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Fusion Rule Estimation Using Vector Space Met hods 

Over the past decade, the area of sensor fusion has witnessed a tremendous growth due to: (a) an in- 
creasing number of applications that require solutions to difficult sensor fusion problems, and (b) advances 
in computational systems and methods that make it possible to  process large volumes of data. The sensor 
fusion problems have particular relevance to  engineering systems, where the fundamental limitations of single 
sensor systems have been realized in many applications. By employing multiple sensors: (i)  replicated sensors 
can be employed for fault tolerance, and (ii) sensors of different modalities can be used to  achieve tasks that 
cannot be performed by a single sensor. In either case, the fusion method must be designed carefully, since 
an inappropriate fuser can make the system worse than the worst individual sensor. 

Several existing sensor fusion methods require either independence of sensor distributions or closed-form 
analytical expressions for error densities. In the former case, a general majority fusion rule suffices, while in 
the latter a fusion rule can be computed using Bayesian methods. Several popular distributed decision fusion 
methods belong to  the latter ~ l a s s . ~ 1 ~ *  In engineering systems, however, independence can seldom be assured 
and, in fact, may not be satisfied. Also, the problem of obtaining the probability densities which are required 
by Bayesian methods can be more difficult than the fusion problem itself.26 Thus practical solutions to  fusion 
problems must exploit the empirical data available from observation and/or experimentation. Recently, such 
“learning” methods that estimate fusion rules based on recent advances in empirical estimation and non-linear 

Nageswara S. V. Rao 
Center for Engineering Systems Advanced Research 

Oak Ridge National Laboratory 
Oak Ridge, T N  37831 

raons@ornl.gov 

ABSTRACT 

In a system of N sensors, the sensor Si, j = 1 , 2  ..., N ,  outputs Y ( J )  E 3, according to an unknown 
probability distribution P(y(I),x), corresponding to  input X E [0,1]. A training n-sample (XI, Yl),  (X2,Y2),  

. . ., (Xn, Y,,) is given where Y,  = (%(‘I, %(2), . . . , Y$N’) such that Y:) is the output of Sj in response to input 
Xi. The problem is to  estimate a fusion rule f : SN H [0, 11, based on the sample, such that the expected 
square error is minimized over a family of functions 3 that constitute a vector space. The function f that 
minimizes the expected error cannot be computed since the underlying densities are unknown, and only an 
approximation f to f* is feasible. We estimate the sample size sufficient to ensure that f provides a close 
approximation to  f’ with a high probability. The advantages of vector space methods are two-fold: (a) the 
sample size estimate is a simple function of the dimensionality of F, and (b) the estimate f can be easily 
computed by well-known least square methods in polynomial time. The results are applicable to  the classical 
potential function methods and also (to a recently proposed) special class of sigmoidal feedforward neural 
networks. 

Subject Terms: Sensor fusion, fusion rule estimation, empirical estimation, vector space methods. 

1 INTRODUCTION 
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computational methods have been developed12 within the framework of Probably and Approximately Correct 
(PAC) learning.27s25 These methods are suited for engineering systems where the sensor system is available 
for operation/experimentation, but, it is difficult to obtain detailed sensor error densities. 

Consider a system of N sensors such that corresponding to input X E [0,1], the sensor Si, i = 1,2,  . . . , N, 
outputs Y(j) E EJZ according to an unknown distribution Py(+lx. A independently and identically distributed 

output of Sj in response to input Xi .  We consider the expected square error 
(iid) n-sample ( X I ,  Yl) ,  (X2,Y2), . . . , ( X n ,  Yn) is given where Y,  = (y"), x@), . . . , (W ) and q') is the 

I(f) = /[X - f(Y))I2dPYlXdPX, (1.1) 

where Y = (Y(l), Y(2) ,  . . . , Y(N)), to be minimized over a family of fusion rules F = {f : ?RN H [0, l]}, based 
on the given n-sample. For simplicity, we consider the quadratic cost, but the approach is valid for general 
costs if suitable boundedness or smoothness conditions are satisfied (see Section 2). 

Let f' E 3 minimize I( .) .  In general, f" cannot be computed since the underlying distributions are 
unknown. Furthermore, since no restrictions are placed on the distributions, it will not be possible to infer f" 
(with probability one) based on only a finite sample. Consequently, only an approximation f to f" is feasible 
in general. If F forms a finite dimensional vector space, then we show that an estimator f can be computed 
which satisfies 

P W )  - W') > €1 < 6, (1.2) 
where E > 0 and 0 < 6 < 1. Informally, this condition states that the "error" off  is within E of the optimal 
error (of f") with arbitrary high probability 1 - 6, given a sufficiently large sample. Such criteria have been 
extensively used in a number of machine learning and empirical estimation problems (see Vapnik2' for more 
details). The sample size sufficient to  ensure the criterion (1.2) is shown to be 

where d is dimension of F. The advantages of vector space methods are twefold: (a) the sample size estimate 
is a simple function of the dimensionality of 3, and (b) the estimate f can be easily computed by well-known 
least square methods in polynomial time. Also, our results provide new perspectives on the classical potential 
function method of Aizerman el 01.' and recently proposed feedforward sigmoidal networks of Kurkova.8 

The sensor fusion problem (1.1) under the criterion (1.2) was first formulated in Rao12 and was further 
E (0,l)" has been solved using majority developed in R ~ o . ' ~ , ' ~ , ' ~  The special case of decision fusion where 

rules,20,'8 empirical Bayesian r u l e ~ , l ~ > ' ~  and nearest neighbor rules.17 

The paper is organized as follows. In Section 2, we show that for a sufficiently large sample, the criterion 
(1.2) can be satisfied when 3 is a finite-dimensional vector space. We then discuss computational issues and 
some well-known examples of T in Section 3. 

2 SAMPLE SIZE ESTIMATION 

Let S be a set equipped with a pseuodometric d,. The covering number .V(E, d,,, S )  is defined as the smallest 
number of closed bails of radius E ,  and centers in S ,  whose union covers S. Let Y,, Yz, . . . , Y, denote the iid 
sample and Y = {Yl, Y2, . . . , Yn}. We define Fp = ( ( f ( Y l ) ,  f(Y2), . . . , f (Yn ) )  : f E F} C [0,1]". Consider 

the random variable N ( E ,  dn,  Fp) where dn : [0,1]" x [0, lIn - [0,1] is defined as &(I,  3 = 1 1.i - zit ,  

for 2 = ( ~ 1 ~ 2 2 , .  . . , zn) and z'= ( t l ,  ~ 2 , .  . . , zn). This cover size plays an essential role in the convergence of 

- 
n 

i=l 

'The approach of this paper can be directly extended to the case where Y ( ' )  E Bd and X E [-.,TI, for 0 < 7 < 00. 



empirical values of the functions to their expectations. We state a result which is an adaptation of Pollard's 
result" by Lugosi and Zeger." 

LEMMA 2.1. Let F be a class of measurable f u n c t i o n s  f r o m  A i n t o  [0, 11, and P be a probability measure 
d e j n e d  on A .  T h e n  

where F = {Yl, Y2,. ..,Yn}, P f  = f f (p )dP  and Pnf = $,E f(K). 
:=l 

Now consider a cover size for function classes. Let 3 = {f : ?I?N w [0,1]}. Consider N ( E ,  dp, F), where 
r 

for a probability distribution defined on ?I?'. If 3 forms a vector space of dimensiosality d ,  then its cover size 
can be upperbounded as follows as a direct consequence of results of Cover2 and H a ~ s s l e r . ~  

LEMMA 2.2. Let  3 denote d dimensional  vector  space of f u n c t i o n s  defined o n  A with range [0,1]. T h e n  
f o r  a n y  probabili ty measure P defined o n  A ,  we have 

Proof: This bound is obtained by first showing that the VC-dim of the sets of the form {{z : f(z) 2 0) : f E 
F} to  be d using the result of Cover2 (also The VC-dim is used by Haussler7 to  obtain the bound on 
the cover size. 0 

Since the bound in Lemma 2.2 is valid for any P defined on A, we have N(c/16, dn,3p) 5 (9 In $ ) d ,  by 
noting that dn specifies a discrete uniform probability meaure on P with mass l / n  at each x. 

THEOREM 2.3. Le t  f' and  f denotes  the  expected best a n d  e m p t n c a l  best f u s i o n  rules  chosen  from a vector 
space 3 of damenston d and range [0, 11. G i v e n  a n  ird sample  of saze 

we have P [ l ( f )  - I ( f )  > €1 < 6. 

Proof: By the result of Vapnik26 we have 

n 

r = l  
where 6 = { g ( z ,  y )  = (z - f ( y ) ) 2  : f E F}, P g  = J g ( z , y ) d P  and P,,g = ;; 1 g(Xi,X).  Consider glJg2 E G 
such that g i ( z ,  y) = (z - fi(y))2, i = 1,2. Now we have 



By Lemma 2.1, we have 

p { I(f) 

The right hand side is upperbounded 

This result can be generalized to 

by 6 for the sample size n given in the theorem. 0 

functions with range [-T,T], for T < 00, without changing the overall - 
functional dependence on E ,  6 and d. Also, more general cost functions can be considered. Consider 3 = 
{f : SN ++ [0,1]}. Given f 1 ,  f2  E 3, we say that f1 5 f2 if fl(y) 5 f2(y) for all y E g d .  The function 
If1 - f2 l  is defined as If1 - f2l(y) = Ifl(y) - f2(y)I at every y E 3?N. The cost function e(.) defined on 3 
satisfies Lipschitz property if there exists a positive constant re such that lQ(f1) - e(f2)l 5 relfl - f2l for 
all f1 ,  f2  E F. The square error cost defined above is a special case with I’s = 2, for 3: E [0,1]. The Theorem 
2.1 can be generalized to account for the Lipschitz cost functions. 

3 FUNCTION SPACES AND COMPUTATIONAL PROBLEM 

d 

i=l 
Let {fi, f2,. . . , fd} be the basis of 3 such that  f E 3 can be written as f(y) = aifi(y) for ai E S. 

d 

i=l 
Then consider f = &fi(y) such that a = ( & I ,  62,. . . , l i d )  minimizes the cost expressed as (with abuse of 

notation) 

where a’ = (a1 , u2,. . . , ad). This is the well-known least squares problem, which can be solved by a number of 
methods (for example see,g Chapter 10). Now Iemp(Si) can be written in the following form: 

d d  d 

where 

Thus a = (61, Q2,. . . , &) is obtained by minimizing the quadratic form aTCa f a T d ,  where C = [c i j ]  is a 
positive definite symmetric matrix, and D = [djJ. This problem is known to be polynomial-time solvable using 
quadratic programming methods.2g 

One of the earliest candidates for 3 is the set of polynomials of fixed degree 1 (which form a vector space 
of dimension I + 1). 

The potential functions of Aizerman et a/.,’ where fi(y) of the form ezp((y -  CY)^//?), for suitably chosen 
constants CY and ,8, constitute another example of the vector space methods. An incremental algorithm 
was originally proposed for the computation of the coefficient vector 2, for which finite sample results have 
been derived recentlyz1 under certain conditions. The  sample size estimate of this paper is simpler and is 
proportional t o  the number of component functions, as opposed to  the complicated form of the existing finite 
sample results (e.g. dependence21 on eigenvalues of the correlation matrix). Note that the sample size of this 
paper is valid only for the method that minimizes lemp and is not valid for the original incremental algorithm 
of the potential functions. 



More recent examples of vector space methods are the two-layer sigmoidal networks of Kurkova,* where 
the only unknown weights are in the output layer (also see5). The specific form of these networks enables us 

to express each network in the form aiq i (y )  where qi(.)’s are universal. These networks have been shown 

t o  approximate classes of continuous functions with arbitrarily specified precision, in a manner similar to the 
general single layer sigmoidal networks (shown by Cybenko3). We are unaware of any previous finite sample 
and computational results for function estimation based on this method. Based on the results presented 
in this paper, we have a simple bound for these networks based on a polynomial-time computable solution. 
This is in contrast with the general feedforward sigmoidal networks, where the sample size estimate is fairly 
~ o m p l i c a t e d , ~ ~ 7 ~ ~  and the computational problem is very hard.24 

d 

k=l 

4 CONCLUSIONS 

We presented a class of solutions to  a general sensor fusion problem, where the underlying sensor error 
distributions are not known but a sample is available. The advantages of vector space methods are two-fold: 
(a) the sample size estimate is a simple function of the dimensionality of 3, and (b) the estimate f can be 
easily computed by well-known least square methods in polynomial time. In addition, this work provides a 
new perspective on the computational and finite sample aspects of the classical potential function methods1 
and a special type of sigmoidal neural networks.8 

Several issues of the fusion rule estimation are open problems. In our sample size estimates no efforts are 
made t o  optimize the constants; we believe much smaller values for the constants can be obtained. It would 
be interesting to  obtain lower bounds for the sample sizes in order to  judge the tightness of bounds proposed 
here. 
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