
"This submitted manuscript has been authored by a
contractor of the U.S. Government under Contract No.
DE-AC05-960R22464. Accordingly, the US. Govern- &dF 09&1062gr--'
ment retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes."

Evaluation of High-Performance Computing Software

Shirley Browne* Jack Dongarrat Tom Rowant

Abstract

The absence of unbiased and up to date compara-
tive evaluations of high-performance computing soft-
ware complicates a user's search for the uppropriate
software package. The National HPCC Software Ex-
change (NHSE) is attacking this problem using an ap-
proach that includes andependent evaluations of soft-
ware, incorporation of author and user feedback into
the evaluations, and Web uccess to the evaluations.
We are applying this approach to the Purallel Tools
Library (PTLIB), a new software repository for paral-
lel systems software and tools, and HPC-Netlib, a high
performance branch of the Netlib mathematical soft-
ware repository. Updating the evaluations with feed-
back and making at available via the Web helps en-
sure accuracy and timeliness, and using independent
reviewers produces unbiased comparative evaluations
difficult to find elsewhere.

1 Introduction

Selecting the appropriate so,,ware for a high-
performance computing task is difficult. Packages dif-
fer in capabilities, features, and quality. Compara-
tive evaluations, when they are available, usually come
from the author of one of the packages. As a re-
sult, comprehensive, independent, and unbiased eval-
uations are not normally readily available, despite the
obvious value such information would be to users.

The National HPCC Software Exchange (NHSE)
[l, 21 a Center for Research on Parallel Computation
(CRPC) project for the collection, distribution, and
evaluation of software and information produced by

*Department of Computer Science, University of Tennessee,
Knoxville, TN 37996-1301 (browneOcs.utk.edu)

t Department of Computer Science, University of Tennessee,
Knoxville, TN 37996-1301 and Mathematical Sciences Section,
Oak Ridge National Laboratory, Oak Ridge, TN 37821-6367
(dongarraOcs.utk.edu)

t Mathematical Sciences Section, Oak Ridge National Lab-
oratory, Oak Ridge, TN 37821-6367 and Department of Com-
puter Science, University of Tennessee, Knoxville, TN 37996-
1301 (rowanOcs.ut/c.edu) Author to whom correspondence
should be directed.

HPCC programs, is currently undertaking compara-
tive evaluations of high-performance computing soft-
ware with a view to satisfying this need. Our goal
is to provide independent, unbiased comparative eval-
uations of HPC software of wide applicability. Users
get easy access to side-by-side comparative evaluations
based on consistent and objective criteria.

Our current evaluation focus is on the Parallel Tools
Library (PTLIB), a new software repository for paral-
lel systems software and tools. and HPC-Netiib, a high
performance branch of the Netlib [3, 41 mathematical
software repository. We refine the NHSE high-level
evaluation framework to the domains in these two ar-
eas and for each package in a particular domain, we
apply a consistent set of criteria to assess various char-
acteristics of the software. The evaluations, as well as
author and user feedback, are made available via the
Web.

Although the software evaluation part of NHSE ac-
tivities is still in the early stages, many packages have
already been evaluated. However, the evaluations will
be on ongoing task. Our evaluation criteria and pro-
cedures will evolve as the software pool grows and as
we gather comments from software authors and users.

Section 2 describes our approach to evaluating high-
performance computing software in more detail. Sec-
tions 3 and 4 describe the evaluation criteria and cur-
rent status for our evaluations of software in PTLIB
and HPC-Netlib, and Section 5 summarizes our re-
sults.

2 Approach

Our approach differs in several respects from the
traditional presentations of comparative evaluations.

Comparative evaluations currently available are
typically done by an author of one of the pack-
ages and can be subject to bias and possible in-
consistencies across evaluations. By performing
our evaluations as consistently and objectively as
possible, we should be able to avoid even the ap-
pearance of bias.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof7 nor
any of their employees, make any warranty7 express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disci&, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or sewice by
trade name, trademark, manufacturer, or otherwise does not necessan'ly consb'tute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not neCeSSar-
ily state or reflect those of the United States Government or any agency thereof.

Portions of this document may be iuegible
in electronic image products. Images are
produced f h m the best available original
document.

0 We incorporate feedback from package authors
and users into our evaluation. This ensures that
the evaluations are both fair and up to date.

0 Our evaluations are not static. As additional
information is gathered, either through our au-
thor/user feedback mechanism or through en-
hancements to our evaluation procedures, we will
update the evaluations.

0 The collection of evaluations will be easily acces-
sible at a centralized location via the Web. Users
can do side-by-side comparisons according to se-
lected characteristics.

We decided that users would benefit most if we con-
centrated our evaluations on the software with broad-
est applicability. For this reason we have focused our
evaluations on parallel systems software and tools, and
on mathematical software. Many packages selected for
evaluation were drawn from the collection of software
already available through Netlib and the NHSE. We
also solicited other promising packages not yet avail-
able from our repositories.

Our first step in designing a systematic, well-
defined evaluation criteria was to use a high-level set
of criteria that can be refined as needed to particu-
lar domains. Our starting point for establishing the
high-level set of criteria was to build on the software
requirements described in the Baseline Development
Environment [5]. The criteria were appropriately tai-
lored to a particular domain by those doing the evalu-
ations and by others with expertise in the domain. We
expect that the evaluation criteria for a given domain
will evolve over time as we take advantage of author
and user feedback, and as new evaluation resources
such as new tools and problem sets become available.

The NHSE software evaluation process consists of
the following steps.

1. Reviewers and other domain experts refine the
high-level evaluation criteria to this domain.

2. We select software packages within this domain
and assign each to an NHSE project member
knowledgeable in the field for evaluation.

3. The reviewer evaluates the software package sys-
tematically, typically using a well-defined eval-
uation criteria checklist. Assessment of certain
criteria will necessarily be subjective. To facili-
tate comparisons, the reviewer assigns a numer-
ical score for each of those criteria based on his
judgment of how well the criterion was met. As-
sessment of criteria that can be easily measured

are typically reported directly as those measured
results.

4. We solicit feedback from the package author, giv-
ing him the opportunity to make corrections, ad-
ditions, or comments on the evaluation. In effect
we ask him to review our review, and we revise
the review to correct any errors or omissions.

5. We make the review and the author’s feedback
available via the Web.

6. We add to the evaluation and author feedback
any comments users wish to submit through the
NHSE Web pages.

3 Evaluation of PTLIB Software

So far our evaluation of PTLIB software has covered
parallel debuggers and performance analyzers. We
give a detailed description of the evaluation criteria
below. Note that it is has been refined and expanded
to a level of detail to enable it to serve as an evaluation
checklist.

Performance Includes accuracy, *efficiency, and scal-
ability.

Accuracy A performance monitoring tool is ac-
curate if it does not cause too great a change
in the behavior and timing of the program
it is monitoring.

Efficiency The software runs fast enough, in
that slow speed does not make it an inef-
fective tool.

Scalability A parallel tool is scalable if its over-
head grows in a reasonable manner with in-
creases in system and problem sizes. In some
cases, linear growth may not be acceptable.

Capabilities The tool has adequate functionality to
effectively accomplish its intended tasks.

Versatility Includes heterogeneity, interoperability,
portability, and extensibility

Heterogeneity A heterogeneous tool can simul-
taneously be invoked on and/or have its
components running on all platforms in a
heterogeneous system.

Interoperabili ty A parallel tool is interopera-
ble if its design is based on open interfaces
and if it conforms to applicable standards.

Portability A parallel tool is portable if it works
on different parallel platforms and if plat-
form dependencies have been isolated to spe-
cific parts of the code.

Extensibility A performance analysis tool is ex-
tensible if new analysis methods and views
can be added easily.

Ma tu r i ty Includes robustness, level of support, and
size of user base.

Robustness A parallel tool is robust if it han-
dles error conditions without crashing and
by reporting them and recovering from them
appropriately.

Level of support The timeliness and quality of
responses to questions from users or the re-
viewer should be adequate for typical pack-
age use.

Size of user base Indicators include the exis-
tence of newsgroups or mailing lists for the
package, and the number of downloads of the
package.

Ease of use The software has an understandable
user interface and is easy to use for a typical
NHSE user.

The software characteristics described in the crite-
ria above are most appropriately assessed by reviewer
judgment rather than by measured results. Each
PTLIB software evaluation therefore contains a set
of reviewer-assigned numerical scores indicating how
well the package met the criteria.

Currently over 20 parallel debuggers and perfor-
mance analyzers have been evaluated according to
the above criteria. These packages include AIMS,
DAQV, LCB, MQM, NTV, Pablo, Pangaea, Para-
dyn, ParaGraph, Paravision, PGPVM, PVaniM, To-
talView, Upshot, VAMPIR, VT, Xmdb, XMPI, and
XPVM. We have solicited author feedback on these
evaluations, and the initial evaluations have been
updated based on the feedback received. Web ac-
cess to the evaluations is available through the
PTLIB homepage at http://www. nhse. org/ptlib/. See
http://www. nhse. org/sw-catalog/ for descriptions of
the PTLIB software packages.

4 Evaluation of HPC-Netlib Software

Just as we selected high-performance mathematical
software for evaluation because of its broad applicabil-

ity for users, we have given priority to three mathe-
matical software target domains for the same reason.

0 Linear algebra, especially sparse linear system
solvers

0 Partial differential equations (PDEs)

Optimization

Several issues need to be considered when estab-
lishing evaluation criteria for mathematical software.
One observation is that, in contrast to the evaluation
of parallel tools, the evaluation of mathematical soft-
ware is inherently more quantitative. Assessing soft-
ware by assigning scores, as was done for the evalua-
tion of parallel tools, would be inappropriate for the
evaluation of mathematical software.

Another consideration is that mathematical soft-
ware packages often have different aims and different
target applications. We must ensure that systemati-
cally and consistently checking the same criteria across
all packages does not lead to comparing apples and or-
anges.

Another important observation is that some goals
of evaluation are inherently conflicting. Satisfying a
wish list of ideal goals is impossible, and tradeoffs will
be necessary. Consider the following desirable and rea-
sonable evaluation goals:

0 consistency in evaluation procedures because it
promotes objectivity and fairness in the evalua-
tions, and

0 tailoring evaluation procedures to packages be-
cause it promotes appropriate testing and optimal
use of evaluation resources.

Now consider the following scenario. Package A
is well established, widely known to be thoroughly
tested, and the package authors are known to the re-
viewer. In contrast, everything about Package B is
unknown to the reviewer. It clearly would be appro-
priate to run Package B through a battery of various
simple tests to ensure it meets at least some mini-
mal standards. Running the same tests on Package
A might seem inappropriate because the package has
clearly survived far more rigorous testing. Running
the tests does not appear to offer much added value
to the user and does not appear to be the best use of
the reviewer’s time. However, not running the same
tests on both packages could lead to a double standard
or the appearance of a double standard. A satisfactory
resolution of this scenario will require some tradeoffs
between the Conflicting goals.

http://www
http://www

Our basic approach for meeting the conflicting goals
is to test the packages on a relatively small set of
standard test problems. The problem set will include
problems with a wide range of difficulty levels, easy
problems any package should be able to solve and ex-
tremely difficult problems that will test the packages’
limits. Problems will also be selected to test special
claims made by package authors. Problem sets will
necessarily vary somewhat from package to package,
but our aim is to have some small common core of
test problems across similar packages so that users will
have a basis for side-by-side comparison. Any other
tests tailored to particular packages would be extra
and optional.

Evaluation results will be presented as a recon-
figurable package/problem Web-accessible table, with
each cell of the table containing the results of that
particular test. We expect the problem set used in
our evaluations to evolve over time. We plan to u p
date the tests and the results table when the problem
set changes to ensure a continuing common basis for
package comparison.

Characteristics of mathematical software can be di-
vided into two categories - those characteristics that
can be assessed by inspection of the code and docu-
mentation and those that can only be assessed through
actual testing.

Ideally the software testing examines the following
characteristics.

Correctness The code works correctly on the in-
tended problems.

Efficiency The code is efficient with respect to both
speed and storage.

Stabil i ty The code is stable, performing as efficiently
and as accurately as the problem’s conditioning
allows.

Robustness The code handles error conditions rea-
sonably. The ability to estimate a problem’s con-
dition, or otherwise providing a check on the com-
puted answer’s reliability, is also desirable.

Full examination of each characteristic for each pack-
age is clearly unrealistic. In addition, absolute quan-
titative assessments of the characteristics may mean
little to a typical package user. Our approach of doing
side-by-side comparisons on common standard prob-
lems provides relative assessments that are both more
practical to obtain and more helpful to the user.

For testing sparse linear system solvers, several use-
ful resources are available. The Harwell/Boeing [6]

collection of sparse test matrices will be the source
for many of our test problems. SPARSKIT [7] also
contains a useful collection of test problems and in
addition provides matrix generation and matrix for-
mat conversion utilities. The Harwell/Boeing and
SPARSKIT collections are available through the Ma-
trix Market [SI.

The evaluation characteristics of sparse solvers that
can be assessed largely from inspection of the code and
its documentation include the following.

Capabilities Includes methods, formats

Methods Identify which methods and precondi-
tioners are used in the package.

Formats Identify which matrix formats are sup-
ported. Packages that use non-standard ma-
trix formats may be harder to test and to
use, and will tend to have a relatively small
base of users.

Portabil i ty Includes standards, architectures

S tandards Identify which standards (e.g. MPI,
BLAS) are used.

Architectures Identify on which architectures
the packages has been tested and is s u p
ported.

Versatility Includes methods, interfaces

Methods Identify the extent to which a user can
design or specify the method or precondi-
tioner to be used.

Interfaces Identify how well the package inter-
faces with other packages, and whether it
has multi-language support.

Ease of use Identify adequacy of documentation, ex-
amples, and support.

Our current emphasis in the HPC-Netlib evalua-
tion is on sparse linear system solvers, although many
of the sparse packages also fall into the PDE cate-
gory. We are currently evaluating the iterative pack-
ages Aztec, PETSc, and PIM. We also plan to evalu-
ate the iterative packages BlockSolve95, BPKIT, Ele-
gant, IML++, ITPACK, LASPack, PARPRE, PCG,
P-SPARSLIB, and Templates, and the direct pack-
ages CAPSS, SPARSE, SuperLU, and UMFPACK.
The evaluations are available through the HPC-Netlib
homepage at http://www.nhse.org/hpc-netlib/. See
http://www. nhse. org/sw-catalog/ for descriptions of
the HPC-Netlib software packages.

http://www.nhse.org/hpc-netlib
http://www

5 Summary

Evaluating software accurately and in a way that
is both useful to users and fair to authors is difficult
and time consuming. However, there are many bene-
fits to users from such an effort. Some of these are a
direct consequence of our approach. The evaluations
are easily accessible via the Web. Our mechanism of
incorporating feedback from authors and users helps
ensure accuracy in the evaluation and keeps it up to
date. Independent reviewers systematically evaluating
software against well thought out criteria will produce
an objective, unbiased comparative evaluation difficult
to find elsewhere.

Acknowledgments

This project has benefited greatly from the efforts
of many people. We thank Vasilios Alexiades, Chris
Hastings, Christian Halloy, and Kevin London for
evaluating software and for helping to establish the
evaluation criteria, Paul McMahan for his invaluable
systems support, and Ron Boisvert and Esmond Ng
for many valuable discussions.

References

Shirley Browne, Jack Dongarra, Stan Green,
Keith Moore, Tom Rowan, Reed Wade, Geoffrey
Fox, Ken Hawick, Ken Kennedy, Jim Pool, Rick
Stevens, Bob Olsen, and Terry Disz, “The Na-
tional HPCC Software Exchange”, IEEE Compu-
tational Science and Engzneering, vol. 2, pp. 62-69,
1995, Project Web page at http://www.nhse.org/.

Shirley Browne, Henri Casanova, and Jack Don-
garra, “Providing access to high performance
computing technologies” , in Proceedings of the
PARA96 Workshop on Applied Parallel Comput-
ing in Industrial Problems and Optimamtion, Lyn-
gby, Denmark, August 1996.

J. Dongarra and E. Grosse, “Distribution
of mathematical software via electronic mail” ,
Communications of the ACM, vol. 30, pp.
403-407, May 1987, Project Web page at
http://www.netlib.org/.

Shirley Browne, Jack Dongarra, Eric Grosse, and
Tom Rowan, “The Netlib mathematical soft-
ware repository”, D-Lib Magazine, Sep. 1995,
http://www .dlib .org/magazine.html.

[5] C. M. Pancake, “Specification of baseline develop
ment environment”, http://www.cs.orst .edu/
-pancake/SSTguidelines/baseline.html.

[6] I. S. Duff, R. G. Grimes, and J. G. Lewis, “Sparse
matrix test problems”, ACM Transactions on
Mathematical Software, vol. 15, pp. 1-14, 1989.

[7] Y. Saad, “SPARSKIT: A basic tool kit for sparse
matrix computations”, Technical Report 90-20,
Research Institute for Advanced Cohputer Sci-
ence, NASA Ames Research Center, Moffet Field,
CA, 1990.

[8] R. F. Boisvert, R. Pozo, K . Remington, R. F. Bar-
rett, and J . J. Dongarra, “Matrix Market: A
web resource for test matrix collection^^^, in R.F.
Boisvert, editor, The Quality of Numerical Soft-
ware: Assessment and Enhancement. Chapman
and Hall, London, 1997.

http://www.nhse.org
http://www.netlib.org
http://www
http://www.cs.orst

