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Oil Reservoir Properties Estimation 
Using Neural Networks 

N.B. Toomarian', J. Barhen', C. W. Glover', and F.Aminzadeh3 

This paper investigates the applicability as well as the accuracy of artificial neural networks 
for estimating specific parameters that describe reservoir properties based on seismic data. 
Our approach relies on PL's adjoint operators general purpose neural network code to 
determine the best suited architecture. We believe that results presented in this work 
demonstrate that artificial neural networks produce surprisingly accurate estimates of the 
reservoir parameters. 

1. INTRODUCTION 
The oil industry acquires and must process large 
volumes of geoscience data of various type to locate 
prospective places for oil and gas reservoirs. This 
data is extensively manipulated before it is analyzed 
and interpreted. Every data manipulation step is 
important, and processing time can be extensive. 
Hence, it is imperative that the efficiency of the data 
manipulation and data reduction be improved. This 
is where Artificial Neural Networks (ANNs) may 
help the oil industry. 
The characterization and prediction of reservoir 
properties is one major area where ANNs may offer 
improvement. Seismic data is used to characterize 
large volumes of the Earth's upper crust. However, 
this data provides only gross structure information on 
the size and orientation of the various underlying 
strata. On the other hand, well log data provide a 
detailed characterization of the strata but only in a 
very localized region, and it is far more expensive to 
obtain than the seismic data. To find a reservoir and 
characterize it, one must associate the detailed well 
log data with the seismic data. This will allow one to 
accurately extrapolate detailed information over a 
large volume. The strength of ANN techniques lies 
in their ability to capture and approximate nonlinear 
mappings between two data sets; in this case the 
relationship between well log and seismic data. 
Thus, the use of ANN techniques may improve the 
efficiency and accuracy in the manipulation of 
geoscience data. The research results reported here 
address the applicability as well as the accuracy of 
A N N s  in estimating specific parameters that describe 
reservoir properties based on seismic response 
information. 

To test the effectiveness of ANNs in predicting 
different reservoir properties, we start with a suite of 
well logs from a well in a known oil field. The first 
step is to generate blocked logs that have a limited 
number of layers with constant layer properties[l]. 
Then we generate a suite of elastic models by 
perturbing the following reservoir properties in the 
depth interval of interest: water saturation, effective 
porosity, sand thickness, and sandkhale ratio. For 
everyone of these perturbations, we generate a 
synthetic seismic shot gather. For more details on 
different prestack attributes used in the oil industry 
see Ref. [2]. For every gather, we compute different 
seismic attributes within the time window of interest. 
The attributes used in this study are: 
Reservoir Parameters 
SWE Sand Water Saturation 
EFFPOR Sand Effective Porosity 
THICKNESS Sand Thickness 
RATIO Clay/Sand Ratio within sands 

Seismic Attributes 
DEPTH / 
TIME 
GREF-0 Normalized, Rectified Near Offset 

Amplitude (AVO) 
SLOPE-0 AVO Least Squares Slope of GREF-0 
GREF-1 Intercept of Fit to Normalized, 

Rectified Amplitude Fit 
SLOPE-1 Fluid Factor Attribute 
GREF-2 (Ro-Rwet) of Unnormalized Intercept 
SWPE-2 (G-Gwet) of Unnormalized Signed 

GREF-3 

SWPE-3 

depth / Two-way Seismic Travel Time 

Amplitude Fit 
Ro Intercept of Unnormalized Signed 
Amplitude Fit 
G or Slope of Unnormalized Signed 
Amplitude Fit 
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SWPE-4 
SWPE-5 
SWPE-6 
SLOPE-7 

VIM 
SVINT 
M O B  

(Ro + G)/2 of GREF-3 and SLOPE-3 
Another combination of the above 
Ro*G 
(Ro + G)/2 of Normalized, Rectified 
Amplitude Fit 
p-wave Velocity of Sands 
s-wave Velocity of Sands 
Density of Sands 

With various perturbations of the reservoir properties, 
152 seismic records were generated. Each record 
consists of as many as 338 sample points at which 
the above mentioned attributes were determined. Our 
immediate goal is to predict, using ANNs,  selected 
reservoir parameters from some or all the 17 seismic 
attributes. Following validation of the ANN 
approach, the longer term objective is to apply these 
techniques to largescale seismic datasets. 

In this paper, presents the results of applying A N N s  
to two of four main reservoir parameters, i.e., Sand 
Water Saturation and Sand Effective Porosity. Our 
methodology for preprocessing the input data, 
including dimensionality reduction, and data 
transformation for maximum featureclass 
separability are described in a companion paper[6]. 
There, we also report results on predicting another 
key reservoir parameter, i.e. the sand thickness. 

2. APPROACH 
At the outset it was decided to use a separate ANN to 
predict each main reservoir parameter, rather than 
use a single ANN to predict all parameters 
simultaneously. This approach offers several 
advantages. First, it allows us treat the prediction of 
a each parameter of interest as a separate problem, 
independent from the others. Thus, we can tailor our 
approach specifically to a given parameter. For 
example, in our reservoir analysis, we noticed that 
the EFFPOR and RATIO variables take on a 
continuos range of values. This suggested that the 
ANN computational model should be a nonlinear 
mapping algorithm On the other hand, the SWE and 
THICKNESS variables take on discrete values. 
Hence, each value can be treated as a class. Thus, the 
appropriate ANN model would here be a 
classification algorithm. Second, using a different 
ANN for each parameter allows us to determine and 
use only those input variables that significantly affect 
that parameter's prediction. Finally, separate A N N s  
can always be combined, if necessary, in a 
hierarchical manner to predict other reservoir 
parameters. 

2.1 Input Data Scaling 
Scaling ANN input data equalizes the importance of 
all input variables and speeds up learning. Raw data 
can differ by several orders of magnitude. For 
example, one input attribute may have values on the 

order of 0.00001 while another is around 100,000. 
The larger number will quickly saturate the ANN 
processing elements (nodes). Saturated nodes 
produce constant output values corresponding to the 
maximum of their dynamic range. The ANN weight 
update rule is proportional to the derivative of the 
node's activation function at the current output value. 
For a saturated node the derivative is almost zero and 
its weight stops learning. Thus, in order to alleviate 
this problem, the data should be scaled to match the 
node's dynamic range. 

We used a linear mapping to scale the range of each 
input variable to the nodes' dynamic ranges. The 
input variables' ranges were determined from the full 
data set. A linear activation function was used for 
the input nodes; their dynamic ranges were chosen to 
be [0, 11 or [-1,1], depending on the particular ANN. 
Thus, all data were mapped to the appropriate 
interval. 

2.2 Adjoint Operator Based Code 
The adjoint operator method[3-4] is used to study the 
appropriate ANN architecture for this application. 
This method is implemented in a computer code that 
allows the user to chose and compare different ANN 
architectures for the problem at hand. Specifically, 
our method views an ANN as a set of coupled 
nonlinear differential equations: 

where  represents the output of the nlh neuron; 
U, is the derivative of U, with respect to time; and 
Tm is the strength of the synaptic coupling kom the 
mlh to the nCh neuron. The sigmoidal functions f, 
modulate the neural responses; typically, 
f ( x ) =  tanh(x). The W,, is the connectivity 
matrix consisting of binary numbers that indicate 
whether neuron n receives input from neuron m. 
When W,, is 1 then neuron n is connected to neuron 
m. The w,, matrix is an input to the code, hence, 
the analyst can decide which neurons should be 
connected. Such an approach allows one easily to 
select, test, and compare different neural 
architectures by changing the values of this matrix. 
I,is an external input to the nlh neuron. The goal in 
this code is to minimize the difference between the 
desired and actual output from the network for each 
training sample, i.e., the error function is: 

where d, is the desired output for nlh neuron, and 
the summation is performed for the output neurons 
only, for all K samples. The primary bottleneck in 



gradient based iterative approaches for updating the 
values of the matrix T arises from the cost of 
evaluating the derivatives d E  / dTM. This we 
overcome by using adjoint operator techniques. 
Mathematical details are given in [3-41, and we 
briefly summarize the essential features in the sequel. 
Ultimately, the learning rule has the familiar f o m  

dE TZi+‘ = T’ - Q- 
JTm 

(3) M 

Here, the superscript Z indicates the iteration 
number, A is a constant step size, and7 is the 
learning rate. In the current code we have the option 
of keeping this learning rate constant or changing its 
value adaptively based upon the gradient. In the latter 
case, if the gradient has a high (low) value, then the 
learning rate is will be small (large). This is 
analogous to walking down a hill. If the hill is very 
steep, one takes small steps. On the other hand, if 
the slope is moderate, one can run by taking big 
steps. Specifically, we evaluate 7 by the following 
equation: 

4 3  .=($) 
This induces a Terminal Attractor[S] effect into the 
dynamics of Eq.(3), where the “terminal” (non- 
Lipschitzian) properties arise from the value of the 
exponent selected, e.&, here -1M. 

In order to calculate the value of d E/dT  for Eq. (3), 
in principle one needs to calculate ( d E / d u  1. The 
latter can be calculated by differentiating the neural 
dynamics in Eq. (1). This would lead us to a system 
of coupled linear equations, also known as forward 
sensitivity equations, the right hand sides of which 
depend on T,, . These equations have to be solved as 
many times as there are parameters in the system, 
Le., N2 where in N is number of neurons in the 
system. An alternative approach exists, based upon 
the concept of Adjoint Operators, that calculates the 
value of dE l d T  indirectly, without calculating 
explicitly the value of d E l d u .  This approach 
reduces the computational e s t ,  and hence, the 
training time in a fully connected network by Om2) 

This system allowed us to test various neural 
architectures for estimating the different reservoir 
parameters. Initially, several preliminary test cases 
were executed for each parameter. The tests were 
conducted on similar data (input and output set) with 
different architectures constructed using the 
connectivity matrix and the learning rate options. 
Based upon the training time needed compared to the 

[3-41. 

accuracy of the results obtained for different ANN 
architectures, we concluded that a multilayer 
feedforward architecture with one or possibly two 
hidden layers was sufficient for the application at 
hand. 

3. RESULTS 
One of the challenges of this application has been 
the selection of the input attributes out of the set of 
17 presented above. We believe that there are three 
different approaches to the problem 
a) Use the brute force approach, Le., use all the 

attributes as input, and let the network figure out 
which ones are more important. This is the 
approach we selected for water saturation 
parameter estimation. 

b) Use engineering judgment for choosing the 
important attributes and use them as input to the 
network. Our effective porosity estimation is 
based upon this approach. 

c) Perform some preprocessing (similar to principal 
component analysis) on the data to find out 
which of the attributes are dominant. This is the 
approach we employed for the sand thickness 
estimation, the results of which are presented 
elsewhere[ 61. 

3.1 Estimating Effective Porosity 
The effective porosity of a reservoir was estimated 
from seismic data. As stated above, the most cost- 
effective architecture for this application was 
determined to be a feed forward three layer network 
operated in mapping mode. The input layer consisted 
of 4 neurons. The following 4 attributes were used as 
input: Depth, 0-Offset, AVO-Slope, and P-Velocity. 

The hidden layer involved 10 neurons; the output 
layer had only one neuron. To train and test the 
network, we processed 2200 seismic samples. 
Approximately 200 data points were chosen 
randomly from this dataset for training the network. 
Tests with the trained network were conducted on 
all 2200 samples. 

I Porosity Estimation I 
m Predicted 
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Figure 1. Desired and network predicted values of 
effective porosity. 



The above figure shows the actual porosity values, 
versus those predicted by the network. The 
agreement is outstanding. 

3.2 Water Saturation Estimation 
For each trace, the value of the water saturation is 
constant. Hence, the problem of estimating the water 
saturation becomes a classification problem. Since 
the input attributes vary dramatically over time, to 
classify the saturation level based upon raw attributes 
becomes a hard, if not impossible problem. This 
suggested that it would be advantageous to extract 
features representative of each trace. To this end, we 
integrated all the attributes over time for each trace. 
The advantages of such an approach are rather 
remarkable. First, the amount of data to be 
manipulated is reduced dramatically (from over 
50,000 to about 150), i.e., one sample per trace. 
Furthermore, one then needs only a small network to 
do the classification, which in turn results in a fast 
training time. 

To train a network to classify water saturation, we 
selected a three layer feed forward network. The 
input layer consisted of 12 inputs, i.e., Depth, AVO- 
Offset, AVO-Slope, GREF(3), Slope(3), Slope(4), 
Slope(7), P&S Velocities, and Density. The hidden 
layer had 6 neurons, and only one output neuron was 
used. The output values were allowed to range 
between -1 and 1. However, for classification 
purposes a threshold was introduced at zero, Le., if 
the network output is less than zero the saturation 
level was estimated to be at approximately 40%, 
while an output greater than zero indicated a 
saturation level of 100%. 

The training data consisted of 26 samples that were 
randomly selected from the pool of 152 samples. All 
data values were normalized to be between -1 and 1. 
The network was tested on all 152 samples. Figure 2 
shows the network output vs. the actual saturation 
value. Instances where the network misclassified the 
saturation level are indicated in figure 3. As can be 
observed from the figure, only 6 out of 152 levels 
were misclassified, i.e., a success rate of over 96% 
was achieved. This result demonstrates a major 
advance over estimates achieved to date with 
conventional techniques. 

4. CONCLUSIONS 
Our research at this stage appears to indicate that 
A N N s  can efficiently be used to capture, based solely 
on sensed seismic data, the same essential reservoir 
information as a detailed forward computational 
model. Oil Industry representatives, part of an 
ongoing DOE Advanced Computing Technology 
Initiative project have reviewed our preliminary ANN 
results. It is their feeling that the proposed approach 
will help demonstrate that ANNs produce 

surprisingly accurate estimates of key reservoir 
parameters. They deemed this aspect of the 
experiment a success. However, the real value of the 
ANN paradigm will be measured by their ability to 
handle the very large scale datasets that characterize 
field seismic exploration. We plan to conduct such 
tests in the forthcoming year. 
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Figure 2. Desired and network predicted values of 
sand water saturation. 
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Figure 3. Six instances that the nehvork misclassified 
the sand water saturation level. 
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