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ABSTRACT 

This paper describes Spatial Signature Analysis (SSA), a cooperative research project between SEMATECH and Oak 
Ridge National Laboratory for automatically analyzing and reducing semiconductor wafermap defect data to useful 
information. Trends towards larger wafer formats and smaller critical dimensions have caused an exponential increase 
in the volume of visual and parametric defect data which must be analyzed and stored, therefore necessitating the 
development of automated tools for wafer defect analysis. Contamination particles that did not create problems with 
1 micron design rules can now be categorized as killer defects. SSA is an automated wafermap analysis procedure 
which performs a sophisticated defect clustering and signature classification of electronic wafermaps. This procedure 
has been realized in a software system that contains a signature classifier that is user-trainable. Known examples of 
historically problematic process signatures are added to a training database for the classifier. Once a suitable training 
set has been established, the software can automatically segment and classify multiple signatures from a standard 
electronic wafermap file into userdefined categories. It is anticipated that successful integration of this technology with 
other wafer monitoring strategies will result in reduced time-to-discovery and ultimately improved product yield. 

Keywords: Semiconductor, spatial signature, automatic inspection, wafermap analysis, pattern recognition, fuzzy 
classifier, classifier training 

1. INTRODUCTION 

Automated analysis of semiconductor wafer defect data has become increasingly important over the past several years 
as a means of quickly understanding and controlling contamination sources and process faults which impact product 
yield. This paper discusses the automatic analysis of defect distributions on semiconductor wafers as sensed by in-line 
optical inspection tools. 

1.1 Spatial Signature Analysis 

Trends towards larger semiconductor wafer formats and smaller critical dimensions have caused an exponential increase 
in the volume of visual and parametric defect data that must be analyzed and maintained by the semiconductor device 
manufacturer. This explosion in the volume of data has necessitated the development of automation tools for wafer 
defect analysis’. It has been estimated that up to 80% of the yield loss in the production of high-volume, very-large- 
scale integrated (VLSI) circuits can be attributed to random visual pattern defects’. Contamination particles that did 
not create problems with 1 pm design rules can now be categorized as “killer defects” as critical dimensions dip below 
0.25 pm, Le., defects which result in improper electrical device function. Spatial Signature Analysis (SSA) is an 
automated procedure that has been developed by the authors to address the issue of intelligent data reduction while 
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providing timely feedback on current manufacturing conditions. SSA performs a sophisticated defect clustering and 
signature classification of electronic wafermaps that represent visual pattern and particle defects3. 

Optical inspection of semiconductor wafers has long been the primary means of detecting the sources of wafer defects. 
Semiconductor yield engineers use high resolution images of individual defects collected off-line to assess problems 
in the manufacturing process. Since high-resolution off-line defect review is time consuming and expensive, process 
engineers also use low resolution defect wafermaps from in-line optical inspection tools to determine the potential 
source of problems in the manufacturing process. They accomplish this by analyzing and sourcing unique spatial 
distributions or “signatures” of defects on the wafer surface. Figure 1 shows an example of a high-resolution optical 
defect and several wafermaps containing various spatial signatures. Even when these spatial signatures do not contain 
significant portions of killer defects, they provide a diagnostic window into the manufacturing process. SSA attempts 
to emulate this process and to provide the fab engineer with faster time-to-results and enhanced yield management. 

Figure 1 - Examples of wafermap defects and signatures with (a) showing a high resolution optical image . 
of a defect taken from a distribution of defects on a single wafer (b). The map shown in (c) consists of a 
composite, or “stack”, of wafermaps while (d) shows several examples of various signatures which are 
indicative of manufacturing problems. 

1.2 Automatic Signature Classification 

SSA automatically collects defects on a wafermap that come from a single manufacturing source. A user-trained 
classifier assigns a label which identifies the root problem. For clarity of nomenclature in the follo.wing description of 
the procedure these definitions apply: wafermap defects (e.g., collected by a KLA or Tencor optical tool) are organized 
by SSA into “clusters”; clusters are grouped into “objects”, such as a multi-element scratch composed of several small 
disconnected clusters; objects are then assigned to “sets”, to distinguish curvilinear objects from compact objects for 
example; and finally objects in these sets are formed into “signatures” which are groups of objects that may be 
distributed across the wafer but which come from a single manufacturing source, e.g., multiple streaks in a “wagon 
wheel” pattern from a spin coating process. 

SSA begins the signature classification process by converting the electronic wafermap file into a grey-scale image where 
each pixel is assigned an intensity value according to the number of defects in the subtended area. Each pixel represents 
a first-level clustering of the individual defects. Clusters of pixels, denoted as “objects”, in this density image are 
connected into multi-element objects (e.g., a multi-element scratch) by means of a sophisticated clustering procedure. 
Objects are grouped into high-level “sets” depending on their proximity to neighboring clusters and on their 
morphology4.’. These defined sets are the result of a “divide and conquer” approach to the SSA problem required to 



reduce the complexity of signature classification. There are four distinct and fundamental sets in use with the SSA 
procedure denoted by global, curvilinear, amorphous, and micro-structure. The assumption is made that every tightly 
clustered or distributed object, i.e., an element of a process signature, can be categorized into one of these fundamental 
sets. 

Each set is characterized individually, Le., objects belonging to each set have unique descriptive features which relate 
to the set. For example, elongated objects such as scratches or streaks are assigned to the curvilinear set since they have 
curvilinear attributes such as elongation, compactness, orientation, etc. These objects tend to be associated with 
mechanical wafer damage. Tightly clustered objects are placed in the amorphous set and can generally be associated 
with problems such as insufficient etching, or other systematic sources which deposit large clusters of defects on the 
wafer surface that are not related to mechanical damage. Distributed objects such as a ring pattern or a random uniform 
distribution of particles which are broadly distributed over the wafer surface are grouped into the “global’’ set. Global 
objects generally consist of sparsely distributed defects and have no highly clustered components yet are treated as one 
wafermap object since they arise from a single source. Micro-structure objects define the final set. These objects are 
composed of a distribution of pixels whose sub-pixel defects are organized in a linear fashion. These pixel-level objects 
arise from planarization processes such as Chemical Mechanical Polishing (CMP) and are also associated with 
mechanical damage to the wafer surface but on a micro-scale relative to objects in the curvilinear set. 

The attributes, or features, used to distinguish globally distributed events and distributions of microstructure clusters 
are centralized geometric moments6,’, while the features used to describe curvilinear or amorphous objects are 
morphological, e.g., size, location, elongation, compactness, etc:.. These features give a unique description of the defect 
populations represented on the wafer surface and provide a means for automatic classification. Figure 2 shows several 
SSA processed wafermap results for random systematic and mechanically imparted signatures. Figure 2 (a) shows a 
random particle distribution, and (b) a systematic particle distribution in a ring pattern. Both signatures are globally 
distributed across the wafer surface. Figure 2 (c) shows a scratch-type signature while (d) shows a streak signature. 
Note that the scratch and streak signatures are both curvilinear events but that the scratch contains one elongated object 
while the streak contains several distributed and disconnected objects. 

Figure 2 - Examples of wafermap signatures found by SSA with (a) and (b) showing 
random and systematic particle distributions (global set), and (c) and (d) showing 
mechanically imparted signatures, e.g., scratch and streak respectively (curvilinear set). 

Once an object has been assigned to a high-level set and characterized, its features are sent to a classifier where a user- 
defined label is assigned to the result. For this work, a pair-wise fuzzy k-Nearest Neighbor (kNN) approach has been 
adapted**’ which uses a unique feature reduction procedure to optimize classifier performance”. For industrial pattern 
recognition problems, it has been our experience that non-parametric classifiers such as nearest-mean or kNN” apply 
well. Such classifiers do not require information about the statistical distribution of features. It is difficult to ascertain 
a statistical parameterization for the large variety of class types encountered. Furthermore, in an industrial setting, it 
is often required that the classifier system begin to classify new data with few training examples. Bayesian classifiers’* 
and neural ne tw~rks ’~  can also work well but generally require large sample populations to estimate the appropriate 
statistics for their method and would therefore be difficult to implement for this application. This is primarily due to 
the diverse nature of the patterns that arise for different manufacturing processes and processing facilities coupled with 
the length of time required to collect large sample populations.. Also, over the period of time required to collect large 
sample sets, acceptable process variations can occur which confuse the boundaries between classes. The pair-wise fuzzy 



kNN classifier training set can readily be maintained over time (e.g., by including and excluding examples based on time 
and date), and can operate adequately with relatively few examples for each class. 

The remainder of this paper focuses on the classifier method used for effective sourcing of wafermap signatures. The 
classifier assigns labels to process signatures which are indicative of the source of the problem The system is trained 
and maintained by the user and is therefore required to provide useful feedback to the user. The system also assists the 
user in locating and mitigating confusion which may arise within the training data. An automatic classification system 
must demonstrate these basic properties if it is going to be used with confidence in the manufacturing environment. 

2. SSA CLASSIFIER 

A fuzzy kNN classifier has been adapted to perform a pair-wise classification of an unlabeled signature so that a 
process-specific label can be assigned. The classifier uses example signatures which are stored in a prototype signature 
library (PSL). The PSL is established and maintained by the user and contains various examples of signatures that are 
associated with the manufacturing process being monitored. Figure 3 shows the PSL software interface which the user 
uses to manage the classifier training data and to obtain information on the expected performance of the system in the 
field. Information is also provided to the user to assist in the elimination of ambiguity, or confusion, in the training data 
to improve performance. 

Each high-level set in the PSL (i.e., global, curvilinear, amorphous, and micro-structure) contains its own set of training 
data and therefore constitutes a separate classifier within the SSA system. The software automatically tracks the 
signature’s high-level set so that the user does not need to consider this during training. There are several advantages 
to using the set hierarchy for signature classification. A signature is classified based on measured features, or attributes, 
that succinctly describe the event. Each high-level set can be described using different attributes. For example, 
signatures in the global set, which contains distributions of defect data over the entire surface, are well described using 
geometric moments. Signatures in the curvilinear set are better described according to morphological features such as 
location, elongation, and compactness. This ability to uniquely describe the signature event associated with each set 
gives SSA the ability to classify a broad variety of signature types within one system. 

The set structure also enhances classification reliability by separating the decision space into four mutually exclusive 
regions. While the number of training data samples required for the system may be large in total, each set contains, to 
a rough approximation, one quarter of the data and one quarter of the defined classes. The classifier for any given high- 
level set is reduced in the number of labels it can assign which reduces the decision complexity per set and increases 
performance. Also, the pair-wise classifier implementation requires on the order N(N-1)/2 calculations per 
classification, where N is the number of defined classes in one of the four sets. If the hierarchy of sets was not used 
then the equivalent number of calculations would be on the order 2N(4N-1) which equates to a sixteen-fold 
computational increase. Therefore by using the indicated set strategy, a broad variety of signature types can be labeled 
by the system and both classification performance and computational performance are improved. 

2.1 Fuzzy Measurements and Ciass Ambiguity 

The SSA classifier assigns a fuzzy membership value to the unlabeled signature which provides the system with 
information suitable for estimating the confidence of the decision. The fuzzy membership describes what portion of 
an unlabeled signature resides in each of the defined classes. If the membership is relatively high for two classes and 
low for three others, then there is a clear delineation between the first two classes and the other three, but there is 
confusion within the first two classes. This data becomes important when ultimately assigning a crisp label to the 
signature. For example, the classifier might assign a signature membership 0.8 to “scratch”, 0.75 to “streak”, 0.2 to 
“double-slot”, and 0.01 to “stain”. For this situation the signature would likely belong to “scratch” or “stain”, but the 
ambiguity between the two would be high making a crisp assignment difficult. 



Figure 3 - Example of the interface developed to demonstrate and test the SSA technology. The 
screen on the left is the main window where the user brings in wafermap files for analysis. The 
screen on the right shows the prototype signature library window where the user stores examples 
and maintains the training database. 

One method of handling this confusion is to accommodate a class of “unknown” signatures. One of the benefits of 
using a fuzzy system is that the signature can be assigned to the category “unknown” which , in certain situations, may 
provide a much greater advantage over crisply assigning the signature lo the wrong category. The SSA classifier uses 
the training data and the subsequent fuzzy information derived from it, to dynamically set a “defuzzification” threshold 
which accommodates labeling data as “unknown”. The defuzzification level is controlled by the user specifying how 
much an incorrect decision is “worth” to the process. From an economic standpoint, some classes of signatures may 
cost more in potential yield loss and would therefore require a high probability of assignment to the correct or the 
“unknown” category rather than to an incorrect class which may be of lesser economic importance. The user therefore 
sets a level of class worth prior to training. This is achieved by allowing an “unknown” decision to count in part towards 
a correct decision. For example, if the user sets a worth-value of 60%, then 60% of a signature placed in the “unknown” 
category will count towards a correct decision during training. To understand the effect of this value, if a value of 0% 
is prescribed during training, then the classifier will always assign a signature to one of the defined classes. If a value 
of 100% is prescribed, then all the signatures will be assigned to the “unknown” class. Setting this value between 0% 
and 100% lets the classifier identify signatures with ambiguous memberships by assigning them to the “unknown” 
category. 

2.2 Training the Classifier 

The user begins the training process by adding representative signatures to the PSL with the SSA results window. After 
an interesting result is found by the SSA advanced clustering process, the user selects the signature with a mouse click 
and adds it to the library. Once the library is populated, the user selects the “Training” option from the PSL menu (see 
Fig. 3). Each set is trained independently of the others such that if only one set has recently been modified by the user 
through the insertion, deletion, or relocation of a signature, then only that set will be retrained. Note that training is the 
most time consuming aspect of the classification procedure. It may take several minutes to perform training on any one 



of the sets and this time increases according to N(N-1)/2 as the number of classes, N, increases. The time required is 
linear with an increase in the number of examples. This has not proved to be a major issue to date since training takes 
place only occasionally and is performed off-line. Once a classifier has been trained for each set, the process of 
classifying a new unlabeled signature is very fast, Le., on the order of < lsec. 

The training algorithm for the fuzzy classifier determines a number of parameters from the example data which are used 
to automatically optimize several algorithm parameters (e.& the defuzzification level is determined based on the 
“worth” parameter defined by the user and the nature of the data in the library). The method uses a hold-one-out 
technique’ (HOO) to estimate the expected performance of the classifier in the field. The HOO expected performance 
is determined by holding out an example point, training the set, and then classifying the held out point. The process is 
continued until all the examples in the training data have been held out once. The resulting statistics give an 
approximation to the expected performance of the classifier or unknown data points. A fuzzy measurement of ambiguity 
based on an “index of f~zziness”’~ is determined during this process for each defined class in the set. It is typically 
observed that the expected performance based solely on the HOO metric tends to be high. A more conservative 
expected performance estimate is made by using the class ambiguity measure in the feature SSA reduction process as 
described in the reference [IO]. The ambiguity of a class is represented numerically by a number in the range [0,1] with 
0 meaning there is no ambiguity (or conflict) between a given class and all others while a value of 1 indicates severe 
conflict. 

The training algorithm automatically determines which signature features are required to distinguish one class from the 
next within the set”. This novel technique results in higher performance from the classifier by reducing the complexity 
of the matching problem. For example, the number of features used to describe a global signature are 25 geometric 
moments and 3 non-moment features for 
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section. Figure 4 - A partial set of global data used to demonstrate the 
statistical and fuzzy parameters of the set obtained during training. 
Table I shows the corresponding training results data. 

2.3 Training Feedback and Results 

One of the most important requirements of an automatic classification system is feedback to the user about the quality 
of training data. In general, the inner workings of a classification system can be very complex. The procedure used to 
classify signatures for SSA develops a substantial amount of information which relates to the capability of the classifier 
and the quality of the training data. This section discusses the procedure developed through this research to help the 
user quickly determine, locate, and correct conflicts in the data to improve classifier performance. 



As mentioned in the previous section, there are several values returned from the classifier training algorithm which give 
the user information on expected performance. A fuzzy system also provides an opportunity to supply important 
feedback to the user on the quality of the data in the training set. For example, from the data in Table I, it is apparent 
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that there is some confusion in 
the data between the sets 
“MediumNniform” and “Ring”. 
The ambiguity for these two 
classes is relatively high 
compared to the other classes 
(except for “LowAJnifom”) and 
the performance is lower than the 
other sets. The PSL library 
interface has been designed to 
provide the user with a display of 
alpha-numeric and color codes 
that can be used to quickly 
ascertain the source of the 
conflict. When a training session 
has been completed, all of the 
signature map icons in the PSL 
are color coded to represent the 
following conditions: 

TABLE I 
Example of training results for the global set data shown in Fig. 4 

Class No. of Ambiguity Class Set 

Mediuflniform 9 0.13 89% 

Exaimples Performance Performance 

1 ~ ~ 1:IB: ~ ~ B Y 1  

Ring 

Sparse/Random 0.00 100% 

LowNniform 100% 93% 

Excluded I 5 I 0.00 1 100% I 

Yellow indicates that the class has high expected performance and that the class ambiguity is low, 

Orange indicates that the class has either low expected performance or high ambiguity or that not enough 
examples exist in the library for that class to be statistically significant, 

Grey indicates that the user has deselected the class so that it will not be considered in the training set, 

L,?,, if an individual example has a higher fuzzy membership to another class, or if its membership is 
below the defuzzification level (indicating that it would be classified as “unknown”) a question mark 
is placed in the signature icon. 

Textual information is also provided to the user based on the expected performance and ambiguity (e.g., “Ring class 
is problematic: performance is low”) but to take this one step further, the fuzzy membership values for the data are used 
to determine a measure of s~bsethood’~. The subsethood measure of a fuzzy set can be used to pinpoint the set, or sets, 
that the data looks most similar to, Le., is a subset of. The subsethood measure is a value in the range [0,1] where 0 
indicates no similarity to another set while 1 indicates absolute similarity. Subsethood is used to present information 
to the user such as “Scratch is problematic: looks 0.7 similar to streak”. 

Note that a class could still produce good expected performance and low ambiguity even if there are some questionable 
examples in it. The user has the option of adding, deleting, or moving signatures to improve expected performance. 
The user can also temporarily deselect a class from the library until the conflict between it and another is better 
understood and can be resolved. For example, if a class was coded as problematic (Le., “omge”) due to an insufficient 
number of samples in the library, the user could temporarily deselect it but continue to add new examples to that class. 
Once sufficiently populated it could be re-selected and used for training. 



Figure 5 shows the data from Fig. 4 after three potentially problematic signatures have been removed. Notice in Fig. 
4 that there are three signatures marked with the “?” symbol, one in the “Medium/Uniform” class and two in the “Ring” 
class. Although the performance for these two classes is reasonable, i s . ,  89% and 80% respectively (see Table I), there 
is some similarity between the classes 
which can be reduced by moving or 
deleting these signatures. Note that 
the two problematic “Ring“ signatures 
in Fig. 4 look very similar ro the 
“MediumAJniform” class examples. 
Also notice that the problematic 
“MediumlCJniform” signature looks 
somewhat like a “Ring” signature. 
For the purpose of demonstrating the 
ability to improve the expected 
performance, these three signatures 
have been removed (see Fig. 5 )  and 
the classifier retrained. Table I1 
shows the class and set performance 
statistics for the modified PSL. Note 
that the class performance for 
“MediudUniform” and “Ring” have 
increased from 89% to 100% and 80% 
to 98% respectively. In short, the two 
classes have been made more distinct. 

1 
Figure 5 - A modification of the global data shown in Fig.4. Table II 
shows the corresponding improved training results. 

The wafermap data shown in this paper were collected from several of the SEMATECH member companies for the 
purpose of developing the SSA advanced clustering and classification procedures. While this data has been essential 
to the development of this technology, it is limited in its ability to qualify SSA for manufacturing applications. As will 
be described in the following section, a validation effort will be performed over the next several months which will 
demonstrate the efficacy of SSA in the manufacturing environment. Based on the data at hand, it is anticipated that the 
method will provide fast reliable and timely feedback on the state of the manufacturing process. Table III shows the 
expected results for a 
classifier trained with 113 
examples of a large variety of 
signature examples distributed 
across a global, curvilinear, 
and amorphous set. These 
results demonstrate the 
classifiers ability to 
accommodate a wide variety 
of signatures, e.g., from 
globally distributed 
distributions such as those 
shown in Figs. 4 and 5 to 
scratches, streaks, clusters, 
and repetitive anomalies an. 
The expected performance for 
this training set is 94% overall 
while the set performance 
ranges from 84% to 99%, with 

TABLE Ii 
Example of training results for the modified global set data shown in Fig. 5 

Examples 

MediumAJniform 

Sparse/Random 

Semi Ring 

Excluded 0.00 100% 

several classes performing at an expected 100% accuracy. This example represents a 13class problem with an average 
of 8.7 examples per class. 



TABLE UI 
Example of training results for a three-set library which includes global, curvilinear and amorphous I entnes. 

Ambiguity Class I 1 Set ~ ;fo1 
Class 1 ~ o . o f  1 1 Examples Performance Performance Ex ected 

erformance 

Global Set 

Medium/Uniform 

LowKJniform 96% 

Sparsflandom 1 8 I 0.00 I 100% I 
Semi Ring I 8 I 0.01 I 100% I 

~~~ ~ 

100% 1 Excluded 5 0.00 

Curvilinear Set 

Complex Scratch 13 0.19 

93% Simple Scratch 10 0.42 

Streak 20 0.27 
~~ 

Excluded(C) 1 8 I 0.00 I 100% I 

94% 

~~ ~ ~~ 

Amorphous Set 

Small Cluster 7 0.56 83% 

Medium Cluster 9 0.47 84% 84% 
Recipe Error 4 0.00 100% 

3. CONCLUSION 

The progress made to date on the SSA advanced clustering and signature classification procedure has been demonstrated 
to quickly reduce wafermap optical defect data to useful information. For an automatic classification system to be useful 
in the manufacturing environment, it is not only necessary that it provide reliable and believable information, but it must 
also provide feedback to the user on populating and maintaining the training data. The classifier can only perform as 
well as the representative signatures used to train it and the system must provide feedback to the user about ambiguity 
which may result in degraded performance. The SSA classifier has been demonstrated to provide both high expected 
performance and ease of training. 

SSA research and development will be continuing throughout 1997. The first half of the year will be spent performing 
a test and validation of the technology at three separate manufacturing sites. The SSA code will be installed and run 
as a background process that will automatically monitor and analyze all wafermaps optically inspected with in-line tools 
during short-loop tests. These tests will limit the focus of SSA to three distinct and specific clusters of manufacturing 
processes and show the ability of the technology to quickly characterize manufacturing problems. The results of the 
validation exercise will be published later in the year. 



During the second half of the year, research will begin to extend SSA to include non-optical wafermap data from 
electrical tests (e-tests) such as parametric, binmap, bitmap, etc.. These data types are also organized spatially across 
the wafer and are therefore amenable to automatic spatial analysis. It is intended that a method be developed which will 
correlate optical and e-test data so that improved knowledge can be obtained regarding the killing potential of various 
particle and pattern defect distributions. 

' 

SSA has the potential to provide automation of several defect-based monitoring processes. Figure 6 shows 
schematically in (a), the manufacturing and data sampling process, (b) the storage and management of process and 
product data, and (c) the analysis and sourcing of defect information to control manufacturing. Initially, it is anticipated 
that SSA will play a large role in automating the analysis of wafermaps to quickly source manufacturing problems based 
on common signature patterns. The dotted lines emanating from the"wafermap ana1ysis"region in the figure represent 
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Figure 6 - Schematic representation of (a) semiconductor manufacturing, (b) data storage and 
management, and (c) data analysis and defect sourcing. 

functions that are monitored manually at present by yield engineers but that are amenable to automation by SSA. For 
example, the generation of the highly detailed SSA description will provide new information for statistical process 
control (SPC) e.g., counts of systematic or random distributions of particles, simple and complex scratches, streaks, 
clusters, and a variety of other signature types which are defined by the user through training. SSA will also result in 
a reduction in the number of wafers required for off-line review (i.e., optical, SEM, etc.). This is accomplished by 
automatically pre-qualifying defect data for review based on the signature type. For example, a mechanical scratch 
would likely not be reviewed off-line since the source can be readily determined from the signature class. Other defect 
distributions found by SSA may still require off-line review to locate the source of the particle contamination, but SSA 
can provide an efficient sampling plan based on the signature result which will reduce the number of sites which must 
be revisited. The result will be increased wafer throughput on these review tools. 

In summary, it is anticipated that SSA will provide the manufacturer with a new level of information which is suitable 
for controlling the manufacturing process and quickly understanding and correcting important yield issues. 
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