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UctAer 21 ,  1968 . . . 

Because of the pers is tent  problem of convenient determination of 

underground y ie ld ,  I am summarizin'g certain "electromagnetically" 

oriented ideas i n  this area. They a l l  require much more detailed 

study and evaluation, although one or two o f  them are  inexpensive 

enough t o  perhaps warrant an empiric t e s t .  
/ 

1. Vertical Sounding of the Ionosphere. The vertical  displace- 

ment o f  the ear th ' s  surface (by the explosion) generates a sub-audible 

low-frequency acousti c wave w h i  ch propagates approximately radi a1 ly 

outward from surface zero. 

f i c i e n t  f luctuation i n  the ionospheric electron density t o  cause a 

detectable e f fec t  i n  grazing incidence reflection a t  H.F. (radio 

Subsequently, there appears t o  be a suf- 

wave1 engths)*. Vertical soynding by frequency-sweep methods usual ly 

provides a more sensit ive measure of the electron density distribution - 

perhaps suf f ic ien t ly  s o  t o  permit acoustic energy determination for  

events of'nominal yield or larger.  

I 

-% 

T h i s  scheme would suf fer  generally from the same defects as direct  

motion measurements - namely, t h e  coupled acoustic energy will also 

*The evidence f o r  this w i  11 be comuni cated separately on r ewes t .  
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depend on burial depth, and on t i e  character and uniformity of the 

overburden. However, because the wave originates from the motion of 

a large surface area, the dispersion observed i n  surface accelerometer 

data ( f o r  instance) due t o  random differences along "ray paths" t o  the 

instrument positions, would tend t o  be "averaged out' '  - maybe. 

Self-evidently, there would be considerable empiricism i n  such a 

scheme. 

The equipment is well developed; i t  can be located several miles from 

surface zero; the measurement e f f o r t  i s  readily purchasab7e as a 

package item. The experiment can be fielded and operated on a short- 

time sca le  and on a minimum interference basis; there may n o t  even be 

B u t  i t  i s  probably the simplest and eas i e s t  one to  instrument. 

a "synchronization" problem. 

2. The EM "Magnetic Bubble" Scheme. T h i s  

ground EM generation mechanism f i r s t  outlined by 

wr i te r  i n  1960. I t  involves the interaction of  

s the "original" under- 

O'Rourke and this 

he h o t  conducting gas 

plasma in the expanding cavity with the ea r th ' s  magnetic f i e ld .  

idea was tha t  the amplitude and/or frequency d i s t r i b u t i o n  o f  the pulse, 

m i g h t  be related to  the cavity s ize .  

sponsored by ARPA and DASA in the early. s ix t i e s  (re1 at ive ' to underground 

One 

Extensive calculational work was 

S 

t e s t  detection).  

small , even "close-in" , for  a contained event. 

The surface f i e l d  predictions were discouragingly 

In 1963 and 1964, an extensive experimental program was conducted 

t o  t ry  to  identify th i s  feature in the EM environment ( a l l  on cased 

events). I t  was found tha t  the local magnetic f i e l d  due t o  Compton 

currents on the casing was overwhelmingly large (by 2 t o  3 orders of 

magnitude). 
% b 

No "late"  signal component related t o  the T ien ta t ion  o f  

4 t 
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the e a r t h ' s  magnetic f i e ld  was observed. 

Incidentally,  the calculations also indicated tha t  the propagation 

attenuation i s  so h i g h  t ha t ,  even w i t h o u t  interference from other 

mechanisms and sources, the expected signal would f a l l  below the ambient 

noise level i n  the ear th ' s  f i e ld  - -  fo r  burial depths greater .. than - -  about - 

800 f ee t  i n  a l luvial  o r  other "wet" media. 

3 .  "Non-Resonant Scattering". The ea r th ' s  magnetic f i e l d  i s  

replaced by an a r t i f i c i a l l y  imposed f i e l d  i n  this scheme. 

i t  would be a low-frequency field (order of 100 t o  1000 cps). 

offers  an in t r in s i ca l ly  higher ultimate signal-to-noise r a t io ,  by virtue 

of narrow-band and phase-lock instrumentation techniques. 

In par t icular ,  

T h i s  

B u t  i t  suffers  from severe background problems, i n  t ha t  the 

receiver sensor ( R )  must detect a degraded, re-radi ated signal 

w i t h i n  the  s t r o n g  f i e l d  of the transmitter ( T ) .  

a consequence of: 

I t s  degradation is  

- a r  
r propagation factor,  transmitter t o  "bubble". e 

Low re-radiation efficiency o f '  "bubble" (10% a t  bes t ) .  

e - a r  
r propagati on factor ,  "bubble" t o  receiver. 

The best geometry involves placing b o t h  the radiator and the sensor 

underground, w i t h  the "bubble" i n  between. Aside from cost,  this 

has real problems i n  system survival th rough  i n i t i a l  shock, inasmuch 

as one element (preferably the transmitter)  should be "as close as 

possible" t o  the burst p o i n t .  

Confining ourselves t o  near-surface configurations for both T 

The required and R elements , various arrangements were calculated. 
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signal-to-background r a t io  is of the order of  lo-' t o  IO-". The 

optimum arrangement (so f a r )  appears t o  consist of a very large dipole 

transmitter 1 oop , axi a1 ly  concentric w i t h  the empl acement s h a f t ,  and a 

smaller quadrupole receiver loop, also axially concentric. While this 

appears a t  f i r s t  glance t o  reppesent the worst possible, background 

coupling s i tua t ion ,  i t  also turns out t o  be the best possible source 

coupling geometry (as  compared f o r  instance t o  smaller, separated, and 

t i l t e d  loops placed on opposite sides o f  surface zero). By "idealized" 

assumptions of quadrupole balancing, shielding and residual phase cancel- 

l a t ion ,  one can achieve a r e a l i s t i c  "paper" r a t io  o f  about - which 

evidently i sn ' t good enough. 

I plan t o  "test" some further possible configurations, such as phased 

arrays o f  f e r r i t e  sensors, and the use of downhole T/R element locations. 

B u t  I am not optimistic. 

4. "Resonant Scattering". A conducting spherical body immersed i n  

a d i e l ec t r i c ,  exhibits certain resonant electromagnetic modes f o r  f i e ld  

dis t r ibut ions ex ter ior  t o  i t s  surface. ( I  emphasize this because many 

people assume a t  f irst  tha t  I am speaking of the well-known internal 

modes' of a spherical cavity - NOT SO). The fundamental "wrap-around'' 

mode has a wavelength ( i n  vacuum) o f  1 = 7.3a. 

constant K 
9 '  

In a d i e l e c t r i c  o f  
7 3a i t  would be - ( t o  f i r s t  order) where a i s  the radius. 

I f  we again consider the "conducting 'bubble" f o r  "nominal" y ie lds ,  
6- 

we see t h a t  the end-point wavelength corresponds t o  frequencies i n  the 

low megacycles. T h i s  leads a t  once t o  the conclusion t h a t  one would 



almost certainly not be able to  observe this resonance i n  media of h i g h  

conductivity such as tu f f  or  alluvium. 

r e s i s t i v i t y  greater than about  1000 ohmmeter. 

The t e s t  medium should have a 

This resonance i s  "strongly-coupled" - t h a t  i s ,  one should see a 

uniquely h i g h  absorption cross-section a t  resonance (as compared t o  

off-resonance - which actually corresponds t o  the previous non-resonant 

scheme). 

the resonance energy fal 'ls by e-' i n  one-quarter cycle! 

Stratton shows tha t  the radiation damping is  so grea t ,  t h a t  

There appear t o  be many ways t o  "see" this resonance i f  one is  iil 

a reasonably transparent medium. 

technique, i s  of course, t ha t  the determi nation of radius , cavity vo7 ume, 

and (hopefully) y ie ld ,  now becomes related t o  a frequency measurement, 

ra ther  than amplitude. What's more, some o f  the techniques may permit 

determination of cavity growth  as a function o f  time (beyond about . 3  

mil l i sec . ) ,  which would provide a firmer handle on yield.  

The great  advantage of a resonance 

Most of the schemes involve illumination by one o r  more transmitters,  

and observation by one or more receivers. 

fo l  1 cws : 

Briefly, they s o r t  o u t  as 

Set o f  fixed frequency T & R - observe time of appearalice o f  

each resonance - use phase lock t o  upgrade sens i t i v i ty  i f  necessary. 

Frequency sweep T & R (essent ia l ly  s imi la r ) .  

Pulsed J & R adjusted t o  examine'scattered signal between T 

pulses . 
Doppler-shift receiver t o  observe frequency dispersion due 

t o  expansion velocity of cavity surface. 
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Several interesting radiator-sensor geometries have been proposed, 

which take advantage o f  unique features of resonant scattering. 

instance: 

t o p  o f  hole (or several sensors along the hole) - essent ia l ly  th i s  i s  

a "good geometry" diffraction experiment. A t  par t icu lar  frequencies , 

minima and maxima i n  s i g n a l  amplitude should be seen, as the p o i n t s  of 

maximum constructive and destructive interference move outward a1 ong the 

axis , dur ing  cavity growth. 

For 

T below t e s t  capsule ( a t  bottom of over-drilled ho le ) ,  R a t  

One other  possible and unusual coupling scheme makes use of a single 

electron3 c devi ce - a conditionally s table  , broad-band, positive feedback 

amplifier, connected t o  an "appropriate sensor'' (or  array) .  

designed and adjusted t o  be s table  i n  the absence of resonant elements i n  

i t s  f ield.  

t o  throw the system in to  osc i l la t ion  - and i t  automatically "locks on" t o  

the resonant frequency. 

I t  would be 

When such an element appears, the feedback phase sh i f t s  enough 

I n  this scheme, i t  would then ''follow" the cavity 

growth. Pulse " t ickl ing" might be needed. 

Detailed calculation o f  the f i e l d  coupling features are under " h o t  

p urs u i  t " - 
5. The Gravitational Pulse. ( T h i s  one is  real ly  -- f a r  o u t ) .  Instru- 

mentation for measuring gravitational f luctuations has improved greatly,  

along w i t h  an understanding o f  the e f fec t  of such a pulse i r ;  the laboratory 

frame . 
Two mechanisms may ex i s t  i n  underground nuclear explosions leading 

t o  generation of  gravitational pulses. One of these i s  simply the 
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conversion o f  mass t o  energy by the nuclear reactions. 

model,  one would say tha t  the mass of  the reactants i s  changed by 

Am = - on the time scale o f  reaction ( l i ke  T - IO‘* sec. for modern 

devices). 

rapidly from the gravitational interaction. 

on this primitive assumption, one obtains a ra te  of mass destruction o f  

‘ 7 ~  l o 4  kg/sec per k t .  

pulses (presumed due t o  imploding neutron s t a r s )  has a ra te  sens i t iv i ty ,  

which translated t o  t e r r e s t r i a l  dimensions, corresponds t o  about lo4 

kg/sec a t  1 km. 

this - besides, i t  i s  intensely fascinating! 

In a primitive 

Y 
C2 ’ 

B u t  i t  i s  n o t  c lear  t ha t  the effect ive mass disappears tha t  

Nevertheless, proceeding 

The technique used f o r  observation o f  galact ic  

T h u s ,  i t  is not too incredible t o  take a hard look a t  

T h i s  “prompt“ pu7se has a wavelength cT short  compared to  the 

experimental dimensions. I t  i s  thus (presumably) a tensor f i e l d  pulse, 

which has the interest ing property o f  “squeezing” a mass rather t h a n  

displacing i t .  

direction of  energy propagation, analogous to  an EM f i e ld  vector. 

The tensor (or  squeeze) direction is orthogonal t o  the 

Since 

t h a t  f i e l d  acts individually on the molecules, the sensor object under- 

goes a mechanical shock essent ia l ly  “simultaneously“ (on a T time scale)  

t h r o u g h o u t  i t s  volume. 

about 10 meters long (and 7 m2 cross-secti.on!), whose length would be 

measured by means of a Laser dr iven interferometer. 

m i g h t  do this t o  about one part  i n  10’5 even fo r  a mechanical pulse this 

sho r t .  

A primitive sensor concept migh t  be a U238 bar 

I t  looks l ike  one 

(This i s  a l so  the order of s ens i t i v i ty  of modern gravitational 

sensors).  

device to  gain i n  coupling! 

I t ’ s  been suggested t h a t  one migh t  go downhole w i t h  such a 
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The other possible mechanism i s  re la ted t o  the change i n  the 

(mechanical) moment o f  the local gravitational f i e l d  when the cavity 

expands. A t  f i r s t  glance, one would say t h a t ,  since the center o f  

mass does n o t  s h i f t  ( i n  an idealized spherical explosion),  there  should 

be no change i n  the external f ie ld .  (Sort  o f  l ike  a gravitational 

Faraday cage). 

T h i s  ''slow" pulse has an enormous wavelength, of course, since the 

mass reconfiguration occurs on a very slow time scale.  Hence, i t  i s  

a quas i - s ta t ic  s i tuat ion and the f i e l d  pulse i s  a radial ly  sca l a r  one, 

describable by the classical  gravitational equation i n  integral  form: 

T h i s  "after-before" integral  appears t o  have a small, non-zero residue 

which i s  independent of the method of (ar i thmetic)  expansion. 

fur ther  analysis i s  needed t o  understand this one. 

Evidently 

I f  i t  i s  rea l ,  this f i e ld  f luctuat ion should longitudinally displace 

a sensor mass i n  the classical  way. 

centered at;something l ike  the cavity expansion r a t e  - i . e . ,  f /L - o r  

something around 100 cps. 

peak sens i t i v i ty  i n  this range, probably by the same mechanical principles 

as are employed i n  long-wave seismjc instrumentation. 

One would expect a frequency spectrum 
V 
r 

Accordingly, a sensor m i g h t  be designed for  

T h a t ' s  a l l  fo r  now. 

LFW:lan 
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