
,

CUMULVS: Collaborative Infrastructure for Developing
Distributed Simulations

The CUMULVS software environment provides remote collaboration
among scientists by allowing them to dynamically attach to, view, and
"steer" a running simulation. Users can interactively examine inter-
mediate results on demand, saving effort for long-running applications
gone awry. In addition, it provides fault tolerance to distributed appli-
cations via user-directed checkpointing, heterogeneous task migration
and automatic restart. This talk describes CUMULVS and how this
tool benefits scientists developing large distributed applications.

James Arthur Kohl
Oak Ridge National Laboratory
Oak Ridge, T N

, : . e .

,-

Philip M. Papadopoulos
Oak Ridge National Laboratory
Oak Ridge, T N

G. A. Geist, I1
Oak Ridge National Laboratory
Oak Ridge, T N

"This submitted manuscript has been
authored by a contractor of the U.S.
Government under Contract No. DE-ACOS-
960R22464. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow othfrs to do so. for U.S. Government
purposes.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process. or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or jeflect those of the
United States Government or any agency thereof.

-~ -
~ __ - -

s

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

CUM U LVS : Collaborative Infrastructure for Developing
Distributed Simulations *

James Arthur Kohl Philip M. Papadopoulos G. A. Geist, I1 t

Abstract
The CUMULVS software environment provides remote collaboration among scien-

tists by allowing them to dynamically attach to, view, and “steer” a running simulation.
Users can interactively examine intermediate results on demand, saving effort for long-
running applications gone awry. In addition, CUMULVS provides fault tolerance to
distributed applications via user-directed checkpointing, heterogeneous task migration
and automatic restart. This paper describes CUMULVS and how this tool benefits
scientists developing large distributed applications.

1 Introduction
Computer simulation is becoming increasingly important as an alternative to the often
expensive task of constructing physical prototypes and experiments for scientific research
and development. More and more, scientists are developing software simulations of their
work to be run on high-performance parallel or distributed computer systems. Such software
experiments provide a cost-effective means for exploring a wide range of variations in input
datasets and physical parameters. The on-line nature of these experiments also provides a
framework within which scientists can collaborate with other remotely located researchers,
a task not possible when physicdy constructing a prototype or experiment.

There are many issues to overcome when developing a high-performance computer
simulation, especially when many scientists must interact with the simulation over a wide-
area network. The scientists must be able to observe the progress of the simulation and share
and coordinate control over it, and the user environment must be capable of withstanding
or recovering from system failures. The efficient handling of these issues requires a special
expertise in computer science and a level of effort higher than the typical application
scientist is willing to expend.

The CUMULVS system [l, 2,3,4] is an infrastructure for developing high-performance
computer simulations in a collaborative environment. Using CUMULVS, each scientist
in a group can dynamically attach to a running simulation, extract custom views of
the intermediate data results on-the-fly, and coordinate control over the progress of the
computation by “steering?’ physical or algorithmic parameters. Each collaborator interacts
with the simulation via a front-end program called a viewe$. Any number of viewers
can simultaneously attach and detach from the simulation, and the connections that
CUMULVS provides between the simulation and the viewers are tolerant of net6ork faults

*Research supported by the Applied Mathematical Sciences Research Program of the Office of Energy
Research, U.S. Department of Energy, under contract DE-AC05-960R22464 with Lockheed Martin Energy
Research Corp.

‘Oak Ridge National Laboratory, Oak Ridge, T N
“Viewer” is a generic term to describe a program for visualizing or steering an application.

1

2

and host failures. CUMULVS also provides a platform for integrating fault-tolerance into
the simulation program itself, for saving user-directed checkpoints, migrating the simulation
program across heterogeneous computer architectures, automatically restarting failed tasks,
and reconfiguring the simulation while it is running.

The remainder of this paper briefly describes the features of the CUMULVS system,
and discusses specific scenarios in which it can be of assistance to collaborating scientists.

2 CUMULVS Overview
CUMULVS is a freely-available library middle-ware system that bridges the gap between
existing application codes and commercial visualization / user interface packages. The
CUMULVS libraries can be used with simulation programs written in C, C++ or Fortran.
The CUMULVS communication protocols can be utilized on top of any complete message-
passing system, and the viewing functions can be linked to any front-end visualization
system. The current implementation uses PVM [5] as a message-passing substrate, and
several visualization systems are supported including AVS [6] and Tcl/Tk [7]. Porting
CUMULVS to a new system requires only creation of a single declaration file, to define
the proper calling sequences for CUMULVS. The CUMULVS distribution includes several
complete viewer programs: a standard text-only viewer, a standard Tcl/Tk slicer, a
standard AVS-compatible viewer, and a sample custom Tcl/Tk viewer for a particle-based
simulation. These viewers are sufficient for typical user needs; however, if a special viewer
is desired, CUMULVS provides a library interface for building custom viewers.

To use CUMULVS with an existing simulation code, the computational data fields and
algorithmic or physical parameters of the simulation must be described. These special
declarations consist of the data .type, the size and cardinality of any arrays, and any
distributed data decompositions. Several data decompositions are supported, including
generic block-cyclic decompositions as described by High-Performance Fortran (HPF)
[8, 912, and particle-type decompositions with user-defined particle accessor functions.
CUMULVS needs declarations only for the data that is to be viewed and the parameters that
are to be steered, not the entire symbol table. At the point in the simulation’s calculation
where the data field values are deemed “valid,” a single call is made to the “send-to-front-
end” library routine, to temporarily pass control to CUMULVS. Here, CUMULVS handles
any pending viewer requests and processes any steering parameter updates. If no viewers
are attached, the “sendToFE” routine carries only the overhead of a single message probe,
so that negligible intrusion to the simulation is experienced.

Some of the details of CUMULVS’s data field viewing and computational steering
features are described in the following two subsections, respectively. A third subsection
describes the fault tolerance features that CUMULVS provides for user simulation programs.

2.1 Data Field Viewing
When a CUMULVS viewer attaches to a running simulation, it does so in terms of a
data field request. This request includes some set of data fields, a specific region of the
computational domain to be collected, and the frequency of data frames which are to be
sent to the viewer. CUMULVS handles all of the collection of the sub-region, or visualization
region, of data from the simulation. For a distributed or parallel simulation, each task in the .
simulation need only identify its logical processor position in the data field decomposition,

*In fact, the built-in decomposition accessor functions in HPF provide for potentially automatic
instrumentation of a simulation for use with CUMULVS.

._. -- -
~, - . jc , i ~. . - .. -. ‘ . . . -.- - , +;i -” :.: ‘ . , . ,. , . I . , _ -

c., ’ <.,, I .
.- - __ - .

3

and then CUMULVS can determine which data elements are present in each task and
extract the data automatically.

In addition to the boundaries of the sub-region, a full visualization region specification
also includes a “cell size” for each axis of the computational domain. The cell size determines
the stride of elements to be collected for that axis, e.g. a cell size of 2 will obtain every
other data element. This feature provides for more efficient high-level overviews of larger
data regions by using only a sampling of the data points, while still allowing every data
point to be collected in smaller regions where the details are desired. To reduce network
traffic CUMULVS downsizes the datasets within the parallel simulation tasks themselves,
instead of at the viewer. CUMULVS-capable viewers are sent only the data that they have
requested. Another performance gain is achieved by sending the data asynchronously, as is
discussed below.

Once CUMULVS has collected the data for a given visualization region at each local
task, the data is sent to the viewer task where it is automatically assembled into a coherent
frame for animation. CUMULVS ensures that each viewer has a time-coherent view
of parallel data. An internal sequence number is maintained to determine where each
simulation task is in the computation, and any attached viewers loosely synchronize with
the simulation for each data frame they receive. The loose synchronization means that a
viewer can determine on which iteration tasks are computing to within some desired number
of iterations (as controlled by the frame frequency) without using an explicit barrier. The
frequency of data frames can be dynamically set from the viewer to control the overhead
and the loose synchronization effects.

2.2 Computational Steering
Aside from collecting data frames from running applications, CUMULVS viewers can
also remotely “steer” a simulation’s computational parameters on-the-fly. Often this is
a useful capability when the scientist desires to explore “what-if” experiments with various
parameters in a simulation, or perhaps viewing the intermediate results of a computation
can reveal a problem or a new opportunity to manipulate the simulation. Such interactive
control can save countless hours of wasted computation time waiting for final simulation
results that might have been corrupted in the first few iterations.

CUMULVS supports simultaneous coordinated steering of simulations by multiple
collaborators. A token scheme prevents conflicting adjustments to the same steering
parameter by different users. Consistency protocols are used to verify that all tasks
in a distributed simulation apply the steering changes in unison. So scientists, even if
geographically separated, can work together to direct the progress of a computation, and
can do so without concern for the consistency of steering parameters among potentially
distributed tasks.

The simulation program can determine whether parameters have been “steered” by
CUMULVS via the return value from the main “sendToFE” library routine. This
value indicates the number of steering parameters that have been updated for the next
computation phase. The simulation program can, if necessary, poll individual parameters
with an additional library routine to see specifically if CUMULVS has changed a given
parameter’s value. Steering parameters in CUMULVS can be either scalars or vectors, with
each element in a parameter vector being of a potentially different data type. Steering
parameters can also be “indexed,” to allow multiple users to steer individual elements of
parameter arrays simultaneously.

4

CUMULVS does not require explicit synchronization with the simulation program
to manipulate steering parameters. Instead, the same loose synchronization used for
visualization data frames is applied for steering parameter updates. As a result, the precise
iteration for each concurrent simulation task is not known, so changes to steering parameters
can only become uniformly effective at some future predetermined iteration.

2.3 Fault Tolerance
Much of the same infrastructure that is used for visualization and steering can be used for
user-directed checkpointing. The descriptions of the simulation data and decompositions
can be applied for efficiently extracting checkpoint data. By taking advantage of the
user's knowledge of a simulation program, the minimal necessary program state can
be identified and saved, along with detailed structural information, to produce a very
flexible checkpointing system. Not only can this checkpoint data be used to automatically
restore the simulation in the event of a failure, but these checkpoints can be used to
interactively migrate simulation tasks, even across heterogeneous machine architectures,
for improved load balance / performance. Such heterogeneous migration is not possible
with environments that utilize system-directed checkpointing, where full core images are
saved. Also, because the user precisely defines the minimal program state, the amount of
checkpoint data can be significantly smaller.

The well-defined nature of CUMULVS checkpoints also leads to some innovative
capabilities in terms of dynamically reconfiguring an application. Because CUMULVS
understands the various data decompositions in a simulation program, it can rearrange the
data stored in a checkpoint and actually restart the simulation using a different processor
configuration. So, a checkpoint saved from an execution on a 256-node Intel Paragon could,
for example, be restarted instead on a 32-node IBM SP system, to continue from where it
had left off. Likewise, if the computational resources available to the simulation program
were to change, CUMULVS could be told to reconfigure the simulation program on-the-fly
to use more or fewer processing nodes. This type of automated flexibility could greatly
improve the productivity of simulation-based research. Of course, for this to be possible
the simulation program must be able to handle certain changes in data decompositions.
This may, however, be handled already in terms of normal checkpoint restarting, where a
restarted simulation task must likely adapt itself to oversee an externally selected set of
data elements within a decomposition.

3 Usage Scenarios
This section outlines some sample usage scenarios that a group of collaborating scientists
might encounter over the course of a simulation experiment. These scenarios encompass
the development of an initial sequential simulation prototype, its evolution to a distributed
simulation, and its subsequent analysis by the group using CUMULVS.

3.1 Initial Sequential Prototype
Consider a team of collaborating scientists who are designing an airplane wing. It is likely
not cost effective to design physical prototypes initially, so these scientists, spread across
the country at different sites, decide to start with a computer simulation of the air flow
over the wing. The simulation will explore the stability and performance of the wing given
different configurations and air flow inputs, with the goal of designing the best wing given
various constraints.

5

ndim = 3;
axis-type = { stvCollapse, stvCollapse, stvCollapse };
axisinfo = { stvDefault, stvDefault, stvDefault };
globallower-bounds = { 1, 1, 1 };
global-upper-bounds = { 250,250,500 };
processorrank = 1;
processorshape = { 1 };

decomposition = stv-decompDefine(ndim, axis-type, axisinfo, axisinfo,
globallower-bounds, global-upper-bounds, processorrank, processorshape);

4

array-declare = { 250,250,500 };
processoraddress = { 0 };

fieldid[O] = stvfieldDefine(pressure, ”pressure”, decomposition,
stvNoFieldOffsets, arraydeclare, stvFloat, processoraddress, stvVisOnly);

fieldid[l] = stvfieldDefine(pressure2, ”temp pressure”, decomposition,
stvNoFieldOffsets, array-declare, stvFloat, processoraddress, stv VisOnly);

FIG. 1. Serial CUMULVS Instrumentation

The first step is to write a computational fluid dynamics (CFD) simulation program
that computes the pressure of the air flowing around the wing. This first simulation is a
simple sequential one that will serve primarily to verify the model - it will check for the
expected results in a few basic cases. At this stage, CUMULVS is applied to interactively
view the air pressure data as the CFD algorithm slowly converges to a solution. The
sequential simulation is CUMULVS-instrumented to define the pressure field and a few
special parameters, such as the Mach number and angle of attack. The decompositions at
this point are trivial, as the data is not actually decomposed, but all resides in a single
computational task. The instrumentation does not take long (see example in Figure 1).
With CUMULVS in place, the group runs a few simulations. Each scientist connects a
viewer from their site to the lone running simulation program and observes the progress
of the computation. Some scientists observe the overall computation domain at a low
granularity, while others “zoom” in to look at the details in a few specific sub-regions.

Although the entire simulation would take days to converge, several simple program
bugs are seen immediately by viewing the intermediate pressure values. After a few partial
runs, having cleaned up some program bugs, the basic simulation appears to be working and
a few serious test runs are made. Each of these runs takes a very long time to execute, and
not much progress is made toward the ultimate goal. Several scientists use their CUMULVS
viewers to coord‘inate steering of parameters to modify the physical model characteristics,
but the response time is poor and each change takes many iterations to be seen in the
viewed data.

3.2 Distributed Simulation
The scientists decide to parallelize the simulation code to improve its performance. The
pressure field around the wing is separated into smaller grid regions which can be computed

6

axis-type = { stvBlock, stvBlock, stvCoZZupse };
axisinfo = { stvDefuuZt, stvDefuuZt, stvDefuuZt };
. . .
processorrank = 2;
processorshape = { 32, 32 };

arraydeclare = { 8 , 8, 500 };
processoraddress = { i, j: i=0,31; j=0,31 };

. . .

FIG. 2. CUMULVS Instrumentation Changes for Distributed Data Decomposition

fieldid[2] = stvfieldDefine(resid, ”residuals”, decomposition,
stvNoFieldOffsets, array-declare, stvFZout, processoraddress, stv VisOnZy);

FIG. 3. Debugging Residual Field Instrumentation

in parallel. At the end of each iteration, the boundaries among these grid regions
are exchanged to keep all the pieces “glued” together numerically. The CUMULVS
instrumentation is extended to describe this new data arrangement - a simple block
decomposition - and now the group is ready to try another run. The corresponding
changes to the CUMULVS declarations are shown in Figure 2 - the decomposition for
the two pressure fields now uses a two-dimensional processor configuration with standard
“block-block” data distribution on the first two axes.

Using CUMULVS viewers, the group connects to the now parallel simulation, which runs
on a large 1024-node multiprocessor. Again the scientists independently explore the ongoing
simulation, looking for indications that the computation is proceeding properly. But in fact
it is not - the new parallel version does not seem to converge at every point in space. So one
of the scientists goes into the program source code and adds a CUMULVS declaration for
the computation “residuals” data field, to see precisely where the convergence problem is
coming from (see Figure 3). This data field, already present in the computation, represents
the error in the solution, and is used to direct the Simulation towards convergence.

A new simulation run is started from scratch, with the residual field now available for
CUMULVS viewing. It quickly becomes apparent that one of the columns of data elements
in the residual field is not changing, as this column sticks out like a huge spike in the
viewer display while the rest of the field settles. The array indices were not being traversed
correctly, and the last elements along the two main axes were not being computed. The
bug is quickly fixed, and now the real development work can begin.

3.3 Collaborative Analysis
The scientists start setting up many different simulation runs to explore the solution space
for their wing design. Each of these runs still takes many hours to complete, even in
parallel, but some answers are beginning to become clear. Occasionally, one of the big
multiprocessor computers fails, but having added some CUMULVS checkpointing to the
simulation program, things are always restarted to continue forward.

At first, all of the scientists work together on a few specific simulation experiments, all
watching them progress from their independent viewers. Then some of the scientists get
some ideas on their own, and begin exploring some alternate simulations. One scientist

7

FIG. 4. CFD Residuals View Using CUMULVS

takes a checkpoint from an almost completed run on the “big” machine, and reconfigures
it, using CUMULVS, to run on a local workstation cluster. The scientist steers a few
parameters to push the simulation in a slightly different direction, and gets some good
results. Excited at the new information, the scientist contacts a colleague from across the
country, who proceeds to hook up a viewer to the new simulation. The new configuration
looks very good, and soon the two scientists migrate the simulation again, reconfiguring it
for the “big” multiprocessor machine again. Everyone checks it out, and “bingo” - a major
breakthrough!

3.4 Real-Life Example
A scenario much like the one above, but on a smaller scale, was experienced by a researcher
here at ORNL in preparation for the Supercomputing ’96 High-Performance Computing
Challenge demonstration, in which ORNL received a Silver Medal for Innovation with
CUMULVS. The residuals data field example above was extracted directly from that
development effort, as shown in Figure 4.

CUMULVS proved to be a vduable tool over the course of that project, and was utilized
repeatedly for debugging the simulation software and exploring the resulting software
model. An image of the final simulation in action is shown in Figure 5.

4 Conclusions
The CUMULVS system is an infrastructure for developing high-performance computer
simulations in a collaborative environment. Using CUMULVS, scientists can dynamically
attach to, extract custom views from, and coordinate control over a running simulation from
around the world. CUMULVS also provides a means for integrating flexible fault-tolerance
into simulation programs, and allows saving of user-directed checkpoints, migration of
the simulation program across heterogeneous systems, and automatic restarting and
reconfiguring of an ongoing simulation. There are many scenarios in which CUMULVS
can be applied to expedite collaborating scientists’ development of simulation experiments.

8

FIG. 5. View of Running Air Flow Simulation Using CUMULVS

CUMULVS can be used to help debug a simulation, and to explore “what-if” hypotheses
interactively among collaborators. CUMULVS has already been applied to real scientific
projects with great success.

5 Acknowledgments
The authors wish to thank Dave Semeraro at Oak Ridge National Laboratory for his work
on the air flow simulation, and his help as guinea pig in really trying out CUMULVS.

References
[l] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, CUMULVS: Providing Fault-Tolerance,

Visualization and Steering of Parallel Applications, International Journal of Supercomputing
Applications (to appear), also available via http://www.epm.ornl.gov/cs/cumulvs96.ps.

[2] P. M. Papadopoulos and J. A. Kohl, CUMULVS: an Infrastructure for Steering, Visualization
and Checkpointing for Parallel Applications, 1996 PVM User’s Group Meeting, Santa Fe, NM.

[3] J. A. Kohl and P. M. Papadopoulos, The Design of CUMULVS: Philosophy and Implementa-
tion, 1996 PVM User’s Group Meeting, Santa Fe, NM.

[4] J. A. Kohl, P. M. Papadopoulos, A Library for Visualization and Steering of Distributed Sim-
ulations wing P V M and A VS, Proceedings of the High Performance Computing Symposium,
Montreal, Canada, 1995, pp, 243-254.

[5] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel
Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Computing, The MIT
Press, 1994.

’ [6] Advanced Visual Systems, Inc. AVS User’s Guide, Waltham, MA, 1992.
[7] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994.
[8] C. Koebel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel, The High Performance

[9] High Performance Fortran Language Specification, Version 1.1, Rice University, Houston, TX,.
Fortran Handbook, MIT Press, Cambridge, MA, 1994.

November, 1994.

http://www.epm.ornl.gov/cs/cumulvs96.ps

