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Abstract 

With the continuing progress in mid-IR array detector technology and high bandwidth fan- 
outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is 
becoming a reality. In this paper experimental results are described using a 10 micron coherent 
imaging lidar. 
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Introduction 
With the continuing progress in mid-IR array detector technology and high bandwidth 

fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging 
lidar is becoming a reality. In ths  paper experimental results are described using a coherent 
imaging lidar configuration to perform Doppler measurements on the blades of a rotating squirrel 
cage fan in the laboratory and passive heterodyne detection on a smoke stack in the atmosphere. 
Data is also presented using the coherent imaging array to reduce speckle noise by spatially 
averaging over the detector array. 

- 

Summary 
Several recent technology developments are now paving the way for imaging coherent 10 ,um 

lidar systems that use 2-D focal plane arrays. HgCdTe detectors have historically been difficult to 
mass manufacture due to material instabilities. Consequently, process yields have been low and 
HgCdTe detectors have been expensive. As a result of advances in the materials and processes 
utilized in fabrication of HgCdTe devices and advances in device configurations, 2-D staring arrays 
of HgCdTe detectors as large as 640 x 480 are now becoming available.' In addition, new 
GaAs/Al,Ga,,As quantum well infrared photodetector (QWIP) technology is providing high-yield 
2-D infrared staring arrays with the added promise of very wide bandwidth heterodyne detection.* 
Progress is likewise being made in the miniaturization and mass manufacturing of high bandwidth 
integrated circuits which can operate at liquid nitrogen temperatures. These electronics are 
fabricated using GaAs-based monolithic microwave integrated circuit (MMIC) technology. MMIC 
technology is a special case of standard integrated circuits (ICs), optimized for linear and rf 
applications above 1 GHz. Typical commercially-available processes allow applications up to about 
20 GHz and some experimental GaAs processes have reported frequencies above 100 GHz.~" 
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Previously, we reported on a heterodyne imaging system design that provided collection 
optics with resolution capabilities consistent with both the grid dimensions and the coherence 
properties of an observed source’. , A  single-detector heterodyne receiver is generally illuminated by 
a Gaussian- profile local oscillator beam. The reverse projection of this beam, referred to as the 
antenna beam or as the back 
propagating local oscillator 
(BPLO) specifies the field-of-view 
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of the receiver system. A receiver 
array requires an array of such local 
oscillator beams, and the resulting 
antenna beam array must behave so 
as to efficiently sample the image 
field. For example, an object in the 
image plane should be sampled by 
non-overlapping antenna beams, as 
should all objects beyond this 
plane. Furthermore, these non- 
overlapping beams should be 
spaced with the same geometry as 
the detector array for all Points on Figure 1 Optical configuration for coherent imaging lidar 
the object plane and beyond. The 
local oscillator power on the focal plane array was generated by illuminating a grid mask and 
imaging the resulting pattern of individual Gaussian 
beamlets onto the detector array (Figure 1). The size of the 
apertures and the f-number of the optics spatially filters the 
high orders of diffraction producing nearly Gaussian 
mutually coherent local oscillator beams. 

In order to test the performance of the receiver 
design illustrated in Figure 1, a 30x30 element 2D detector 
array was synthesized by scanning a single 100 micron 
diameter HgCdTe detector over an image plane illuminated 
with a LO beam array as described above. The step-size was 
adjusted so that the detector position coincided with an 
available LO beamlet prior to taking data. The detector 
utilized had a modulation bandwidth in excess of lo9 Hertz, ~i~~~~ 2 passive Heterodyne Image 
which is wide enough to allow the acquisition of thermal of a Smoke Stack at 300 
signals with high signal-to-noise ratio over reasonably small 
integration times. The measurement of thermal signals is referred to as passive operation as opposed 
to the active mode where the scene is illuminated by a laser source whose frequency is within a 
detector modulation bandwidth of the LO frequency. In Figure 3 below, the results of a passive 
measurement of a power facility smoke stack is shown at a range of about 300 m. In this 
measurement, the output of the detector was integrated for a time period of several minutes and the 
resulting image shows the thermal signature of the stack as well as the emission plume. 



In another experiment, active mode images were recorded by illuminating the scene with a 
portion of the LO radiation which had been shifted in frequency by 40 MHz using an acousto-optic 
modulator. Figure 3 shows an active image of a vertical squirrel cage fan where each pixel is 
rendered to represent the peak Doppler shift measured with the detector at the corresponding location 
in the image plane. The moving target scatters incoherently and thus speckle effects do not degrade 
the image. The measured Doppler shifts are consistent with the known rotational velocity of the 
target. 

Speckle effects associated with coherent sources can be reduced by signal averaging.6 
Averaging over many transmitter pulses can reduce speckle but also reduces temporal resolution. 
The alternative considered here is to sacrifice spatial resolution by averaging over an array of 
detectors all of which record the signal returned from a single transmitter pulse. Detectors separated 
by a coherence area diameter will record signals that approach statistical independence, and in this 
case speckle effects can be reduced by an amount approaching the square-root of the number of 
detectors in the subarray. 

We performed laboratory 
experiments demonstrating speckle 
reduction by spatial averaging with a fixed 
focal plane array. The detectors used in this 
experiment consisted a 3 x 3 2-D array of 
HgCdTe detectors manufactured by 
Rockwell International. The 50-micron 
diameter detectors were arranged in a square 
pattern 100 microns center to center. 
Custom electronics multiplexed the output 
of each detector for subsequent processing. 
Lidar illumination was produced by 
frequency shifting a portion of the local 
oscillator beam by 40 MHz with an acousto- 
optic modulator prior to illuminating the 
object field. Polarization of the illuminationFiwe 3 Doppler image of squirrel cage fan 
beam was parallel to the LO prior to scattering from the target. The measured receiver bandwidth, 
limited mostly by the dewar design, was about 100 MHz which permitted the acquisition of the 40 
MHz heterodyne signal. Collection optics consisted of a 38 mm f/2 asphere which produced a 2 mm 
diameter pixel image at a 3 m object distance. 

The target for these experiments consisted of a 30 cm diameter disk coated with an aluminum 
powder. The particle size of this powder ranged from 1 to 100 microns determined by electron 
microscopy. The disk was attached to a stepper motor which was incremented between frames to 
provide statistically independent speckle fields. Figure 4 below shows the distribution of 
measurements taken with a single pixel superimposed on the distribution taken by averaging over 
the focal plane array. A reduction in speckle noise by a factor of the square root of the number of 
averaged pixels was obtained as predicted. 
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Figure 4 Speckle reduction using spatial averaging over a coherent array 

Conclusion 
The combination of optical heterodyne detection, imaging, and wide-band IR focal plane 

arrays offer significant new capabilities to the next generation in remote sensing. We have described 
laboratory experiments demonstrating the use of coherent imaging lidar in thermal detection, passive 
heterodyne detection and characterization of plumes, production of Doppler images of rotating hard 
bodies, and reduction of speckle for DIAL measurements by spatial averaging. 
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