electron clusters. The low energy 

clusters are mostly pions, and the tracking efficiency for them is low. This is mostly 

due to the fact that the resolution (both spatial and time) of the shower counter is 

worse for pions than it is for electrons, and hence the initial cuts (optics and time) 

are not as efficient as for electrons. The electron efficiency is better than 90%, even 

after the E / p  cuts. To identify the electron clusters in Fig. 3.24, we require a time 

coincidence among the cluster and two Cherenkov hits with the peak voltage greater 

than 50. This sample is still somewhat contaminated by random coincidences of pion 

clusters with Cherenkov hits, so the values of inefficiencies in Fig. 3.24 are upper 

limits of true electron inefficiencies. 

An independent determination of the tracking efficiencies was based on a Monte 

Carlo technique. Electron tracks, generated using the optics model of the spectrom- 



143 

22500 

20000 

17500 

15000 

12500 

10000 

7500 

5000 

2500 

0 

. . . . . . . . . . . . . . . . . . . . 

0 10 20 30 
Hitdtrack 

20000 

17500 

15000 

12500 

10000 

7500 

5000 

2500 

0 
0 5 10 15 

Front hod. hits/track 

x 10 
3 3 1400 
3 e 1200 
CI 

1000 

2 

800 

600 

400 

200 

0 
2 4 6 8 10 

Hod plane 

25000 

20000 

15000 

10000 

5000 

n " 
0 5 10 15 

Back hod. hitdtrack 
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eter, were "seeded" among the real data and then reconstructed by the standard 

analysis code. The resolution and dead-time effects were taken into account. The 

efficiency was determined as the ratio of the number of reconstructed tracks with 

0.8 5 E / p  5 1.25 to the number of seeded tracks (see Fig. 3.25). It is consistent 

with the efficiencies determined by the data. The effect of the optics cuts described 

in Section 3.5.2.3 is demonstrated in Fig. 3.26. The tracking efficiency significantly 

decreases (by up to 5% in 2.75" spectrometer) when the optics cuts are turned 

off. Roughly the same decrease in efficiency was found when the local hodoscope 

clustering was turned off. Both effects is due to random coincidences in hodoscopes 

and are strongly rate dependent. 

The largest contributions to inefficiency for 2.75" spectrometer are (on average): 

0 Momentum and energy resolution (in E / p  cut): x 2.5%; 

0 Hodoscope dead time: M 2% 

0 Algorithm (cuts): FZ 2% 

0 Hodoscope random coincidences: x 1% 
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Fig. 3.26. Monte Carlo tracking inefficiencies for codes with and without optics cuts. 

Contributions from the rate dependent sources (hodoscope dead time and random 

coincidences) are not large. The largest momentum dependence of inefficiency is due 

to E / p  cuts; inefficiency increases with momentum as the resolution is degraded. 

The rate dependence of tracking was studied by Piotr Z ~ l a . [ l ~ ~ ]  The contributions 

to the rate-dependent inefficiency from the hodoscope noise was found to be within 

2% for every target (consistent with the estimates above). It was also found that 

the momentum determination is robust against the rate changes, much more than 

the energy determined by the shower counter (see Fig. 3.27). 

3.5.4 Resolution 

The tracking resolutions were determined by Monte Carlo (see above). Tracking 

timing resolution is M 0.25 - 0.3 nsec in both spectrometers (Fig. 3.28). Fig. 3.29 

shows the spatial resolution in both spectrometers at the z position of the shower 

counter for  electron^'^. The spatial resolution for class 3 tracks (that do not use 

shower clusters) is shown in Fig. 3.30. It is significantly worse than that of class 1 and 

2 tracks, and is in fact comparable to the position resolution of the shower counter 

I3All plots in this section are for Caltech analysis. 
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Fig. 3.27. Rate dependence of momentum and energy reconstruction. Plotted are the 
relative changes in momentum (open circles) and energy (closed circles) versus Bjorken z 
in 2.75O spectrometer when the detector rate is doubled. Courtesy of Piotr Z ~ l a . [ l ~ ~ ]  
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Fig. 3.28. Tracking time resolution in 2.75" (left) and 5.5' (right) spectrometers. 
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alone (see Section 3.4). The shape of the distribution is clearly not Gaussian. Its 

core reflects the finite size of the hodoscope fingers, and the tails are due to  random 

background in the hodoscopes. 

The resolutions of the reconstructed momenta and scattering angles are shown 

in Fig. 3.31 (for original, i . e .  before cell the Picard setting of Ql ) .  The average 

momentum resolution is 2.4% in the 2.75" spectrometer and 2.7% in the 5.5" spec- 

trometer (weighted by acceptance). The average angular resolution is x 0.4 mrad 

in both spectrometers. The momentum dependence of the momentum resolution 

is shown in Fig. 3.32. For the original quadrupole setting (pre-Picard runs), the 

resolution degrades rapidly at low momentum in the 2.75" spectrometer. This is due 

to strong quadrupole focusing that results in almost ambiguous optics in the upper 

part of the spectrometer. The angular resolution in the bend plane (a(d)) also shows 

very strong momentum dependence. On the contrary, the angular resolution in the 

non-bend plane ( 4 6 ) )  is almost constant with momentum. 

The parameterizations for the momentum and angular resolution are given by 

0.013 + (0.93 - 1013j)2 , Caltech, 2.75", pre-Picard P ( f i  - 7.58)2 

- 4 P )  = d G +  (0.81 - 10-3j)2 , Caltech, 2.75", Picard 
P 

= J0.0152 + (1.01 - 10-3fi)2 , Caltech, 5.5' 
P 

(3.34) 

0.013 + (0.98. 10-3j)2 , SLAC, 2.75", pre-Picard 
P ( j  - 7.54)2 

(3.35) - -  4 P )  - J0.O1l2 + (0.89. 10-3fi)2 , SLAC, 2.75', Picard 
P 

- -  4 P )  - J0.0152 + (1.14 - 10-3j)2 , SLAC, 5.5" 
P 

where j = g p ,  and p ,  is the central momentum of the spectrometer (all momenta 

are in GeV). 
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Fig. 3.31. Average momentum (top) and angular resolution in the bend (middle) and 
non-bend (bottom) planes. 2.75" (left) and 5.5" spectrometers (right) 
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Fig. 3.32. Momentum dependence of the  tracking momentum resolution. Standard optics 
configuration of 2.75" spectrometer is shown by solid circles, Picard optics is by open 
circles, and 5.5" spectrometer is shown by crosses. 

The angular resolution in the bend plane is given by 

g(4) = + 0.194 , 2.75", pre-Picard 0*037 
(j - 7.58)2 

g(4) = 2.75", Picard 0.0°2 
(fi - 7.58)0.71 ' (3.36) 

The angular resolution in 5.5" spectrometer is independent of momentum. The 

difference between SLAC and Caltech values is negligible. 

3.6 Efficiency and rate dependence 

In E154, we measure asymmetry between cross sections in two different helicity 

states (see Section 1.2.1). The polarization direction of the target was reversed six 

times during the experiment. On another hand, the beam helicity was flipped every 
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pulse according to a pseudo-random pattern. Due to such rapid helicity changes, 

spectrometer acceptance and slow changes in efficiency average out between two 

polarization states and can be ignored. The average efficiency factorizes in Equations 

(1.10) and (l.ll), and is cancelled. Thus, unlike experiments which measure absolute 

cross sections, the overall efficiency is not particularly important for E154 as long 

as it does not significantly impact statistics of the experiment. 

The efficiency of each detector system, relative to other detectors in the spec- 

trometer, was estimated by using the tracking code. For instance, when the efficiency 

of the Cherenkovs for electrons was studied, class 2 tracks with shower energy E > 9 

GeV and E / p  > 0.8 were selected. Efficiency was defined as the ratio of number of 

time coincidences between such tracks and Cherenkov signals to the total number of 

selected tracks. For a typical Cherenkov cut used in the analysis that required hits 

in both tanks in coincidence with one of them higher than 2.5 photoelectrons (see 

Section 3.7.3.2), the efficiency was about 90%. The intrinsic efficiency of the total 

absorption shower counter should in principle be very close to 100% (excluding dead 

blocks and similar hardware problems) at small rates (see below for the discussion 

of the rate dependence). The efficiency of the shower electron ID cut, such as x 
cut (see Section 3.4) or neural network cut used in SLAC analysis[l2lI is typically 

FZ 90 - 95%. Tracking efficiency, determined as described in Section 3.5, was also on 

the order 90 - 95%. Overall, the electron reconstruction efficiency is estimated to 

be 70 - 80%. Unfortunately, there is insufficient redundancy in the detector system 

to determine this number more precisely. 

The rate dependence of the efficiency is potentially a much more important 

effect. Suppose, the reconstruction efficiency depends (linearly) on the electron rate: 

E = Eo (1 - P N )  , (3.37) 

where e is electron efficiency, ,B is a small linearity coefficient, and N is rate (in 

arbitrary units). The measured rate for each helicity is then 
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(3.38) 

where indices L(R) denote the helicity state. I t  is easy to show that in this case the 

measured asymmetry will be biased: 

NL - N R  AmeaS = 
- N L + N R  x A0 - p( N)Ao  . (3.39) 

N ~ - N ~  
No +No 

Here A0 = +% is the true asymmetry, the average electron rate is ( N )  = 

1/2(Nk + N:), and all higher order terms (in P and Ao) have been dropped. Thus, 

the measured asymmetry will be biased by an amount proportional to the rate 

dependence of the efficiency. 

The rate dependence of the reconstruction efficiency was studied[123] using a 

Monte Carlo technique dubbed “pulse fiction”14. The idea is to analyze two con- 

secutive spills in one spectrometer, and then merge them on the level of raw data 

taking into account dead time, etc. Thus, the merged pulse will appear as taken at 

“double rate”. The ratio of the number of electrons in merged pulses to the sum of 

the number of electrons in the original pulses determined the product Q E P ( N ) .  

Since electron efficiency depends primarily on the environmental rate ( i .e .  the total 

rate in the detectors and not only the electron rate), the individual coefficients a h e r ,  

ahodo, and ashw were determined for Cherenkovs, hodoscope, and the shower counter 

by merging raw data from individual detectors. The rate dependence correction to 

the measured asymmetry is given similarly to Eq. (3.39) by 

&Irate A0 A”“”” = OcherAcher + QhodoAhodo -I- a s h w ~ 4 s h w  9 (3.40) 

where Acher, Aho&,, and &hw are asymmetries in rates for individual detectors. The 

coefficients CY; E ,B,(N,) for every detector and the coefficient atot (determined by 

merging all detectors at the same time) are shown in Fig. 3.33 for all polarized 

I4The name was inspired by a popular. as of time of analysis, motion picture. 
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3He cells.['23] There is an obvious correlation of the rate dependence to the overall 

rate in the spectrometers. The runs taken at the high beam current of 9 - lo1' 

electrons/spill (target cells Dave, Riker, Bob, SMC, and Generals) show a stronger 

rate dependence than the runs at the intermediate current of x 5.10'' electrons/spill 

(target cells Hermes, Prelims, and Chance), or the low current of 3 1 O 1 O  elec- 

trons/spill (target cell Picard). The rate dependence was also sensitive to the beam 

quality that was improving over the course of the experiment, and to the target 

window thickness. There is an apparent jump in the rate dependence in the 5.5" 

spectrometer for target Chance. This target had the thickest windows, and unlike 

the 2.75" spectrometer, the acceptance of the 5.5" spectrometer was fixed. Note also 

that atot is usually somewhat higher than the sum of rate dependences for individual 

detectors. This is due to subtle correlations that exist in tracking. If we assume that 

the rate asymmetries in the individual detectors are uncorrelated (which is a good 

approximation since the detectors are sensitive to different types of the background), 

these correlations should be ignored in Eq. (3.40). 

The rate dependence was typically 6 - 8% in the 2.75" spectrometer and 3 - 5% 

in the 5.5" spectrometer, and showed mild dependence on electron momentum.[123] 

3.7 DST analysis 

The Data Summary Tapes contained pre-processed information about the Che- 

renkov hits, shower clusters, and tracks in the spectrometers, as well as information 

about the beam charge, position, helicity etc. A typical size of a DST file for one 

run was about 130 Mbytes - more than factor of six reduction in size compared 

to  the raw data tapes. The main advantage of using DST tapes was the processing 

speed. Contrary to the raw data analysis, the DST analysis code was not CPU- 

intensive, and the speed was limited only by the 1/0 throughput. Thus, the entire 

data set of E154 could be analyzed in less than three days. The analysis speed 
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Fig. 3.33. Rate dependence coefficients cy (see text)  for the 2.75' (top) and 5.5" (bot tom) 
spectrometers. 
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offered great flexibility in studying detector performance, effects of electron cuts: 

pion contamination, and other systematic effects. 

For each run, the DST analysis code counted events satisfying certain electron 

(or pion) definitions, and placed them in appropriate x and Q2 bins for each beam 

helicity. The summary files produces for each run were then used by a separate 

program to calculate physics asymmetries. 

3.7.1 Kinematics 

The kinematics of each event is determined by tracking. The scattering angle of 

an electron is given by 

(3.41) 29 = &3 + q2 + 42 

where 80 = -2.75"(+5.5"), and I9 and 4 are scattering angles in non-bend and bend 

planes respectively. Track momentum p determines the scattered electron energy E'.  

The kinematic variables are calculated as follows: 

Q2 = 4EE'sin2i9/2 

Q 2  

2M(E - E ' )  x =  (3.42) 

1 - x  W 2  = M 2 + Q 2 - ,  
X 

The beam energy is E and nil is the proton mass. 

3.7.2 Run selection 

The polarized data taking started with run 1329 on October 9, 1995 (target 

Dave) and ended with run 3785 on November 20, 1995. The total of 1467 polarized 

3He runs were written to tape. Only 956 of them were used for the asymmetry 

analysis. Below, we describe runs that did not satisfy the selection criteria. Some of 

the cuts apply to the reference cell runs as well (cuts not related to polarization or 

beam asymmetries). 
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Fig. 3.34. Distribution of target polarization measurements. Only runs with polarization 
above 25% (dashed line) are included in the asymmetry analysis. 

3.7.2.1 Target polarization 

Only runs with the target polarization higher than 25% were used in the asym- 

metry analysis. Most of the runs that failed the cut were taken either during the 

spin-up of the target or in in special target tests, and polarization was not very stable. 

The distribution of the target polarization measurements is shown in Fig. 3.34. The 

target polarization cut eliminated 190 runs. If included, these runs, however, would 

have a negligible impact on overall statistics of E154. 
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3.7.2.2 Beam and hardware problems 

Certain runs, identified as “bad” by a shift crew and marked in the log book, were 

actually written to tape. Such runs were removed from the data sample. The beam 

problems listed in log books included test runs (when the beam or spectrometer 

configuration was not normal), runs with frequent beam trips and/or poor beam 

quality, runs affected by hardware failures or hardware changes, and runs affected 

DAQ or control software problems. We also removed runs that were shorter than 

30,000 spills (a typical run size was 200,000 spills). 270 runs have been eliminated. 

3.7.2.3 Charge and beam position asymmetry 

The raw asymmetries measured in our experiments are small, typically, on the 

order of - In order to minimize systematic effects, it is important to 

keep beam-related asymmetries to the minimum. The rate dependence of electron 

efficiency was typically on the order of 10% (see Section 3.6)) so the beam charge 

asymmetry has to be below in order to keep asymmetry bias below loV4 for 

every run. The distribution and history of beam charge asymmetry is shown in 

Fig. 3.35. We have cut runs with charge asymmetry IAchargeI = ~ ( Q L  - Q R ) / ( Q L  + 
Q R ) ~  > 5 .  lo-*. A total of 34 runs have been eliminated. 

Another potential source of systematic biases in measured raw asymmetry is 

asymmetry in beam position. Due to the variation of the target cell window thick- 

ness, spectrometer rate depends on the relative positions of the beam and the target 

cell,[”*] as was determined by moving an empty reference cell vertically through the 

beam. This dependence is illustrated in Fig. 3.36. The distribution of beam position 

asymmetries is shown in Fig. 3.37.[1251 

For asymmetry analysis, we select runs with position asymmetries 1 ( ~ 1 ; ) - ( x R )  I 5 
0.004 mm, and I(y1;) - ( Y R ) ~  5 0.005 mm. Here (z~R)) is the average beam position 
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Fig. 3.36. Dependence of the electron rate in the 2.75" spectrometer on the relative beam 
position. Overlaid is a quadratic fit. Courtesy of Piotr Zyla. 
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for “left” (“right”) electrons in x. The cut eliminates 33 polarized runs. It ensures 

that the position-dependent bias to the raw asymmetry does not exceed 0.5. 

3.7.2.4 Polarization bit 

The polarization state of the beam was sent to the Data Acquisition System 

via four physically distinct pathways: the PMON line, Mach line, Pockels Cell High 

Voltage Line and the Veto Bits. Each measurement delivered a two-bit combination, 

where the combination ’01’ referred to positive helicity photons and ’lo’ meant that 

the photons incident on the photocathode were of negative helicity. Combination 

’00’ in the PMON meant that the beam is unpolarized, and ’11’ marked an error 

condition. During E142, reading of the Veto module was found to fail at high 

rates[’26] that caused a bias in the asymmetry analysis. The problem was solved 

prior to E154. 

The electron helicity was governed by a pseudo-random bit generator at the 

electron source. The seed of the generator can be determined by measuring the 

polarization state of 33 consecutive spills.[92] After the seed is determined, the 

polarization state of any subsequent spill can be predicted if the sequence number 

of the spill is known. Such a sequence number was provided by the PMON module. 

The predictor code thus provided a fifth determination of the spill helicity state. 

All methods typically agreed to ==: (the failure rate can only be 

tested to z 5 . level for a given run since the typical run size is 200,000 

spills). However, 18 runs were found to have a failure rate of more than 10 .  10-4,[92] 

i e .  comparable to the raw asymmetry. These runs have been excluded from the 

asymmetry analysis. In addition, for 35 runs in the range 2454 through 2494, the 

Veto signal was in error.[92] Those runs are included in the asymmetry analysis and 

the polarization state is determined by other four measurements. 
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3.7.3 Event selection 

3.7.3.1 Beam cut 

The purpose of the beam cut was to get rid of spills with beam properties very 

different from the average, for these may potentially bias the measured electron 

asymmetry. Such a cut should be reasonably mild, on another hand, as tight cuts 

have lower efficiency and may adversely affect the electron asymmetry if a particular 

beam parameter has large left-right asymmetry. We applied a cut of 4a  to the 

following beam quantities: 

1. Beam charge. 

2. Good spill ADC. 

3. Bad spill ADC. 

4. Beam width at the mA:e array n x. 

5 .  Beam width at the wire array in y.  

6. Beam position at the wire array in 2. 

7 .  Beam position at the wire array in y. 

8. Beam position at the TWBPM in z. 

9. Beam position at the TWBPM in y. 

The distributions of bad spill ADCs and beam position in y before and after the 

cut are shown in Fig. 3.38. The number of spills rejected by each cut is given in 

Fig. 3.39. 

Cuts (l), (3), and (7) are most important. We believe this is justified. Big 

fluctuations in the incident charge could introduce fluctuation in electron rate due 
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Fig. 3.38. Distribution of two quantities used in the beam cut before \.ap) and after 
(bottom) the cut. Bad spill ADC is shown on the left and the beam position at the wire 
array in y is on the right. The tails of both distributions are smaller after the cut. 

to rate dependence. The dependence of electron rate on the beam position has been 

observed (see Fig. 3.36) and is not insignificant. The bad spill ADC, positioned in 

the alcove, has historically been an indicator of overall beam quality. 

In addition to the 40 cut, we selected only spills with 0.5 5 Q 5 12 (in units of 

lo1’ electrons: cut # 0 in Fig. 3.39). This mainly gets rid of the “witness” pulses used 

for accelerator tuning. We also require the match of all four hardware polarization 

signals (PMON, Mach Line, Scaler, and Veto: cut # -1 in Fig. 3.39)15. 

We calculated the mean and RMS of every value used in the cut every 1056 spills 

(32 cycles of the random number generator for the polarization bits). These values 

15For runs between 2440 and 2495, the Veto module is believed to have been rnalf~nctioning[~~], 
so we are using a three-fold coincidence. 
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Fig. 3.39. Number of spills rejected by each beam cut. See text for explanation of cut 
numbers. 

are then applied to the next 1056 spills. Thus, the cut is “sliding”, it follows slow 

changes in the beam quantities. On another hand, short beam trips and random 

“flyers” that last less than M 9 sec are rejected. 

3.7.3.2 Electron selection 

For systematic studies, we implemented 52 electron definitions and 14 pion 

definitions. The main definition for the asymmetry analysis was chosen to maximize 

efficiency (statistics), minimize pion contamination, and minimize rate dependence. 

The electron definition, found as a best compromise among the criteria above and 

denoted as “definition 33”, is defined by the following set of cuts: 

1. Class 1 track with both Cherenkov in coincidence; 

2. Acceptance cut passed; 

3.  8 GeV < p < 48.3 GeV; 
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4. Q2 2 1 GeV2, W 2  2 8 GeV2; 

5. One of the Cherenkov signals greater than 2.5 photoelectrons ( “,4ND-OR7’ cut) 

6. E > 7.5 GeV; 

7. E / p  2 0.8; 

8. Shower shape x I 0.045 for p < 30 GeV (see Eq. (3.16)); 

9. No DAQ failures for the spill in the given spectrometer. 

The acceptance cut (2) is defined by 

(3.43) 

where 0 and 4 are the horizontal and vertical scattering angles at the target lim- 

ited by Om,, = 0.006(0.013), dmin = -0.031(-0.028), and dmax = 0.005(0.01) for 

2.75”(5.5”) spectrometer (all angles are relative to the central spectrometer angle 

and are in rad). The relation between the Cherenkov peak voltage and number of 

photoelectrons in cut ( 5 )  is given in Section 3.3. 

The main differences with the SLAC analysis are in cuts ( 5 ) ,  (7) and (8). The 

differences between the shower shape x cut and neural network cut used at SLAC 

(cut (8)) are discussed in Section 3.4. The “AND-OR” cut (5) was found to have a 

smaller rate dependence by about 1%[114] compared to the “AND” cut used at SLAC 

(which required both Cherenkov hits to be higher than 25 FADC units). It also had 

a slightly higher efficiency (by about 2.5%) than the “AND” cut with a comparable 

pion rejection power. In addition to the E / p  2 0.8 cut ( 7 ) ,  SLAC analysis required 

a cut on high side of the peak E / p  5 1.2. This cut was found to  have a significant 

rate dependence[l14] (about 2%, or more than a factor of two higher than low E / p  

cut) without compensating gain in the pion rejection. 



167 

3.8 Asymmetry analysis 

Summary files produced for each run in the DST analysis were used to extract 

the raw experimental asymmetries Aip" and A',"": 

(3.44) 

where N ( z ) / Q  is the number of events in each helicity state passing the analysis 

cuts normalized to the incident charge. The expression for A'," is analogous to 

Eq. (3.44). The Bjorken x and four momentum transfer squared Q2 of an event were 

determined from the momentum and scattering angle of reconstructed electrons. 

The statistical error, in the limit of small Aip" (the raw electron asymmetries are 

on the order of is given by 

(3.45) 

The raw experimental asymmetries in Eq. (3.44) must be corrected before they 

can be used in Eq. (1.23) and Eq. (1.24) to calculate the spin-dependent struc- 

ture functions. First, we account for the fact that the target and beam were not 

completely polarized, and that the detected electrons can be scattered from the 

unpolarized materials in the target such as glass cell end windows. The correction 

is applied by multiplying the raw asymmetries by a factor l/(fPbP,) (cf. Eq. (1.10) 

and Eq. (1.11)). Second, some events that passed our cuts are not the true DIS 

events whose asymmetry we are interested in. Furthermore, the data sample is 

contaminated to a small degree by pions misidentified as electrons. In addition, 

a certain portion of electrons came from the charge symmetric processes (such as 

no -+ ese-y, y + e+e- etc.). Such events should be subtracted from the data 

sample. The raw asymmetries are also corrected for rate dependence of asymmetries 

as discussed in Section 3.6 and radiative effects. Finally, a small correction is applied 
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and 2' exchange amplitudes. Combining all corrections, the physics asymmetry that 

can be used to calculate the polarized structure functions takes the form: 

+ A A ~ ~ ,  APhYs = A',"-" + ,Arate - pbAEW 
f pb pt 

(3.46) 

where A',"_" is the raw asymmetry (with backgrounds subtracted), .Arate is the 

rate dependence correction of Eq. (3.40), AEW is the electro-weak parity-violating 

asymmetry, AARC is the additive radiative correction, f, Pb, and Pt are the 3He 

dilution factor, beam, and target polarizations, respectively. 

We will discuss the corrections mentioned above in the following Sections. 

3.9 Background subtraction 

The sample of events that passed our electron cuts is not purely electrons coming 

from the DIS events. First, charged hadrons (pions, and to a much lesser degree 

kaons) and muons could be misidentified as electrons. Moreover, a certain portion 

of electrons we detected came from the charge symmetric processes (such as charge 

symmetric decays and pair production). These events dilute the DIS sample, and 

could even distort the asymmetry if the production processes have significant spin 

dependence. Let n/e and A, denote the fraction of misidentified hadrons (relative 

to the number of all electrons) and pion asymmetry, respectively. Similarly, let 

e S / e -  and A,+ denote the fraction of electrons from the charge symmetric processes 

and their asymmetry. The asymmetry of purely DIS events is then given by ( r  

dependence omitted) 

(3.47) 

We will discuss each background separately. 
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3.9.1 Pion background 

3.9.1.1 Pion contamination 

The number of negatively charged hadrons (referred to as ;TT- hereafter) in 

the electron data sample was estimated by comparing the E / p  spectrum of well- 

identified pions and the E / p  distribution of the events passing our cuts. As an 

example) we will take the electron “definition 2”, that requires 2 Cherenkov signals 

in coincidence higher than 1.5 photoelectrons, E / p  2 0.8, and does not use the 

shower shape cut. Pions can be identified requiring a veto in both Cherenkovs with 

a negligible electron contamination. The E / p  spectrum of events satisfying definition 

2 at low E / p  is dominated by pions. Matching two spectra at low E / p  (where both 

spectra have a peak due to pions that do not shower), we can estimate the size of a 

pion tail leaking under the electron E / p  peak (see Fig. 3.40). The pion contamination 

n / e  is given by the ratio of the number of pions to the number of electrons with 

E / p  2 0.8. The same procedure was applied to the electron definitions that do use 

the shower shape x cut, but the statistical uncertainty was bigger in those cases. 

The pion contamination for the worst case, target Dave (data were taken at 

“high” current of 9 . lolo electrons per spill) is plotted in Fig. 3.41 for definition 

33. Even for this target, it does not exceed 10%. The average pion contamina- 

tion at low x in the 2.75” spectrometer was 2.8% and smaller at higher values of 

x. Two independent methods were employed to check the estimates of the pion 

c~ntarninaiton[’~~I and were found to yield similar results. The error on n / e  is 

dominated by systematics (estimated as a discrepancy between different methods 

and is taken to be 50% of the value of ~ / e .  used to determine the contamination 

3.9.1.2 Pion asymmetry 

Pion asymmetry was measured using the DST tapes produced in the dedicated 

production (in which we included class 2 tracks and lifted the energy cut-off in 
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Fig. 3.40. Pion contamination in the 2.75" spectrometer at z = 0.0152. Error is statistical. 
See text for discussion. 

clustering (see Section 3.4.2). The pion asymmetry Ai; (divided by the dilution 

factor and beam and target polarizations) for both negatively and positively charged 

pions is shown in Fig. 3.42. This is perhaps the largest data sample on asymmetry in 

the inclusive hadron photo-production. The asymmetry is approximately three times 

smaller than the electron asymmetry and is not consistent with zero. It is interesting 

to note that the T+ asymmetry is almost a factor of two bigger (in absolute value) 

than the T -  asymmetry. 

3.9.2 Charge symmetric background 

The event rate of electrons originating in the charge symmetric processes was 

measured by reversing the polarity of the spectrometer magnets. The positron 
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Fig. 3.41. Pion contamination in the 2.75' (solid circles) and 5.5' (open circles) spectrom- 
eters versus Bjorken z for electron definition 33, target Dave. Error is statistical. 

component of the background was measured and assumed equal to the electron 

component of the charge symmetric background. 

A total of 81 positron runs (with the longitudinally polarized target) with target 

cell Picard was used to determine the ratio e+/e- and the asymmetry A,+. The 

extracted "positron contamination'' e+/e- is shown in Fig. 3.43 and the positron 

asymmetry (divided by the dilution factor and beam and target polarizations) is 

shown in Fig. 3.44. 

The positron rate was also measured with the empty and full reference cells. 

It is believed that the main source of the charge symmetric background is photo- 

production (or electro-production with Q2 x 0) via processes y p  + TOP, TO -+ 
e+e-y and y -+ e+e- etc. The rate of real (or almost real) photons depends on the 

radiation length (thickness) of the target and the ratme of the photon conversion is 

approximately linear with it, hence the positron rate increases as a second (or even 

higher) power of the target thickness. Since the electron rate is to the zeroth order 
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Fig. 3.42. Asymmetries for production of negative (top) and positive (bottom) pions as a 
function of x. 
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Fig. 3.44. Positron asymmetry measured in 2.75" (top) and 5.5' (bottom) spectrometers as 
a function of 5. The x2 for the asymmetry being consistent with zero is given for reference. 
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proportional to the target thickness, the ratio es/e- is expected to be different for 

different target pressures and geometries. The variation of about 20% was observed 

with different empty reference cells, and about 10% with full reference cells. Since the 

positron runs were not taken with every polarized cell, we assign a 20% systematic 

error to the ratio e+/e- .  

The positron asymmetry is found to be consistent with zero, albeit with large 

uncertainty. It is also consistent within errors with both 7r-  and 7rs asymmetries. For 

the electron asymmetry correction, we assume the positron asymmetry A,+ = 0 and 

use the statistical errors on the measurement to  estimate the systematic uncertainty 

on 9;“ due to the charge symmetric backgrounds. This uncertainty dominates the 

systematic error on g;” in the lowest z (z = 0.017) where the es/e- ratio is the 

biggest (see Section 4.2). This error could be significantly decreased if a theoretical 

guidance regarding the physics of the charge-symmetric backgrounds was available. 

For instance, if the dominant mechanism for the creation of the eSe- pairs is 

the photo-production (either direct or via the no decay), the same process that 

dominates the pion production, it seems feasible (on the basis of isospin symmetry) 

that the positron asymmetry is bound by 7r -  and 7r+ asymmetries. If we used 

such a bound, the systematic uncertainty in the lowest 2 would have decreased 

by = 40%. On another hand, if we averaged the positron data over all z (relying on 

an assumption that the kinematic dependence of the asymmetry is not very strong), 

the systematic error at z = 0.017 would have decreased by M 30%. Lacking the 

theoretical guidance, we have taken a conservative approach and subtracted the 

charge-symmetric background bin-by-bin. 

3.10 Dilution Factor 

In order to extract the physics asymmetries Aih’” and A:hY” for 3He, we should 

correct for events that have originated from scattering off the unpolarized material 

in the target. The ratio 
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number of electrons scattered off 3He 
total of number of events (3.48) 

is called a dilution factor. This factor is roughly 1/2 where the rest of the events 

f =  

come from the glass end windows and a small amount of nitrogen in the target. The 

dilution factor can be calculated using measured unpolarized cross sections, and 

knowing the composition of the target.[”’] The dilution factor can also be measured 

with the reference cells by varying 3He pressure. Both methods are discussed below. 

3.10.1 Theoretical dilution factor 

The theoretical expression for the dilution factor is given by 

(3.49) 

where RHe,~,gi are the rates of scattering off 3He, NZ, and glass. These are given by 

where A, and 2; are the atomic weight and number of each target component, 

F2 is the unpolarized structure fRC is the unpolarized multiplicative 

radiative correction, and fEMC is the EMC factor[74] that takes into account effects 

of nuclear binding and motion. The atomic density and the length of the material i 

are n, and L,. 

For the calculation, we use F2 parameterization from Ref. [129], and param- 

eterizations of the EMC effect from Ref. [130,131]. The parameters of the target 

model are given in Ref. [132] (see also Section 2.5). On average, 53% of all events 

are coming from scattering off 3He, 43% off glass, and the remaining 4% off N2. 

The biggest systematic error is due to the uncertainty in radiative corrections, that 

corresponds to uncertainty and variations of the target model, and ranges from 5% 

at low x to 0.7 at mid-2. Uncertainties in window thickness and F2 each contribute 

FZ 1% to the error on dilution factor. 



176 

3.10.2 Experimental dilution factor 

An important feature of our experiment is the ability to measure the dilution 

factor experimentally using the reference cells. Reference cells are targets with 

geometry similar to that of the polarized 3He targets, but that could have a variable 

3He pressure. To the extent that the geometries of the reference and polarized target 

cells are exactly the same, the dilution factor can be measured as 

where & u ~ ~ , e m p t y , p o ~ a ~ z e ~  are scattering rates from the full and empty reference cells 

and polarized 3He target, respectively. In reality, we extract the dilution factor by 

measuring the slope of event rate versus 3He pressure and comparing it to the 

scattering rate from the polarized cell: 

f=- d R r e f  Ppolarized Lpolarized 

a p r e f  Rpolarized Lref ' 
(3.52) 

where Pref and Ppolarized are the reference and polarized cell pressure, and Lref and 

Lpolarized are the lengths of the reference and polarized cells. The scattering rates are 

corrected for rate dependence, and for charge symmetric and hadronic backgrounds. 

3.10.3 Dilution factor results 

The comparison of the theoretical and experimental dilution factor from target 

cell Picard is shown in Fig. 3.45. The agreement is generally very good. The experi- 

mental results are limited by statistics, especially at high z in the 5.5" spectrometer. 

For the asymmetry analysis, we use the theoretical values. For each target cell, we 

add in quadrature the average disagreement between two methods (on average, less 

than 1%) to the error on the theoretically calculated dilution factor. The average 

error on dilution factor, weighted by statistical error on All is 5.1%.[1281 
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Fig. 3.45. Comparison of the theoretically calculated (open circles) and experimentally de- 
termined (closed circles) dilution factor for the 2.75' (left) and 5.5' (right) spectrometers. 

3.11 Radiative corrections 

The structure functions g y ( x , Q 2 )  and gz(z,Q2) are defined in the Born limit. 

Le . ,  for a single virtual photon exchange in the deep inelastic regime. However, ex- 

perimentally observed lepton-nucleon scattering includes contributions from higher 

order processes as well as from elastic, quasielastic, and inelastic tails. In addition. 

electrons may lose energy before or after scattering due to bremsstrahlung or ion- 

ization in external material (target cell entrance and exit windows and side walls). 

These processes modify the measured asymmetry in Eq. (l.lO), so corrections have 

to be applied in order to  extract Born asymmetries. 

The radiative corrections are traditionally divided into "internal" and "erter- 

nul". The internal effects are those occurring at the 3He nucleus where the inelastic 

scattering occurs. The electrons are off-shell between the emission of the photon 

and the nuclear scattering. The external effects are those which modify the electron 

energy before or after the DIS event, hence, the electrons are on-shell. 
* 
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3.11.1 Internal radiative correction 

In addition to the single-photon exchange, the experimentally observed lepton- 

nucleon scattering cross sections include contributions from higher order processes. 

At any (XDIS, Q h I s ) ,  there is radiative leakage from other kinematic points (17: 2 SDIS, 

Q’ 5 QhIs for radiation before, and Q’ 2 QhIs for radiation after scattering), 

referred to as elastic, quasielastic, and inelastic tails. Since the asymmetries of 

the tails are not a priori identical to the deep-inelastic Born asymmetries, the 

measured asymmetry must be corrected. The formalism for calculating the radiative 

corrections (RC) to spin-dependent DIS has been developed by Kukhto, Shumeiko. 

and Akushevi~h[ l~~]  and implemented in their Fortran code POLRAD 1.5.[1341 An 

independent code was developed by Linda Stuart[’35] based on the formalism of 

Ref. [133] and produced identical results. 

At any kinematic point (2, Q’), the measured asymmetries are given by 

(3.53) 

where 

,tails = ,el + , qe,’ + ares + / d5 / d Q 2  ,’IS(5, Q2) (3.54) 
5 2 X  

are the contributions from the elastic, quasielastic, resonance, and DIS radiative 

tails, respectively. The correction due to higher-order processes V is given by 

(3 .55 )  

Here okR is the correction due to soft photon emission (where the infra-red di- 

vergence is cancelled by a similar contribution to DIS overt is the lepton 

vertex correction, atac is the lepton vacuum polarization, and o:ac is the hadronic 

vacuum polarization. The soft photon and virtual corrections to the cross section are 

insensitive to the helicity state; these contributions factorize in Eq. (3.53). Thus. the 

radiative corrections come entirely from the difference between the Born asymmetry 
s 
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Table 3.5. Contributions to the measured polarized and unpolarized cross sections at 
2 = 0.017 from radiative tails, virtual and external corrections (relative to the Born cross 
section). 

Elastic Quasielastic DIS Resonance Virtual External 
Unpolarized 0.12 0.20 0.30 0.06 0.11 -0.02 
Polarized 0.11 -0.01 0.02 0.04 0.11 -0.02 

and asymmetries of the radiative tails. We will now discuss the contributions from 

each of t.he tails. 

With the emission of a hard photon by the incident electron before scattering, 

the energy and Q2 of the event are lowered. Since the form factors of the nucleons 

in 3He are roughly proportional to l /Q4 at high Q 2 ,  the probability of scattering 

quasielastically is enhanced. The asymmetry of the quasielastic scattering, express- 

ible in terms of products of form factors GEGM and Gk,[137] is different from the DIS 

asymmetry. Radiative effects thus mix in this asymmetry with the DIS asymmetry 

in which we are interested. The magnitude of this contribution increases as we move 

to lower x and Q2. Details of the nuclear structure of 3He are important in the 

evaluation of this contribution. Predictions for the S, S’, and D percentages of the 

3He wave function (see Section 1.6) are used to determine the relative contributions 

from the quasielastic asymmetries of the protons and neutrons in 3He. The correction 

due to the elastic scattering off the 3He nucleus is small for the E154 kinematics. 

The relative contributions of elastic and quasielastic tails to the unpolarized and 

polarized cross sections are summarized in Table 3.5. 

The inelastic tail contribution arises similarly to the processes discussed above. 

Electrons detected in the spectrometers that undergo hard photon emission before 

the scattering have their energy E’ overestimated. Similarly, bremsstrahlung after 

the scattering results in underestimation of the scattered electron energy E‘. In 

both cases, the event is assigned a lower value of Bjorken x (and higher value of 
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the integrals in Eq. (3.56) requires knowledge of the unpolarized and polarized cross 

sections over the large phase space, including the DIS region, which is precisely 

what we are trying to extract. Thus, we cannot solve it analytically; instead, an 

iterative technique is employed. We define the radiative correction to the measured 

asymmetry by 

(3.57) AARC ABorn - Arne"" . 

A smooth parameterization to the measured gy"(x)/FF" is used to calculate the 

initial estimate of ABorn, then at every i-th iteration we take ABorn = A&" + AAEcl. 

The process typically converges after 3-4 iterations. 

3.11.4 Radiative correction and experimental Errors 

It is obvious from the discussions above, that the experimental uncertainties on 

LARC are correlated to those on A""". Not only is this true at every experimental 

point, but the convolutions in Eq. (3.56) also introduce point-to-point correlations. 

This makes the propagation of errors "through the radiative corrections a rather 

complicated issue. We identify three types of experimental errors on ABorn: 

e Statistical error cstat(ABorn): propagated statistical error on A""""; 

0 Systematic error crsyst(ABorn): propagated systematic error on A"""" due to 

sources other than RC; and 

0 Errors on Atail and unpolarized cross sections - true RC systematic error 

gRC(ABorn) - to be added in quadrature to other systematic errors. 

The statistical errors on A"""" are uncorrelated from point to  point, and we assume 

systematic errors to be 100% correlated from point to point. Then, for a given 

experimental point i, the propagated errors are given by 



182 

+ ostat(Ayeas) ( . (3.59) Born 
dA,””“” 

J f i  

In practice, the partial derivatives are evaluated numerically by varying the value of 

A F  for every point independently within its statistical and systematic uncertain- 

ties. In order to include point-to-point correlations into the error on the integrals of 

gy and 9,”) the full correlation matrix is constructed. The off-diagonal elements of 

the correlation matrix are typically small. 

In the absence of the off-diagonal elements, the uncertainty on the Born asym- 

metry is bigger than the error on the measured asymmetry by a factor 

(3.60) 

The factor f can be viewed as a “dilution factor” that accounts for the fact that 

the radiative tails are really backgrounds to our measurement. This dilution factor 

is given by the ratio of the unpolarized cross sections 

omeas - atails 

f = p e a s  7 (3.61) 

where the “tails’) include contributions from the elastic, quasi-elastic, resonance, 

and parts of the DIS tails. Due to the infra-red divergence,[136] the definition of the 

DIS tail is ambiguous.[139] We only include those points in z that are more than two 

bins away from the z of the measurement, beyond the range of a typical variation of 

g1.[1391 The “dilution factor’) method of calculating the error on the Born asymmetry 

agrees with the method of Equations (3.58) and (3.59)) and for practical purposes 

was adopted for the published results. 

The systematic uncertainty on the radiative corrections is estimated by vary- 

ing the input models of unpolarized and polarized cross sections (form factors for 

elastic and quasielastic scattering, nuclear corrections in 3He unpolarized structure 

functions, models of the resonance region, contributions from g2, and possible Q’ 
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0.442- 
0.564 

Table 3.6. Systematic errors of the radiative corrections for the 2.75’ and 5.5’ spectrom- 
eters ( x  100). 

0.000 0.007 0.000 0.029 0.000 0.000 - OTOr 
0.000 0.008 0.000 0.062 0.000 0.000 0.000 

x bin I F2 1 gl reson. I Q2 dep. I 92 I GP>” e,m I Pauli I Elast 
2.75’ mectrometer 

I I 

1 0.017 I 0.018 I 0.025 I 0.031 I 0.019 I 0.017 I 0.006 I 0.004 1 

of the ratio g l / F l  below Q2 = 1 GeV’) and the target model (for ex- 

ternal corrections). The contributions from the various sources for two spectrometers 

are given in Table 3.6.[l3’1 The radiative corrections for A11[140] and their err0rs[l~~1 

are given in Table 3.7. 

Note that traditionally the “radiative dilution factor” was calculated assuming 

that only the elastic and quasi-elastic tails are backgrounds to the DIS measure- 

ment.[135] The uncertainty in the DIS asymmetries was included into the overall 

systematic error by varying the shape of the function used to parameterize the 

measured This approach is inconsistent, subjective, and generally 

leads to  incorrect results. First, the resonance and DIS tails have to be treated as 
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Table 3.7. Radiative corrections ( X  loo) ,  the effect on the propagated errors, and the 
systematic errors of the radiative corrections. 

2 bin 1 AARC I a (ABorn) /a (Ames) I Syst. 
2.75" spectrometer 

0.078 -0.151 1.154 0.017 
0.123 -0.122 1.113 0.019 
0.173 -0.099 1.068 0.015 
0.241 -0.081 1.049 0.018 
0.340 -0.061 1.048 0.026 
0.423 -0.051 1.102 0.046 

5.5" mectrometer 
1 1 

I 0.0573 I -0.290 I 1.319 I 0.070 1 
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backgrounds and such events have to be subtracted from the data sample. Second, 

the variations of the functional form used to fit the measured data, deemed to 

test any possible “model dependence” of the radiative corrections, only change 

the relative weights of the data points. Many functional forms with acceptable 

x2 differ from one another by an amount comparable to the statistical errors of 

the data. This amount depends on the choice of the functional forms, and is very 

subjective. Varying the form of the fit is equivalent to varying the input values of the 

measured asymmetries by some fraction of their statistical errors. Thus, the variation 

of the Born asymmetries due to different fits used in the radiative corrections is 

already included into the statistical error oStat(ABorn). Including this variation into 

the systematic error o ~ c (  ABorn) introduces unphysical correlations of the statistical 

and systematic errors, and in case of E154 increases the uncertainty ~ R C ( A ~ ~ ~ ~ )  by 

about factor of two. The model dependence may appear, however, when the data are 

extrapolated outside the kinematic range of the measurement. Thus, the uncertainty 

due to extrapolation of the data into the low Q2 region is included in the systematic 

error 

3.12 Rate dependence and electroweak corrections 

The rate dependence to All is calculated as described in Section 3.6. The detector 

asymmetries (electron asymmetry diluted by the pion and noise hits) were typically 

(3 - 5 )  - low4 in the Cherenkov detectors, (1 - 4) - in the hodoscopes, and 

( 1-4).10-3 in the shower counter. The rate dependence coefficients cy; determined by 

pulse fiction actually place the upper limit on the true rate dependence. The “true” 

rate dependence is proportional to the derivative of the efficiency with respect to 

rate. Pulse fiction measures the finite difference of efficiencies at normal and double 

rate. Since the second derivative of efficiency versus rate is normally negative ( i . e .  

has the same sign as the first derivative), the coefficients cy, found by pulse fiction 

I 
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are somewhat overestimated. So we treat the pulse fiction results as upper limits 

and apply only half of AArate as a correction to the raw asymmetries, and use the 

full value of AArate as a systematic error. This error ranges from 4% of All at low x 

to 8% at high x. 

The electroweak parity-violating asymmetry arises from the interference of the 

y and 2’ exchange amplitudes. It is given by[2o] 

(3.62) 

where CYL and CJR are cross sections for left and right electrons, and y is the fractional 

energy transfer from the electron to hadrons. For an isoscalar target, neglecting 

strange sea, one has 

al  M 3GF (-3 + 2 sin’ Ow) and 

a2 M 9 G ~  (sin2 OW - i) . 5&Ta 4 3 

5&a 

5 

(3.63) 

The factors in the equation are the Fermi constant GF, the fine structure constant 

a,  and the Weinberg angle Ow. The electroweak asymmetry is not sensitive to the 

polarization of the target, and it is suppressed by the reversals of the target spin. 

The correction is the biggest at high Q’ (and high x) and reaches 10% of All (it is 

however much smaller than the statistical error on All). We use 20% of the correction 

as the associated systematic uncertainty. 

3.13 Final asymmetry results 

The corrected physics asymmetries Aphys, calculated for every run according to 

Eq. (3.46), were weighted by the statistical error and averaged. The results for two 

spectrometers are given in Table 3.8. 



Table 3.8. Final results on "He asymmetries All and A l .  

x bin (4 ( Q 2 )  All f stat. f syst. A ,  f stat. f syst. 
(GeV2) 

2.75" spectrometer 
0.014 - 0.02 0.017 1.21 -0.0140 f 0.0041 f 0.0036 0.0052 f 0.0125 f 0.0017 
0.02 - 0.03 0.025 1.59 -0.0174 f 0.0030 f 0.0025 -0.0021 f 0.0094 f 0.0013 
0.03 - 0.04 0.035 2.05 -0.0164 f 0.0031 f 0.0018 -0.0187 f 0.0100 f 0.0019 
0.04 - 0.06 0.049 2.57 -0.0136 f 0.0025 f 0.0011 0.0142 f 0.0080 f 0.0015 
0.06 - 0.10 0.078 3.32 -0.0107 f 0.0023 f 0.0009 0.0083 f 0.0075 f 0.0013 
0.10 - 0.15 0.122 4.09 -0.0080 f 0.0027 f 0.0007 0.0101 f 0.0095 f 0.0022 
0.15 - 0.20 0.173 4.63 -0.0102 f 0.0034 f 0.0008 0.0013 f 0.0123 f 0.0022 
0.20 - 0.30 0.241 5.09 -0.0085 f 0.0034 f 0.0007 -0.0097 f 0.0121 f 0.0020 
0.30 - 0.40 0.340 5.51 -0.0030 f 0.0058 & 0.0005 0.0357 f 0.0200 f 0.0038 
0.40 - 0.50 0.423 5.82 0.0035 f 0.0137 f 0.0007 0.0043 f 0.0443 f. 0.0008 

5.5" spectrometer 
0.04 - 0.06 0.057 4.03 0.0126 f 0.0256 f 0.0027 0.1669 f 0.1219 f 0.0151 
0.06 - 0.10 0.084 5.47 -0.0222 f 0.0035 f 0.0022 0.0294 f 0.0163 f 0.0026 
0.10 - 0.15 0.123 7.23 -0.0219 f 0.0026 f 0.0017 0.0052 f 0.0124 f 0.0025 
0.15 - 0.20 0.172 8.94 -0.0153 f 0.0033 f 0.0012 0.0043 f 0,0154 f 0.0033 
0.20 - 0.30 0.242 10.71 -0.0161 f 0.0033 f 0.0013 0.0137 f 0.0153 f 0.0034 
0.30 - 0.40 0.342 12.55 -0.0089 f 0.0051 f 0.0018 -0.0106 f 0.0237 f 0.0022 
0.40 - 0.50 0.442 13.83 -0.0132 f 0.0079 f 0.0013 -0.0092 f 0.0365 f 0.0015 
0.50 - 0.70 0.564 15.00 -0.0010 f 0.0113 f 0.0008 -0.0036 k'0.0519 f 0.0035 



4. 

C H A P T E R  4 

NEUTRON SPIN STRUCTURE FUNCTIONS 

From asymmetries to the structure functions 
4.1.1 Structure functions and photon-nucleon asymmetries 

The fully-corrected asymmetries in Table 3.8 are ready to  be used to calculate 

the quantities of interest: the spin dependent structure functions and the virtual 

photon-nucleon asymmetries. At this time it is also logical to compare the results of 

two independent analyses. While the raw asymmetries could have been somewhat 

different in the SLAC and Caltech analyses (due to different contamination and 

dn 

corrections): the final asymmetries All and A1 must be identical within allowed 

statistical fluctuations, if both analyses are correct. For completeness, we will here 

list the main differences between two analyses: 

Raw analysis 

The DST production had started earlier at SLAC, and certain ideas were not 

implemented. The most important one was the FADC synchronization using the 

TDC information (see Section 3.3). The shower code described in Section 3.4 

was used only in the Caltech analysis; the SLAC code is described in Ref. [116]. 

The tracking used by both analyses is described in Section 3.5 with very minor 

improvements not implemented in the SLAC version. The Caltech analysis 

stored only class 1 tracks on the DST tapes while at SLAC tracks of classes I ,  

2, and 3 were kept (only class 1 tracks were used as electron candidates). 

Run selection 

Both analyses used the same set of runs. as described in Section 3.7.2. 
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0 DST analysis 

Both codes were very similar at the level of the DST analysis. The main differ- 

ence was in the beam cut, which was very generous for the SLAC analysis[’*’] 

and somewhat more restrictive at Caltech (see Section 3.7.3.1). 

0 Electron selection 

The two analyses differed in the definition of electrons ( c f .  Section 3.7.3.2). For 

completeness, we list below the definition adopted by the SLAC group:[141] 

1. Class 1 track with both Cherenkovs in coincidence; 

2. Acceptance cut passed; 

3. 8 GeV< p < 48.3 GeV; 

4. 1 GeV2 5 Q2 5 25 GeV2, W 2  2 8 GeV2: 

5. Peak voltage in both Cherenkov tanks 2 25 (in FADC units): 

6. 0.8 5 E / p  5 1.2; 

7. Neural Network 2 -0.98.[121] 

0 Background subtraction and corrections to the raw asymmetries 

The estimates of the pion contamination were quite different in the two analyses 

(c f .  Section 3.9.1.1). The SLAC group estimated a less than 1% pion contam- 

ination using an indirect technique of scaling the 7rt/et ratio by the ratio of 

the T - / T +  production cross sections and the measured e+/e- (a more 

sophisticated method, similar to the one described in Section 3.9.1.1, has been 

applied to the SLAC analysis data[143] and gives bigger estimates of the pion 

contamination, consistent with our analysis). The pion contamination was only 

measured for runs with the target cell Picard (the only time interval when the 

polarized “positron” runs were taken), and the SLAC group assumed that the 

contamination was constant with time. Fortunately, the pion contamination 
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was at  most 5 - 10% for the highest rate runs (see Section 3.9.1.1)) so the 

error associated with such an assumption is not big. The background from the 

charge-symmetric processes was independent of the analysis cuts, and estimates 

of the background rates by both groups agree. The rate dependence correction 

was only applied to the Caltech data and was neglected by the SLAC group. 

The comparison between the two sets of asymmetries is shown in Fig. '4.1. The 

agreement is as good as it could be, since the majority of the selected events is 

common. The differences between the two results are consistent with statistical 

fluctuations if = 10 - 15% of the events in the two samples are different. For the 

publications, we have chosen to average two results (straight average), and we have 

taken the larger statistical error. The averaged asymmetries are given in Table 4.1. 

The averaged asymmetries All and A1 were used to calculate the spin dependent 

structure functions g; and gr and the photon-nucleon asymmetries A; and A;. Since 

the experimental asymmetries are given for 3He, we first calculate All and A1 for 

the neutron (cf. Eq. (1.89)): 

(4.1) 
1 

AT ___ ( ~ ; i H e ( 2 ~ :  + ~ 2 n ) f E M c  - 2 ~ i p ~ ~ : )  ) 

PnF2n 

where p+) is the neutron (proton) polarization in 3He (see Section 1.6)) ~ E M C  is the 

EMC effect factor,[74] and F$') is the unpolarized structure function of the neutron 

(proton) (we assume that the ratio of the longitudinal to transverse cross sections 

R(z ,  Q 2 )  is the same for proton and We use the fit to the world data on 

g ~ [ ' o ~ ' 2 ]  to calculate the proton asymmetry A[. The contribution of gi is calculated 

using the Wandzura-Wilc~ek[~~I twist-:! expression (see Eq. (1.47)) and the fit to gy 

mentioned above. The expression for AT is similar to Eq. (4.1). 

We use Equations (1.23) and (1.24) to calculate the spin dependent structure 

functions 9;" and gg of the neutron. The neutron virtual asymmetries A;" and A; 

are given by Equations (1.25) and (1.26). The structure functions and the photon- 
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Fig. 4.1. The  comparison between asymmetries All (top) and A l  (bottom) given by the 
SLAC (open circles) and Caltech (closed circles) analyses. 



Table 4.1. Averaged results of the  two analyses on 3He asymmetries All and AL.  

x bin (4 ( Q 2 >  All f stat. f syst. AL f stat. f syst. 

2.75" spectrometer 
( GeV2) 

0.014 - 0.02 0.017 1.21 -0.0133 f 0.0041 f 0.0036 0.0058 f 0.0126 f 0.0018 
0.02 - 0.03 0.025 1.59 -0.0169 f 0.0030 f 0.0025 0.0000 f 0.0094 f 0.0013 
0.03 - 0.04 0.035 2.05 -0.0154 f 0.0031 f 0.0018 -0.0163 f 0.0100 f 0.0018 
0.04 - 0.06 0.049 2.57 -0.0143 f 0.0025 f 0.0012 0.0144 f 0.0080 f 0.0015 
0.06 - 0.10 0.078 3.32 -0.0103 f 0.0023 f 0.0009 0.0072 f 0.0075 f 0.0013 
0.10 - 0.15 0.122 4.09 -0.0085 f 0.0027 f 0.0007 0.0120 f 0.0095 f 0.0022 
0.15 - 0.20 0.173 4.63 -0.0089 f 0.0034 f 0.0008 -0.0014 f 0.0125 f 0.0022 
0.20 - 0.30 0.241 5.09 -0.0080 f 0.0034 f 0.0007 -0.0121 f 0.0127 f 0.0021 
0.30 - 0.40 0.340 5.51 -0.0022 f 0.0060 f 0.0005 0.0247 f 0.0210 f 0.0035 
0.40 - 0.50 0.423 5.82 0.0044 f 0.0137 f 0.0007 0.0036 f 0.0443 f 0.0007 

5.5" spectrometer 
0.04 - 0.06 0.057 4.03 0.0120 f 0.0260 f 0.0027 0.1582 f 0.1219 f 0.0146 
0.06 - 0.10 0.084 5.47 -0.0224 f 0.0035 f 0.0022 0.0274 f 0.0165 f 0.0025 
0.10 - 0.15 0.123 7:23 -0.0226 f 0.0027 f 0.0018 0.0023 f 0.0126 f 0.0025 
0.15 - 0.20 0.172 8.94 -0.0168 f 0.0034 f 0.0013 0.0082 f 0.0157 f 0.0033 
0.20 - 0.30 0.242 10.71 -0.0168 f 0.0034 f 0.0013 0.0182 f 0.0158 f 0.0035 
0.30 - 0.40 0.342 12.55 -0.0123 f 0.0053 f 0.0019 -0.0171 f 0.0246 f 0.0024 
0.40 - 0.50 0.442 13.83 -0.0102 f 0.0084 f 0.0012 -0.0245 f 0.0383 f 0.0020 
0.50 - 0.70 0.564 15.00 0.0003 f 0.01 19 f 0.0008 -0.0024 f 0.0548 f 0.0034 
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Table 4.2. The spin dependent structure function 9;" and the photon-nucleon asymmetry 
A? * 

(2) ( Q 2 )  (GeV2) g;l f stat. f syst. A; f stat. f syst. 
2.75" spectrometer 

0.017 1.21 -0.351 f 0.115 f 0.104 -0.058 f 0.019 f 0.017 
0.024 1.59 -0.374 f 0.071 f 0.062 -0.080 f 0.015 f 0.014 
0.035 2.05 -0.290 f 0.061 f 0.037 -0.078 f 0.018 f 0.011 
0.049 2.57 -0.212 f 0.041 f 0.021 -0.089 f 0.016 f 0.010 
0.078 3.32 -0.119 f 0.031 f 0.013 -0.078 f 0.019 f 0.009 
0.123 4.09 -0.075 f 0.030 f 0.009 -0.089 f 0.031 f 0.011 
0.173 4.63 -0.070 f 0.033 k 0.009 -0.100 f 0.053 f 0:014 
0.241 5.09 -0.053 f 0.028 f 0.007 -0.078 f 0.077 f 0.018 
0.340 5.51 0.001 f 0.036 f 0.004 -0.166 f 0.206 f 0.051 
0.423 5.82 0.027 f 0.059 k 0.007 0.166 f 0.606 f 0.038 

5.5" spectrometer 
0.057 4.03 0.224 f 0.285 f 0.035 0.045 f 0.120 f 0.012 
0.084 5.47 -0.152 j, 0.029 f 0.019 -0.104 f 0.018 f 0.013 
0.123 7.23 -0.117 f 0.017 f 0.012 -0.110 f 0.015 f 0.012 
0.172 8.94 -0.059 f 0.016 f 0.007 -0.090 f 0.023 f 0.011 
0.242 10.71 -0.040 f 0.012 f 0.005 -0.118 f 0.030 f 0.016 
0.342 12.55 -0.019 f 0.012 f 0.005 -0.057 f 0.068 f 0.022 
0.442 13.83 -0.009 f 0.012 f 0.002 -0.013 f 0.146 f 0.018 
0.564 15.00 0.003 f 0.008 f 0.001 0.100 f 0.294 f 0.032 

nucleon asymmetries are given for the two spectrometers in Table 4.2 and Table 4.3. 

The structure function xg; is plotted in Fig. 4.2, and xg; is shown in Fig. 4.3. 

4.1.2 Traditional Q2 evolution 

Since the QCD sum rules are defined at a fixed four-momentum transfer, one 

needs to evolve the data from the Q2 of the measurement (which is given along 

the line Q2 = Q 2 ( x ) ,  see Fig. 2.10) to a constant value, usually taken to be the 

average Q2.  The average Q2 for E154 (weighted by statistics of All) is x 5 G e V .  

Traditionally, experiments have been using the fact that the data, albeit of the 

limited precision to be conclusive, are consistent with the assumption that for Q2 > 
1 GeV2 the ratio of the polarized to the unpolarized structure functions gl /Fl ,  or 
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Fig. 4.2. The  structure function zgp measured in the 2.75' (closed circles) and 5.5' (open 
circles) spectrometers. The 5.5' d a t a  points are slightly offset in z for clarity. The  shaded 
area represents one standard deviation systematic errors. 
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Fig. 4.3. The structure function zgy measured in the 2.75' and 5.5' spectrometers. The  
shaded area represents one standard deviation systematic errors. 
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Table 4.3. The spin dependent structure function g; and the photon-nucleon asymmetry 
A;.  

I 
(2) ( Q 2 )  (GeV2> g; f stat. f syst. A; f stat. f syst. 

2.75" spectrometer 
0.017 1.21 7.167 f 15.312 f 2.169 0.033 f 0.074 f 0.010 
0.024 1.59 0.154 f 7.232 f 0.980 -0.002 f 0.056 f 0.007 
0.035 2.05 -7.870 f 4.890 f 0.958 -0.106 f 0.064 f 0.013 
0.049 2.57 4.605 f 2.504 f 0.543 0.099 f 0.056 f 0.012 
0.078 3.32 1.318 f 1.331 f 0.245 0.058 f 0.065 f 0.012 
0.123 4.09 1.223 f 0.953 f 0.237 0.127 f 0.106 f 0.026 
0.173 4.63 -0.080 f 0.810 f 0.145 -0.033 f 0.179 f 0.033 
0.241 5.09 -0.486 f 0.515 f 0.105 -0.251 f 0.241 f 0.049 
0.340 5.51 0.541 f 0.466 f 0.145 0.635 f 0.550 f 0.126 
0.423 5.82 0.040 f 0.580 f 0.018 0.162 f 1.414 f 0.040 

5.5" spectrometer 
0.057 4.03 41.007 f 31.640 f 4.458 0.945 f 0.727 f 0.103 
0.084 5.47 4.077 f 2.403 f 0.434 0.161 f 0.099 f 0.018 
0.123 7.23 0.231 f 1.003 f 0.196 0.009 f 0.080 f 0.016 
0.172 8.94 0.398 f 0.723 f 0.153 0.052 f 0.112 f 0.024 
0.242 10.71 0.477 f 0.407 f 0.098 0.145 f 0.136 f 0.031 
0.342 12.55 -0.216 f 0.311 f 0.039 -0.205 f 0.273 f 0.032 
0.442 13.83 -0.155 f 0.239 f 0.030 -0.360 f 0.532 f 0.047 c 

0.564 15.00 -0.008 f 0.132 f 0.009 -0.036 f 0.953 f 0.058 

the virtual photon-nucleon asymmetry AI are independent of Q2 for a n y  given v a h e  

of 2.[771 Although the assumption contradicts a perturbative QCD analysis (as will 

be discussed in Chapter 5), it could be a reasonable approximation if the range of Q2 

is not very big and/or if the error due to the approximation is significantly smaller 

than the uncertainty on the data. We will follow the traditional approach and evolve 

the data to Q2 = 5 GeV2 assuming the scaling (Q2-independence) of gy/F;". We will 

carry out the Next-to-Leading order perturbative QCD analysis of the polarized DIS 

data in the next chapter and return to the question of Q2 evolution. 
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Fig. 4.4. The structure function gr evaluated at Q2 = 5 GeV'. Overlaid is a fit to the 
data. The shaded area represents one standard deviation systematic errors. 

4.1.3 Combining data from two spectrometers 

The structure function g; was evolved to the average Q2 = 5 GeV2 assuming 

the scaling of g;Z/F;", and the values of gl from the two spectrometers were averaged 

at Q2 = 5 GeV2 in the common 5 bins (weighted by the statistical error of gy 

at 5 GeV2). The average Bjorken (2) and ( Q 2 )  for each bin were also weighted 

by the statistical error of 9;". The average values for the structure function gy and 

the asymmetry A;" are given in Table 4.4. The structure function g;", evaluated at 

5 GeV2, is shown in Fig. 4.4. 

4.2 Systematic errors 

Many of the systematic uncertainties that affected the determination of the 

structure functions were mentioned in the previous sections. The contributions from 
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the various sources to the systematic error on g;(x) and on the integral in the 

measured range are summarized in Table 4.5. 

The biggest contributions to the error on the integral in the measured range 

come from the scale uncertainties: dilution factor (relative error is approximately 

independent of 2) and the target polarization. The biggest uncertainty at the lowest 

z = 0.017 is due to the asymmetry in the charge-symmetric processes. This error 

could potentially be reduced if some theoretical guidance (regarding the kinematic 

dependence of the asymmetry or its relation to the well measured pion asymmetry) 

was available (see Section 3.9.2). 

4.3 Discussion of the results 

The E154 data on g;l give the most precise determination of the spin-dependent 

structure function of the neutron to date. Our results are compared with the data 

from the previous SLAC experiments E142f9] and E143['0~11] in Fig. 4.5. The agree- 

ment among the data sets is very good. The E154 data extends the measurement of 

g;" to lower values of z and improves the precision by about factor of 2. Our results 

are compared to the data of the SMC experiment at CERNil2J31 in Fig. 4.6. The 

two data sets are complementary at low z since the SMC data extends to 5 0.003! 

albeit with large uncertainties. 

The most striking feature of the E154 data is the behavior of the structure 

function at low 2. Not only does it not converge to zero as x becomes smaller, but 

the behavior is very divergent (see Fig. 4.4). This is even more evident if the data 

are plotted on a log-log scale (Fig. 4.7). The data below 2 = 0.1 can be accurately 

fitted with a g;" - x - O . ~  power law. The low IZ: power of the global fit (see Fig. 4.4) is 

-0.7 f 0.1, or several standard deviations away from the naive Regge expectation' 

IT0 actually estimate the statistical significance of the results one needs to take into account 
the correlations between the parameters of the fit. We will return to this question in Section 4.4.3.  
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Fig. 4.5. The E154 results on the structure function sg;l (closed circles) compared to the 
E142 (open triangles) and E143 (open circles) data .  The E142 and E143 d a t a  points are 
slightly offset in IZ: for clarity. The shaded area represents one sigma systematic errors of 
E154. 
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Fig. 4.6. A comparison of the E154 (closed circles) and SMC (open circles) da ta .  The 
shaded are represents one standard deviation systematic errors. 
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Fig. 4.7. The absolute value of structure function gy is plotted on a log-log scale. The low 
5 data points of E154 are fitted with a power-law function g1 - X - ' . ~ .  

cr = 0. Such a divergent behavior makes the extrapolation to x = 0 problematic, as 

will be discussed in the following Section. 

4.4 Integrals 
4.4.1 Data range 

The integral of g;" in the data range was obtained by summing the values of the 

structure function in every bin multiplied by the width of the bin. The statistical 

errors are uncorrelated from bin to  bin, and are added in quadrature. Most of the 

systematic errors are largely correlated bin-to-bin and therefore are added linearly. 

The uncorrelated errors (errors on positron asymmetry, pion asymmetry, and gr ) 

are added in quadrature. The final result for the integral in the data range is 

dx gp(x) = -0.0360 f 0.0039 f 0.0045 , (4.21 

where the first uncertainty is statistical, and the second is systematic 
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4.4.2 High x extrapolation 

The kinematic range of any experiment is limited, and the data need to be 

extrapolated to z = 0 and II: = 1 in order to compute the full integral of gl and test 

the sum rules. The extrapolation to II: = 1 is straightforward. The quark-counting 

rules predict (see Section 1.4.1) the leading twist Contribution of the structure 

function to  fall off as gl N (1  - x ) ~  (or even faster due to the Q2 evolution) as z -+ 1. 

The higher-twist contributions may have a slower dependence (see Section 1.3.2.2), 

but it is the leading twist contribution that we are interested in. We assume the 

( 1  - z)3 dependence of g; at high x and use the value of g; in the last bin to set the 

scale. The contribution to the integra1 from the unmeasured high x region is then 

1 

dx gy(z) = (0.15 f 0.42 j, 0.04) - , I ,  
where the first uncertainty is statistical, and the second is systematic. 

(4.3) 

4.4.3 Low x extrapolation 

A much more important contribution comes from the unmeasured low-x region. 

While the high-z extrapolation is well justified theoretically and the contribution 

to the integral is negligible, the extrapolation to x = 0 is much less certain. .4s 

was discussed in Section 1.5, the theoretical models vary widely in this region. The 

traditional approach, taken by all spin structure experiments prior to E154, was 

to assume the convergent Regge behavior g1 N I I : - ~  where the Regge intercept 

CY is associated with the trajectory of the a1 meson and is bound between -0.5 

and 0.[657"] This assumption was consistent with the E142 neutron data,[g] and the 

E143 proton["] and deuteron[''] data (which was limited to z > 0.03), but just 

barely agreed with the high energy SMC proton data.['*] The Regge theory does not 

explicitly specify the kinematic domain in which the prediction of the asymptotic 

behavior is applicable (see Section 1.5). The approach adopted by the experimental 
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c~llaborations[~-”] was to fit the data with the Regge-type function g1 - z - ~ ,  cy < 0 

below 5 = 0.1 (that corresponds to fi > 6 GeV cutoff at Q2 NN 5 GeV2, and the 

total yp cross sections are successfully described in that kinematic range by Regge 

theory[64]). This function does not apparently fit the E154 neutron data. Fitting the 

g; data with a g; = const form ( L e .  saturating the upper limit on the a1 intercept) 

results in a x2 = 24 for 4 degrees of freedom (where only uncorrelated errors are 

taken into account). This x 2  corresponds to the confidence level of O.8.1Od4; inclusion 

of the point-to-point correlated errors increases the confidence level to 0.4 . 
However, one may still fit the three lowest z points (z < 0.04) to a constant with a 

reasonable x2 = 1.7 for 2 degrees of freedom. Since the Regge prediction is not very 

specific, we may not a priori discard the possibility that the convergent behavior 

sets in at this, or even lower value of z. 

Lacking a satisfactory description of the low x data by a conventional theory, we 

shall resort to other phenomenological fits to the data. Several possible functional 

forms have been discussed in Section 1.5. To illustrate the possible spread among 

models divergent at low z, we fit the data to the Pomeron-Pomeron cut form[67,681 

g;” - l / ( z l n 2 z ) ,  and to the generic power law g;” N 5 - O  with cy being a free 

parameter. The Pomeron-Pomeron form fits reasonably well the four lowest z points 

(z 5 0.06). To fit the power-law form we use the five lowest x points (z 5 0.1). In 

addition, a “global” parameterization of the form 

g; = CSL”(l - z)P (4.4) 

that does not require a low-z cutoff, could be used to extrapolate the data to z = 0. 

All eleven data points are used to obtain the parameters of the “global” fit (Fig. 4.4). 

The results of the fits are listed in Table 4.6 together with the integral from the 

unmeasured low z region and the resulting integral over the full 2 range2. Three 

2For the multi-parameter fits, the parameter correlation matrix was used to calculate the error 
on the integrals. 
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Fig. 4.8. Three representative fits to the low z data of E154. Also included are the low-2 
data of SMC {open circles). 

representative fits are shown in Fig. 4.8 for which the low-z power was fixed at 0.8, 

the average of the “global” and free power fit. 

The spread of the possible contributions from the low z region is very big even 

for moderately convergent models. Note that the free-power fit gives a value of the 

exponent a that is very close t o  unity, in fact, CY > 1 is consistent with the data 

within statistical or systematic errors. Since the integral diverges if CY > 1, we do 

not quote any uncertainty; the integral is simply less than I standard deviation from 

infinity. This is not very satisfactory; clearly, precise high energy data are needed 

to determine the behavior of the structure functions at low 2. 

4.5 Sum rules 

Given the spread of the models at low z, we feel that the evaluation of the 

Ellis-Jaffe sum rule is not possible at present. Relatively large values of the neutron 



Table 4.6. Results of the fits to the low x data of E154. The first uncertainty is statistical and the second is systematic. 

g; = Cx-a 

g; = C P ( l  - x) 9 

Parameters 
C = -0.41 f 0.05 f 0.06 

G = -0.125 f 0.014 f 0.016 
C = -0.014 f 0.007 f 0.004 

cy = 0.92 f 0.16 f 0.09 

cr = 0.70 f 0.18 f 0.10 
,O = 3.2 f 1.6 f 0.7 

C = -0.034 f 0.021 f 0.011 

s:.01J5dx g; Sd. dx s; 
-0.0055 f 0.0007 f 0.0008 -0.0414 f 0.0044 f 0.0057 
-0.0291 f 0.0032 f 0.0036 I -0.0649 f 0.0062 f 0.0085 

-0.14 f 00 f 00 -0.17 
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spin structure function g;" at low x question the validity of a naive application 

of the Regge theory to the present-day spin structure experiments. It would seem 

unnatural if the situation was any better with the proton and deuteron structure 

functions: most likely, the experiments have not yet reached the kinematic range 

and precision required to see the true asymptotic behavior at low x. A possible 

interpretation of our data is that the neutron structure function (or at least its 

derivative with respect to z) is dominated by the sea quark and gluon contributions, 

which in fact could produce very divergent behavior at low xi7'] (we will return to 

this question in Chapter 5 ) .  Consequently, we do not quote a number for the quark 

helicity contribution AX = Au + Ad + As. 

Figures 4.9 and 4.10 show the values of the Ellis-Jaffe and Bjorken integrals 

integrated from a given zmin value to 1. The integral over the data range of the 

neutron structure function exceeds the Ellis-Jaffe prediction by about factor of two. 

and the Bjorken sum rule is almost saturated by the integral over the measured 

range. 

Even if the neutron and proton integrals diverge, the Bjorken sum rule could 

still be evaluated from the present data. The difference (gy - g:)(z) is a purely 

non-singlet, valence quark distribution (if one assumed Aii = AJ) and is expected 

to behave much softer at low z than its singlet counterpart.[71] The difference (gy - 

gy)(z) is plotted versus z in Fig. 4.11. We take E143["1 and SMC[12] data to evaluate 

the contribution from the proton structure function. The difference of two structure 

functions indeed shows a more convergent behavior; fitting a free power-law function 

(9: - gy) = Cz-" to the first five points (z 5 O . l ) ,  we get 

C = 0.120 f 0.036 (stat.) f 0.005 (syst.) 

cy = 0.52 f 0.10 (stat.) f 0.04 (syst.) . (4.5) 

The contributions to the integral are 
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Fig. 4.9. The  spin dependent structure function g;(z) of the neutron integrated from z,in 
t o  1 and plotted versus zrnjn. The  statistical and systematic errors have been added in 
quadrature. The errors in the plot aFe strongly correlated from point to point. 

Fig. 4.10. The difference between the spin dependent structure functions g1 of the proton 
and neutron integrated from x,in t o  1 and plotted versus %,in. E154 d a t a  was used to  
evaluate.g;, and a fit t o  the E143 and SMC d a t a  was used for gy. The  statistical and 
systematic errors have been added in quadrature. The errors in the plot are strongly 
correlated from point t o  point. 
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Fig. 4.11. The difference between the spin dependent structure functions zgl of the proton 
and neutron. E154 da ta  was used to  evaluate g y ,  and a fit to  the E143 and SMC d a t a  was 
used for g:. 

r0.7 

/ dz (gy - gy) = 0.1583 k 0.0052 (stat.) k 0.0103 (syst.) 
0.0135 
0.0135 

da: (gy - gy) = 0.0321 f 0.0130 (stat.) f 0.0071 (syst.) (4.6) 

dz (gy - 9;) = 0.0017 f 0.0003 (stat.) 5 0.0001 (syst.) , 

and the full integral is 

I' dz (g; - gy)  = 0.192 f 0.016 (stat.) f 0.018 (syst.) (4.7) 

in a reasonable agreement with the prediction = 0.181 5 0.003 evaluated at 

Q2 = 5 GeV2 to O ( C Y ~ )  with a s ( M ~ )  = 0.118 0.003.[201 This result is quite robust 

against possible variations in the low 2 behavior: even if we assumed "Regge" behav- 

ior (gf-gy) - const at low z, the full integral would be I'p-n = 0.170f0.006f0.0l1, 

consistent within uncertainties with the value in Eq. (4.7). 



C H A P T E R  5 

NEXT-TO-LEADING ORDER QCD ANALYSIS OF THE 

5.1 

POLARIZED DEEP INELASTIC SCATTERING DATA 

Introduction 

For more than two decades since the pioneering experiments in the late 1970’s at 

SLAC,[637] deep inelastic scattering (DIS) of polarized leptons off polarized targets 

has provided information about the internal spin structure of the proton and neu- 

tron. Recent progress in both experiment and theory has made polarized DIS into a 

powerful tool for QCD phenomenology. On the theoretical side, a full calculation of 

the Next-to-Leading Order (NLO) spin-dependent anomalous dimensions has been 

recently ~ompleted.[~q This provides for a perturbative QCD (pQCD) analysis of 

polarized DIS analogous to the treatment of the unpolarized data.[144-1461 At the 

same time, improvement in the precision of the experimental data and increased 

kinematic coverage has made such an analysis increasingly more meaningful. 

The data reported in this dissertation is the newest addition to  the world data 

on the spin-dependent structure functions. They are the most precise up to date 

determination of the neutron structure function 9;. The kinematic range of the 

measurement was extended compared to the previous SLAC  experiment^[^-^'] to 

0.014 5 J: 5 0.7 in the Bjorken variable and 1 GeV2 5 Q’ 5 17 GeV2 in the four- 

momentum transfer. Two independent spectrometers used in E154 also provided for 

a possibility to study the Q2 dependence of the structure function 9;. The kinematic 

coverage of the polarized DIS experiments is illustrated in Fig. 5.1. Although, as we 

mentioned in Section 4.1.2, the present data are consistent with the assumption 

that the asymmetry A1 (or the ratio gl/F,) is independent of Q2, information on 



Fig. 5.1. Kinematic coverage of the present polarized DIS experiments. 
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the evolution of asymmetries can be extracted from the data in the framewoin of a 

consistent pQCD analysis. 

As was discussed in Section 4.4.3, the relatively large values of 9;" at low 2 show 

an apparent disagreement with a traditional Regge behavior that could be attributed 

to a large contribution to gy from the singlet quark distribution. This implies the 

importance of the dynamics of polarized quark and gluon distributions, and in 

particular, a possibly sizable Q' dependence of the experimental asymmetries. It is 

therefore important to perform a consistent NLO analysis of the available data that 

would take into account theoretical and experimental uncertainties, both statistical 

and systematic. Among the analyses performed so far,[63*8s~14fl only Ref. [63] gives a 

detailed treatment of errors involved in extraction of the first moments of polarized 

parton distributions; however, the effect of experimental systematic uncertainties 

was underestimated. The analyses of Ref. [63,86,147] had been done before the E154 
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results became available, and it is interesting to see what additional information can 

be extracted from the new data. 

In this Chapter, while paying a careful attention to the theoretical and experi- 

mental errors involved in the analysis, we will: 

1. Discuss the results on the Next-to-Leading Order perturbative QCD analysis 

of the world data on polarized deep inelastic scattering; 

2. Estimate the Q2 dependence of the experimental asymmetries; 

3. Discuss additional constraints that can be placed on the low a: extrapolation of 

the experimental data; 

4. Extract the first moments of the polarized parton distributions and structure 

functions. 

5.2 Formalism 

In the following, we will follow the notation introduced in Section 1.3. The 

helicity-dependent distribution functions of the quarks and antiquarks will be de- 

noted as Sq(a:) and Sq(a:),  respectively. The total polarized distribution of the quarks 

of flavor q will be denoted as Aq(x) E Sq(a:)+SQ(z). The polarized gluon distribution 

is AG(z). Whenever the explicit z dependence is not specified, we will imply the first 

moment of a polarized distribution, $.e. Aq 3 Ji da: Aq(a:) and AG E Ji dx AG(x). 
In the QCD-improved parton model, the polarized structure function gI(x) of 

the nucleon is related to the polarized quark, antiquark, and gluon distributions 

Sq(z), &(s), and AG(a:) via the factorization 

with the convolution 8 defined as 

The sum is over all active quark flavors N f .  
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The first moments of the structure functions of the proton and neutron gf and 

g; allow one to test the fundamental Bjorken sum rule[26] and determine the helicity 

contents of the proton. The information on the 2 and Q2 dependence gives insight 

into the perturbative and non-perturbative dynamics of quarks and gluons inside the 

nucleon. Coefficient functions C s , ~ (  z, as) correspond to the hard scattering photon- 

quark(g1uon) cross sections and are also referred to as Wilson coefficients. They are 

calculated in perturbative QCD as an expansion in powers of the strong coupling 

constant as: 

C(s ,as)  = C(O)(z) + as (Q2)c (qs )  2?r + * * . (5.3) 

In the leading order, CP(O) = S(1 - z) and Ct) = 0 according to the simple partonic 

picture ( i e .  gluons carry no net electric charge and do not couple directly to 

the photons, so the structure functions depend only on quark contributions, cf. 

Eq. (1.48)). The polarized NLO coefficient functions Cil) and C&) in the modified 

minimal subtraction (m) renormalization and factorization schemes are given in 

Ref. [37]. In the following, we will follow the conventional approach["*145] and use 

the fixed-flavor scheme and set N j  = 3 in Eq. (5.1). This is justified since the Q2 

of the experiments is relatively low and even above the pair-creation threshold the 

heavy quarks (charm and bottom) contribute very little to  the structure function 

gl. The heavy quark contributions will be included in the two-loop running of 

1 
(5.4) 

where the coefficients of the QCD beta function are ,Bo = 11 - Zf/3 and PI = 

102 - 38 f /3. The number of active flavors f in as(Q2) is determined by the number 

of quarks with mi 5 Q2, A(j)  are determined by the matching condition at the 

quark threshold a ~ ( r n i , f )  = as(mi, f + 1). For consistency with the evolution of 

the unpolarized distributions, we take[145] 
- 

A$:,5) = 248, 200, 131 MeV (5.5) 
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with rn, = 1.5 GeV and r n b  = 4.5 GeV that corresponds to a s ( M i )  = 0.109 or 

4 5  GeV’) = 0.237. We include the uncertainty associated with the value of as as 

will be discussed below. The parton distributions in Eq. (5.1) are those of the proton. 

The neutron structure function is obtained by the isospin interchange u d ,  and 

the deuteron structure function is defined as 

where the D-state probability w o  = 0.05 k 0.01.[’491 

The Q2 evolution of the parton densities is governed by the DGLAP equa- 

t ions [41-431 

d AE(z) and &’- ( ) = dQ2 AG(z) 27r 

where the index NS stands for the the non-singlet quark distributions: valence (7 = 

1) Auv(z,&’) = Su - S i i ,  Adv(z,Q’) = Sd - Sd, and the SU(3)flavO, non-singlet 

combinations ( q  = -1) Aq3(z,Q2) = Au(z,Q’) - Ad(z,Q’) and Aqs(z,Q2) = 

Au(z, Q2) + Ad(z, Q2) - 2As(z, Q’). The SU(3)flavO, singlet distribution is AX = 

Au(z, Q’)+Ad(z: Q2)+As(z, Q’). The splitting functions P& and Pt3 are calculated 

perturbatively 

(5.8) 

with the leading order functions given in Eq. (1.58), and the next-to-leading order ex- 

pressions recently obtained in Ref. [37]. Note that in the leading order, the evolution 
(O)?J= - 1 (0)17=+1 = pp’;, of both types of non-singlet distributions is the same: PNs = PKS 

and the differences only appear in the next-to-leading order. Starting with a param- 

eterization of the parton densities at some initial scale Qg, the distributions at any 
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value of Q2 > Qi are obtained using the solutions of the NLO DGLAP equations in 

the Mellin n-moment space[39J501 with the n-th moment defined by 

f ( n )  = 1' dz z"-lf(.). (5.9) 

In Mellin space, the DGLAP evolution is controlled by the matrix of anomalous 

dimensions that are related to the n-th moments of the splitting functions. We use 

the convention of Ref. [150] for the anomalous dimensions 

(5.10) 

with yt(,o)(n) = -4J0 1 dx x"-'P:)(z) and -yi;)(n) = -8J0 1 dx tn-lPiJ (1) ( 2 ) .  The com- 

plete set of the LO and NLO anomalous dimensions can be found in Appendix B. 

The parton densities evolved in Mellin space are inverted back to Bjorken z space 

using the prescription of Ref. [150] (see Appendix B). 

One of the primary uncertainties in the interpretation of the deep inelastic 

scattering data at the next-to-leading order is the relative freedom in defining the 

hard scattering cross sections CA:& and the singlet quark density AX in Eq. (5,1), 

known as the factorization scheme d e p e n d e n ~ e . [ ~ ~ ~ ~ ~ ~ ~ ~ l  The factorization theorem 

states that at some scale Q 2 ,  the DIS cross section can be separated into the 

hard part that can be calculated in perturbation theory, and soft non-perturbative 

quantities sensitive to the nucleon wavefunction, the parton distribution functions. 

Such separation is a priori arbitrary; since the hard-scattering cross sections C g , ~  

are calculated perturbatively and need to be renormalized, one defines them by 

specifying an explicit renormalization procedure (factorization ~ c h e r n e ) [ ~ ~ ~ " ~ ~ .  In the 

polarized case, the situation is further complicated by the freedom of a definition 

'In DIS, the dependence on the renormalization procedure comes in two places. The factorzza- 
tzon scheme applies to renormalization of the hard-scattering cross sections in Eq. (5.1).  There is 
also a genuine renormalization scheme that defines the way the strong coupling is renormalized 
in Eq. (5.7). The two renormalization procedures do not have to  be the same. However, one most 
often chooses the same schemes, such as MS in both cases. 
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of the 7 5  matrix and the Levi-Civita tensor in n # 4 dimensions[61] in dimensional 

reg~larization.['~'] The choice of scale at which the factorization theorem is applied 

(a factorization scale) is also a priori so in a complete calculation 

one always specifies a particular factorization scheme, and chooses a scale (in DIS 

one typically uses Q2 as a factorization scale, as we did in Eq. (5.1)). Additional 

uncertainty comes from the lack of knowledge of the higher order corrections, and 

is conventionally referred to as a renormaZization scale dependence (i. e .  dependence 

of the results on a choice of the scale for the coupling constant in Eq. (5.3)). Several 

prescriptions for setting the renormalization scale exist .[1531 Typically, one chooses 

Q2 to be the renormalization scale and the uncertainty is estimated by varying the 

scale. 

Given the anomalous dimensions and Wilson coefficients in one factorization 

scheme, any other factorization scheme can be constructed by a 

where Z ( n )  is an arbitrary 2 x 2 scheme transformation matrix. The NLO anomalous 

dimensions and coefficient functions are given in Ref. [37] in the scheme with the 

definition of the y5 matrix following Ref. [l5l]. The specific feature of this scheme is 

that the first moment of the gluon coefficient function vanishes C$'(n = 1) = 0, and 

the gluon density does not contribute to the integral of 91. This has been a matter 

of debate[56-58~6'] with several authors advocating the scheme change by which the 

axial anomaly contribution -(cus(Q2)/4n) E, eiAG is included into the integral of 

gl. This implies that for the first moment of the gluon coefficient function 

(5.13) ( 1 )  cc ( n  = 1) = 4,. 
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An attractive feature of such a scheme is that the total quark helicity in this case is 

redefined as 

(5.14) 

and is independent of Q2 even beyond the leading order. It could also resurrect the 

intuitive Quark-Parton model expectation A E  e 0.6 - 0.7 and explain the violation 

of the Ellis-Jaffe sum rule if the product as(Q2)AG(Q2) turned out to  be large.[56-58] 

The product as(Q2)AG(Q2) is independent of Q2 in the leading order since 

its anomalous dimension expansion starts at order This implies that as as 

decreases logarithmically with Q 2 ,  AG grows as 1/as(Q2).  This growth is compen- 

sated by the increasing (with opposite sign) orbital angular momentum contribution 

(L,)[663,’551 in order to satisfy the proton angular momentum sum rule 

1 1 
1 -AE + AG + (L,)  = L. 
2 2 

(5.15) 

Another consequence is that the ambiguity in the definition of the total quark helicity 

in Eq. (5.14) does not vanish at infinite Q2, or in other words, the quark helicity can 

only be defined up to a Q2-independent (in the leading order) constant. However, one 

does not lose the predictive power of perturbative QCD: as long as the factorization 

and renormalization schemes are used consistently, NLO predictions can be made 

for the spin dependent structure functions and other hadronic processes involving 

spin degrees of freedom (once the parton distributions are determined in one scheme 

and at one scale). 

-4 transformation from the scheme of t’Hooft and Veltman[l5’1 to the so- 

called Adler-Bardeen (AB hereafter) scheme that satisfies Eq. (5.13) was constructed 

in Ref. [63 ] .  The inverse Mellin transform Z ( x )  of matrix Z ( n )  in Equations (5.11) 

and (5.12) was taken to be independent of 5, the first moments of the matrix elements 

were fixed by the conservation of the non-singlet axial current (Z,,(n = 1) = 0) and 
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Table 5.1. NLO initial unpolarized parton distributions at Qi = 0.34 GeV2.[145] 

U V ( Z ,  Qi) 
d v ( z , Q i )  
Q(5, Qi) = 0.5452-0-70( 1 - 2)8.33( 1 + 2.652) 

= 
= 

0 . 9 8 8 ~ - ' . ~ ~ ~ ( 1  - 2)3.380(l + 1 . 5 8 ~ ~ 1 ~  + 2.582 + 1 8 . 1 ~ ~ 1 ~ )  
0.1822-0.684(1 - 2)4.113(l + 2 . 5 1 ~ ' / ~  + 25.02 + 1 1 . 4 ~ ~ 1 ~ )  

G(x.  Q?I = 26.2~'.'(1 - ~ 1 ~ "  

by Eq. (5.13), and the lower entries of the matrix were taken to  be zero. Hence, the 

transformation matrix is 

(5.16) 

This scheme is the minimal modification of since it preserves the low and high 

2 behavior of the coefficient functions and anomalous dimensions, and thus the 

asymptotic behavior of parton distributions is not modified. In order to demonstrate 

the effects of the factorization scheme dependence, we perform our calculations in 

both and AB schemes. 

5.3 Fits 

Following the ansatz of Ref. [86], we parameterize the polarized parton distri- 

bution at the low initial scale Q; = 0.34 GeV2 as follows: 

where Af = Auv, Adv, AO, AG are the polarized valence, sea, and gluon distribu- 

tions (see below for the definition of A&), and f ( z ,  Q:) are the unpolarized parton 

distributions from Ref. I1451 (Table 5.1). 

Since the inclusive deep inelastic scattering does not provide sufficient informa- 

tion about the flavor separation of the polarized sea? we assume isospin symmetry 

1 
2 

dii = ddE - (dii+drl) . (5.18) 
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Under this assumption, the sea quark contribution to the polarized structure func- 

tions of the proton and neutron is the same: 

(5.19) 

Thus, the inclusive DIS does not probe the light and strange sea independently2, 

and the only sensitivity to the difference between Si& 62, and 83 comes from the 

difference in the evolution of the two types of non-singlet distributions ( r ]  = il in 

Eq. (5 .7 ) ) .  However, if one started with the equal sea distributions ( S i i  = Sd = 6.3) at 

Qi = 0.34 GeV2, at Q2 = 100 GeV2 and x = 0.001 the difference between the light 

and strange sea distributions would only be w 2% (and smaller at higher x), beyond 

the reach of the present-day experiments. Hence, we will parameterize a particular 

combination of the sea quark distributions that appears in Eq. (5.19): 

AQ E 1/2(8U + 82) + 1/58.? (5.20) 

Furthermore, we assume the 5 dependence of the polarized strange and light sea to 

be the same and fix the normalization of the strange sea by 

AQ , - A s  Sii + bd 
2 1 + A,/5 

- 8s = A, (5.31) 

with the SU(3)Havor symmetry breaking parameter A, varying between 1 and 0 

(where the latter choice corresponds to the unpolarized strange sea). 

The positivity constraint, 

ISf(x)l I f ( 4  (5.22) 

enforced (within uncertainties) at the initial scale Qi  holds at all scales Q2 > Q g ;  it 

leads to constraints of _> 0 and P j  2 0. In addition, we assume the helicity retention 

properties of the parton (see Section 1.4.1) that constrain3 PJ = 0. 

21nformation on the flavor separation of the polarized sea could be obtained from the semz- 
anclusave reactions, 2.e. when a hadron that carries the struck quark is observed in the final state. 

3We have checked that the data are consistent with this assumption. 
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MS 
Value Stat. Syst. Theory 

Table 5.2. Fitted values of the free parameters in Eq. (5.17) in MS and AB schemes. Also 
quoted are the statistical, systematic, and theoretical errors. 

AB 
Value Stat. Syst. Theory 

" G  

+0.08 
Omg9 -0.08 

0.64 

0.01 :E:;; 

+0.04 
-0.05 

+0.05 
-0.07 

$0.01 
-0.02 

+0.7 
-0.5 

+0.03 
-0.05 

+0.07 
-0.04 

+0.13 
-0.01 

$0.3 
-0.3 

$0.97 
-0.11 

+0.05 
-1.28 

+0.01 
-0.35 

+0.2 
-1.3 

$0.36 
-0.06 

+0.75 
-0.03 

$0.55 
-0.01 

$0.1 
-0.6 

-0.82 +0.05 +0.07 
-0.05 -0.06 

$001 +0.01 4 - 0 3  -0:02 -0.01 

0.1 y ;  +1.7 
-1.1 

+0.17 0.00 -0.00 

$0.07 
-0.13 

$0.17 
-0.00 

$1.0 
-0.0 

+0.96 
-0.09 

+0.31 
-1.21 

+0.03 
-0.06 

$0.1 
-0.6 

+0.56 
-0.05 

+0.53 
-0.34 

+o.oo 
-0.00 

+1.0 
-0.0 

The remaining eight coefficients are determined by the fit to the available data on the 

spin dependent structure function gr'n'd of the proton, neutron, and deuteron with 

Q2 > 0.95 GeV2. We determine the structure functions at the experimental values 

of Q2 using the quoted results for gl/Fl. The unpolarized structure function f'1 is 

obtained from the recent parameterization of F 2 ( z ,  Q2) from NMC['291 and the fit to 

the data on R(z ,  Q 2 ) ,  the ratio of longitudinal to transverse photoabsorption cross 

sections, from SLAC.f79] The weight of each point is determined by the statistical 

error. The multi-parameter fit is performed using MINUIT from the CERN program 

library.[156] The best fit coefficients are listed in Table 5.2 and the x2 contributions 

from various experiments are listed in Table 5.3. 
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Exp . 
Source 
Points 
x2 (m) 
x2 (AB) 

E142 E143-p E143-d SMC-p SMC-d E154 total 
191 [10,77] [11,77] [12] [13] Chapter 4 
32 40 34 12 12 18 149 

24.6 45.5 33.7 11.0 15.9 9.8 140.4 
24.6 48.6 31.9 11.3 16.5 9.4 142.3 

5.4 Error analysis 
5.4.1 Experimental errors 

The statistical errors on the parameters of the fit could in principle be extracted 

from the correlation matrix returned by the fitting program.['56] However, the esti- 

mates provided by MINUIT should be taken with some caution: the x2 distribution 

around the minimum in the parameter space is quite shallow (the precision of the 

data is still limited), and the correlation matrix returned by the program is not 

always accurate. In addition, the correlation matrix in the parameter space is not 

very practical if one wants to calculate the errors on the structure functions, or 

uncertainty in the Q2 evolution. Moreover, it is not trivial to include the systematic 

errors into the x2 f~rmalism.['~q 

Instead of relying on MINUIT estimates, we use the standard error propagation 

technique. The statistical errors on the parameters of the fit as well as on the 

extracted parton densities Sq, @, and AG can be calculated by adding in quadrature 

statistical contributions from experimental points. The weight of every point is 

obtained by varying the point within its statistical error and calculating the change 

in the parton density. This is equivalent to taking a derivative of the quantity 

in question with respect to the value of g1 at every experimental point by finite 

differences4; thus 

4cf. Section 3.11 where such a technique was applied to the radiative corrections 
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(5.23) 

where f is, for instance, a parton density, and the sum is over all experimental points 

9;. 

One has to keep in mind the fact that the standard error propagation similar to 

Eq. (5 .23)  is limited to the case when the errors on each point are small compared 

to the ratio of the second and first derivatives (a2Af/a2gg;)/(aAf/ag;) (so that 

the Taylor expansion that leads to  this formula converges If this is not the 

case, the higher order derivatives have to be taken into account. The RMS of such 

distribution may not be a good measure of the uncertainty and one has to define the 

error in terms of a probability interval. We define g+ and n- errors in such a way 

that the probability is 34% that the value Af is within intervals [f - a_(Af ) ;  (Af)] 

and [(Af); A f + n+(Af)] (where (Af) is the value of the maximum likelihood5 of 

the distribution of Af.  The distributions of the quantities Af (for instance, a parton 

density, or a value of g1 at some particular 2 and Q2) is obtained by randomizing 

every experimental point independently according to a Gaussian distribution with 

mean of the measured value of gi and variance of a&,(gi) and repeating the YLO fit. 

A typical “statistical’) sample consists of 800 fits. The distribution of first moments 

of the polarized parton densities is shown in Fig. 5.2. 

The systematic errors for every point are usually dominated by the normalization 

errors (target and beam polarizations, dilution factor, etc.). Thus the Systematic 

errors are to a large extent correlated point to point within one experiment6. We 

therefore assume 100% correlated systematic errors for any given experiment and 

add systematic contributions within one experiment linearly. The propagated sys- 

’Note that for asymmetric distributions (Af) may not coincide with the mean of the 
distribution. 

‘This includes both proton and deuteron data taken in a single experiment, such as E143 and 
SMC. 
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Fig. 5.2. Distributions of the first moments of the polarized parton densities obtained in 
the  scheme by randomizing the input values of 91 as described in the text. 
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tematic errors of each experiment are then added quadratically to obtain the sys- 

tematic errors on parton densities. Within our "Monte Carlo" framework, it means 

that one random variable (with normal Gaussian distribution) that represents the 

fraction of the systematic error is generated for every experiment, and all points are 

shifted by that fraction. 

5.4.2 Theoretical errors 

The biggest source of theoretical uncertainty is the error on the value of as. 

We estimate it by repeating the fits7 with crs(M2) varied in the range allowed by 

the unpolarized DIS cus(M;) = 0.108 - 0.116. The scale uncertainty 

is included in the error on as. We also vary current quark masses in the range 

rn, = 1 - 2 GeV and r n b  = 4 - 5 GeV. The sensitivity to the shape of the initial 

distributions and the value of the starting scale Qi  is estimated by repeating the 

fit with initial unpolarized distributions taken from Ref. [144] at Qi = 1 GeV2. 

The effect of the SU(3)fl,,, breaking is estimated by varying the parameter A, from 

1 to 0. Possible higher twist effects are neglected since they are expected to drop 

as l/W2["] and the cut W 2  > 4 GeV2 has been applied to all the data with the 

majority of them exceeding W 2  > 8 GeV2. 

5.5 Results and discussion 

Results for the structure functions of the proton and neutron gy and g;" at 5 GeV2 

are compared to the experimental data in Fig. 5.3.  They are compared to the fits 

from Ref. [63,86] in Fig. 5.4. While the low x behavior of our parameterization is 

similar to that of Ref. [63,86], our fit is somewhat better constrained at high 2. It 

is interesting to note that all analyses predict that the proton structure function 

crosses zero between x = 0.001 and x = 0.01 (at Q2 = 5 GeV2). This is due to the 

7We also relax the positivity constraints Eq. (5.22). 
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sea and gluon contributions that start to dominate at sufficiently low x. Since the 

neutron structure function g;Z is large and negative, the deuteron structure function 

gt is expected to cross zero near x = 0.01. If this is true, the effect could potentially 

be observed by E155.[48] 

The values of the first moments of parton distributions, as well as the first 

moments of structure functions at Q2 = 5 GeV2, are given in Table 5.4. We observe 

that the first moments of the valence quark distributions are determined fairly well 

and the moments of the sea quarks and gluons are only qualitatively constrained. 

One may note an apparent x 1.90 disagreement of Aq3 with the value extracted 

from the neutron beta-decayf2'] Aq3 = g A  = 1.2601 f 0.0025. This is due to the fact 

that the calculation is done in NLO and thus the higher order corrections to the 

Bjorken sum rule are not taken into account. The corrections can be as big as 57~[~*1 

at the weighted world average Q2 E 5 GeV2 and they would bring Aq3 in better 

agreement with the beta decay data. For consistency with the NLO approximation, 

we do not include this correction; it has no effect on the physical observable gl. 

The contribution of the experimental systematic errors to the errors on the 

first moments of the parton distributions is comparable to the statistical contri- 

bution. Due to that, the full error on the first moment of the gluon distribution 

AG is bigger than quoted in Ref. [63] despite the fact that the new data from 

E154 were added. This illustrates the importance of the experimental systematic 

errors which were (incorrectly) assumed to be uncorrelated from point to point 

in Ref. [63]. The gluon distribution is constrained entirely by the evolution of the 

polarized structure functions, and no single experiment covers significantly broad 

kinematic range. Therefore, changes in relative normalization of the experiments 

( i . e .  systematic errors) smear out evolution effects and impair the determination of 

the gluon polarization density. The theoretical uncertainty is also quite large; it could 

potentially be reduced if the simultaneous analysis of the unpolarized and polarized 
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Fig. 5.3. The structure functions (top) xgy  and (bottom) xg; a t  Q2 = 5 GeV2. E143. 
SMC, and E154 d a t a  have been evolved to Q2 = 5 GeV2 using a procedure described in 
the text. The  result of the  MS fit is shown by the solid line and the hatched area represents 
the total error of the fit. 
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Fig. 5.4. The results of our fit for the structure functions (a) zgf and (b) 291” are compared 
to the parameterizations of Ref. [63,86] at QZ = 5 GeV’. The AB parameterization of 
Ref. [63,158] is shown as dashed lines, and the “standard” NLO set of Ref. [86,159] is 
shown by dot-dashed lines. The result of our fit is shown by the solid line and the 
hatched area represents the total error of the fit. 
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Table 5.4. First moments of the polarized parton distributions and structure functions of 
the proton, neutron, and deuteron in MS and AB schemes evaluated at Q2 = 5 GeV2. 
Errors are statistical, systematic, and theoretical. 

p - n  
1 

Value Stat. Syst. Theory 

0.69 

-0.40 

-0.02 

1.6 

1.09 

0.30 

0.22 

0.115 

-0.054 

0.028 

0.169 

+0.02 
-0.02 

$0.04 
-0.04 

$0.01 
-0.02 

+0.7 
-0.7 

$0.03 
-0.02 

+0.06 
-0.05 

~+0.05 
-0.06 

+0.006 
-0.006 

$0.005 
-0.007 

+0.005 
-0.006 

+0.005 
-0.004 

+0.05 
-0.04 

+0.03 
-0.03 

+0.01 
-0.01 

+0.3 
-0.6 

+0.06 
-0.05 

+0.06 
-0.04 

$0.04 
-0.05 

+0.008 
-0.008 

$0.005 
-0.006 

$0.005 
-0.005 

+0.009 
-0.008 

$0.14 
-0.01 

+0.07 
-0.00 

t0.00 
-0.03 

f0.1 
-0.6 

+0.06 
-0.01 

+0.23 
-0.01 

+0.01 
-0.01 

io .009 
-0.001 

+0.002 
-0.001 

f0.005 
-0.001 

+0.007 
-0.001 

A B  
Value Stat. Syst. Theory 

0.74 

-0.33 

-0.03 

0.4 

1.07 

0.41 

0.26 

0.114 

-0.051 

0.029 

0.165 

+0.02 
-0.03 

+0.03 
-0.04 

+0.02 
-0.02 

$1.0 
-0.6 

+0.03 
-0.02 

+0.05 
-0.08 

+0.07 
-0.07 

+0.005 
-0.006 

+0.005 
-0.007 

+0.005 
-0.006 

+0.004 
-0.004 

+0.02 
-0.03 

+0.03 
-0.05 

+0.01 
-0.01 

+0.9 
-0.6 

+0.05 
-0.06 

+0.02 
-0.06 

$0.06 
-0.06 

+0.008 
-0.011 

+0.006 
-0 .OOi  

+0.006 
-0.007 

+0.007 
-0.009 

+0.07 
-0.01 

+0.01 
-0.03 

t0.01 
-0.01 

+1.1 
-0.1 

+0.10 
-0.01 

+0.03 
-0.01 

+0.05 
-0.02 

$0.001 
-0.003 

+0.001 
-0.012 

+0.001 
-0.007 

+0.013 
-0.001 
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data was performed (including a s  as one of the parameters). The uncertainties on 

the values of AX are larger than originally e ~ t i r n a t e d [ ~ ~ ~ ~ ~ l  due to the uncertainty in 

the evolution effects and low-z extrapolation embedded in our analysis. 

The results of the fits in both and AB schemes are consistent within errors. 

The fits are significantly less stable in the AB scheme. Note that the values of the 

singlet axial charge (a0 = AX in MS scheme and a0 = AX - NfasAG/(2n)  in AB 

scheme) are almost exactly the same in two schemes. 

Using the parameterization of the parton distributions, one can obtain the 

polarized structure function (Eq. (5.1))  and evolve the experimental data points 

to  a common ( Q 2 )  using the formula: 

(5.24) 

with 

Agfit(zz, Q;”, ( Q 2 ) )  = gfit(~z7 QT) - gfit(zZ, ( Q 2 > >  3 (5.25) 

where g;xp(z,7 QT) is the structure function measured at the experimental kinematics, 

and gft is the fitted value. The errors on gyp(z,, (Q2) )  have three ~ ~ u r c e ~ :  

where statistical and systematic uncertainties should take into account the corre- 

lation between g ~ p ( z z ,  $22) and gft, and the evolution uncertainty includes only 

uncorrelated experimental uncertainties as well as theoretical uncertainties added 

in quadrature. Table 5.5 lists the E154 data points evolved to the common ( Q 2 )  = 

5 GeV2 using this procedure. For comparison, we have included the values of gy(5 GeV2) 

obtained assuming that the ratio g l /F l  is independent of Q2, as has been tradition- 

ally done (cf. Table 4.4). The difference between the NLO QCD evolution and the 

naive assumption is comparable to the precision of the present-day experiments and 

cannot be neglected. 
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Table 5.5. E154 results on gp evolved to (Q') = 5 GeV2 assuming g l /F l  is independent 
of Q 2  and according to Eq. (5.24). Errors were propagated as described in the text. 

g ; ( ~ ,  5 GeV') Fn(z1,5 GeV') 
G Q22 gT-(xz, QT> lF;(z,,p) 

GeV2 f s t a t  . f s y s t  . f s t a t  .+syst .fevol. 
2.75" spectrometer 

0.017 1.21 -0.497 f 0.163 f 0.147 -0.419 f 0.115 f 0.104 f 0.014 
0.024 1.59 -0.481 f 0.092 f 0.079 -0.409 f 0.071 k 0.062 f 0.006 
0.035 
0.049 
0.078 
0.123 
0.173 
0.241 
0.340 
0.423 

2.05 
2.57 
3.32 
4.09 
4.63 
5.09 
5.51 
5.82 

-0.345 f 0.073 f 0.044 
-0.237 f 0.046 f 0.024 
-0.127 f 0.033 f 0.014 
-0.077 f 0.031 f 0.009 
-0.071 f 0.033 f 0.009 
-0.053 f 0.028 f 0.007 

-0.304 f 0.061 f 0.037 f 0.005 
-0.215 f 0.041 f 0.021 f 0.004 
-0.117 f 0.031 f 0.013 f 0.002 
-0.073 f 0.030 f 0.009 f 0.001 
-0.069 f 0.033 f 0.009 f 0.001 
-0.053 f 0.028 f 0.007 f 0.000 

0.002 f 0.03'7 f 0.004 
0.028 f 0.061 f 0.008 

0.001 f 0.036 f 0.004 f 0.000 
0.027 f 0.059 f 0.007 f 0.000 

0.057 
0.084 
0.123 
0.172 
0.242 
0.342 
0.442 
0.564 

4.03 
5.47 
7.23 
8.94 

10.71 
12.55 
13.83 
15.00 

5.5" Spectrometer 
0.233 f 0.297 f 0.037 0.224 f 0.285 f 0.035 f 0.001 

-0.150 f 0.029 f 0.019 
-0.113 f 0.016 f 0.012 
-0.058 f 0.015 f 0.007 
-0.041 f 0.012 f 0.005 
-0.021 f 0.013 f 0.005 
-0.011 f 0.014 f 0.003 

-0.152 f 0.029 f 0.019 f 0.001 
-0.121 f 0.017 f 0.012 f 0.002 
-0.065 f 0.016 r f  0.007 f 0.003 
-0.047 f 0.012 f 0.005 f 0.003 
-0.023 f 0.012 f 0.005 f 0.001 
-0.011 f 0.012 f 0.002 f 0.001 

0.005 f 0.012 f 0.002 0.004 f 0.008 i 0.001 f 0.000 

The Q2 dependence of the ratio g l / F l  for the proton and neutron is shown for 

several 2 bins in Fig. 5.5. For the neutron, the evolution if gy is slower than that of 

F;". Therefore, assuming scaling of g?/F;", one typically overestimates the absolute 

value of g,"(z, (Q'} )  at low 2 (where Q," < ( Q 2 ) ) ,  and underestimates it at high x 

(where Q," > (Q'}). The two effects approximately cancel for the integral over the 

measured range in case of E154. However, the shape of the structure function at low 

x affects the extrapolation to  x = 0 (the effective low x power decreases, see below). 

The effect of the perturbative evolution is qualitatively the same for the proton. 

The data on g; at Q' = 5 GeV' averaged between two spectrometers are given 

in Table 5.6. For the integral of the neutron structure function in the measured 
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Fig. 5.5 .  Evolution of the ratios g l / F l  for proton (left) and neutron (right). Plotted is 
the difference $ & ( x , Q 2 )  - E ( x ,  5 GeV’). fit is shown in solid and the hatched area 
represents the total (experimental and theoretical) uncertainty. 



231 

Table 5.6. E154 results on g: evolved to Q2 = 5 GeV2 according to the NLO DGLAP 
equations. The data of the two spectrometers have been averaged. 

z gy(z,5 GeV') f stat. f syst. f evol. 
0.017 
0.024 
0.035 
0.049 
0.081 
0.123 
0.172 
0.242 
0.342 
0.441 

-0.419 f 0.115 f 0.104 f 0.014 
-0.409 f 0.071 f 0.062 f 0.006 
-0.304 f 0.061 f 0.037 f 0.005 
-0.206 f 0.041 f 0.021 f 0.004 
-0.136 f 0.021 f 0.016 f 0.001 
-0.109 f 0.015 f 0.011 f 0.002 
-0.066 f 0.014 f 0.007 f 0.003 
-0.048 f 0.011 f 0.005 f 0.003 
-0.021 f 0.011 f 0.005 f 0.001 
-0.009 f 0.012 f 0.002 f 0.001 

0.564 0.004 f 0.008 f 0.001 f 0.000 

range, we obtain 

dx gy(x) = -0.035 f 0.003 f 0.005 f 0.001 (5.27) 

where the first error is statistical, the second is systematic, and the third is due to 

the uncertainty in the evolution. This value agrees well with the originally quoted 

number (cf. Eq. (4.2)). 

5.6 Low x extrapolation updated 

It is interesting to note that the low-z behavior of the valence distributions is 

reasonably convergent (Auv(z) - x o . 1 8 2 ~ ~ ~  and Adv(x) - 2-0.435:: as 2 j 01, 
and is consistent with the Regge predictions[65] at low Q2 z Qg = 0.34 GeV2. In 

the singlet sector, the data seem to prefer small values of CY&, and the uncertainties 

on CYQ and CYG are large. The reason for that is that the data are not yet sensitive 

enough to the true asymptotic behavior of the sea and gluon distributions at low 

2. The parameters CYQ and CUG should be viewed as effective powers obtained in the 

range 5 M 0.005 - 0.1 (compared to the unpolarized case where the measurements 

extend down to x M At higher Q2 = Qiata > 1 GeV2 > Qg, the perturbative 
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Fit 
Points 

C 
CY 

~ ~ ‘ 0 1 3 5  dx g; 

g; = c g; = cx-* 
3 5 

-0.36 f 0.04 f 0.06 f 0.01 -0.018 f 0.008 f 0,001 f 0.001 
t 

0.81 f 0.15 f 0.06 f 0.01 
-0.042 f 0.063 f 0.016 f 0.004 -0.005 f 0.001 f 0.001 f 0.000 

dx g; 1 -0.040 f 0.004 f 0.006 f 0.001 I -0.077 f 0.063 f 0.021 i 0.005 I 1 

evolution leads to a divergent behavior of the valence distributions and amplifies 

the divergent behavior of the sea and gluon distributions,[71] which is evident in the 

neutron structure function below 2 = 0.1 (see Chapter 4). The low z behavior of the 

singlet distributions is to a large extent decoupled from the distributions at the low 

initial scale; it is determined primarily by evolution. This makes the data at high 

Q2 even less sensitive to the initial shape of the sea and gluon distributions. 

It is interesting to compare the low 2 extrapolation done with the E154 data 

evolved according to the NLO DGLAP equations with the results presented in 

Section 4.4.3 (where the data have been evolved to Q2 = 5 GeV2 assuming the 

scaling of gy/F;”). Results of the two fits are summarized in Table 5.7: the “Regge” 

fit gr = const, and a “free power” fit. Again, although the behavior of the free-power 

fit is now slightly softer and it is (barely) integrable within one standard deviation, 

two fits give quite different values of the total integral of the neutron structure 

function. 

One should note that the convergent behavior of the structure functions at low 

x and high Q2 would be incompatible with the pQCD predictions.[’60J61] In fact, 

at next-to-leading order, the polarized parton distributions, and therefore gl, are 

expected to rise faster than any power of log(l/z) (but slower than any power of 

z) even if the initial distributions at low scale are convergent. A t  sufficiency low 
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a: (and/or high enough Q 2 ) ,  the singlet distributions start to dominate, and both 

proton and neutron structure functions have the same asymptotic behavior. This can 

be seen in Fig. 5.6 where we plotted the structure functions of proton and neutron at 

Q2 = 5 GeV2 and a: = - lo-'. In addition to the MS parameterization discussed 

in this Chapter, we show the behavior of the structure functions for the cases where 

we fix the low a: power of all polarized distributions to 0 or 1 at the initial scale 

Q2 = 0.34 GeV2. Evidently, the asymptotic behavior for both proton and neutron 

is the same in all cases (Fig. 5.6, top); the structure functions are insensitive to the 

shape of the initial distributions below a: = 0.001. The initial distributions, however, 

dictate at what values of x and Q2 the low a: behavior sets in. Thus, for the neutron, 

the region is between x = 0.01 (for soft initial distributions) and a: = 0.1 (for our 

fit), but for the proton the asymptotic behavior sets in near a: = (Fig. 5.6, 

bottom). Therefore, extrapolating the present proton data (limited to x > 0.005) at 

moderate Q2 could be problematic. 

To evaluate the integrals of the neutron and proton structure functions, we 

evolve the E154 neutron data and the E143 proton data['*] to Q2 = 5 GeV2 

according to the procedure discussed above. The contributions to the integrals over 

the range measured by these experiments are summarized in Table 5.8. Using the 

MS parameterization of Table 5.2, we have also evaluated the contributions to the 

first moments of g; and gy from unmeasured regions (high and low x) and obtained 

for the Bjorken sum 

ry-n(5 GeV2) = 

- 

da: (9: - 9:) = 0.172 f 0.004(stat.) f O.OlO(syst.) f 0.007(evol.) 

(5.28) 
I' 

in agreement with the O ( ( Y ~ , ) [ ~ ~ ]  prediction 0.186 evaluated with crs(Mi)  = 0.109. 

This number agrees very well with the value in Table 5.4 obtained by direct inte- 

gration of the parton densities. The result is fairly insensitive to the details of the 

low-a: extrapolation which for the difference [gy -97]( a:) is determined by the valence 
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Fig. 5.6. The  low x behavior of the structure functions gy and g;" (top) and xgy and xg;" 
(bottom) for different choices of the initial parton distributions. The result of the fit 
(Table 5.2) are plotted in solid; and parameterizations with constrained low x behavior 
A f - const and A f N x are shown as dashed and dotted lines, respectively. 
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Table 5.8. Integrals of the proton and neutron polarized structure functions evaluated at 
Q2 = 5 GeV2. The first error is statistical, the second is systematic, and third is due to 
evolution. 

E154 (91") E143 (93 
Xmin 0.014 0.029 
Xmax 0.7 0.8 

-0.035 f 0.003 f 0.005 f 0.001 0.113 f 0.003 f 0.007 f 0.001 
-0.018 f 0.002 f 0.002 f 0.005 0.005 f 0.003 f 0.002 f 0.009 
-0.053 f 0.004 f 0.007 & 0.006 0.119 f 0.005 f 0.009 f 0.010 

Zmax 

JX,,, 1 
~ ~ l n  + Irma, 

0 
1 

quark distributions, and is well constrained by the data. The low z behavior in the 

non-singlet polarized sector is also relatively insensitive to the higher-order correc- 

tions.['62] On the other hand, the low-z extrapolation of the proton and neutron 

integrals alone still relies on the assumption that the asymptotic behavior of sea 

quark and gluon distributions can be determined from the present data, and that 

the effects of higher-order resummations are small. These assumptions, and therefore 

evaluation of the total quark helicity AX, are on potentially weaker grounds. Precise 

higher energy data on the polarized structure functions of both proton and neutron 

are required to determine this quantity. 



C H A P T E R  6 

CONCLUSIONS AND OUTLOOK 

Spin-dependent deep inelastic scattering still remains one of the most fascinating 

fields of particle physics. New experimental data, such as the results presented in 

this dissertation, increase our knowledge and understanding of the structure of the 

proton and neutron. At the same time, as we get a closer look into the structure and 

dynamics of quarks and gluons inside the nucleon, new questions arise, some of our 

naive expectations fall, and our uncertainty grows. The results of this experiment 

is one example of such evolution of knowledge that probably is inevitable, as was 

postulated seventy years ago by Heisenberg. 

The results of the experiment E154 at SLAC, described in this dissertation, is 

the most precise determination of the spin dependent structure function g; of the 

neutron. Compared to the previous SLAC spin structure experiments, the kinematic 

coverage was significantly increased. The increased beam energy allowed us to extend 

the measurements to lower values of Bjorken variable 17: and to increase the four- 

momentum transfer Q 2 ,  providing for a possibility to constrain the evolution of 

the polarized parton distributions. Thus, not only the information about the quark 

contribution to the structure functions can be obtained from the present data, but 

also first constraints on the gluon helicity distribution are emerging. 

At the same time, the data presented us with some surprises. We have observed 

relatively large values of gy at low 2 ,  and the behavior of the structure function seems 

to be quite divergent. This apparently disagrees with predictions of the conventional 

Regge theory, and poses certain problems for extrapolating the data to 17: = 0 in 

order to evaluate the first moment of 9: and test the Ellis-Jaffe sum rule. While 
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such a behavior is qualitatively understood in perturbative QCD, firm quantitative 

predictions are not yet available. 

In order to reduce the ambiguity in the interpretation of the results, we have 

performed a Next-to-Leading Order QCD analysis of the world data on polarized 

deep inelastic scattering. Careful attention has been paid to the uncertainties in- 

volved, both experimental and theoretical. We find that the data constrain the 

first moments of the polarized valence quark distributions; the polarized gluon and 

sea quark distributions can only be qualitatively constrained. We determine the 

Q2 dependence of the ratio g l /F ,  for the proton and neutron and find that it is 

significant compared to the present experimental errors. Assuming the validity of 

the NLO approximation, we determine the first moments of the spin dependent 

structure functions of the proton and neutron, and find agreement with the Bjorken 

sum rule. However, for an unambiguous determination of the total quark helicity 

and the polarized gluon distribution, data at  the higher energies are needed. 

The spin structure program will continue, and is likely to bring us more exciting 

discoveries about the internal structure of the nucleon. At SLAC, the experiment 

E155[48] will utilize the 50 GeV electron beam and the same detector system as 

E154 (with an addition of another spectrometer arm at 10.5' relative to the beam 

line). Using ammonia and 'LiD targets similar to the targets used in E143. the 

experimenters will measure the spin dependent structure functions of the proton 

and deuteron over the same 2 range as E154, and with increased (due to the new 

spectrometer) Q2 coverage. This precision data, especially on the deuteron structure 

function, will be of great use for understanding the nucleon spin structure at low x. 

In Europe, the HERMES experiment[''] at DESY is continuing to collect data. 

The first preliminary results from the 1995 run with the polarized 3He target on 

the neutron spin structure function were released last summer, and are expected to 

be published soon. The studies of the semi-inclusive reactions (in which the flavor 
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is tagged) allow one to  probe directly the valence and sea 

de the nucleon. The future of HERMES looks very promising, 

and it should continue to  run into the next century. The SMC experiment[’’Jq at 

CERN has finished taking data in 1996. The results of the 1995 deuteron run will be 

published soon, and the proton 1996 results are expected to be released this year. 

In the 21st century, the style of the spin structure experiments will change. The 

HERhlES experiment is likely to be the last in the generation of the “traditional” 

inclusive lepton-nucleon DIS experiments. A lot of attention has been devoted 

recentlj. ro the problem of polarizing proton beams. Such beams are planned for 

the RHIC collider at BXL, for the UNK at Serpukhov, Russia, and are proposed for 

the Fermilab )lain Injector and HERA at DESY. Having polarized protons in the 

HER-4 ring would be particularly interesting since one would be able to extend the 

kinematic range of the polarized deep-inelastic scattering experiments to x % 

and Q’ z 10‘ GeV’, similar to the unpolarized scattering. A complementary DIS 

fixed target program would be possible at the Next Linear Collider (NLC). This 

would allow for precise determination of the behavior of the spin structure functions 

at low x, A perturbative QCD analysis of such data, similar to the &LO analysis 

described in Chapter 5 ,  would determine the spin dependent parton distributions, 

including that of the gluon, with a precision comparable to the present unpolarized 

analyses. At  the proton machines, the studies of the nuclear spin structure are 

planned by measuring the single- and double-spin asymmetries in the Drell-Yan 

muon pair production p p  --+ p s p - X  that at low energies (UKK and Fermilab fixed 

target experiments) are sensitive to the polarization of the sea quarks, and at higher 

energies probe the gluon helicity distributions. Another good measure of the gluon 

polarization is the asymmetry in the hard photon production which probes the 

process g-q + qy. The asymmetry in the open charm lepto- or photo-production is 
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Such experiments are proposed at SLAC 

le internal spin structure of the nucleon 

Future experimental program promises to be very exciting, and the author wil 

follow the developments in the field with great interest. 



A P P E N D I X  A 

LIGHT-CONE PERTURBATION THEORY 

One of the most convenient frameworks to explore the properties of hadronic 

structure at large momentum transfers is the time-ordered perturbation theory. or, 

equivalently, perturbation theory on the light cone with time variable T = t + 
2/c.[45.46] Let us define 

f -  0 P = P A P 3  

and 

The mass-shell condition is? obviously, 

2 + -  - 2  2 p p - p l  = p  = m .  (A.3)  

The light-cone energy p-  > 0 and then p+ > 0; therefore, there are no vacuum- 

creation graphs (Fig. A . l ) .  The Fock expansion constructed on the vacuum state 

provides a complete relativistic many-particle basis; for a hadronic wave function 

we can write 

I%> = l 4 & d ~ z , k L t ,  A t ) ,  (A.4) 
n 

where In) = Iqqq), 14449). . . for baryons (In) = IqQ), IqQg). . . for mesons), and 

+n(xz,  k l l ,  A,) is a Lorenz-frame independent wave function for a state with n on- 
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P;: , p i 2  

Fig. A.1. Vacuum creation graphs vanish in light-cone perturbation theory. 

mass-shell constituents, and X is the polarization index. The 4-momentum for each 

constituent has been parameterized as 

(-4.5) 

Momentum conservation requires 
n n 

c x i  = 1 XiLz = 0. 
i= 1 i= 1 

Moreover, since p+ > 0 and k,' > 0, x, > 0. 

The Feynman rules for light-cone perturbation theory can be found in Ref. [46]. 

We will repeat some of the particularly important ones: 

1. Assign a momentum kc" to each line so that 

-# 

(a) IC+ and kl  are conserved at each vertex 

(b) k2 = m2,  or k- = (zi + r n 2 ) / k + .  

2. Include a factor O ( k + ) / k +  for each fermion, anti-fermion, or scalar. For vector 

bosons, assign the factor d, ,B(k+) /k+ where d,, is the (gauge-dependent) 

polarization sum. In the Feynman gauge d,, = -gPv. In the axial gauge 

( q  A = 0 where 77 is an arbitrary fixed 4-vector) 

k 1 , 2  
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r7LLkY + rlvk, 
r7 .k  

= -gpu + 
-L 

where Q .  E = I C .  e = 0. The light-cone gauge where u = (0,2,0,) is particularly 

convenient. 

3. The gluon(photon)-fermion vertices are 

4. For each intermediate state there is a factor 

1 

where the summation is over the light-cone energies of the incoming and in- 

termediate particles. This factor is a measure of virtuality of the intermediate 

state (although each particle is assumed on-shell). Thus, for a Fock state with 

one of the constituents having x N 1, the denominator becomes 

(A.10) 

and the state is said to be far off-shell. 

5 .  Integrate J dk+ J d2Z1/167r3 for each independent k and sum over internal spins 

and polarizations. 

The distribution functions G q , ~ ( x ,  A, Q) can be calculated from the overlaps of 

the light-cone wave functions 

( A . l l )  

where the summation is over all relevant Fock states. The asymptotic behavior of 

the light-cone wave functions is obtained by iterating the interaction kernel.[40] Thus, 

for q?j mesonic states the diagram of Fig. A.2 yields: 

(A .  12) 
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Fig. A.2. Calculation of the mesonic light-cone wave function. The second term is the 
instantaneous part of the gluon propagator. 

where the integration represents the transition from the initial configuration with 

quark momentum IC0 = (ypf, (e + rn2)/yp+, t;) and is of order a,. The end-point 

z - 1 behavior of the mesonic distribution amplitude is then 

(A.13) 

Similarly, the leading end-point behavior of the quark distribution function Gqlp( x) 

for the proton is computed from the diagram of Fig. A.3: 

(,4.14) 

The contribution of Fig. A.4 is suppressed by two orders of (1 - x). It is interesting 

to note that the diagram of Fig. A.3 only contributes if the spectator quarks with 

momenta y2 and y3 have opposite helicitie~.[~'I At  high x it translates into the 

requirement that the helicity of the struck quark be aligned with the proton helicity. 

If it is anti-aligned, the leading behavior is 

(A.15) 

This fact illustrates the helicity retention property of the gauge interactions. Equa- 

tions (A.13), (A.14), and (A.15) are the manifestation of the quark counting 
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Fig. A.3. The leading contribution to the proton distribution function Gq,p at 2 N 1. +, 
-, and I denote the current components. The quark propagator is instantaneous. 

Fig. A.4. (1 - contribution to the proton distribution function. 



A P P E N D I X  B 

NEXT-TO-LEADING ORDER EVOLUTION OF PARTON 
DISTRIBUTIONS 

The solution of the DGLAP equations in the Mellin n-moment space is signif- 

icantly simplified. A key feature of the Mellin transform is that the moment of a 

convolution of two functions is given simply by the product of two moments: if 

the moment is given by 
1 

C ( n )  = 1 dz rc"-lc(z) = f(n)g(n) . (B.2) 

Thus, complicated integro-differential DGLAP equations are reduced to simple lin- 

ear equations (or a system of equations in the singlet sector). One typically evolves 

the parton distributions and calculates the moments of the structure functions in 

the Mellin space, and then inverts the structure functions into the Bjorken 2 space. 

Thus, only one (numerical) integration is required. In Mellin space, the structure 

functions are given by (cf. Eq. (5.1)) 

where 

and the NLO spin dependent Wilson coefficients in MS scheme are given 
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Here CF = 4 / 3  and Tj = N j / 2  are Casimir invariants for the quark representation 

of SU(3)fl,,,, ( N j  = 3 is the number of active flavors). The factors Sk(n) will be 

given below. 

Note that in MS scheme the first moment of the gluon coefficient function 
vanishes C, (1) ( n  = 1) = 0, the first moment of the quark Wilson coefficient is 

Cil ) (n  = 1) = 3 C ~ / 2 ,  and the first moments of the spin-dependent structure 

functions are simply given by 

r1(Q2) = e: (1 - a s ( Q 2 ) )  7r Aq(Q2) . 
q 

The total gluon density does not couple to the first moment of the stri ire function 

scheme. A transformation to other schemes, in which the gluon contributes gl in 

to the first moment of 91 (such as Adler-Bardeen scheme), are given in Chapter 5. 

The Q2 evolution of the parton densities is governed by the the anomalous 

dimensions[150] which in NLO are defined as 

ct  

where we suppressed the n-dependence. The non-singlet (NS) densities evolve ac- 

where Qi  is the input scale (Qi = 0.34 GeVZ in our case). The distribution A&&+' 

corresponds to  the polarized valence quark distributions Auv(z,Q2) = Su - Sii  

and Adv(z, Q2) = 6d - S d .  and A4;lr"' corresponds to  the SU(3)fla,,, non-singlet 
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combinations A43(x, Q 2 )  = Au(z, Q2) - Ad(z, Q2) and Aqs(x, Q 2 )  = Au(z, Q2) + 
Ad(z, Q2)-2As(x, Q 2 )  (that is opposite to the situation with the unpolarized parton 

d i s t r i b ~ t i o n s [ ~ ~ ~ ~ ) .  

The NLO evolution in the flavor singlet sector 

(B.10) 

where AX = Au + Ad + As: is given 

+(+ * - I} .  (B . l l )  

The miscellaneous quantities are 

(B.12) 

(B.13) 

(B.14) 

where A* are the eigenvalues of the leading order anomalous dimension matrix 7::): 

and IT is the identity matrix. 

In all equations above, the strong coupling constant is defined by the two-loop 

(B.15) 

where the coefficients of the QCD beta function are Po = 11 - 2f/3 and = 

102 - 38f/3. The number of active flavors f in a S ( Q 2 )  is determined by the number 
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of quarks with mi 5 Q 2 .  The QCD parameters R ( j )  are determined by the matching 

condition at the quark threshold 

Thus, the derivative of 01s is discontinuous across the quark threshold in this ap- 

proach. Since the coefficients p depend on the number of active flavors f ,  the 

evolution is done in steps: for rn: < Q2 < mt we first evolve the parton densities 

with f = 3 to the charm threshold, and then from the charm threshold to Q2 (we 

would go first to mi if Q2 > m;). 

In all equations above, the leading order (LO) results could be obtained by 

dropping higher order terms ( P I ,  y ( l ) ,  C:fA). 

Given the moments of the structure function g l ( n ) ,  the structure function in the 

Bjorken x space is obtained by the inverse Mellin transform 

1 CSZW 

9&) = - 27rz l-tm d n  x - n g l ( n )  , (B.17) 

where c is the real number that has to be chosen in such a way that Ji d x  

Thus, c has to lie to the right of the rightmost singularity nmax of g l ( n )  in the complex 

n space. The contour of integration Co in Eq. (B.17) is shown in Fig. B.l. Also shown 

is a deformed contour C1 that yields the same result since all singularities for the 

structure functions (denoted by crosses in Fig. B. l )  are on the real axis. Converting 

to the integration over a real variable, we get 

(B.1S) 

We take c = 2.1 and C#I = 1.9, and the limit of integration in Eq. (B.18) is 10. These 

parameters have been found to give stable results for x > We approximate the 

integral in Eq. (B.18) by the 24-point Gauss-Legendre quadrature formula using a 

CERE program library routine RGQUAD.[164] 
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Fig. B. . The integration contours used for the inverse Mellin transform in Equations 
(B.17) and (B.18). The singulatities of the structure function g1 are denoted by crosses 
on the real axis. 

The LO spin-dependent anomalous dimensions are given by[43] 

n - 1  
n(n + 1) 

y$!(.) = -8Tj 

(B.19) 

where we take A'j = 3 for the number of active flavors. The Casimir invariant for the 

adjoint representation of SU(3)fi,,, CA = 3. Note that YNs(n) (0) = yqq ( 0 )  ( n )  = qqq (0) (n ) ,  

where the y,$)(n) is the spin-averaged anomalous dimension. Thus, in the leading 

order, the moments of the polarized and unpolarized non-singlet distributions evolve 

identically, and the ratio gl /Fl  is almost independent of Q2 at high 2 where the non- 

= 0 

as a consequence of helicity conservation at the quark-gluon vertex, so the first 

singlet densities dominate. For the first n = 1 moment we have Yqq (0) (1) = yqC(l )  (0 )  

moments of the quark distributions are conserved in the leading order. 
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The spin-dependent NLO anomalous dimensions in the non-singlet sector "l;lrs( n ) 

are the same as in the spin-averaged case. In the MS scheme, they are given 

[ !-!-?s1(n)(2n ' )  + 24&(n) + 643(n, q )  - 8Si(n/2,  q )  - 3+ n2(n  + 

I t  3n3 + n2 - 1 + 27(2n2 + 2n + 1 )  
n3(n + 1 ) 3  

8- 

CFCA [ E S l ( n )  - 8 
n(n + 1) 

17 
9 

88 
-S2(n) - 325(12, q )  + 4Sk(n/2,q) - -- 
3 3 

I +  - $(151n4 + 236n3 + 88n2 + 3n + I S )  - 8q(2n2 + 2n + 1 )  
n3(n + 1)3  - 

] . (B.20) 160 32 4 16 l l n 2  + 5n - 3 
CFTf [-S & ( n )  + +(n) + 5 + 9 n2(n  + 

Xote that for q = -1 ,  the first moment of the non-singlet anomalous dimension 

vanishes (yEL'=-'(n = 1) = 0), therefore the matrix elements Aq3 and Aq8 are 

independent of Q2 (the the flavor non-singlet axial current is conserved). 

The NLO flavor singlet anomalous dimensions in the scheme are given by[37] 

(B.21)  

where ?g&'=-'(n) are given by Eq. (B.20) .  Other elements of the two-loop anoma- 

lous dimension matrix are 

I +  5n5 + 5n4 - ion3 - n2 + 3n - 2 
n3(n + 1)s  

(B.22) 1 4 
n(n  + 

n5 + n4 - 4n3 + 3n2 - 7n - 2 
n3(n + l)3 S1(n) - 

+I + 

ygi(n) = 3 2 C ~ T f  - 5n2 + 12n + 4 n + 2  [ 9n(n -t- S l (n>+ 3n(n + 1 )  
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4c; 

I +  9n5 + 30n4 + 24n3 - ?n2 - 16n - 4 
n3(n + l ) 3  

11n2 + 22n + 12 
3n2(n + 1) Sl(+ 

76n5 + 2?ln4 + 254n3 + 41n' + 72n + 36 
9n3(n + 1)3 

n3(n + l ) 3  
(1) [ n6 + 3n5 + 5n4 + n3 

~ & n )  = ~ C F T J  

I +  5 3n4 + 6n3 + 16n' + 13n - 3 
9n2(n + 1)' ~ ~ C A T J  [ - gSi( n) + 

4Ci  [-SA(n/2, -1) - 4Sl(n)S;(n/2, -1) + 83(n,  -1)+ 
Q 
U 

Sa(n/2, -I)+ 
n(n + 1) 

(B.23) 

(B.24) 
67n4 + 134n3 + 67n2 + 144n + 72 

9n2(n + 1)2 S1(n)- 2 

48n6 + 144n5 + 469n4 + 698n3 + 7n2 + 258n + 144 
9n3(n + 1)3 1 

The finite sums Sk(n), Sk(n/2,q), and S(n,  q )  used in the expressions above are 

defined as[8631501 

j=1 J 

1 1 
= -(1+ 2 q ) s k  (5) + $1 - 7)Sk (y) 

(B.25) 

(B.26) 

J j=1 

where G(n) $ (y) - $ (:), Li2(z) = -J:dz ln(1 - z ) / z  is the Dilogarithm 

function, and q = f l  for the non-singlet anomalous dimensions ygi"=*'(n) ,  and 
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(1) 7 = -1 for the flavor singlet anomalous dimensions yt3 . 
The analytical continuations of the finite sums for complex n, required for the 

inverse Mellin transform, are given 

&(n) == Y E  + $ ( n +  1) , = 0.577216 (B.28) 

&(n) == ((2) - $/(n + 1) , [(a) = .rr2/6 (B.29) 

S3(n) == ((3) + $'(n + 1) , ((3) = 1.202057 . (B.30) 

The functions +(k)(n) = dkf'f In I'(n)/dn(ksl) can be sufficiently accurately ex- 

pressed by the following asymptotic sums valid for Re n >_ 

Fo 

1 1 I 1 
+(n) e ln(n) - - - - + - - - 2n 12n2 120n4 256n6 

1 1 1 1 1 1 
I I 

$ 1  M L . + L + L - I  +y-- n 2n2 6n3 30n5 42n 30n9 

(B.31) 

(B.32) 

Re n < 10, a recursion relation is used: 

(B.34) 

Furthermore, the integral in Eq. (B.27) involving the Dilogarithm can be approxi- 

mated 

(B.35) Liz(x) 1.010 0.846 1.155 1.074 0.550 
l + x  n + l  n + 2  n + 3  n + 4  n + 5  

+--- +-. 

The evolution and fitting code was optimized for speed. The most time-consu- 

ming part was evaluation of the anomalous dimensions. Fortunately, since we are 

not varying the strong coupling constant in the fit, it only has to be done once 

for every point n used in the integration (the points in the quadrature formula are 

fixed). The matrices used in the singlet evolution (Eq. (B. l l ) )  are calculated once 

for every number of flavors f. The moments of the initial parton distributions are 

calculated every time a parameter of the fit changes. One fit with 8 free parameters 
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(149 data points in the range 0.005 5 2 5 0.75 and 0.95 GeV2 5 Q2 5 58 GeV') 

typically takes 3-4 min on a DEC Alpha 600 5/266 computer (that corresponds to 

800-1000 iterations in MINUIT['56]). 

We tested our code against the parameterizations of Ref. [86]. Using the "stan- 

dard" NLO parameterization at initial Qi = 0.34 GeV2, we evolved the GRSV["] 

partons to Q2 = 100 GeV2 and compared with the output of the code provided by 

one of the The comparison is shown in Fig. B.2; two codes are in perfect 

agreement. In addition, we directly integrated the leading order DGLAP equations 

in Bjorken space evolving the structure functions by small steps in Q2,[831841 and 

found that the direct technique gave results very close to the Mellin evolution code. 
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Fig. B.2. The parton distributions evolved from Qi  = 0.34 GeV2 to  Q2 = 100 GeV2 are 
compared to  the output of the GRSV 
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RESULTS OF T H E  CALTECH ANALYSIS 

The results for the structure functions and the photon-nucleon asymmetries, 

averaged between the two analyses, were given Chapter 4. For completeness, we will 

summarize here the results of the Caltech analysis. 

Table C.l. The  spin dependent structure function g;" and the photon-nucleon asymmetry 
A?. 

(x} ( Q 2 )  (GeV2) g;" f stat. f syst. A; f stat. f syst. 
2.75" spectrometer 

0.017 1.21 -0.371 f 0.115 f 0.105 -0.061 f 0.019 f 0.017 
0.024 1.59 -0.387 f 0.071 f 0.062 -0.082 f 0.015 f 0.014 
0.035 2.05 -0.310 f 0.061 f 0.038 -0.083 f 0.018 f 0.012 
0.049 2.57 -0.201 f 0.041 f 0.021 -0.084 f 0.016 f 0.009 
0.078 3.32 -0.123 f 0.031 f 0.013 -0.081 f 0.019 f 0.010 
0.123 4.09 -0.070 f 0.030 f 0.009 -0.081 f 0.031 f 0.010 
0.173 4.63 -0.082 f 0.033 f 0.009 -0.123 f 0.052 f 0.016 
0.241 5.09 -0.057 f 0.027 f 0.007 -0.096 f 0.075 f 0.019 
0.340 5.51 -0.001 f 0.035 f 0.004 -0.256 f 0.197 f 0.071 
0.423 5.82 0.024 f 0.059 f 0.006 0.133 f 0.606 f 0.034 

5.5" spectrometer 
0.057 4.03 0.234 f 0.280 f 0.036 0.047 f 0.118 f 0.012 
0.084 5.47 -0.149 f 0.029 f 0.019 -0.103 f 0.017 f 0.013 
0.123 7.23 -0.112 f 0.016 f 0.012 -0.107 f 0.015 f 0.012 
0.172 8.94 -0.053 f 0.015 f 0.007 -0.079 f 0.023 f 0.010 
0.242 10.71 -0.039 f 0.011 f 0.005 -0.109 f 0.030 f 0.015 
0.342 12.55 -0.011 f 0.012 f 0.004 -0.031 f 0.065 f 0.021 
0.442 13.83 -0.012 f 0.011 f 0.003 -0.091 f 0.139 f 0.020 
0.564 15.00 0.002 f 0.008 f 0.001 0.083 f 0.279 f 0.031 
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Table C.2. The spin dependent structure function gg and the photon-nucleon asymmetry 
A;.  

(4 ( Q 2 )  W V 2 )  g; f st at. f syst. A; f stat. f syst. 
2.75" spectrometer 

0.017 1.21 6.523 rt 15.214 f 2.145 0.030 f 0.074 f 0.010 
0.024 1.59 -1.479 f 7.232 f 0.993 -0.015 f 0.056 f 0.008 
0.035 2.05 -9.065 f 4.890 f 1.042 -0.122 f 0.064 f 0.014 
0.049 2.57 4.559 f 2.504 f 0.540 0.098 f 0.056 f 0.012 
0.078 3.32 1.520 f 1.330 f 0.254 0.068 f 0.065 f 0.013 
0.123 4.09 1.033 4 0.952 f 0.229 0.107 f 0.106 f 0.026 
0.173 4.63 0.097 k 0.794 f 0.145 0.003 f 0.176 f 0.032 

0.340 5.51 0.787 f 0.442 f 0.197 0.919 f 0.522 f 0.161 
0.423 5.82 0.050 f 0.580 f 0.020 0.177 f 1.414 f 0.041 

0.241 5.09 -0.388 f 0.490 f 0.097 -0.207 f 0.229 f 0.046 

0.057 
0.084 
0.123 
0.172 
0.242 
0.342 
0.442 
0.564 

4.03 
5.47 
7.23 
8.94 

10.71 
12.55 
13.83 
15.00 

5.5" spectrometer 
43.265 f 31.639 f 4.648 

4.362 f 2.377 f 0.455 
0.459 f 0.987 f 0.199 
0.214 f 0.711 f 0.150 
0.362 f 0.396 f 0.094 

-0.136 f 0.299 f 0.032 
-0.059 & 0.228 f 0.014 
-0.011 k 0.125 f 0.009 

0.997 f 0.727 f 0.107 
0.173 f 0.098 f 0.018 
0.028 f 0.079 f 0.016 
0.025 f 0.110 f 0.023 
0.107 f 0.132 f 0.030 

-0.128 f 0.263 f 0.028 
-0.157 f 0.506 f 0.029 
-0.062 f 0.904 f 0.059 



Table C.3. Results on A; and gT a t  the measured Q2,  along with g; evaluated at Q2 = 5 (GeV)2 assuming that the ratio g ; / F r  
scales with Q2. The d a t a  of two spectrometers have been averaged. 

9 

x bin (4 ( Q 2 >  gy f stat. f syst. A;" f stat. f syst. gy f stat. f syst. 
GeV2 (Q2 = 5 GeV2) 

0.014 - 0.02 0.017 1.2 -0.371 f 0.115 f 0.105 -0.061 f 0.019 f 0.017 -0.524 f 0.163 f 0.149 
0.02 - 0.03 0.024 1.6 -0.387 f 0.071 f 0.064 -0.082 f 0.015 f 0.014 -0.499 f 0.092 f 0.082 
0.03 - 0.04 0.035 2.0 -0.310 f 0.061 f 0.040 -0.083 f 0.018 f 0.012 -0.369 f 0.073 f 0.047 
0.04 - 0.06 0.049 2.6 -0.192 f 0.040 f 0.021 -0.082 f 0.016 f 0.009 -0.215 f 0.045 f 0.023 
0.06 - 0.10 0.081 4.5 -0.137 f 0.021 f 0.016 -0.093 f 0.013 f 0.011 -0.140 f 0.021 f 0.016 
0.10 - 0.15 0.123 6.6 -0.103 f 0.014 f 0.011 -0.102 f 0.014 f 0.011 -0.101 f 0.014 f 0.011 
0.15 - 0.20 0.173 8.2 -0.058 f 0.014 f 0.007 -0.086 f 0.021 f 0.011 -0.057 f 0.014 f 0.007 
0.20 - 0.30 0.242 9.8 -0.041 f 0.011 f 0.005 -0.107 f 0.027 f 0.016 -0.042 f 0.011 f 0.005 
0.30 - 0.40 0.342 11.7 -0.010 f 0.011 f 0.004 -0.054 f 0.062 f 0.021 -0.011 f 0.012 f 0.005 
0.40 - 0.50 0.441 13.4 -0.011 f 0.011 f 0.002 -0.080 f 0.136 f 0.019 -0.013 f 0.013 f 0.003 
0.50 - 0.70 0.564 15.0 0.002 f 0.008 f 0.001 0.083 f 0.279 f 0.031 0.004 f 0.011 f 0.001 
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