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Abstract: These options often have widely varying performance char- 

Today's massively parallel machines are typically mes- 
sage-passing systems consisting of hundreds or thousands 
of processors. Implementing parallel applications eficient- 
ly in this environment is a challenging task, and poor par- 
allel design decisions can be expensive to correct. Tools 
and techniaues that allow the fast and accurate evaluation 

acteristics that are functions of numerous system 'and pro- 
gram parameters, and it can be difficult to predict a priori 
which options are best. Accurate prediction of the perfor- 
mance trade-offs of alternative strategies and of how the 
performance will change as program parameters change 
would greatly benefit program developers. 

of different parallelization strategies would sign@cantly 
improve the productivity of application developers and in- 
crease throughput on parallel architectures. 

This paper investigates one of the major issues in build- 
ing tools to compare parallelization strategies: determining- 

Several approaches for the modeling of parallel systems 
have been Presented that use Markov models Or petri nets 
[SI, [ll], [12]. Unfortunately, it is difficult to apply these 
approaches to massively parallel systems or complex paral- 
le1 applications: 
- The graphical representation required by these ap- 

. . .  
what type of performance models of the application code 
and of the computer system are suflcient for a fast and ac- 
curate comparison of different strategies. The paper is built 
around a case study employing the Performance Prediction 
Tool (PerPreT) to predict performance of the Parallel 
Spectral Transform Shallow Water Model code (PSTSWM) 
on the Intel Paragon. 

1. Introduction 
Advances in microprocessor technology and inter- 

connection networks have made it possible to construct par- 
allel systems with a large number of .processors (e.g., Cray 
Research T3D, IBM SP2, Intel Paragon, workstation net- 
works running PVM). Unfortunately, the application pro- 
grams developed for conventional sequential systems or for 
pipelined supercomputers do not automatically run effi- 
ciently on these systems. There are few tools to support the 
development of parallel programs, and the performance of 
parallel programs is strongly dependent on the parallel pro- 
gramming skills of the application developer. 

Before writing a program, the developer must identify a 
parallelization strategy. In most cases there are many op- 
tions for distributing the data and tasks onto the processors. 

proaches is very complex for systems with hundreds or 
thousands of processors. 
The parallel application description required is very de- 
tailed. 
The resulting systems of equations defining the models 
are large and expensive to solve. 

Applications for massively parallel systems typically use 
the single program multiple data (SPMD) programming 
model and are loosely synchronous [3]. For such programs, 
simpler modeling techniques utilizing algebraic abstrac- 
tions of the application and computer system can often be 
used without a significant loss of accuracy [2]. These tech- 
niques make it feasible to model architectures with thou- 
sands of processors, and the resulting models can be evalu- 
ated quickly. Recent research utilizing algebraic perfor- 
mance models includes [4], [9], and [lo]. These papers 
focus on tools or methodologies, many of them language or 
system specific, that automatically generate performance 
models from source code and user input. We are primarily 
interested in investigating the accuracy of algebraic perfor- 
mance models. We want to identify what types of models 
can be used when modeling full application codes in the 
context of comparing parallelization strategies. In earlier 
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work we found that the different phases of a parallel code 
place both implementation and performance constraints on 
each other, and that evaluation of kernels in isolation can be 
misleading, especially in a prototyping environment. 

In this paper we show that a reasonably accurate predic- 
tion of performance measures is possible without requiring 
detailed application and system characterizations. We de- 
scribe a case study employing algebraic models to predict 
the performance of the Parallel Spectral Transform Shallow 
Water Model code (PSTSWM) on the Intel Paragon, using 
these models to determine which parallel algorithm options 
are optimal for a given problem size and number of proces- 
sors, We concentrate on the feasibility of such an approach 
for comparing parallelization strategies, and do not address 
directly how to generate accurate models before the appli- 
cation code has been written. 

This research was possible only because of the prior ex- 
istence of a number of tools: PSTSWM, PICL, and PerPreT. 
PSTSWM is a convenient testbed for such studies. PICL 
(Portable Instrumented Communication Library) was used 
to collect the performance data needed to construct and to 
validate the performance models [6]. PerPreT (Performance 
Prediction Tool) was used to define and evaluate the perfor- 
mance models [2]. All three tools are available via the 
World Wide Web from the following locations: 

http://www.epm.ornl.gov/chammp/pstswm 
http://www.epm.ornl.gov/picl 
http://www.irb.uni-hannover.de/-brehm/publications 

The remainder of this paper is organized as follows. Sec- 
tion 2 is a description of how to use the performance predic- 
tion tool PerPreT. Section 3 is a description of the 
P S T S W  code and of the different parallelization strate- 
gies, Section 4 is a description of the parametrized PerPreT 
formulae for PSTSWM. Section 5 is a description of the 
modeling experiments and an analysis of the results. . 

2. PerPreT 
The performance prediction tool PerPreT uses high level 

descriptions of computation and communication of a paral- 
lel application and a high level system description to predict 
performance measures such as execution time, communica- 
tion time, and speedup. The system description is derived 
by system parameters for computation (sustained MFLOP 
per seconds rate) and communication (setup time, link 
bandwidth, topology). Since many parallel scientific codes 
are SPMD programs, the current PerPreT implementation 
focuses on this programming model. An SPMD application 
is reduced to formulae for computation (number of arith- 
metic statements) and communication (calls to the commu- 
nication library). The problem size for an application and 
the number of processors used to execute the SPMD pro- 
gram are free parameters. 

The system and application descriptions are kept inde- 
pendent of each other. Thus, applications are modeled on 
different systems without the need of defining new applica- 
tion descriptions and vice versa. For modeling complex 
codes such as PSTSWM, PerPreT supports splitting the 
code into different computation phases according to their 
performance behavior. If extra operations for parallel com- 
puting are necessary (e.g., copy operations to prepare for 
communication), such extra phases can also be modeled 
with their performance characteristics. More details on 
PerPreT are described in [2]. 

3. PSTSWM 
PSTSWM is a message-passing parallel program that 

solves the nonlinear shallow water equations on a rotating 
sphere using the spectral transform method. PSTSWM was 
developed to evaluate different parallelization strategies for ~ 

global atmospheric circulation models [5]. 
PSTSWM advances the solution fields in a sequence of 

timesteps. During each timestep, the state variables of the 
problem are transformed between the physical domain, a 
tensor product longitude-latitude-vertical grid, and the 
spectral domain. Transforming from physical coordinates to 
spectral coordinates involves performing a real fast Fourier 
transform (FFT) for each line of constant latitude, followed 
by a numerical integration over latitude (approximating the 
Legendre transform (LT)) to obtain the spectral coefficients 
[7]. The parallel algorithms in PSTSWM are based on de- 
compositions of the physical and spectral computational do- . 
mains over a logical processor mesh of size P=PX x PY. 
Parallel efficiency is determined primarily by the efficiency 
of the parallel algorithms used for the and LT trans- 
forms and by any load imbalances caused by the choice of 
domain decomposition. 

Two classes of parallel algorithms are available for each 
transform: distributed algorithms, using a fixed data decom- 
position and computing results where they are assigned, and 
transpose algorithms, remapping the domains to allow the 
transforms to be calculated sequentially. We restrict our- 
selves to one transpose algorithm (T) for both FFT and LT, 
one distributed FFI' algorithm (D), and two distributed LT 
algorithms (R and H). These generate six parallel algo- 
rithms (parallel FFT/parallel LT): DH, DR, DT, TH, TR, 
TT. For more detail, see [ 131. 

4. Modelling PSTSWM 
PerPreT expects separate formulae for the computation 

and communication. For PSTSWM. both computation and 
communication were further decomposed into phase mod- 
els, representing distinct code fragments, each with their 
own rates. The phase models were derived from the source 

http://www.epm.ornl.gov/chammp/pstswm
http://www.epm.ornl.gov/picl
http://www.irb.uni-hannover.de/-brehm/publications
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physical domain computation 

forward F+T 
12. NLLON-P * NLLAT-P * NLVER-P 

-(PX-l)/PX1.32 * NLLAT-P eNLV3R-P. 

'(PX-l)/PX1* 32. NLLAT-P .NLVER-F- 
( a+b.NLLON-F) 
2 0. NLLAT-F * NLVER-F * NLLON-F * 

(a+b*NLLON-P) 

(a+b.log2(NLLON-F/4) ) 
64. NLLAT-F NLVER-Fa (a+b.NLLON-F/I 
144. NLLAT-F * NLVER-F* (a+b.NLLON-F/ 

forward LT 
(PY-1) * 6 * NLVER-S NCSP-S/PY 
6 1. NLVER-S * NLMM-S * NLLAT-S 
(14. NLLAT-S-1) * NCSP-S NLVER-S 

spectral domain computation 

inverse LT 
13. NLSP-S - NLVER-S 
17- NCSP-S * NLVER-S 
(14.NCSP-S + 10 * NLbDZ-S). 
NLLAT-S * NLVER-S 
4 0. NLLAT-F * NLVER-F* 
(a + b*(NLLON-F/2 - NLIB4-S)) 

inverse 
70. NLLAT-F * NLVER-F. (a+b.NLLON-F/4 
40. NLLAT-F . NLVER-F. (a+b.NLLON-F/2 
(25 / 2 ) * NLLAT-F * NLVER-F 
(a+b.logZ(NLLON-F/4) ) 
-(PX-l)/PX1* 20. NLLAT-F -NLVER-F- 
NLLON-F 
-(PX-l)/PXl* 20 NLLAT-F -NLLON-P 
(aPX + b*NLVER-P) 

NLLON-F. 

4.5,23.1 

17.7,21.6 

3.8,24.0 
4.0, 15.2 
10.4, 19.8 

4.4 
10.0 
15.1 

11.5 

7.0 

12.8 

22.1,36.8 

8.8,20.4 
2.8, 18.6 

3.8,24.0 

10.2 

15.2, 18.6 

Table 1. Computational models and MFL.OP/s or MBytels 
rates for algorithm TH 

code. Rates were specified with either one or two parame- 
ters and were determined empirically from a series of %pro- 
cessor experiments. 

As an example of the form, the computation phase mod- 
els for algorithm TH are given in Table 1, where the param- 
eters are functions of the problem size, number qf proces- 
sors, and domain decomposition. For full descriptions of 
these and the other models, see [ 13. 

1. What is the best parallel algorithm to use for a given 
number of processors? 

2. How long will the application take to complete a 
run? 

Two problem sizes were investigated, denoted by T42 
and T85. Only T42 results are presented here. The T85 re- 
sults are described in [ 13. 

For the two performance questions, we discuss 
P=8,16,32,64,128,256,512.Theoptimalparallel algo- 
rithms are determined over all algorithms and processor 
mesh aspect ratios. The estimation of runtimes is discussed 
in terms of the optimal parallel algorithms. Finally, we re- 
examine the models, eyaluating the effectiveness and im- 
portance of the phase model approach in being able to an- 
swer the performance questions. 

5.1. Optimal parallel algorithm 

Determining the optimal parallel algorithm experimen- 
tally requires developing, tuning, and evaluating multiple 
parallel implementations. This is very time consuming, and 
there is much to be gained from using performance models 
to predict the optimal parallel algorithm. The relative accu- 
racy of the execution time prediction is important here, not 
the absolute accuracy. Table 2 indicates the true and pre- 
dicted optimal parallel algorithm for different numbers of 
processors and the percentage loss from using the model- 
identified algorithm. The optimal aspect ratio was found for 
each parallel algorithm before being compared with the oth- 
er parallel algorithms. The model results use the model-de- 
termined optimal aspect ratios. The empirical results use the 
experimentally-determined optimal aspect ratios. 

Processors 
8 

16 
32 
64 

128 
256 
512 

model 
optimum 

DR 1x8 
DT 1x16 
TR 8x4 
TR 16x4 
TH 16x8 
TH 16x16 
TH 16x32 

T42 
experimental 

optimum 
.DR 1x8 
DT lxlG 
TR 8x4 
TR 16x4 
TR 16x8 
l'T 16x16 
TH 16x32 

%diff. in 
runtime 

1.1 
3.7 
-- 

5. Experiments 
The performance models are meant to be simple enough 

to be generated by the application developer, yet accurate 
enough to be used when scaling problem and machine pa- 
rameters and when comparing alternative parallel algo- 
rithms. The approach taken here has been to construct the 
application model from a set of phase models. In this sec- 
tion we use the models to examine the following perfor- 
mance questions: 

Table 2. Error in choosing opt. algorithm from model results 
instead of experimentally. 

The performance models correctly identify the optimal 
algorithm and aspect ratio in five out of seven cases. The er- 
rors in misidentifying the optimal algorithm were accept- 
able. The performance sensitivity of choosing the wrong al- 
gorithm (but with an optimum aspect ratio) is not as extreme 
as when choosing the aspect ratio, but worst case emors 
range as high as 85%. Note that when considering a larger 
sampling of interesting problem sizes, all of the parallel al- 



gorithms are optimal in some cases. It is not possible to 
eliminate any of the parallel algorithms a priori. 

5.2. Runtime predictions 

When allocating resources, it is important to know how 
long a parallel job will take to run on agiven number of pro- 
cessors. For example, runtime information is often required 
when submitting batch requests. This type of prediction re- 
quires a certain degree of absolute accuracy, but the degree 
needed is not great. (However, accurate predictions of run- 
time can be extremely important in real-time environ- 
ments). Table 3 indicates how accurately the models predict 
the runtime for the model-determined "optimal" parallel al- 
gorithms (to pick particular examples). Sources for the error 
in the predictions are discussed in [ 13. With possibly one ex- 
ception, the accuracy of these predictions is adequate for the 
determination of resource requirements. Note that similar 
accuracies hold for predicted speedup and parallel efficien- 

. cy, 

Processors 
8 

16 
32 
64 

128 
256 
512 

algorithm 
DR 1x8 
DT 1x16 
TR 8x4 
TR 16x4 
TH 16x8 
TH 16x16 
TH 16x32 

T42 
predicted 
runtime 

79.8 
40.9 
23.0 
12.2 
6.7 
4.0 
2.6 

%error in 
prediction 

- 1.6 
- 6.6 
2.2 
1.7 

- 5.4 
- 11.1 
- 27.8 

Table 3. Error in predicting runtimes (seconds) 

5.3. Model accuracy requirements 

The previous results indicate that the accuracy of our 
phase model approach is adequate for algorithm tuning and 
comparison for this case study. We next discuss whether a 
simpler model might also suffice. 

There are numerous ways to simplify the current model. 
Here we consider only a few obvious alternatives. First, we 
choose the optimal algorithm on the basis of arithmetic 
complexity alone, ignoring copy phases, communication 
costs, and phase-dependent rates. (Including copy and com- 
munication complexity would require some sort of rate es- 
timation to weight the different components of the model.) 

Table 4 indicates the true and predicted optimal parallel 
algorithms using this simplified model, and the percentage 
loss from using the model-identified algorithm. These pre- 
dictions are not as good as those from using a phase model. 
Depending on the application, the size of these errors may 
or may not be acceptable. But, since the error in the predic- 
tion is not known in practice, the wide and unpredictable 
variation in the error is worrisome. 

Processors 
8 

16 
32 
64 

128 
256 
512 

T42 11 model I experimental I %diff. in 11 
optimum 
DT 1x8 
DT 1x16 

1 DT 2x16 
DT 4x16 
'IT 16x8 
'IT 16x16 
TR 16x32 

optimum 
DR 1x8 
DT 1x16 
TR 8x4 
TR 16x4 
TR 16x8 
'IT 16x16 

TTH 16x32 

runtime 
6.6 

17.3 
22.3 
2.7 

45.1 

Table 4. Error in choosing optimal algorithm from complexity 
analysis instead of experimentally. 

We can not predict runtimes from the complexity analy- 
sis alone. The next model we consider uses the sustained 
computation rate for an 8-processor run for a given parallel 
algorithm to weight the corresponding arithmetic complex- 
ity model. Table 5 indicates how accurately this model pre- 
dicts the runtime for the above model-determined "optimal" 
parallel algorithms. For this type of model to be accurate re- 
quires that either copy and communication costs are negli- 
gible or they scale similarly with the computation costs, and 
that the rates are insensitive to scaling. It is clear from Table 
5 that these conditions do not hold for PSTSWM. 

Processors 
16 
32 
64 

128 
256 
512 

algorithm 
DT 1x16 
DT 2x16 
DT 4x16 
TI' 16x8 
TT 16x16 
TR 16x32 

T42 
predicted 
runtime 

41.2 
20.8 
10.6 
5.5 
3.0 
1.6 

%error in 
prediction 

- 6.3 
- 21.1 
- 27.4 
- 23.0 
- 32.0 
- 56.1 

Table 5. Error in predicting runtime (seconds) using complexity 
based model. 

Our final simplified model includes terms for computa- 
tion, copy, and communication costs, but does not take into 
account phase-specific rates. Instead we use average copy 
and computation rates determined from the 8-processor 
runs. Table 6 indicates how accurately this type of single- 
phase model predicts the runtime for the phase model "op- 
timal" parallel algorithms (to allow direct comparison with 
the phase model results). 

With the exception of predictions for T42 for large num- 
bers of processors, the single-phase model is as accurate a 
predictor of runtime as is the (multiple-) phase model. So 
the question arises whether a phase model is required as 
long as the copy, computation, and communication costs 
are included in the model. A phase model does not appear 
to be required for accurate performance prediction for 
PSTSWM. 



Processors algorithm 
8 

16 
32 
64 

128 
256 
512 

predicted 
runtime 

DR 1x8 
1 DT 1x16 

TR 8x4 
TR 16x4 
TH 16x8 
TH 16x16 
TH 16x32 

86.8 
43.9 
23.3 
12.1 
6.6 
3.8 
2.4 

%error in 
irediction 

- 7.2 
- 15.5 
- 32.4 

Table 6. Error in predicting runtime (seconds) using single 
phase model 

However, we found constructing the phase model to be 
necessary. The error prone aspect of the phase model ap- 
proach was in the generation of the phase model expres- 
sions, These same expressions are needed in a single-phase 
model or in a complexity analysis. The additional step of 
calculating rates and validating the individual phase models 
also validates the expressions. Modeling phases can also 
identify performance "problems", for example, code that is 
overly sensitive to aspect ratio due to compiler peculiarities. 
Using average rates and a single-phase model removes the 
necessity of detailed profiling to determine individual phase 
model rates, but makes it more difficult to validate the mod- 
el. 

6. Conclusions 
This case study demonstrates that relatively simple alge- 

braic models can be used to construct scalable performance 
models for use in algorithm tuning and comparison. These 
models can be difficult to generate and validate, but the 
phase model approach makes it feasible to do so. In addi- 
tion, constructing and modifying models and generating 
predictions were easy using PerPreT. 

A phase model approach was useful in generating a per- 
formance model, but it may not be necessary when "port- 
ing" the model to a new platform. As described earlier, sin- 
gle rates for computation, copy, and communication phases 
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may be sufficient when using the model for predictions. In . 
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