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Accuracy estimation for supervised learning algorithms 
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ABSTRACT 

This paper illustrates and discusses the relative merits of three methods - k-fold Cross Validation, Error 
Bounds, and Incremental Halting Test - to estimate the accuracy of a supervised learning algorithm. For 
each of the three methods we point out the problem they address, some of the important assumptions that 
they are based on, and illustrate them through an example. Finally, we discuss the relative advantages and 
disadvantages of each method. 
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1. Introduction 

This paper illustrates and discusses the relative merits of three methods - k-fold Cross Validation, Error 
Bounds, and Incremental Halting Test - estimating the accuracy of a supervised learning algorithm. What 
we seek is an estimate of an algorithm’s expected accuracy on the population of all possible samples which 
is a measure of its generalization accuracy. For most applications this is impossible since we can never 
sample the entire population and we do not know the population’s probability distribution. Therefore, we 
must back away from this goal and define and solve a different problem that is related. For each of the three 
methods we will point out the problem they address, some of the important assumptions that they are 
based on, and illustrate them through an example. 

. 

One often sees the performance of an algorithm reported as the accuracy (or its inverse, the error) it achieves 
on a test set of sample data. This performance measure by itself is meaningless. It represents a single 
instantiation of the random variable. The sample data set (training plus test sets) represents a single, 
finite-sized set of examples drawn from the population whose probability distribution is unknown, a priori. 
Another sample set will produce a different instantiation of the random variable. What is needed is a 
characterization of the probability distribution for a random variable representing the error, and this is the 
purpose of the methods in this paper. 

2. SUPERVISED LEARNING -A PROBLEM STATEMENT 

The goal of a supervised learning algorithm is to accurately approximate a target hnction based on a finite 
sample of empirical data. A target function, y, produces a value (regression) or label (classification) for each 
point, x, in the population’s domain, D. A supervised learning algorithm induces a parameterized 
function,f(x, a) that also produces a value for each point. The random variable, Q, represents the cost of 
an incorrect prediction, e.g., number of incorrect values, distributed over the population according to the 
unknown probability distribution F(x, y); its expected value is 

R(a)= I Q ( y , f ( x , a ) ) d F ( x , y )  = I Q(z ,a )  dFk) .  (1) 

The goal of a supervised learning algorithm is to select a function, Ax, ao), fi-om a family of functionsJ(x, 
a) characterized by the parameter set, a E A, that minimizes R(a) .  The labeled empirical data, D, = {(x,. a 



yl), *, ( x f ,  y f ) )  
sample data set has its own empirical frequency distribution, Ft(x, y) that we hope is similar to F. 

( z  I, , z,) , is drawn randomly from D according to F(x, y). The resulting 

Now the algorithm’s problem of minimizing R(a) is replaced by the problem of sclccting a function As, 
a,) that minimizes the mean empirical functional, 

where the P -subscript is carried to mind us that the estimate is dependent on the sample set. In the 
language of statistics, R(a) is a population parameter of the random variable Q(z, a) and Rf(a) is its 
associated statistic. Thus, the performance of the algorithm is addressed by investigating the difference 
between the functionals R(a) and &(a). 

Each of three methods illustrated in this paper represent various attempts to estimate a form of the following 
equation, 

Pr[lR(a)- R,(a)l re] 1 1-6, (3) 

for apriori specified accuracy, E, and confidence, 6, parameters. This form of performance measure is also a 
random variable and is shown to be insensitive to the population’s distribution F for a fairly general set d 
function classes”*, (Ax, a): a E A}. 

The following performance estimation methods will be illustrated: 

The Holdout methods - Bootstrap and Cross Validation - are unbiased estimators to fust-order. 
Each method essentially uses the sample data D, as though it were the parent population to 
randomly generate new sample data sets that will be used to train and test an algorithm and gather 
information about the statistics of the performance measure given by Equation (3). 

The Empirical Risk Minimization method’ produces upper and lower worst-case bounds, 
IR(a)l I Rt(a) rt: Q ( P ,  E, GA) with probability 1 - 6, by bounding the system with a uniform rate 
of convergence for Equation (3) and a finite growth function, G A  (see Ref. 3 for details). The 
problem is proving that the growth function is bounded for supervised learning algorithms. 

The Incremental Halting T e d  exploits the combinatorial analysis of waiting times’ to determine 
how many samples must be drawn to insure the conditions in Equation (3) are met for the 
particular distribution F(z). 

1) 

I 

2) 

3) 

It should be noted that (1) and (3) are distribution specific methods and (2) is a distribution independent, 
worst-case estimate. We will illustrate each of the methods in the following sections on example problems 
to illuminate the technique and their strengths and weaknesses. 

3. LFOLD CROSS VALIDATION 

The holdout method is an unbiased first-order technique to validate a statistic P, of a population parameter 
P from a finite sample set. The holdout method consists of P samples drawn fkom a set D with a an 
unknown probability distribution to obtain a sample set D, . The sample set D, is divided into a training 
set Do and a test set D,,,. The bootstrap and k-fold cross validation techniques are the two most widely 
used variations of the holdout method. 

The bootstrap method randomly draws members for the training and test sets by sampling from D, with 
replacement. t h e  algoritlini is trained from b , m  and tested on bit. This process is repeatid with different 



training and test sets to build an estimate Pt  and its variance st’. The confidence interval is determined 

from s; accordingly. 

The k-fold cross validation technique partitions the data in k mutually exclusive partitions. The fust k - 1 
partitions are used for D,m and the kth for D,,, where the algorithm’s accuracy is computed. Next, partitions 
{ 1,2, ... , k - 2, k} are used for Dim and the k - 1 partition is used for Dlst; then partitions { 1,2, ... , k - 3, 
k - 1, k} are used for D,, and the k - 2 partition is used for D,,,; and so on until k accuracy measures have 
been obtained along with their variance. 

Both of these methods are unbiased in the limit that training set consists of .t - 1 samples and the test set is 
the single remaining example, and where the accuracy estimate and variance are computed fiom all ! - 1 
permutations of these sets. This is the leave-one-out holdout method. The unbiased guarantee disappears 
if these conditions are not met. In practice, all .t - 1 permutation sets are seldom used because of the labor 
involved in evaluating algorithms for a large number of training and test sets. Usually, most researchers 
divide the data into one training and one test set with an equal number of samples in each set, or at best a 
small number of training and test sets. Thus, one is left with a potentially highly biased accuracy measure 
with a tight confidence bound that may not be remotely close to the population’s accuracy. The researcher 
may therefore be led into a false sense of security about the performance. 

Kohavi6 compared the bias and variance tradeoff between the bootstrap and k-fold cross validation 
techniques as a function of the number of traininghest sets. He found that bootstrap method has a smaller 
variance than k-fold cross validation, but the bias is much larger. For this reason, Kohavi concluded that 
k-fold cross validation may provide a better operational estimate of a classifiers’ accuracy than bootstrap. In 
addition, he showed for the k-fold cross validation technique that ten or more partitions are sufficient for the 
sample accuracy with a 95% confidence interval to enclose the population’s accuracy. For this reason, we 
employed the k-fold cross validation technique with a k = 10 partitions to estimate the following samples 
problem’s accuracy and confidence intervals. 

Example: k-Fold Cross Validation for an Arltjicial Neural Network (ANN) 
We want to estimate the ANN performance on all hture samples presented to it after training. This is 
clearly impossible unless the underlying probability distribution that the training samples were drawn fbm 
is exactly equal to the probability distribution fiom which the future examples are drawn. The final 
application’s probability distribution must be “similar” to the training probability distribution for a 
measure of accuracy to have any meaning. This statement is true for any regression and/or pattern 
recognition method. 

Even if this caveat is true and the probability distributions are equal, we can only provide an estimate P, of 
a population P and bound our estimate with a confidence interval because we used a finite training set; ft is 
then a random variable. One method t o  estimate the confidence interval is to use the de Moivr6-Laplace 
Theorem and the assumptions it entails. It states that the proportion of sziccesses drawn from a Bernoulli 
population is P. Then the confidence limits for P are given by P, 5 z s ~ ,  where the confidence coefficients 
are defmed by, 

S l  -z 

this assumes that the distribution approaches a normal distribution, N(x). Only in the limit of the 
leave-one-out method does the confidence approach one. Any estimate of a statistic describing the accuracy 
of an ANN is a random number and by itself is meaningless unless it is accompanied by a corresponding 
confidence interval. 

The proportion of successful predictions an ANN produces on the population, P, is the parameter we would 

successful predictions P, the ANN produces on a test set D,,s, after its weight parameters, a; have been fixed 
to a* by training is given by 

like to estimate E m  a finite ample sst as our msasw of the ANN’S accurncy The proportion d 



where Q is an indicator hnction that produces a value of one when a sample .vi is drawn fiom a test set D,, 
and the ANN yields the correct output value yi, and otherwise it is zero. Simply put, this is the average 
accuracy of the ANN on the test set Dts,. 

We applied this method to a geophysical parameter estimation problem7. We used an ANN to estimate a 
parameter of an oilfield’s reservoir given seven seismic parameters as input data. The data was randomly 
partitioned into ten subsets. These partitions were combined according to the k-fold-cross-validation 
procedure into ten training and testing pairs, such that 

Training Set #1 = Partitions { 1, 2, ... , 9) and 
Test Set #I  = Partition {IO}; 

Training Set #2 = Partitions { 1 , 2, ..., 8, 10) and 
Test Set #2 = Partition (9); 

e . 
Training Set #10 = Partitions (2, 3, ... , 9) and 
Test Set #IO = Partition { 1); 

These sets were used to obtain all accuracy estimates and their associated confidence intervals. 

The fmt question we investigated is whether one or two hidden layer ANN architectures produce 
sfutisficully signflcunt different accuracies. Initially, a single hidden layer was used with 10 nodes. All 
weights were initialized with values between H .1  and Training Set #1 shuffled for presentation to the 
ANN. The ANN’S error on Test Set #1 was monitored along with the training set’s error as a f ic t ion OF 
the number of epochs (1 epoch = 1 full presentation of the training set’s examples). As the number OC 
epochs increases both the training set error and test error decrease, up to a point where the training set error 
continues to decrease and the test set error starts to increase. Just prior to this point we extract the error on 
Test Set #1 and use this value in our accuracy estimate. This process is repeated for the remaining nine 
sets. The ten accuracy estimates are then averaged, variances extracted, and their 95% confidence intervals 
are computing by P ,  rf: 3 sp 

Figure 1 displays the mean accuracy and 95% confidence intervals for ANNs with one and two hidden 
layers and with a differing number of nodes in the hidden layers. The lower curve represents the mean 
accuracy for an ANNs with IO, 20,30, and 40 nodes in a single hidden layer. The upper curve represents 
the mean accuracy for an ANNs with 10 ( 5 ~ 5 ) ~  20 ( 1 5 ~ 5 ) ~  25(15x10), 30 ( 2 0 ~ 1 0 ) ~  and40 (25x15) nodes in 
a two hidden layers. The two layer ANN architecture provides a higher accuracy than a single hidden layer 
ANN. 
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Figure 1: The mean accuracy and the 95% 
confidence interval for ANNs with one and two 
hidden layers. 
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Figure 2: The mean accuracy and the 95% 
confidence interval for ANNs with two hidden 
layers, where a Whitening transform was applied 
to the input data. 

The second question we addressed was whether a two hidden layer ANN produced more statistically 
significant accurate parameter estimates when a Whitening Transform' was applied to the input data. 
Figure 2 displays the mean accuracy and confidence intervals for ANNs two hidden layers and where the 
input data were transformed info the eigenspace. These results show that the transformed data 
consistently yields a higher accuracy than the untransformed data and that the ANN size is smaller. These 
conclusions could not be justified by using a single training and test set. 

4. ERRORBOUNDS 

We will illustrate the essential properties of the Error Bounds method with a 1-dimensional example. 

The example is the game "guess a real number y between 0 and 1 .,' An algorithm is required to guess a 
target number y to within an agreed upon accuracy, E, fiom a set of examples DI = {(xl, I(k, - yl, 2'")). 

*, (xf,  I(kf - yl, 2" ) ) } ,  where I(lx, - yl, 2") is 1 if kl - yl 22" and is 0 otherwise. . 
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Figure 3: The line segment [0, I ]  for the "guess the number" game is divided into 23 intervals. 
target numbery and 10 batch samples drawn to train a supervised learning algorithm are shown. 

The 

In Figure 3, the segment [0,1] is divided into bins of size E = 2-"= 2-', where n is an a priori accuracy 
parameter and C = 10 sample points have been drawn. For this example, I(k3 - yl, 2 3 )  = I(k4 - yl, 2 3 )  = I ,  
aqd all other I( *, 2 3 )  = 0. It indicates whether one or more of the samples points occupies a the bin with 
the numbery. The configuration space indicates the number of samples points in each bin; for this example 
the configuration is [ 1 , 1,2,1,2,1,1,1]. The algorithm we will use to guess the number is simple, 



it will produce as a guess the average value of all sample points in a bin whose indicator value is not zero, 
otherwise it will guess the average value of all sample points. 

We now wish to estimate Equation (3) for a all possible 1 sample points and avalues. To do this let us 
define a success as the event satisfying the condition 

sup I R (a) - R, (a) I S E. 
a 

Clearly, we will only meet this condition for any y if we have at least one sample per bin in our sample set. 
Thus, the probability of success is the probability of drawing at least one sample p.er bin out I samples. 

As a baseline case, we can compute the probability of success for the case where a point in each has an 
equal probability of being chosen. Thus a uniform distribution over the bins gives a probability, 

of having at least one point chosen in each bin. Figure 4 displays this equation as a function of the number 
of samples t for n = 3. About 15 samples must be drawn before we can be 80% assured that we have 
drawn a sample fiom each of the 8 bins 

We will now compute the same quantity by using an intuitive derivation of the Error Bounding method. 
The form of a Standardized Statistical Variable is (S- p)/o, where the total difference between our 
algorithm’s output and the target value is 

S, = Iy - f ( x , . a )  I + e-. + Iy - f ( x , . a ) I ,  

the expected difference is p = 0, and the variance, 

SI =of +...+of =eo*, 

is the same over all possible I-sample sets. By using the Central Limit Theorem we can write Equation 
(3) in the following form: 

Pr[S,  <f iS ,E]21-6  < 1-& e f a z l  7 

where we have used a standard approximation’ to bound the tail 6 of the distribution. A tighter bound can 
be achieved by using the Hoeffding’s inequalityze3; it produces 

P 

~ r [ ~ , < f i s , ~ ] > 1 - 6  c I -2e  42 I . 

This quantity is plotted in Figure 4. This bound indicates that on the order of 1200 samples need to be 
drawn before one can produce a confidence of 80% in the probability of success. 

This result is the best estimate that can be made without invoking assumptions about the probability 
distribution for drawing samples. This estimate is valid for the worst-case distribution (i.e., tllk 
theoretically hardest distribution to learn from), and as can be seen it is clearly valid for the uniform 



distribution. It overestimates by rhree orders of magnitude the number samples necessary to be assured of 
at least an 80% confidence value! 

5. INCREMENTAL HALTING TEST 

’ Despite the general nature of the Error Bound’s result, in many practical problems we expect that much 
fewer examples are required to meet accuracy goals because the sample probability distributions for most 
problems are not close to the worst-case distribution. The usefulness of the Error Bounds methods fk 
these cases is limited as was clearly seen for the uniform case. Therefore, for specific problems it is usehl 
to have a general method for finding problem-specific bounds. Even more important is being able to 
estimate these bounds incrementally, while the algorithm is learning. This will be a reduction in labor as 
compared with Holdout Methods. The Incremental Halting Test forms the basis for a problem-specific 
incremental approach. 

The essence of the Incremental Halting Test can be simply illustrated by considering a Bernoulli trails 
framework with our 1-dimensional example from the previous section. We define a success as drawing a 
sample point from a new, unsampled bin; our algorithm will learn something new and reduce its error in 
estimating the unknown number. A fuilure is drawing a sample from a previously sampled bin; it fails to 
reduce the algorithm’s error. The basis for the Incremental Halting Test is the fict that after the (j- I)” 
success the probability h@j) of having a string of m failures from any distribution is 

I+,) = ( 1  - PJ. (7) 

If the remaining success probability pj were actually E then this m-jiuifure probability would be h ( ~ ) .  Thus 
a string of m failures indicates that our algorithm may be accurate to within E ,  and one or more succe.sse.s 
means that our algorithm is still capable of making an error 2 E. In the case where no new successes were 
recorded in m additio’nal trails, the selection process can be halted with the fmal remaining success 
probability I E to within some confidence 6 that is determined later. Clearly, h ( ~ )  represents the 
probability of halting the algorithm’s learning where the remaining success probability is E or less. 
Equation (3) can be bounded in this formulation by, 

This allows us to find the number of additional samples needed to ensure‘the (E,  6) conditions in Equation 
(8). This number is 

for small E. Using this test, if no additional successes are found in mfuture samples, then the algorithm 
can be halted with assurance that both E and 6 criteria are satisfied. 

For a uniform distribution the Incremental Halting Test produces the same result as given in Equation (6) 
and shown in Figure 4. 
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Figure 4: The plot of the number of samples t vs. 1-6. The curves represent the growth in the number 
of samples needed to achieve a confidence bound, 1-6, for an E = 2” in the one dimensional example of 
“guess the number”. 

To demonstrate that the Incremental Halting Test is sensitive to the population’s probability distribution, 
we define a “hard” probability distribution that is harder to learn than the uniform distribution for bin bi as 

For this distribution most of the probability is spread uniformly across all bins except for the bin contain 
the target value, y; it has a smaller probability, E. Thus most of the samples will come fiom bins other 
than the one containing our target; this is why this distribution is hard to learn. Figure 4 shows that about 
90 samples are needed to reach the 0.8 confidence value. 

The Incremental Halting Test is designed to be used will an algorithm is learning. For example, one 
selects a target (E, 6) pair and computes the string of samples m necessary to meet the conditions h m  
Equation (9). Initially, the algorithm is a batch of m samples drawn with replacement from the set D,, and 
it most likely produces one or more successes since the algorithm’s parameters are randomly chosen. Then 
the algorithm uses these m samples to adjust its parameters a to reduce its training error. Another batch of 
m samples is given to the algorithm, if it produces no successes then it has learned the target to within (E, 

6). Otherwise, the algorithm will use these samples to again adjust its parameters. This process repeats 
itself until the algorithm learns the target values to within (E, 6). If the algorithm has not halted by a user 
specified number of batches is reached then the target function may not be learnable to within (E, 6) by 
algorithm. 

6. SUMMARY 



The k-fold Cross Validation provides the least bias holdout method to estimate the accuracy statistic, P,, 
corresponding to the accuracy population parameter, P.  This conclusion is based on Kohavi’s work6 
investigating the bias-variance tradeoff between the bootstrap and k-fold Cross Validation on a finite number 
training and test sets. This is important since the unbiased guarantee is not valid when the number of sets 
is less than the leave-one-out holdout method. 

We showed how the accuracy statistic of an ANN can be estimated using the k-fold Cross Validation 
technique. This estimate relied on an assumption about the statistic’s distribution about the population 
parameter. In our example, we assumed a Bernoulli distribution and invoked the de MoivrC-Laplace 
Theorem to bound the population’s accuracy parameter with the corresponding sample accuracy statistic 
and variance. This process for the ANN is quite time consuming. and labor intensive. 

Next, we considered a simple one dimensional example. In this example, our supervised learning 
algorithm was to learn a target number to within E from a finite sample set. We showed that the Error 
Bounds method gave an upper bound on the algorithm’s accuracy. This accuracy estimate makes 
assumptions about the population’s probability distribution. These bounds are good for the theoretically 
worst-case distribution. However, for most practical applications Error Bounding method produces bounds 
that are several orders of magnitude too large from what is found experimentally. It is not sensitive to the 
specific problem’s probability distribution. 

Finally, the Incremental Halting method was applied to the same one dimensional example as the Error 
Bounding method. This technique is a general method for finding problem-specific bounds. This was 
demonstrated in the one dimensional example by fmding different bounds for two different probability 
distributions imposed on the population’s sample space. Of great importance is its ability to estimate 
these bounds incrementally, while an algorithm is learning. This will be a reduction in labor as compared 
with k-fold Cross Validation method. The Incremental Halting Test forms the basis for a problem-specific 
incremental approach to estimating accuracy bounds that may be tighter the Error Bounds methods for 
specific problems and less labor intensive the k-fold Cross Validation method. 
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