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Introduction 

Materials science is of fundamental significance to 
science and technology because our industrial base and 
society depend upon our ability to develop advanced 
materials. Materials and materials processing cuts 
across almost every sector of industry. From 
microelectronics to polymers, from pharmacuticals to 
petrofuels, from aerospace alloys to smart materials, 
our industrial base is built on our ability to invent and 
craft new materials. The key in all of these areas is 
the ability to rapidly screen possible designs which 
will have significant impact. However up to now 
materials design and processing have been to a large 
extent empirical sciences. As an example of the 
general problem, it has been found that empirical 
methods can sort out on the order of tens of thousands 
of drugs a year, however estimates show that only one 
cancer drug in 40,000 has clinical significance and that 
perhaps one in a million would be curative (at this rate 
it would take 100 years to obtain our “first cancer- 
curing drug”). In addition we are stiil unable to 
design new alloys and polymers to meet application 
specific requirements. Being able to do so quickly and 
at minimum cost would provide an incredible 
advantage, subsequently leading to significant advances 
in quantity and quality of materials products. 

In order for a given material to be used in 
technology it must first satisfy a number of 
performance criteria and these criteria are becoming 
more and more stringent each year. At the same time 
the range of applications of some of the more common 
materials (i.e., polyethylene) have been nearly 
stretched to their limits. Materials suitable for 
advanced applications can have considerably more 
complex chemical structures (or can be blends of 
homomaterials, such as polymer blends) [l]. In short, 
the development of new high-performance materials to 
be used in a particular technology requires significant 
R&D. Obviously, the ability to predict physical, 
chemical, or mechanical properties of compounds prior 
to their synthesis is of great technological value in 

optimizing their design, processing, or recycling [ 1-31. 
Such capabilities represent a great challenge to present 
computational methods since there are a large number 
of possible structures for a given compound (isomers) 
in addition to numerous possible compositions, atomic 
connectivities, and different processing techniques [4- 
61. In this light, the development of new predictive 
computational schemes to evaluate potential candidates 
for specific applications has taken on a new level of 
importance. The computational methods that address 
this challenge should allow simple, rapid, and accurate 
determination of key properties for a large range.”df’ 
compounds. In addition, in order to realize the 
ultimate goal of materiak by computational design, the 
reverse problem, prediction of chemical structure 
based on desired properties, has to be resolved. 

Research at Oak Ridge National Laboratory has 
lead to the development of a novel computational 
paradigm (coupling computational neural networks 
with graph theory, genetic algorithrds, wavelet theory, 
fuzzy logic, molecular dynamics, and quantum 
chemistry) capable of performing accurate 
computational synthesis (both predictions of properties 
or the design of compounds that have specified 
performance criteria) [7]. The computational paradigm 
represents a hybrid of a number of emerging 
technologies and has proven to work very well for test 
compounds ranging from small organic molecules [8] 
to polymeric materials [7]. Fundamental to the method 
is the neural network-based formulation of the 
correlations between structure and properties. The 
advantages of this method is in its ease of use, speed, 
accuracy, and that it can be used to predict both 
properties from structure, and also structure from 
properties. 

Computational Scheme 

Computational neural networks provide powerful 
tools for modeling of materials. In the chemical 
sciences, the use of computational neural networks has 
rapidly increased over the past 5 years (approximately 
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850 publications). There is now sufficient utilization 
of neural networks in chemistry that several review 
articles and a book is available on the s ~ b j e c t ~ ' ~ .  It is 
the goal of this paper to present results on the use of 
computational neural networks in materials science as 
a method for making accurate predictions of polymer 
properties based on their molecular structure and for 
designmg molecular-based compounds that have 
specified properties. 

Figure 1 schematically shows the overall approach 
that was used in the research presented in ttus paper. 
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Figure 1. Schematic diagram showing the 
computational paradigm used to carry out materials 
modeling. 

A given molecular structure for a repeat unit of a 
particular polymer, Kapton as shown, is transformed 
into a set of numerical descriptors (using graph theory 
for example). These descriptors are used as inputs to 
a computational neural network and a set of desired 
properties are used as outputs. The neural network 
will then adjust its connection weights in order to 
optimize the output prediction error. Once thrs phase 
(called training) is complete, the neural network can 
be given descriptors for polymers that were not 
originally used in the training phase and will output a 
set "predicted" properties, using the internal 
correlations that were learned from the training phase. 
This overall scheme can also serve to screen out 
descriptors that are not necessary to formulate the 
correct correlations. This task can be accomplished by 
performing sensitivity analyses on the trained network 

(changing one input and monitonng the changes made 
in the outputs) [ 141. 

The underlying englne of the method resides UI a 
general purpose neural network simulator 
(ORNLNET) [7] that utilizes a modified form of the 
learning algorithm of back-propagation (a hybrid 
stochastic-conjugate gradient method) to adjust the 
connection weights in a feedforward neural network 
consisting of several layers of nodes including an input 
layer, some hidden layers (the number of nodes is 
automatically optimized), and an output layer. The 
initialization of the connection weights is generally 
performed using adaptive simulated annealing or 
genetic algorithms which tends to start the network in 
a state that is much more optimal than that accessible 
for a random distribution. The overall goal is to teach 
the network to associate specific output states (desired 
answers) to each of several input states [14-171. 
Having learned the fundamental relationship(s) 
between inputs and outputs, the neural network should 
then be able to produce the correct output for unknown 
input. 

Forward Process: Prediction of Properties 
from Chemical Structure 

-** 
In order to perform neural network predictions on 

polymer properties from a set of structural desriptors, 
a suitable training set must be obtained. In this study 
a number of different neural network architectures and 
topologies were used since a number of different 
experiments were performed. The more general 
network was one with an architecture of a single 
hidden layer and topology of 18 inputs (structural 
descriptors), 3 hidden, and 9 outputs (9 different 
properties). The network also had direct connections 
between the input and output layer and bias nodes. 
This particular network was determined to be optimal 
for the problem of making accurate predictions of 9 
different properties (simultaneously) for a polymer 
data set. 

As a starting point a number of descriptors that 
are useful for characterizing molecular structure were 
examined [5 ] .  For the purpose of accurately 
predicting polymer properties, the use of the 
descriptors defined by Bicerano [I] appear to be an 
excellent choice. These descriptors are based 
topological indices obtained by using graph theory, 
and reflect both topological connectivity and 
information on the eleetronic structure. A new set of 
indices are incorporated into this basic set which take 
into account properties that depend on the amount of 
material present, called extensive, and those which do 
not, called intensive. 

The indices developed by Bicerano were used as 
input to a neural network which then could sort out 



which ones were needed to predict a set of polymer 
properties. The properties that were predicted were: 
the molar volume (VI, heat capacity at 298 K CCJ, 
change in heat caoacitv at the glass transition 
temuerature CAC,), cohesive energy (E I 1, solubilitv 
parameter (61, glass transition temuerature fT&, 
refractive index (?I), thennal Conductivity (A), and the 
dielectric constant (€1. A total of 357 polymers were 
examined, although sufficient information on all 9 of 
the properties was not available for all of the 
polymers. An adequate set of complete data could be 
constructed for the purpose of neural network training 
and predictions. Table I summarizes the errors 
obtained from the prediction of the properties listed 
above for twenty unknown polymers (test set). 

Table I. Physical property estimates by ORNLNET. 

Property Range std. dev. c. coef. 

V (cc/mol) 
C,(J/mol k) 
ACp at T, 
E, (J/moi) 
6 (J"/cm3n) 

9 

X (J/K m s) 

T, (K) 

E 

24-2 14.3 
38.3-235.9 
9.4-77.8 
8089-71087 
12.7-20.9 
171-482 
1.3500-1.5750 
2.10-3.25 
0.110--230 

0.5 
1.8 
1.1 
335 
1.3 
6 
0.0045 
0.03 
0.019 

0.9999 
0.9992 
0.9982 
0.9996 
0.9994 
0.9978 
0.9971 
0.9971 
0.9970 

The correlation coefficient (c. coef.) and standard 
deviation (std. dev.) for each property was determined 
for the neural network predictions. In each case, the 
neural network was able to account for more than 99.4 
% of the variation of the data for the given properties. 
The standard deviation was at most 11.8 % of the 
average value of the property (the worst was for the 
thermal conductivity). The average prediction error 
was < 1% with a maximum error of only 8.2 %. 
Overall, the neural network clearly demonstrated the 
capability of making accurate predictions of at least 9 
polymer properties from a set of 18 descriptors. 

Extensions to more properties such as oxygen 
permeabilities at room temperature, or temperature 
dependencies of the various properties should be 
relatively straight forward. Predictions of mechanical 
properties such as shear and bulk moduli, tensile, and 
impact strength have also proven to be accurately 
predicted by the neural network technique. 

The generality of this approach was also tested on 
other types of materials, such as hydrocarbons 
(including their isomeric forms gave an average 

prediction error for 6 physical properties of < 3 W), 
fluorohydrocarbon compounds (average prediction 
error for 5 physical properties of < 6%),  and 
energetic materials (predictions on the detonation 
velocity and sensitivity of energetic materials gave an 
average prediction error of < 3%). In all cases, the 
accuracy of the predicted properties was similar to that 
discussed above. 

Reverse Process: Designing Molecular 
Structures that have Desired Properties 

The prediction of properties based on chemical 
structure has numerous possible applications, however, 
the real potential is in the reverse problem: predicting 
the structure of compounds that give a set of specified 
properties or meet certain performance criteria. 
Simply inverting the neural network predictions is not 
possible since the relationships are ambiguous. The 
approach that we have employed is to use a 
combinatorial optimization technique, genetic 
algorithms [ 18-20], to search through the numerous 
possible structures that could give a set of specified 
performance criteria (the neural network is used as the 
function to optimize). It has been found that a genetic 
algorithm (using real strings and special operations) is 
an efficient technique for generation and selection of 
chemical structures. The overall procedure is to use 
a trained neural network-genetic algorithm hybrid to 
determine possible structures that satisfy desired 
performance criteria. As an example of the 
capabilities of this computational scheme, we have 
used this method to design a number of 
fluorohydrocarbon compounds that had the desired 
properties of Freons but without the environmentally 
unsatisfying ozone depletion potential and atmospheric 
lifetime. In addition we have used the method to 
design energetic materials that had optimal detonation 
velocities. 

For the flurohydrocarbon problem, several 
compounds were designed that had no experimental 
data available: (CH,CF,CH,F, CF2HCHFCHF,, 
CH,FCF,CFH& All of these compounds can be 
synthesized and measurements of at least one of the 
predicted compounds confirm the prediction accuracy 
(the maximum error was 6%) of the overall method. 

Similar results have been obtained for designing 
energetic materials. In this case, the method designed 
compounds, CJJ6N606 triaminotrinitrobenzene and 
C4H8N808 cyclotetramethylene tetranitramine, that 
already was known to have optimal properties. In any 
case, the fact that the method was able to determine 
these candidate compounds is very exciting and 
demonstrates the potential applicability to a number of 
problems in materials design. 
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Conclusions 

In this paper, computational synthesis, a method 
for predicting the properties or for designing materials 
that have desired properties, was discussed. It entails 
a computational paradigm for making rapid and 
accurate estimations of physical properties for 
molecular systems. The method uses a set of descript- 
ors as a numerical representation of the chemical 
structure for a given compound and relates these to a 
set of properties by utilizing a computational neural 
network. The neural network is capable of efficiently 
formulating all of the correlations necessary to make 
accurate predictions. Results have been obtained for up 
to 10 properties of 357 different polymers (average 
prediction error of < 1%), for making accurate 
predictions on the detonation velocity and sensitivity of 
energetic materials (average prediction error of < 
3%), and for predicting properties of a series of 
isomenc forms of saturated hydrocarbons (average 
prediction error of < 3%) and fluorohydrocarbon 
compounds (average prediction error of < 6%). In 
comparison with other techniques for obtaining 
quantitative structure-property relationships (QSPR), 
the neural network method offers advantages in both 
ease of use and accuracy, features which are essential 
for use in technological applications. The method can 
also be operated in the reverse direction (with the aid 
of genetic algorithms), that is, designing molecular- 
based compounds that have desired properties. 
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