
"This submitted manuscript has been
authored by a contractor of the U.S.
Government under Contract No. DE-ACOS-
960R22464. Accordingly, the U.S.
Government retains a nonexciusive.
royalty-free license to publish or reproduce
the published form of this contribution. or
allow othtn to do so, for US. Government
purposes.

Performance Prediction for Complex Parallel Applications

Jurgen Brehm, University of Hannover
Institut fur Rechnerstrukturen und Betriebssysteme,

Lange Laube 3,30159 Hannover, Germany
brehm@ irbmi-hannover.de

Patrick H. Worley, Oak Ridge National Laboratory
Mathematical Sciences Section

P. 0. Box 2008, Oak Ridge, TN 3783 1-6367
worleyph @ornl.gov

Abstract: These options often have widely varying performance char-

Today's massively parallel machines are typically mes-
sage-passing systems consisting of hundreds or thousands
of processors. Implementing parallel applications eficient-
ly in this environment is a challenging task, and poor par-
allel design decisions can be expensive to correct. Tools
and techniaues that allow the fast and accurate evaluation

acteristics that are functions of numerous system 'and pro-
gram parameters, and it can be difficult to predict a priori
which options are best. Accurate prediction of the perfor-
mance trade-offs of alternative strategies and of how the
performance will change as program parameters change
would greatly benefit program developers.

of different parallelization strategies would sign@cantly
improve the productivity of application developers and in-
crease throughput on parallel architectures.

This paper investigates one of the major issues in build-
ing tools to compare parallelization strategies: determining-

Several approaches for the modeling of parallel systems
have been Presented that use Markov models Or petri nets
[SI, [ll], [12]. Unfortunately, it is difficult to apply these
approaches to massively parallel systems or complex paral-
le1 applications:
- The graphical representation required by these ap-

. . .
what type of performance models of the application code
and of the computer system are suflcient for a fast and ac-
curate comparison of different strategies. The paper is built
around a case study employing the Performance Prediction
Tool (PerPreT) to predict performance of the Parallel
Spectral Transform Shallow Water Model code (PSTSWM)
on the Intel Paragon.

1. Introduction
Advances in microprocessor technology and inter-

connection networks have made it possible to construct par-
allel systems with a large number of .processors (e.g., Cray
Research T3D, IBM SP2, Intel Paragon, workstation net-
works running PVM). Unfortunately, the application pro-
grams developed for conventional sequential systems or for
pipelined supercomputers do not automatically run effi-
ciently on these systems. There are few tools to support the
development of parallel programs, and the performance of
parallel programs is strongly dependent on the parallel pro-
gramming skills of the application developer.

Before writing a program, the developer must identify a
parallelization strategy. In most cases there are many op-
tions for distributing the data and tasks onto the processors.

proaches is very complex for systems with hundreds or
thousands of processors.
The parallel application description required is very de-
tailed.
The resulting systems of equations defining the models
are large and expensive to solve.

Applications for massively parallel systems typically use
the single program multiple data (SPMD) programming
model and are loosely synchronous [3]. For such programs,
simpler modeling techniques utilizing algebraic abstrac-
tions of the application and computer system can often be
used without a significant loss of accuracy [2]. These tech-
niques make it feasible to model architectures with thou-
sands of processors, and the resulting models can be evalu-
ated quickly. Recent research utilizing algebraic perfor-
mance models includes [4], [9], and [lo]. These papers
focus on tools or methodologies, many of them language or
system specific, that automatically generate performance
models from source code and user input. We are primarily
interested in investigating the accuracy of algebraic perfor-
mance models. We want to identify what types of models
can be used when modeling full application codes in the
context of comparing parallelization strategies. In earlier

-

-

L

http://irbmi-hannover.de
mailto:ornl.gov

DISCLAIMER

This report was prepared as a n account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or respolm'bility for the accuracy, completeness, or usefulne+s of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or othenvise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. wes are
produced from the best available original
document.

work we found that the different phases of a parallel code
place both implementation and performance constraints on
each other, and that evaluation of kernels in isolation can be
misleading, especially in a prototyping environment.

In this paper we show that a reasonably accurate predic-
tion of performance measures is possible without requiring
detailed application and system characterizations. We de-
scribe a case study employing algebraic models to predict
the performance of the Parallel Spectral Transform Shallow
Water Model code (PSTSWM) on the Intel Paragon, using
these models to determine which parallel algorithm options
are optimal for a given problem size and number of proces-
sors, We concentrate on the feasibility of such an approach
for comparing parallelization strategies, and do not address
directly how to generate accurate models before the appli-
cation code has been written.

This research was possible only because of the prior ex-
istence of a number of tools: PSTSWM, PICL, and PerPreT.
PSTSWM is a convenient testbed for such studies. PICL
(Portable Instrumented Communication Library) was used
to collect the performance data needed to construct and to
validate the performance models [6]. PerPreT (Performance
Prediction Tool) was used to define and evaluate the perfor-
mance models [2]. All three tools are available via the
World Wide Web from the following locations:

http://www.epm.ornl.gov/chammp/pstswm
http://www.epm.ornl.gov/picl
http://www.irb.uni-hannover.de/-brehm/publications

The remainder of this paper is organized as follows. Sec-
tion 2 is a description of how to use the performance predic-
tion tool PerPreT. Section 3 is a description of the
P S T S W code and of the different parallelization strate-
gies, Section 4 is a description of the parametrized PerPreT
formulae for PSTSWM. Section 5 is a description of the
modeling experiments and an analysis of the results. .

2. PerPreT
The performance prediction tool PerPreT uses high level

descriptions of computation and communication of a paral-
lel application and a high level system description to predict
performance measures such as execution time, communica-
tion time, and speedup. The system description is derived
by system parameters for computation (sustained MFLOP
per seconds rate) and communication (setup time, link
bandwidth, topology). Since many parallel scientific codes
are SPMD programs, the current PerPreT implementation
focuses on this programming model. An SPMD application
is reduced to formulae for computation (number of arith-
metic statements) and communication (calls to the commu-
nication library). The problem size for an application and
the number of processors used to execute the SPMD pro-
gram are free parameters.

The system and application descriptions are kept inde-
pendent of each other. Thus, applications are modeled on
different systems without the need of defining new applica-
tion descriptions and vice versa. For modeling complex
codes such as PSTSWM, PerPreT supports splitting the
code into different computation phases according to their
performance behavior. If extra operations for parallel com-
puting are necessary (e.g., copy operations to prepare for
communication), such extra phases can also be modeled
with their performance characteristics. More details on
PerPreT are described in [2].

3. PSTSWM
PSTSWM is a message-passing parallel program that

solves the nonlinear shallow water equations on a rotating
sphere using the spectral transform method. PSTSWM was
developed to evaluate different parallelization strategies for ~

global atmospheric circulation models [5].
PSTSWM advances the solution fields in a sequence of

timesteps. During each timestep, the state variables of the
problem are transformed between the physical domain, a
tensor product longitude-latitude-vertical grid, and the
spectral domain. Transforming from physical coordinates to
spectral coordinates involves performing a real fast Fourier
transform (FFT) for each line of constant latitude, followed
by a numerical integration over latitude (approximating the
Legendre transform (LT)) to obtain the spectral coefficients
[7]. The parallel algorithms in PSTSWM are based on de-
compositions of the physical and spectral computational do- .
mains over a logical processor mesh of size P=PX x PY.
Parallel efficiency is determined primarily by the efficiency
of the parallel algorithms used for the and LT trans-
forms and by any load imbalances caused by the choice of
domain decomposition.

Two classes of parallel algorithms are available for each
transform: distributed algorithms, using a fixed data decom-
position and computing results where they are assigned, and
transpose algorithms, remapping the domains to allow the
transforms to be calculated sequentially. We restrict our-
selves to one transpose algorithm (T) for both FFT and LT,
one distributed FFI' algorithm (D), and two distributed LT
algorithms (R and H). These generate six parallel algo-
rithms (parallel FFT/parallel LT): DH, DR, DT, TH, TR,
TT. For more detail, see [131.

4. Modelling PSTSWM
PerPreT expects separate formulae for the computation

and communication. For PSTSWM. both computation and
communication were further decomposed into phase mod-
els, representing distinct code fragments, each with their
own rates. The phase models were derived from the source

http://www.epm.ornl.gov/chammp/pstswm
http://www.epm.ornl.gov/picl
http://www.irb.uni-hannover.de/-brehm/publications

Phase Model -
1

2

3

5

6
7

9
11
1

1

1
1,

1

-

-

-
-

-
1
1
21

2

2

physical domain computation

forward F+T
12. NLLON-P * NLLAT-P * NLVER-P

-(PX-l)/PX1.32 * NLLAT-P eNLV3R-P.

'(PX-l)/PX1* 32. NLLAT-P .NLVER-F-
(a+b.NLLON-F)
2 0. NLLAT-F * NLVER-F * NLLON-F *

(a+b*NLLON-P)

(a+b.log2(NLLON-F/4))
64. NLLAT-F NLVER-Fa (a+b.NLLON-F/I
144. NLLAT-F * NLVER-F* (a+b.NLLON-F/

forward LT
(PY-1) * 6 * NLVER-S NCSP-S/PY
6 1. NLVER-S * NLMM-S * NLLAT-S
(14. NLLAT-S-1) * NCSP-S NLVER-S

spectral domain computation

inverse LT
13. NLSP-S - NLVER-S
17- NCSP-S * NLVER-S
(14.NCSP-S + 10 * NLbDZ-S).
NLLAT-S * NLVER-S
4 0. NLLAT-F * NLVER-F*
(a + b*(NLLON-F/2 - NLIB4-S))

inverse
70. NLLAT-F * NLVER-F. (a+b.NLLON-F/4
40. NLLAT-F . NLVER-F. (a+b.NLLON-F/2
(25 / 2) * NLLAT-F * NLVER-F
(a+b.logZ(NLLON-F/4))
-(PX-l)/PX1* 20. NLLAT-F -NLVER-F-
NLLON-F
-(PX-l)/PXl* 20 NLLAT-F -NLLON-P
(aPX + b*NLVER-P)

NLLON-F.

4.5,23.1

17.7,21.6

3.8,24.0
4.0, 15.2
10.4, 19.8

4.4
10.0
15.1

11.5

7.0

12.8

22.1,36.8

8.8,20.4
2.8, 18.6

3.8,24.0

10.2

15.2, 18.6

Table 1. Computational models and MFL.OP/s or MBytels
rates for algorithm TH

code. Rates were specified with either one or two parame-
ters and were determined empirically from a series of %pro-
cessor experiments.

As an example of the form, the computation phase mod-
els for algorithm TH are given in Table 1, where the param-
eters are functions of the problem size, number qf proces-
sors, and domain decomposition. For full descriptions of
these and the other models, see [13.

1. What is the best parallel algorithm to use for a given
number of processors?

2. How long will the application take to complete a
run?

Two problem sizes were investigated, denoted by T42
and T85. Only T42 results are presented here. The T85 re-
sults are described in [13.

For the two performance questions, we discuss
P=8,16,32,64,128,256,512.Theoptimalparallel algo-
rithms are determined over all algorithms and processor
mesh aspect ratios. The estimation of runtimes is discussed
in terms of the optimal parallel algorithms. Finally, we re-
examine the models, eyaluating the effectiveness and im-
portance of the phase model approach in being able to an-
swer the performance questions.

5.1. Optimal parallel algorithm

Determining the optimal parallel algorithm experimen-
tally requires developing, tuning, and evaluating multiple
parallel implementations. This is very time consuming, and
there is much to be gained from using performance models
to predict the optimal parallel algorithm. The relative accu-
racy of the execution time prediction is important here, not
the absolute accuracy. Table 2 indicates the true and pre-
dicted optimal parallel algorithm for different numbers of
processors and the percentage loss from using the model-
identified algorithm. The optimal aspect ratio was found for
each parallel algorithm before being compared with the oth-
er parallel algorithms. The model results use the model-de-
termined optimal aspect ratios. The empirical results use the
experimentally-determined optimal aspect ratios.

Processors
8

16
32
64

128
256
512

model
optimum

DR 1x8
DT 1x16
TR 8x4
TR 16x4
TH 16x8
TH 16x16
TH 16x32

T42
experimental

optimum
.DR 1x8
DT lxlG
TR 8x4
TR 16x4
TR 16x8
l'T 16x16
TH 16x32

%diff. in
runtime

1.1
3.7
--

5. Experiments
The performance models are meant to be simple enough

to be generated by the application developer, yet accurate
enough to be used when scaling problem and machine pa-
rameters and when comparing alternative parallel algo-
rithms. The approach taken here has been to construct the
application model from a set of phase models. In this sec-
tion we use the models to examine the following perfor-
mance questions:

Table 2. Error in choosing opt. algorithm from model results
instead of experimentally.

The performance models correctly identify the optimal
algorithm and aspect ratio in five out of seven cases. The er-
rors in misidentifying the optimal algorithm were accept-
able. The performance sensitivity of choosing the wrong al-
gorithm (but with an optimum aspect ratio) is not as extreme
as when choosing the aspect ratio, but worst case emors
range as high as 85%. Note that when considering a larger
sampling of interesting problem sizes, all of the parallel al-

gorithms are optimal in some cases. It is not possible to
eliminate any of the parallel algorithms a priori.

5.2. Runtime predictions

When allocating resources, it is important to know how
long a parallel job will take to run on agiven number of pro-
cessors. For example, runtime information is often required
when submitting batch requests. This type of prediction re-
quires a certain degree of absolute accuracy, but the degree
needed is not great. (However, accurate predictions of run-
time can be extremely important in real-time environ-
ments). Table 3 indicates how accurately the models predict
the runtime for the model-determined "optimal" parallel al-
gorithms (to pick particular examples). Sources for the error
in the predictions are discussed in [13. With possibly one ex-
ception, the accuracy of these predictions is adequate for the
determination of resource requirements. Note that similar
accuracies hold for predicted speedup and parallel efficien-

. cy,

Processors
8

16
32
64

128
256
512

algorithm
DR 1x8
DT 1x16
TR 8x4
TR 16x4
TH 16x8
TH 16x16
TH 16x32

T42
predicted
runtime

79.8
40.9
23.0
12.2
6.7
4.0
2.6

%error in
prediction

- 1.6
- 6.6
2.2
1.7

- 5.4
- 11.1
- 27.8

Table 3. Error in predicting runtimes (seconds)

5.3. Model accuracy requirements

The previous results indicate that the accuracy of our
phase model approach is adequate for algorithm tuning and
comparison for this case study. We next discuss whether a
simpler model might also suffice.

There are numerous ways to simplify the current model.
Here we consider only a few obvious alternatives. First, we
choose the optimal algorithm on the basis of arithmetic
complexity alone, ignoring copy phases, communication
costs, and phase-dependent rates. (Including copy and com-
munication complexity would require some sort of rate es-
timation to weight the different components of the model.)

Table 4 indicates the true and predicted optimal parallel
algorithms using this simplified model, and the percentage
loss from using the model-identified algorithm. These pre-
dictions are not as good as those from using a phase model.
Depending on the application, the size of these errors may
or may not be acceptable. But, since the error in the predic-
tion is not known in practice, the wide and unpredictable
variation in the error is worrisome.

Processors
8

16
32
64

128
256
512

T42 11 model I experimental I %diff. in 11
optimum
DT 1x8
DT 1x16

1 DT 2x16
DT 4x16
'IT 16x8
'IT 16x16
TR 16x32

optimum
DR 1x8
DT 1x16
TR 8x4
TR 16x4
TR 16x8
'IT 16x16

TTH 16x32

runtime
6.6

17.3
22.3
2.7

45.1

Table 4. Error in choosing optimal algorithm from complexity
analysis instead of experimentally.

We can not predict runtimes from the complexity analy-
sis alone. The next model we consider uses the sustained
computation rate for an 8-processor run for a given parallel
algorithm to weight the corresponding arithmetic complex-
ity model. Table 5 indicates how accurately this model pre-
dicts the runtime for the above model-determined "optimal"
parallel algorithms. For this type of model to be accurate re-
quires that either copy and communication costs are negli-
gible or they scale similarly with the computation costs, and
that the rates are insensitive to scaling. It is clear from Table
5 that these conditions do not hold for PSTSWM.

Processors
16
32
64

128
256
512

algorithm
DT 1x16
DT 2x16
DT 4x16
TI' 16x8
TT 16x16
TR 16x32

T42
predicted
runtime

41.2
20.8
10.6
5.5
3.0
1.6

%error in
prediction

- 6.3
- 21.1
- 27.4
- 23.0
- 32.0
- 56.1

Table 5. Error in predicting runtime (seconds) using complexity
based model.

Our final simplified model includes terms for computa-
tion, copy, and communication costs, but does not take into
account phase-specific rates. Instead we use average copy
and computation rates determined from the 8-processor
runs. Table 6 indicates how accurately this type of single-
phase model predicts the runtime for the phase model "op-
timal" parallel algorithms (to allow direct comparison with
the phase model results).

With the exception of predictions for T42 for large num-
bers of processors, the single-phase model is as accurate a
predictor of runtime as is the (multiple-) phase model. So
the question arises whether a phase model is required as
long as the copy, computation, and communication costs
are included in the model. A phase model does not appear
to be required for accurate performance prediction for
PSTSWM.

Processors algorithm
8

16
32
64

128
256
512

predicted
runtime

DR 1x8
1 DT 1x16

TR 8x4
TR 16x4
TH 16x8
TH 16x16
TH 16x32

86.8
43.9
23.3
12.1
6.6
3.8
2.4

%error in
irediction

- 7.2
- 15.5
- 32.4

Table 6. Error in predicting runtime (seconds) using single
phase model

However, we found constructing the phase model to be
necessary. The error prone aspect of the phase model ap-
proach was in the generation of the phase model expres-
sions, These same expressions are needed in a single-phase
model or in a complexity analysis. The additional step of
calculating rates and validating the individual phase models
also validates the expressions. Modeling phases can also
identify performance "problems", for example, code that is
overly sensitive to aspect ratio due to compiler peculiarities.
Using average rates and a single-phase model removes the
necessity of detailed profiling to determine individual phase
model rates, but makes it more difficult to validate the mod-
el.

6. Conclusions
This case study demonstrates that relatively simple alge-

braic models can be used to construct scalable performance
models for use in algorithm tuning and comparison. These
models can be difficult to generate and validate, but the
phase model approach makes it feasible to do so. In addi-
tion, constructing and modifying models and generating
predictions were easy using PerPreT.

A phase model approach was useful in generating a per-
formance model, but it may not be necessary when "port-
ing" the model to a new platform. As described earlier, sin-
gle rates for computation, copy, and communication phases

operated by the Center for Computational Science at ORNL
is funded by the Department of Energy's Mathematical, In-
formation and Computational Sciences Division of the Of-
fice of Computational and Technology Research.

8. References

may be sufficient when using the model for predictions. In .
future work, we will examine this issue by repeating our
evaluation studies on the IBM SP2 and on the Cray Re-
search T3D or T3E. The SP2 will be a particularly interest-
ing platform; communication costs are relatively high, and
a simple communication model may not be adequate.

7. Acknowledgments
This research was supported by the U.S. Department of

Energy under Contract DE-AC05-960R22464 with Lock-
heed Martin Energy Research Inc. and by the Alexander
von Humboldt foundation. The Intel XP/S 150 MP Paragon

11 11

1121

[I31

J. Brehm, P. H. Worley, and M. Madhukar. Pelformance
Modeling for SPMD Message-Passing Programs, Tech.
Report ORNLJRvl-13254. Oak Ridge National Laborato-
ry, Oak Ridge, TN, June 1996
J. Brehm, L. Dowdy, M. Madhukar, and E. Smirni, Per-
PreT - a pelformance prediction tool, in Quantitative Eva-
luation of Computing and. Communication Systems,
Lecture Notes in Computer Science 977, Springer, Heidel-
berg, 1995.
M. Calzarossa and G. Serazzi. Workload charaterization -
a survey, Proceedings of the IEEE, 81 (1993), pp. 1136-
1150.
T. Fahringer, Estimating and optimizing performance for
parallel programs, IEEE Computer, 28 (1995), pp. 47-56.
I. T. Foster, and P. H. Worley, Parallel algorithms for the
spectral transform method, Tech. Report 0R"M-
12507, Oak Ridge National Laboratory, Oak Ridge, TN,
May 1994.
G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley,
PICL a portable instrumented communication library, C
reference manual, Tech. Report .ORNL/TM-11130, Oak
Ridge National Laboratory, Oak Ridge, TN, July 1990.
J. J. Hack and R. Jakob, Description of a global shallow
water model based on the spectral transform method,
NCAR Tech Note NCAR/TN-343iSTR, National Center
for Atmospheric Research, Boulder, CO. February 1992.
P. Heidelberger and K. S. Trivedi, Analytic queuing models
forprograms with internal concurrency, IEEE Trans. Com-

M. Parashar and S. Hariri, Compile time pelfonnance pre-
diction of HPF/Fortran 9OD, IEEE Parallel and Distributed
TechnoIogy, 4 (1996). pp. 57-73.
S. R. Sarukkai, P. Mehra, and R. J. Block, Automated
scalability analysis of message-passing parallel programs.
IEEE Parallel and Distributed Technology, 3 (1995). pp.

A. Thomasian and P. F. Bay, Analytic queuing networkmo-
dels for parallel processing of task systems, IEEE Trans.
Comput., c-35 (1986), pp. 1045-1054.
H. Wabnig and G. Haring, PAPS - the parallel program
performance prediction toolset, in 7th International Confe-
rence on Modeling Techniques and Tools for Computer
Performance Evaluation, 1994, pp. 284304.
I? H. Worley and B. Toonen, A user's guide to PSTSWM,
Tech. Report ORNLJIM-12779, Oak Ridge National La-
boratory, Oak Ridge, TN, July 1995.

put., C-32 (1983), pp. 73-82.

21-32.

