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ABSTRACT 

An important issue that arises in the automation of many security, surveillance: and 
reconnaissance tasks is that of monitoring (or observing) the movements of targets 
navigating in a bounded area of interest. A key research issue in these problems is 
that of sensor placement - determining where sensors should be located to maintain 
the targets in view. In complex applications involving limited-range sensors: the use 
of multiple sensors dynamically moving over time is required. In this paper, we 
investigate the use of a cooperative team of autonomous sensor-based robots for 
the observation of multiple moving targets. We focus primarily on developing the 
distributed control strategies that allow the robot team to attempt to minimize the 
total time in which targets escape observation by some robot team member in the 
area of interest. This paper first formalizes the problem and discusses related work. 
We then present a distributed approximate approach to solving this problem that 
combines low-level multi-robot control with higher-level reasoning control based 
on the ALLIANCE formalism. We analyze the effectiveness of our approach by 
comparing it to 3 other feasible algorithms for cooperative control, showing the 
superiority of our approach for a large class of problems. 

INTRODUCTION 

An important issue that arises in the automation of many security, surveillance, and reconnais- 
sance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded 
area of interest. A key research issue in these problems is that of sensor placement - determining 
where sensors should be located to maintain the targets in view. In the simplest version of this 
problem, the number of sensors and sensor placement can be fixed in advance to ensure adequate 
sensory coverage of the area of interest. However, in more complex applications, a number of 
factors may prevent fixed sensory placement in advance. For example, there may be little prior 
information on the location of the area to be monitored, the area may be sufficiently large that 
economics prohibit the placement of a large number of sensors: the available sensor range may be 
limited, or the area may not be physically accessible in advance of the mission. In the general case,, 
the combined coverage capabilities of the available robot sensors will be insufficient to cover the 
entire terrain of interest. Thus: the above constraints force the use of multiple sensors dynamically 
moving over time. 

In this paper, we investigate the use of a cooperative team of autonomous sensor-based robots 
for applications in this domain. We focus primarily on developing the distributed control strategies 
that allow the team to attempt to minimize the total time in which targets escape observation 
by some robot team member in the area of interest. Of course: many variations of this dynamic, 
distributed sensory coverage problem are possible. For example: the relative numbers and speeds 
of the robots and the targets to be tracked can vary, the availability of inter-robot communication 
can vary, the robots can differ in their sensing and movement capabilities, the terrain may be either 



enclosed or have entrances that allow targets to enter and exit the area of interest, the terrain 
may be either indoor (and thus largely planar) or outdoor (and thus 3D), and so forth. Many 
other subproblems must also be addressed, including the physical tracking of targets (e.g. using 
vision, sonar, IR, or laser range), prediction of target movements, multi-sensor fusion, and so forth. 
Thus, while our ultimate goal is to develop distributed algorithms that address all of these problem 
variations, we first focus on the aspects of distributed control in homogeneous robot teams with 
equivalent sensing and movement capabilities working in an uncluttered, bounded area. 

The following section defines the multitarget observation problem of interest in this paper, and 
is followed by a discussion of related work. We then describe our approach, discussing each of 
the subcomponents of the system. Next, we describe and analyze the results of our approach, 
compared to three other feasible algorithms for cooperative motion control.. Finally, we offer 
concluding remarks. 

PROBLEM DESCRIPTION 

The problem of interest in this paper - the cooperative multi-robot observation of multiple 
moving targets (or CMOMMT for short) - is defined as follows. Given: 

S : 
R : 

O ( t )  : 

a two-dimensional, bounded, enclosed spatial region, with entrances/exits 
a team of m robots with 360' field of view observation sensors 
that are noisy and of limited range 

a set of n targets o j ( t ) ,  such that In(o j ( t ) ,S )  is true (where h ( o j ( t ) , S )  
means that target oj ( t )  is located within region S at time t )  

Define an m x n matrix A @ ) ,  where 

1 
0 otherwise 

if robot ri is monitoring target o j ( t )  in S at time t U i j ( t )  = 

We further define the logical OR operator over a vector H as: 

1 
i=l i / h i = {  0 otherwise 

if there exists an i such that hi = 1 

We say that a robot is monitoring a target when the target is within that robot's observation 
sensory field of view. Then, the goal is to maximize: 

over time steps At under the assumptions listed below. In other words, the goal of the robots is to 
maximize the collective time during which targets in S are being monitored by at least one robot 
during the mission from t = 0 to t = T .  Note that we do not assume that the membership of O ( t )  
is known in advance. 

In addressing this problem, we assume the following: Define sensor-coverage(ri) as the area 
visible to robot ~ i ' s  observation sensors, for T< E R. Then we assume that, in general, 

That is, the maximum area covered by the observation sensors of the robot team is much less than 
the total area to be monitored. This implies that fixed robot sensing locations or sensing paths will 
not be adequate in general, and that, instead, the robots must move dynamically as targets appear 
in order to maintain observational contact with them and to maximize the coverage of the area S. 

We further assume the following: 



0 The robots have a broadcast communication mechanism that allows them to send (receive) 
messages to (from) each other within the area S. 

0 For all ri E R and for all o,i(t) E 0( t ) ,  maz-z~(r ; )  > maz-v(oj(t)) ,  where ~mas-v(a) gives the 
maximum possible velocity of entity a ,  for a E R U O(t).  

0 Targets in 0 can enter and exit region S through distinct entrances/exits. 

0 The robot team members share a known global coordinate system. 

To somewhat simplify the problem initially, we report heye the results of the case of an omni- 
directional 2D sensory system (such as a ring of cameras or sonars), in which the robot sensory 
system is of limited range, but is available for the entire 360’ around the robot. 

RELATED WORK 

Research related to the multiple target observation problem can be found in a number of do- 
mains, including art gallery and related problems, multitarget tracking, and multi-robot surveillance 
tasks. While a complete review of these fields is not possible in a short paper, we will briefly outline 
the previous work that is most closely related to the topic of this paper. 

The work most closely related to  the CMUMMT problem falls into the category of the art 
gallery and related problems [l], which deal with issues related to polygon visibility. The basic art 
gallery problem is to determine the minimum number of guards required to ensure the visibility of 
an interior polygonal area. Variations on the problem include fixed point guards or mobile guards 
that can patrol a line segment within the polygon. Most research in this area typically utilizes 
centralized approaches to the placement of sensors, uses ideal sensors (noise-free and infinite range), 
and assumes the availability of sufficient numbers of sensors to cover the entire area of interest. 
Several authors have looked at the static placement of sensors for target tracking in known polygonal 
environments (e.g. [2]). These works differ from the CMOMMT problem, in that our robots must 
dynamically shift their positions over time to ensure that as many targets as possible remain under 
surveillance, and their sensors are noisy and of limited range. 

Sugihara et  al. [3] address the searchlight scheduling problem, which involves searching for a 
mobile b‘robber” (which we call target) in a simple polygon by a number of fixed searchlights, 
regardless of the movement of the target. They develop certain necessary and sufficient conditions 
for the existence of a search schedule in certain situations, under the assumption of a single target, 
no entrances/exits to the polygon. and fixed searcher positions 

Suzuki and Yamashita [4] address the polygon search problem, which deals with searching for 
a mobile target in a simple polygon by a single mobile searcher. They examine two cases: one in 
which the searcher‘s visibility is restricted to IC rays emanating from its position, and one in which 
the searcher can see in all directions simultaneously. Their work assumes no entrances/exits to the 
polygon and a single searcher. 

LaValle et aE. [5] introduces the visibility-based motion planning problem of locating an unpre- 
dictable target in a workspace with one or more robots, regardless of the movements of the target. 
They define a visibility region for each robot. with the goal of guaranteeing that the target will 
eventually lie in at least one visibility region. In LaValle et al. [6], they address the related question 
of maintaining the visibility of a moving target in a cluttered workspace by a single robot. They 
are also able to optimize the path along additional criteria, such as the total distance traveled. 
The problems they address in these papers are closely related to the problem of interest here. The 
primary difference is that their work does not deal with multiple robots maintaining visibility of 
multiple targets, nor a domain in which targets may enter and exit the area of interest. 

Another large area of related research has addressed the problem of multitarget tracking (e.g. 
Bar-Shalom [7, 81, Blackman [9], Fox et  al. [lo]). This problem is concerned with computing 
the trajectories of’ multiple targets by associating observations of current target locations with 
previously detected target locations. In the general case, the sensory input can come from multiple 
sensory platforms. Our task in this paper differs from this work in that our goal is not to calculate 
the trajectories of the targets. but rather to find dynamic sensor placements that minimize the 



collective time that any target is not being monitored (or observed) by at least one ofthe mobile 
sensors. 

APPROACH 

Overview 
Since the CMOMMT problem can be shown to be NP-complete, and thus intractable for com- 

puting optimal solutions. we propose an approximate control mechanism that is shown to work well 
in practice. This approximate control mechanism is based upon our previous work, described in 
[ll: 121 , which defines a fully distributed, behavior-based software architecture called ALLIANCE 
that enables fault tolerant: adaptive multi-robot action selection. This architecture is a hybrid 
approach to robotic control that incorporates a distributed, real-time reasoning system utilizing 
behavioral motivations above a layer of low-level, behavior-based control mechanisms. This archi- 
tecture for cooperative control utilizes no centralized control; instead, it enables each individual 
robot to select its current actions based upon its own capabilities, the capabilities of its teammates, 
a previous history of interaction with particular team members, the current state of the environ- 
ment. and the robot’s current sensory readings. ALLIANCE does not require any use of negotiation 
among robots, but rather relies upon broadcast messages from robots to announce their current 
activities. The ALLIANCE approach to communication and action selection results in multi-robot 
cooperation that gracefully degrades and/or adapts to real-world problems. such as robot failures, 
changes in the team mission, changes in the robot team. or failures or noise in the communication 
system. This approach has been successfully applied to  a variety of cooperative robot problems, 
including mock hazardous waste cleanup, bounding overwatch, janitorial service, box pushing, and 
cooperative manipulation, implemented on both physical and simulated robot teams. 

Our proposed approach to the CMOMMT problem is based upon the same philosophy of control 
that was utilized in ALLIANCE. In this approach, we enable each robot team member to make 
its own action selections. without the need for any centralized control or negotiation. The low- 
level: behavior based control of each robot calculates local force vectors that attract the robot to 
nearby targets and repel the robot from nearby teammates. Added above the low-level control is 
a higher-level reasoning system that generates weights to be applied to the force vectors. These 
weights are based upon previous experiences of the robot, and can be in the form of motivations 
of behavior or rule-based heuristics. The high-level reasoning system of an individual robot is thus 
able to influence the local, low-level control of that robot, with the aim of generating an improved 
collective behavior across robots when utilized by all robot team members. 
Target and robot detection 

Ideally, robot team members would be able to passively observe nearby robots and targets 
to  ascertain their current positions and velocities. Research fields such as machine vision have 
dealt extensively with this topic: and have developed algorithms for this type of passive position 
calculation. However, since the physical tracking and 2D positioning of visual targets is not the 
focus of this research: we instead assume that robots use a global positioning system (such as GPS 
for outdoors, or the laser-based MTI indoor positioning system [13] that is in use at our CESAR 
laboratory) to  determine their own position and the position of targets within their sensing range, 
and communicate this information to  the robot team members within their communication range’. 

For each robot ri, we define the predictive trucking range as the range in which targets localized 
by other robots rh # ri can afiect ~ i ‘ s  movements. Thus, a robot can know about two types 
of targets: those that are directly sensed or those that are “virtually” sensed through predictive 
tracking. When a robot receives a communicated message regarding the location and velocity 
of a sighted target that is within its predictive tracking range, it begins a predictive tracking of 
that target’s location. assuming that the target will continue linearly from its current state. We 

‘This approach to communication places an upper limit on the total allowable number of robots and targets at 
about 400. Since the communication is O ( n m ) ,  we compute this upper limit by assuming a 1.6 hlbps Proxim radio 
ethernet system (such as the one in our laboratory) and assuming that messages of length 10 bytes per robot per 
target are transmitted every 2 seconds. With these numbers. w e  find that nm must be less than 4 x lo4 bps to avoid 
saturation of the communication bandwidth. 
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Figure 1: Functions defining the magnitude of the force vectors to  nearby targets and robots. 

assume that if the targets are dense enough that their position estimations do not supply enough 
information to disambiguate distinct targets, then existing tracking approaches (e.g. Bar-Shalom 
[SI) should be used to uniquely identify each target based upon likely trajectories. 
Local force vector calculation 

The local control of a robot team member is based upon a summation of force vectors which are 
attractive for nearby targets and repulsive for nearby robots. The first function in figure 1 defines 
the relative magnitude of the attractive forces of a target within the predictive tracking range of a 
given robot. Note that to minimize the likelihood of collisions, the robot is repelled from a target if 
it is too close to that target (distance < d o l ) .  The range between do2 and do3 defines the preferred 
tracking range of a robot from an object. In practice, this range will be set according to the type 
of tracking sensor used and its range for optimal tracking. The attraction to the object falls off 
linearly as the distance to the object varies from doq. The attraction goes to 0 beyond the predicted 
tracking range, indicating that this object is too far to have an effect on the robot's movements. 

The second function of figure 1 defines the magnitude of the repulsive forces between robots. 
If the robots are too close together (distance < d q ) ,  they repel strongly. If the robots are far 
enough apart (distance > d r 2 ) ,  they have no effect upon each other in terms of the force vector 
calculations. The magnitude scales linearly between these values. 

One problem with using only force vectors, however, is that of local minima. As defined so 
far, the force vector computation is equivalent for all targets, and for all robots. Thus, we need 
to inject additional high-level reasoning control into the system to take into account more global 
information. This reasoning is modeled as predictive weights that are factored into the force vector 
calculation, and are described in the next subsection. 
High-level reasoning control 

To help resolve the problems of local minima' the higher-level reasoning control differentially 
weights the contributions of each target's force field on the total computed field. This higher-level 
knowledge can express any information or heuristics that are known to result in more effective 
global control when used by each robot team member locally. Our present approach expresses 
this high-level knowledge in the form of two types of probabilities: the probability that a given 
target actually exists, and the probability that no other robot is already monitoring a given target. 
Combining these two probabilities helps reduce the overlap of robot sensory areas toward the goal 
of minimizing the likelihood of a target escaping detection. 

The probability that a target exists is modeled as a decay function based upon when the target 
was most recently seen: and by whom. In general' the probability decreases inversely with distance 
frorn the current robot. Beyond the predictive tracking range of the robot, the probability becomes 
zero. 

The probability that no other robot is already monitoring a nearby target is based upon the 
target's position and the location of nearby robots. If the target is in range of another robot, then 
this probability is generally high. In the future, we plan to incorporate the ALLIANCE motivation 
of "impatience", if a nearby robot does not appear to be satisfactorily observing its local targets 
(perhaps due to faulty sensors). This impatience will effectively reduces the probability that the 
other robot is already monitoring nearby targets. In more complex versions of the CMOMMT 
problem, robots could also learn about the viewing capabilities of their teammates, and discount 
their teammates' observations if that teammate has been unreliable in the past. 



The higher-level weight information is combined with the local force vectors to generate the 
commanded direction of robot movement. This direction of movement is given by: 

N M 
C(FVOi  x P r ( e ~ i s t s i )  x Pr(NT' ) )  + 
i=O j=O 

FVRj 

where FVOI, is the force vector attributed to target ok, P r ( e z i s t s k )  is the probability that target 
ok exists, PT(NTI,)  is the probability that target 01, is not already being tracked, and FVRi is the 
force vector attributed to robot rl. This movement command is then sent to the robot actuators 
to cause the appropriate robot movements. We also incorporate a low-level obstacle avoidance 
behavior that overrides these movement commands if it would likely result in a collision. 

EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the effectiveness of the CMOMMT algorithm, we conducted experiments both in 
simulation and on a team of mobile robots. In the simulation studies, we compared four possible 
cooperative observation algorithms: (1) CMOMMT (high-level plus local control), (2) LocaE control 
only, (3) Random/linear robot movement, and (4) Fixed robot positions. 

In all of these experiments, targets moved according to a "random/linear" movement, which 
causes the target to move in a straight-line until an obstacle is met, followed by random turns 
until the target is able to again move forward without collision. The Eocal control only algorithm 
computed the motion of the robots by calculating the unweighted local force vectors between robots 
and targets. This approach was studied to determine the effectiveness of the high-level reasoning 
that is incorporated into the CMOMMT algorithm. The last two algorithms are control cases for 
the purposes of comparison: the random/Einear robot movement approach caused robots to move 
according the the "random/linear" motion defined above, while the fixed robot positions algorithms 
distributed the robots uniformly over the area S ,  where they maintained fixed positions. In both of 
these control approaches, robot movements were not dependent upon target locations or movements 
(other than obstacle avoidance). 

We compared these 4 approaches by measuring the average value of the A(t) matrix (see PROB- 
LEM DESCRIPTION section) during the execution of the algorithm. Since the algorithm perfor- 
mance is expected to be a function f of the number of robots n: number of targets m, the range of 
a given robot's sensor r ,  and the relative size of the area S ,  we collected data for a wide range of 
values of these variables. To simplify the analysis of our results, we defined the area S as the area 
within a circle of radius R, fixed the range of robot sensing at 2,600 units of distance, and included 
no obstacles within S (other than the robots and targets themselves, and the boundary of S ) .  

We collected data by varying n from 1 to 10, m from 1 to 20, and R from 1,000 to 50,000 
units. For each instantiation of variables n: m, and R, we computed the average A( t )  value every 
At = 2 seconds of a run of length 2 minutes: we then repeated this process for 250 runs for each 
instantiation to derive an average A(t )  value for the given values of n, m: and R. In all runs of all 
4 algorithms, the targets were placed randomly at the center of S within a circle of radius 1,000. 
In all runs of all algorithms (except for fixed robot positions), the robots were also placed randomly 
within the same area as the targets. 

To analyze the results of these experiments, we speculated that the function f (n ,  m, T ,  R) would 
be proportional to ratio of the total collective area that could be covered by the robot sensors 
(Le. nm2) over the area that would be allotted to one target (call it a target do t ) ,  were S divided 

equally over all targets (i.e. -), we have: nR2 
m 

m 

Thus: this function was used to compare the similarity of 
instantiations of n, m, and R. 

experiments that varied in their 
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Figure 2: Comparison of 4 cooperative observation algorithms. 

Since the optimum value of the average A ( t )  for a given experiment depends upon the value of 
m (and, in fact, equals m), we normalized the experiments by plotting the average A(t)/rn which 
is the average percentage of targets that are within some robot's view at a given instant of time. 

Figure 2 gives the results of our experiments, plotting the average A( t ) /m  versus f (n ,  m, r,  R) 
for all of our experimental data. For each algorithm, we fit a curve to the data using the locally 
weighted Least Squared error method. Since there is considerable deviation in the data points 
for given values of f (n ,  m: r,  R),  we computed the statistical significance of the results using the 
Student's t distribution, comparing the algorithms two at a time for all 6 possible pairings. In these 
computations, we used the null hypothesis: Ho : p1 = pz: and there i s  essentially no diflerence 
between the two algorithms. Under hypothesis Ho: 

Then, on the basis of a two-tailed test at a 0.01 level of significance, we would reject Ho if T were 
outside the range -t.995 to t.995, which for n1f 722 - 2 = 250 + 250 - 2 = 498 degrees of freedom: is 
the range -2.58 to 2.58. For the data given in figure 2, we found that we could reject Ho at a 0.01 
level of significance for all pairing of algorithms that show a visible difference in performance in 
this figure. Thus, we can conclude that the variation in performance of the algorithms illustrated 
by the fitted curves in figure 2 is significant. 

We see from figure 2 that the CMOMMT and local control only algorithms perform better than 
the two naive control algorithms, which is expected since the naive algorithms use no information 
about target positions. Note that all approaches improve as the value of f (n ,  m, r ,  R)  increases, 
corresponding to a higher level of robot coverage available per target. The rundom/Iineur robot 
(movement approach performed better than the fixed robot positions, most likely due to the proxim- 
ity of the initial starting locations of the robots and objects in the random/lineur robot movement 
approach. This seems to suggest that much benefit can be gained by learning areas of the envi- 
ronment S where targets are more likely to be found: and concentrate on locating robots in those 
areas. 



Of more interest, we see that the CMOMMT approach is superior to the local control only 
approach for values of f (n ,  rri; r: R) greater than about 2: the local control only approach is slightly 
better for f (n, nt, r ,  R) less than 2. This means that when the fraction of robot coverage available per 
target is low (< 2): relative to the size of S, then robots are better off not ignoring any targets, which 
is essentially what happens due to the high-level control of CMOMMT. Examples of experimental 
scenarios where the local control only approach is better than the CMOMMT approach are (n, m, R) 
= (2,1,5000-50000) ( 2:2,4000-50000) , (3,1,500O-50000) , (3,2,5000-50000) , (3,3,8000-50000) , and 
(3,4,8000-50000). However, for more complex cases: where the number of targets is much greater 
than the number of robots, and the environmental area is not "too large", we find that the higher- 
level reasoning provided by CMOMMT works better. Examples of scenarios where CMOMMT 
is better include (n, 'm, R)  = (2:4~1000-5000) , (2,6,1000-6000) (2,20,1000-10000) , (3,3,1000-5000) , 
(3,4J000-6000), (3,6, 1000-7000): and (3,12,1000-11000). Note that CMOMMT approaches perfect 
performance as f ( n ,  m: T ,  R) reaches 10, whereas the results of the random/Einear .robot movement 
and /it local control only approaches begin to level off at around 85%. 

In continuing and future work, we are determining the impact of these results on multi-robot 
cooper at ive algorithm design. 

We have also implemented the CMOMMT algorithm on a team of a team of four Nomadic 
Technologies robots to illustrate the feasibility of our approach for physical robot teams. We have 
demonstrated a very simple case of cooperative tracking using these robots. [14] for 
details. 

Refer to 

CONCLUSIONS 

Many real-world applications in security, surveillance, and reconnaissance tasks require multi- 
ple targets to be monitored using mobile sensors. We have presented an approximate, distributed 
approach based upon the philosophies of the ALLIANCE architecture and have illustrated its ef- 
fectiveness in a wide range of cooperative observation scenarios. This approach is based upon 
a combination of high-level reasoning control and lower-level force vector control that is fully dis- 
tributed across all robot team members and involves no centralized control. Empirical investigations 
of our cooperative control approach have shown it to be effective at achieving the goal of maximiz- 
ing target observation for most experimental scenarios, as compared to three other feasible control 
algorithms. 
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