ORNL/TM-13357

RECEIVED JAN 2 9 1997 OSTI

Characterization of the MVST Waste Tanks Located at ORNL

J. M. Keller J. M. Giaquinto A. M. Meeks

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

OAK RIDGE NATIONAL LABORATORY

om

LOCKHEED MARTIN

MANAGED AND OPERATED BY LOCKHEED MARTIN ENERGY RESEARCH CORPORATION FOR THE UNITED STATES DEPARTMENT OF ENERGY

2.

ORNL-27 (3-96)

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.

.

ORNL/TM-13357

Chemical and Analytical Sciences Division

Characterization of the MVST Waste Tanks Located at ORNL

J. M. Keller J. M. Giaquinto A. M. Meeks

December 1996

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

	5.8	Solubility of MVST Sludge in Water 61					
	5.9	Estimates for Compliance with WIPP WAC, Rev. 5 for MVST Sludge 62					
		-					
6.0	Summ	ary of Organic Analytical Results					
	6.1	Discussion of Organic Analysis					
REFE	RENCE	S					
APPE	NDIX A	A-1					
	QC Ac	ceptance Criteria for Radioactive Liquid/Solid Waste Samples A-1					
	Volatile Organic Analyses QC Limits A-4						
	Nonhalogenated Volatile Organic Analyses QC Limits A-5						
		Semivolatile Organic Analyses QC Limits A-5					
APPE	NDIX E	BB-1					
	Table 1	Total Mass and Activity for Selected Species of Interest in Sludge B-2					
	Table 1	B2 Dose Measurements on Liquid Samples					
	Table 1	B3 Dose Measurements on Sludge Samples					

LIST OF TABLES

Table 1	Summary of Tanks in the Active ORNL LLLW System	2
Table 2	Volumes Estimates for Liquid and Sludge in the LLLW System	3
Table 3	Analytical Data for Liquids in Tanks W-24, W-25, and W-26	23
Table 4	Analytical Data for Liquids in Tanks W-27, W-28, and W-31	27
Table 5	Analytical Data for Sludge in Tanks W-24, W-25, and W-26	31
Table 6	Analytical Data for Sludge in Tanks W-27, W-28, and W-31	35
Table 7	Summary of Quality Checks for MVST Supernatant Data	41
Table 8	Distribution of Beta Activity in Supernatant	43
Table 9	Assumption Used for Major Compounds in MVST Sludge	45
Table 10	Summary of Quality Checks for MVST Sludge Data	45
Table 11	Distribution of Beta Activity in MVST Sludge	48
Table 12	Summary of Actinide Elements in MVST Sludge	49
Table 13	Summary of RCRA Regulatory Limits	50
Table 14	Summary of Denature Ratios for MVST Supernatant	53
Table 15	Summary of Denature Ratios for MVST Sludge	53
Table 16	Example of Converting Atom % to Weight % for W-31 Sludge	54
Table 17	Summary of Total Anion Data for MVST Sludge	57
Table 18	Recovery of Selected Species in Water Leach	61
Table 19	Estimates for ²³⁹ Pu FGE with the MVST Sludge	63
Table 20	Estimates for ²³⁹ Pu Equivalent Activity with the MVST Sludge	64
Table 21	Isotopes that Contribute to the Decay Heat in the MVST Sludge	65
Table 22	Distribution of Decay Heat in MVST Sludge	65
Table 23	Summary of Relative Decay Heat in MVST Sludge	66
Table 24	Analytical Organic Data for MVST Liquid Samples	71
Table 25	Analytical Organic Data for MVST Sludge Samples	73

LIST OF FIGURES

Figure 1	Distribution of Major Cations and Anions in Liquid Phase
Figure 2	Distribution of Selected Ionic Species in Liquid Phase
Figure 3	Distribution of Major Compounds in MVST Sludge
Figure 4	Distribution of Uranium and Thorium in MVST Sludge
Figure 5	Distribution of Plutonium by Alpha Activity in MVST Sludge
Figure 6	Distribution of Plutonium by Concentration in MVST Sludge
Figure 7	Distribution of Beta Decay Heat in MVST Sludge
Figure 8	Distribution of Alpha Decay Heat in MVST Sludge

ACKNOWLEDGMENTS

The authors wish to express appreciation to the following staff members of the ORNL Chemical and Analytical Sciences Division who made important contributions to this work:

Inorganic and Radiochemical Analytical Support

L. D. Bible

- R. D. Canaan
- D. A. Caquelin
- K. M. Hoyle^a
- C. L. Kay^a
- E. H. McBay
- T. P. Mills^a
- D. H. Smith
- N. A. Teasley

Organic Analytical Support

S. H. Harmon

- R. L. Schenley
- L. T. Worthy^b

^a Subcontractor staff, Oak Ridge Research Institute.
^b Subcontractor staff, Midwest Technical Inc.

The authors also wish to express appreciation to the following staff members of the Liquid and Gaseous Waste Operation Department of the Office of Waste Management and Remedial Actions for tank sampling support:

Sampling Radioactive Waste Tanks J. D. Brewer C. B. Scott

· · . . * • ,

to a start for the set

he we set of

- ---- -

ABBREVIATIONS AND ACRONYMS

.

ALARA	As Low As Reasonably Achievable
CAO	Carlsbad Area Office
CASD	Chemical and Analytical Sciences Division
CVAA	Cold Vapor Atomic Absorption
DOT	Department of Transportation
DQO	Data Quality Objective
EPA	Environmental Protection Agency
GC/MS	Gas Chromatography/Mass Spectrometry
GC	Gas Chromatography
GFAA	Graphite Furnace Atomic Absorption
IC	Ion Chromatography
ICP	Inductively Coupled Plasma
ICP-AES	Inductively Coupled Plasma - Atomic Emission Spectroscopy
ICP-MS	Inductively Coupled Plasma - Mass Spectrometry
IDL	Instrument Detection Limit
LCS	Laboratory Control Sample
LLLW	Liquid Low-Level Waste
LMER	Lockheed Martin Energy Research, Corp.
LMES	Lockheed Martin Energy Systems, Inc.
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
MVST	Melton Valley Storage Tanks
NHVOA	Non-halogenated Volatile Organic Analysis
NTS	Nevada Test Site
ORNL	Oak Ridge National Laboratory
PCB ·	Polychlorinated Biphenyls
QA	Quality Assurance
QAPjP	Quality Assurance Project Plan
QAPP	Quality Assurance Program Plan
QC	Quality Control
RCRA	Resource Conservation and Recovery Act
RMAL	Radioactive Materials Analytical Laboratory (Building 2026)
SVOA	Semivolatile Organic Analysis
TC	Total Carbon
TCLP	Toxicity Characteristic Leaching Procedure
TDS	Total Dissolved Solids
TIC	Total Inorganic Carbon or Tentatively Identified Compounds
TIMS	Thermal Ionization Mass Spectrometry
TOC	Total Organic Carbon
TRU	Transuranic
TWCP	Transuranic Waste Characterization Program
VOA	Volatile Organic Analysis
WAC	Waste Acceptance Criteria
WIPP	Waste Isolation Pilot Plant

· · · .

EXECUTIVE SUMMARY

During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks (except for W-29 and W-30). There will be a companion report on the BVEST waste tanks that will include the analytical data and the results from rheometry experiments on the BVEST sludge.

The isotopic data presented in this report supports the position that fissile isotopes of uranium (²³³U and ²³⁵U) and plutonium (²³⁹Pu and ²⁴¹Pu) were "denatured" as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Characterization of the MVST Waste Tanks Located at ORNL

J. M. Keller, J. M. Giaquinto, A. M. Meeks

1.0 Introduction

The active ORNL Liquid Low Level Waste (LLLW) system consists of the set of waste tanks summarized in Table 1. As indicated in Table 1, this report only discusses the analytical characterization data for the MVST waste tanks (except for W-29 and W-30). There will be a companion report on the BVEST waste tanks in the near future. The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to meet DOT requirements for transporting the waste.

The data was collected during a sampling and analysis campaign performed during the late summer and fall of 1996. The sampling and waste characterization requirements were documented in a Sampling and Analysis Plan¹ (SAP). The level of quality assurance approximates that required for regulatory measurements with the understanding that, when needed, sample size requirements were reduced, and steps were taken to reduce sample handling to ensure radiation exposures were aslow-as-reasonably-achievable (ALARA). Some procedure modifications were required to handle chemical matrix problems due to the high levels of sodium nitrate, uranium, and thorium present. Any deviations from procedures or problems observed with the tank samples were documented in the data files maintained by the laboratory. The regulatory holding time requirements for mercury and the organic measurements were complied with unless noted differently in the data tables. The Quality Control (QC) Acceptance Criteria for measurement used on this project are summarized in Appendix A.

	Data Presented in this report					
Tanks	Liquid	Sludge				
BVEST TANKS						
C-1 (HLW)	none	none				
C-2 (HLW)	none	none				
W-21 (PWTP)	none	none				
W-22 (BVCT)	none	none				
W-23 (LLLW)	none	none				
MVST TANKS						
W-24	1	1				
W-25	1	1				
W-26	1	1				
W-27	1	1				
W-28	1	1				
W-29	none	none				
W-30	none	none				
W-31	1	1				

Table 1Summary of Tanks in the Active ORNL LLLW System

The earlier waste tank characterization work performed, in 1985 by Peretz² et. al. and 1990 by Sears³ et. al., did not specifically address criticality concerns. There was limited radiochemical data on ²³³U, ²³⁵U and ²³⁹Pu; which was taken from gross radiochemical screening measurements. This previous data for fissile actinide elements in the LLLW waste tanks had relatively large analytical errors and should be used with caution. More recent data, reported by Keller⁵ et.al. and Sears⁶, which was collected in early 1996, addresses some of the criticality concerns but did not address all the tanks of interest. The analytical data for fissile isotopes in this report are based on mass spectrometry measurements, similar to the data collected in early 1996, but includes a more complete set of LLLW waste tanks. The uranium and plutonium were each chemically separated from the

waste matrix prior to measurement of the isotopic ratios by mass spectrometry. The mass spectrometry measurements yield more detailed and accurate information than radiochemical measurements for the major fissile isotopes present. The isotopic mass ratio measurements on the sludge samples may not represent the average isotopic ratios due to the heterogeneous nature of the sludge. The isotopic data for each liquid sample should be more representative of the overall supernatant present than comparable measurements for the sludge. Based upon physical observations, the tank sludge tends to be segregated into vertical layers which indicates minimal mixing of the sludge material as it was added to the tanks. Due to limited access to the waste tanks, there is no analytical data available to evaluate segregation horizontally across the tank at the time of this report.

An inventory of radioactive liquid waste and sludge stored in each tank are shown in Table 2 and includes estimates for the volumes through October 1996. The volume data⁴ is based on estimates by the Chemical Technology Division (CTD).

	Total Waste Volume		Sludge Volume		Supernatant Volume	
Tank	(gal)	(L)	(gal)	(L)	(gal)	(L)
W-21	23100	87500	6500	24600	16600	62900
W-22	13100	49600	6800	25800	6300	23800
W-23	21800	82600	10600	40100	11200	42400
W-24	22300	84400	8700	32900	13600	51500
W-25	44100	167000	17300	65500	26800	101500
W-26	44600	168900	11800	44700	32800	124200
W-27	26000	98500	16000	60600	10000	37900
W-28	44200	167400	4500	17000	39700	150300
W-29	44300	167800	11000	41700	33300	126100
W-30	41200	156000	11000	41700 -	30200	114300
W-31	43900	166200	10600	40100	33300	126100

 Table 2
 Volumes Estimates for Liquid and Sludge in the LLLW System

2.0 Sample Collection Activities

A detailed description on the background, operation of the LLLW system, and the sample collection techniques has been presented in previous reports and will not be discussed here (see Sections 2 and 3 of Reference 3). The staff from the Liquid and Gaseous Waste Operations (LGWO) provided all sample collection support and delivered the samples to the analytical laboratory. A good description of the sampling procedures is provided in Appendix A of the Sampling and Analysis Plan¹; a current copy of these procedures are available from the LGWO group. The documentation for chain-of-custody was prepared, maintained for each sample collected, and stored with the data files by the analytical laboratory.

3.0 Analytical Methodology

The information and data collected from these studies are used to support various activities. The activities include demonstration of regulatory compliance, measurements to support future processing options, and to meet data needs for risk assessments and other safety related assessments such as criticality. Standardized analytical procedures are used to the extent possible to ensure broad acceptance of the data generated. Unless stated otherwise, the U. S. Environmental Protection Agency (EPA) methods are used for the analyses of constituents listed as hazardous under the Resource Conservation and Recovery Act (RCRA), which includes all the inorganic and organic measurements presented in this report. In general the EPA Guidance Manual, *Test Methods for Evaluating Solid Waste⁷ (SW-846)*, is used for inorganic and organic methods. Some modifications of the standard procedures are necessary to handle the high radiation levels and the high salt/solids content. Some procedure modifications are required to generate valid data, these changes were usually needed to correct for chemical or other matrix related interferences. All deviations from the standard procedures are documented in the raw data files and can be provided upon request to data users.

3.1 <u>Sample Preparation</u>

The aqueous supernatant samples from the waste tanks were filtered or centrifuged to remove suspended particles. The clarified liquids were then digested by the SW-846 Method 3015, *Microwave Assisted Acid Digestion of Aqueous Samples and Extracts*. This sample preparation for aqueous samples was then used for all subsequent metal analyses by ICP-AES and GFAA, and most of the radiochemical analyses. Based upon results from a collaborative study⁸ with Argonne National Laboratory - East (ANL-E), Method 3015/3051 demonstrated excellent recovery for mercury and was used to prepare tank samples for mercury determination.

The primary method for digesting the sludge samples was SW-846 Method 3051, *Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils.* This sample preparation is considered to be a total digestion for metals and radionuclides by regulatory agencies and yields good results for most metals and radionuclides of interest. This digestion gave poor performance on two of the metals of interest, silver and silicon. Although nitric acid is excellent for dissolving silver compounds, there is usually enough chloride present in waste samples to form an insoluble silver chloride (AgCl) precipitate. If the chloride concentration is increased sufficiently, a silver chloride complex (AgCl₃⁻²) forms which is soluble in the aqueous environment. Improved matrix spike recovery and defensible data for silver were obtained using a separate sample digestion discussed later in this report.

If the total silicon content in the sludge must be known to develop waste treatment options such as vitrification, another sample digestion is required. A simple nitric acid treatment will not dissolve most siliceous materials. The SW-846 Method 3052, *Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices*, provides the necessary digestion chemistry to yield good silicon data. Sludge samples were prepared for measurement of total silicon, by taking approximately 0.5 g of sludge and mixing with 7 mL of concentrated nitric acid and 3 mL of hydrofluoric acid in a fluorocarbon microwave vessel. The samples were digested for 10 minutes at 95% full power (570 watts) and then cooled to room temperature. The acid solution was then treated with excess boric acid and heated to 80°C for ten minutes to complex any free fluoride. This digestion mixture is cooled, filtered into a 50 mL volumetric flask, and diluted to volume with

ASTM Type II water. Care must be exercised to ensure the digestion solution is cooled to room temperature prior to opening the sealed microwave vessel or there may be a significant loss of the volatile SiF_4 . The free fluoride is complexed with the boron to protect the sample introduction system to the ICP-AES and to prevent a high silicon background from the instrument glassware. This sample digestion with hydrofluoric acid should not be used for radiochemical measurements, especially for measurement of lanthanides or actinides.

Most of the metal and radionuclide data presented in this report are based upon a Method 3051 digestion with approximately a 0.5 gram sludge sample and 10 mL of concentrated nitric acid. After the microwave digestion is completed and the solution cooled to room temperature, the sample is filtered into a volumetric flask and diluted to 50 mL with ASTM Type II water or better. To ensure valid silver and antimony data, samples were digested in a similar manner except the 10 mL of nitric acid was replaced with 6 mL of concentrated nitric acid plus 4 mL of concentrated hydrochloric acid. Any residue remaining after the nitric acid or nitric-hydrochloric acid digestion consisted of mostly SiO₂ and was discarded.

3.2 Metal Analysis

Three analytical measurement methods were used to determine all of the metals included in this report. Most of the metals are first determined by SW-846 Method 6010A, *Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)*. There are several elements of interest for which the ICP-AES has insufficient detection limits, and these elements must be determined by Method 7000A, *Atomic Absorption Methods*. The Radioactive Materials Analytical Laboratory (RMAL) uses a Graphite Furnace Atomic Absorption (GFAA) Spectrometer for elements that require better sensitivity. The elements that usually require GFAA were antimony (Method 7041), arsenic (Method 7060A), lead (Method 7421), selenium (Method 7470A), and thallium (Method 7841). All the mercury measurements are done by either Method 7470A, *Mercury in Liquid Waste (Manual Cold-Vapor Technique)*, or Method 7471A, *Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)*. The samples discussed in this report were prepared for mercury analysis by the microwave technique discussed in section 3.1, the sample preparation specified in the mercury methods (7470A and 7471A) were not used.

The level of radioactivity in most LLLW tank samples required that the analytical systems used for metal measurements be modified for operation in a radiochemical hood or glove box. Custom instrument configurations are necessary to ensure contamination control and worker safety. All work was performed in radiochemical laboratories which are operated under strict radiation protection programs, with the use of protective clothing and routine contamination monitoring. Both an ICP-AES system and a GFAA system can generate dry, dusty particles which are difficult to contain and are highly hazardous when radioactive. A detailed description of the RMAL setup for these instruments are given in Appendix B of Reference 3.

The instrument detection limits (IDL) for various metals with undiluted aqueous samples are listed in data tables along with the results. For sludge samples, these detection limits must be increased by a factor that represents the dilution that results from the sample preparation. For all the MVST sludge samples approximately 0.5 g of sample was digested and then diluted to 50 mL which results in about a 100 fold dilution for the sample, and thus a 100 fold increase in the detection limits.

The analytical error for the metal measurements depends upon the analytical method, the concentration level, and the chemical matrix. Inductively-coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) are both multi-element measurement techniques that are designed for the best average performance for all elements analyzed. In general, these measurement techniques are not optimized for any single element. The sample introduction system for ICP instruments adds additional variability due to changes in sample density, viscosity, and solids content between samples and/or calibration standards. Overall, the expected analytical error for ICP measurements range from \pm 4-6% at concentrations above 10 times the detection limit to \pm 20-50% near the detection limit. These error estimates are typical for both ICP-AES and ICP-MS measurements.

Graphite Furnace AA instruments are generally optimized for a specific element and usually provide lower detection limits and better precision. The expected analytical error for GFAA measurements range from 3-5% for concentrations greater than 10 times the detection limit to 20-40% near the detection limit. One advantage of GFAA analysis is that the measurements are normally well above the method's detection limits. The mercury measurements were done by Cold Vapor Atomic Absorption (CVAA), which is very selective and sensitive for mercury. The analytical errors for CVAA measurements are similar to GFAA work.

3.3 Anion Analysis

The determination of the inorganic anions was needed for the development of process treatment options, to provide information to explain the distribution and chemical behaviors observed in the waste tanks, and to ensure the major chemical constituents were identified in the waste for which data was used to calculate the mass and charge balance for each sample. The common inorganic anions; including fluoride, chloride, bromide, phosphate, nitrate, nitrite, and sulfate; were measured by ion chromatography (IC) with a Dionex Model 4500i system. In addition, several water soluble organic acids were measured along with the inorganic anions. These organic acids were measured in their ionized form and included formate, acetate, citrate, and oxalate. Both the citrate and the oxalate can form strong complexes with many metals and change the solution chemistry of these metals in the waste. The ion chromatography system used for measurements on these radioactive samples was configured such that the components that come into contact with radioactivity were isolated in a radiochemical hood for contamination control.

From past observations, the nitrate content dominates both the mass and charge balance calculations with both the supernatant and sludge samples taken from the active LLLW tanks. There are many other anions present in the waste, some of which are measured directly by ion chromatography and others which can be estimated from the metal data such as chromate, dichromate, permanganate, and others. The carbonate is estimated from the total inorganic carbon measurement.

The liquid samples were always analyzed directly by ion chromatography after an appropriate dilution with water. Accounting for the mass and charge balance with the aqueous samples requires less assumptions about the solution chemistry compared to the precipitation chemistry for the sludge samples. The mass/charge balance checks for aqueous samples should agree within the analytical error (approximately $\pm 10\%$) of the measurements. The performance of balance checks for sludge samples is not expected to be as good as the liquid samples because of the large content

of mixed oxides, hydrated hydroxides (heavy metals and actinides), and insoluble carbonates (calcium carbonate, etc.) present in the sludge. The complex precipitation chemistry of the sludge complicates the measurements of total anions and makes estimates for the mass and charge balance more difficult. Analytical techniques such as x-ray fluorescence (XRF) are useful for solid samples but are limited to total element measurements (total sulfur vs. sulfate, total phosphorus vs. phosphate). Another technique, x-ray diffraction (XRD), is useful for the determination of compounds present but only provides qualitative information such as the identification of crystal structures. For this report, the primary sludge anion data is based on a water leach which represents the sum of the anions in the interstitial liquid and the water soluble anions from the solids. For these measurements the sludge samples were prepared by adding approximately 1 gram of sludge to 10 mL of water, mixing for several minutes at room temperature on a vortex mixer, and separating the solids. The resulting solution was analyzed by ion chromatography and the anion concentration was normalized back to the wet weight of the sludge.

Based on conversations with chemists from the Savannah River Site (SRS) and the Hanford site, who have been involved with similar waste characterization work and the experience over the past five years by the RMAL laboratory, the water leach preparation of the caustic sludge samples provides the best total anion data for the halides, nitrites, nitrates, and fair data for sulfate. To resolve questions concerning the total anion content of the sludge two additional sample preparation methods were tested on the MVST sludge samples. The two preparation methods used were 1) Parr bomb combustion of the sludge, and 2) sodium peroxide/hydroxide fusion of the sludge.

Method for Parr Bomb Combustion of Sludges

The procedure used for the bomb combustion is outlined below.

- 1. Approximately 0.25 g of sludge was weighed into the combustion crucible.
- 2. 0.5 mL of mineral oil was added to the crucible with the sample.
- 3. 1 mL of 1 <u>M</u> sodium hydroxide was placed on the bottom of the bomb.
- 4. The bomb was assembled, charged to 30 atm. with UHP oxygen, and vented. This flush was repeated two more times to remove the nitrogen contribution from air. The

bomb was charged to a final pressure of 30 atm with UHP oxygen, placed into a water bath and then the sample was ignited with an electronic spark.

- 5. The bomb was allowed to stand in the water bath for 4 min. to condense combustion gases.
- 6. The bomb condensate was rinsed three times into a flask and diluted to 50 mL with water.

The resulting solution was analyzed by ion chromatography for anions.

Method for Sodium Peroxide/Sodium Hydroxide Fusion of Sludges

The procedure used for the fusion is outlined below.

- 1. Approximately 0.25 g of sludge was weighed into a nickel crucible.
- 2. 1.5 g of reagent grade sodium peroxide and 1 g of ultra pure sodium hydroxide was added to the crucible with the sample.
- 3. The crucible with sample and reagents was covered and placed in a muffle furnace set at 600° C for 15 min.
- 4. The samples were removed from the furnace and allowed to cool for 3-4 min.
- 5. The cover, crucible, and fusion salts were rinsed with water into a flask and diluted to 50 mL.

The final solution was analyzed by ion chromatography for anions.

It is important to note that a bomb combustion or fusion preparation of the MVST sludge samples yields total concentrations of the element measured. An example would be sulfate analysis. A water leach of the sludge will yield a sulfate concentration due to water soluble compounds containing sulfate while a bomb or fusion preparation of the sludge would yield a sulfate concentration due not only to the compounds containing sulfates (both water soluble and insoluble) but any compound containing sulfur. In other words the bomb and fusion preparations yield a total sulfur concentration rather than a total sulfate concentration. In theory, the same principle applies to any anion determined using the bomb or fusion preparation methods.

The final anion measurement technique for all the sample preparation methods was ion chromatography. For simple water samples, without complex chemical matrix problems, the empirical analytical error for ion chromatography measurements ranges from 4-6% for concentrations above 10 times the detection limits to 20-40% near the detection limit. The measurement of anions present at concentration much lower (< 1/25) than other anionic species present may increase the overall error of the measurement.

3.4 Radiochemical Analysis

The only standard radiochemical methods useful for radioactive waste characterization are EPA Method 600/900.0, Gross Alpha and Beta Radioactivity in Drinking Water, and EPA Method 600/901.1: Gamma Emitting Radionuclides in Drinking Water. The EPA Method 600/905.0. Radioactive Strontium in Drinking Water, gave poor performance with the chemical matrix found in ORNL LLLW supernatant and sludge samples. The EPA method for gross alpha/beta measurements uses gas-flow proportional counting. In general, this counting technique requires drying a sample at elevated temperatures onto a metal (usually stainless steel) plate, which resulted in the loss of cesium chloride from the MVST samples and yielded poor gross beta results. To avoid this problem, all gross beta measurements reported are based on measurements by liquid scintillation counting. Other than the gamma spectroscopy measurements, all of the radionuclide measurements were done with in-house procedures. The method detection limits for radiochemical measurements are dependent on both sample matrix and count time and are not listed here. In general, the radiochemical measurements used count times to yield at least 1% (10,000 counts) counting statistics. The expected errors for the radiochemical data range from $\pm 5-10$ % for gross alpha/beta and gamma emitter measurements to $\pm 10-20$ % for radionuclides that require chemical separations before counting (i.e. ⁹⁹Tc, ⁹⁰Sr, ¹²⁹I, and ²³⁷Np).

The long-lived fission products are typically more difficult and expensive to measure than short lived fission products. Many of these long-lived radionuclides are either pure beta emitters or have weak, low energy, and/or low yield gamma-rays which are not very useful for accurate analytical measurements. In general, good radiochemical data requires that each of these isotopes be chemically separated from all other radioactivity prior to measurement. These chemical separations

and measurements are currently being done routinely for ⁹⁹Tc and ¹²⁹I because both can exist as anionic species (TcO_4^- , I^- , and IO_3^-) in the waste, and these anions would be highly mobile in the environment. The ⁹⁹Tc is currently being separated by extraction chromatography and measured by ICP-MS which is much more sensitive than counting techniques for radionuclides with a low specific activity. The ¹²⁹I is first extracted into carbon tetrachloride as iodine (I_2), then reduced to iodide (I^-), back-extracted into an aqueous matrix, and loaded onto an anion exchange resin. The ¹²⁹I is then determined by neutron activation analysis. Typically the level of ⁹⁹Tc and ¹²⁹I in the waste is lower than expected from the fission yields, and one possible explanation is that both isotopes form volatile species (HTcO₄, HI, and I_2) when exposed to either acid and/or heat.

The long-lived fission products are a very small fraction of the overall activity present in the waste and there has been little interest in the measurement of these radionuclides in the past. The determination of these isotopes are less routine and are frequently more expensive methods to perform. The judgement of most waste characterization teams has been that the measurement of these radionuclides, with the exception of ⁹⁹Tc, would be interesting but there is insufficient risk to justify the analytical cost.

3.5 Criticality Controls

The current ORNL waste acceptance criteria (WAC) for liquid-low level waste requires that the fissile isotopes of uranium and plutonium be isotopically diluted with ²³⁸U and ²³²Th, respectively. These administrative controls require that the ratio of the ²³⁸U mass divided by the fissile equivalent mass (FEM) for uranium be greater than 100. The ²³⁵U FEM is a useful scale for criticality calculations that normalizes the fission probability for each fissile isotope to ²³⁵U. These FEM factors, designated as f_{35} for ²³⁵U mass factors, are discussed and listed in the Appendix A, Table 1 of ORNL Procedure NCS-1.0, *Nuclear Criticality Safety Program*.

The major fissile isotopes of concern in the ORNL waste tanks are ²³³U, ²³⁵U, and ²³⁹Pu. The fissile isotope ²⁴¹Pu is also present in the waste but the mass is usually several orders of magnitude lower and below a level that would influence the isotopic dilution ratio for plutonium. Other fissile isotopes present in the ORNL waste include isotopes of neptunium, americium, and curium, but the

actual mass present in the waste has been too low for major concern, and the low concentration would make it difficult and expensive to measure by mass spectrometry.

The data presented in this report for isotopic dilution ratios (also referred to as denature ratios) reflect both the past and current ORNL standard practices for disposal of fissile isotopes of uranium and plutonium. The administrative controls which were in effect when the waste was generated, required that the ²³³U and ²³⁵U be diluted with depleted uranium such that the following condition was true,

$$\frac{\binom{2^{38}U}{(1.35)\binom{2^{33}U}{+}\binom{2^{35}U}{2}} \ge 100 \tag{1}$$

Because thorium chemistry is more similar to plutonium than uranium chemistry, the administrative procedures required that the ²³⁹Pu be diluted with ²³²Th as follows,

$$\frac{\binom{232}{Th}}{\binom{239}{Pu}} \ge 100$$
 (2)

All calculations dealing with isotopic dilution for criticality safety are based on isotope mass ratios and must not be confused with activity ratios. For any data discussed in this report that uses ²³²Th relative to isotopic mass ratios, the total thorium concentration and the ²³²Th concentration are the same value.

The new requirements for administrative criticality control, which should be in effect by the end of this year (1996), are more conservative and require that the following conditions be satisfied for uranium,

$$\frac{\binom{2^{38}U}{-200} - 200\binom{2^{33}U}{-2^{35}U}}{\binom{2^{35}U}{-2^{35}U}} \ge 110$$
(3)

$$\frac{\binom{238}{U} - 100\binom{235}{U}}{\binom{233}{U}} \ge 200 \tag{4}$$

The new administrative controls also change requirements for plutonium by increasing the ratio of thorium to plutonium, as given in eq. 2, from a dilution ratio of 100 to a ratio of 200.

3.6 Organic Analysis

The organic sample preparation and analysis methods were based on SW-846 methods which had been adapted for radioactive samples. The performance of these methods had been demonstrated according to the Transuranic Waste Characterization Program (TWCP) Quality Assurance Program Plan (QAPP)⁹ requirements. The amounts of sample extracted and analyzed for this project were limited to ensure contamination control and good ALARA practices. There was some interference problems with the W-25 sludge sample which reduced the sensitivity of the semivolatile organic compound analysis (SVOA) by a factor of two. The sensitivities of the volatile organic compound analysis (VOA), the non-halogenated volatile organic compound analysis (NHVOA), and the polychlorinated biphenyls (PCB) analysis were not reduced for any measurements.

3.6.1 Non-halogenated Volatile Organic Analysis (NHVOA)

The NHVOA measurements were done by SW-846 Method 8015A, *Nonhalogenated Volatile Organics by Gas Chromatography*. One gram of sludge or one milliliter of supernatant was extracted by shaking with 1 mL of water. This extraction was reduced two-fold from the method used in the TWCP, but it retained the same method detection limit (MDL) because the relative proportions of sample and solvent were not changed. A volume of 0.001 mL of the extract was injected onto each of two gas chromatography columns, and the organic compounds were detected by flame ionization and quantified using the method of external standards. A surrogate standard was added to all samples and quality control samples. The latter included a laboratory blank, matrix spike (MS) and spike duplicate (MSD) samples, and a laboratory control sample (LCS).

3.6.2 Volatile Organic Analysis (VOA)

The VOA measurements were done by SW-846 Method 8260A, *Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS): Capillary Column Technique*. For sludge samples 1 g of solids was extracted by shaking with 1 mL of methanol. A 0.05 mL aliquot of the extract was added to 5 mL of water and was subjected to purge and trap gas chromatography-mass spectrometry (GC-MS). For the supernatant samples, the purge and trap GC-MS was done directly on 5 mL of each sample. Quantitation was by the method of internal standards. Surrogate standards were added to all samples and quality control samples. The latter included a laboratory blank, MS and MSD, and a LCS.

3.6.3 Semivolatile Organic Analysis

The SVOA measurements included SW-846 Method 3550A, *Ultrasonic Extraction*, for sample preparation, and SW-846 Method 8270B, *Semivolatile Organic Compounds by Gas Chromatography / Mass Spectrometry (GC/MS): Capillary Column Technique*, for sample analysis. For sludge samples, 10 g of solids were mixed with sodium sulfate until a free-flowing matrix was obtained, and the mixture was extracted with 100 mL of methylene chloride using an ultrasonic bath. For supernatant samples, 200 mL of liquid was extracted with 100 mL of methylene chloride according to SW-846 Method 3510, *Separatory Funnel Liquid-Liquid Extraction*. The methylene chloride was concentrated to 1 mL, and the extract was analyzed by GC-MS using the method of internal standards. Surrogate standards were added to all samples and quality control samples. The latter included a laboratory blank, MS and MSD, and a LCS.

3.6.4 Polychlorinated Biphenyls

The PCB measurements included SW-846 Method 3550A, *Ultrasonic Extraction* and Method 3665, *Sulfuric Acid/Permanganate Cleanup*, for sample preparation, and Method 8081, *Organochlorine Pesticides and PCBs as Aroclors by Gas Chromatography: Capillary Column Technique*, for sample analysis. A fraction of the SVOA methylene chloride extract was used for the PCB sample preparation. The extract was concentrated and solvent-exchanged into hexane, washed with sulfuric acid until the acid washes were colorless and did not contain precipitates, washed with water to remove excess acid, combined with a hexane back-extract of the acid washes, and then were

concentrated to 1 mL. Analysis was conducted on a dual capillary column GC equipped with dual electron capture detectors using the method of external standards. A surrogate standard was added to all samples and quality control samples. The latter included a laboratory blank, MS and MSD, and a LCS.

4.0 Quality Assurance

Both the inorganic and organic chemical characterization of the MVST samples followed the method requirements and Data Quality Objectives (DQO) of the TWCP QAPP. The RMAL implements the TWCP QAPP with a flow down RMAL Quality Assurance Project Plan (QAPjP)¹⁰ and implementation procedures. The list of metals determined was expanded from the TWCP requirements to meet ORNL needs. Although the organic target compounds were those listed in the TWCP QAPP, the full set of semivolatile and volatile organic compounds for the EPA Contract Laboratory Program Target Compound List (TCL) were reported as Tentatively Identified Compounds (TIC), if they were detected in the samples.

Quality assurance during the sampling activities was primarily addressed by the use of approved procedures for sampling both the liquid and sludge phase found in each waste tank. These procedures provide detailed instructions for the collection, labeling, and shipping of each sample. Chain-of-custody forms were used to track individual samples from their collection point to the analytical laboratory.

The RMAL also operates under a Radioactive Waste Characterization QA Plan¹¹ which, in conjunction with the TWCP QAPjP, defines the basis for quality assurance and quality control used for the analysis of the waste tank samples. The QA plans discuss staff qualification requirements, laboratory participation in performance demonstration programs, quality control acceptance criteria for analytical methods, sample management, and most other laboratory operations. The set of QA plans implemented for RMAL waste characterization meet both the WIPP and the Nevada Test Site (NTS) QA requirements for inorganic, organic, and radiochemical measurements.

. • • •

5.0 Summary of Inorganic and Radiochemical Analytical Results

5.1 <u>Description of Data Tables</u>

A summary of the inorganic, physical, and radiochemical analytical results are presented in Table 3 and Table 4 for the MVST supernatant samples, and the data for MVST sludge samples are presented in Table 5 and Table 6. These tables are arranged in a similar format to facilitate comparing data from different tanks and to group information into useful units. The analytical data presented in these tables are the consolidation of data from a single project which had a fixed set of analytical requirements. Any parameter reported with a dash ("-") indicates that the data was not measured for that sample.

The first section, "Physical properties and miscellaneous data", includes unrelated information that does not fit well into other table groups. The first parameters entered in a column include the RMAL request and sample numbers, which are laboratory filing codes used to track sample information. The next set of data includes information on the moisture or water content and the solids content of the sample. The group is completed with data on the inorganic and organic carbon content. For MVST waste tank samples the inorganic carbon can be assumed to be all carbonate and bicarbonate. The Total Organic Carbon (TOC) provides an upper limit on the organic content in the tank waste but does not include volatile organic compounds. Most of the liquid waste in the active system has been through an evaporator which removes the highly volatile organic compounds from the waste.

The next two sections include groups of metals; the "<u>RCRA metals</u>" are separated out for quick reference. The regulatory limit for the concentrations are listed in parentheses next to each RCRA metal. For the liquid samples the RCRA regulatory limits are used directly, since the supernatant would be defined as the TCLP leachate in the determination of waste characteristics for hazardous waste. The RCRA metal sludge data represents total metal measurements, as defined by EPA. Exceeding the RCRA regulatory limits listed for the sludge samples only indicates that the waste has the potential to be classified as hazardous. The sludge waste should only be classified as RCRA waste if the final waste form fails the TCLP leaching test.

The remaining metals are grouped under "<u>Process metals</u>", which includes the common Group IA & IIA metals along with elements that could effect chemical processing, criticality concerns, and stabilization techniques such as grouting or vitrification. For the sludge data, all the metals are reported on a "as received" (wet weight) basis.

The section "<u>Semi-quantitative metals by ICP-MS</u>" includes additional metals identified in a full mass range scan by inductively-coupled plasma - mass spectrometry. This measurement helps ensure all major elements have been identified in the waste. Each element reported is not calibrated but is based upon a response factor from a curve generated from a few elements across the mass range. Therefore, these elemental concentrations are listed as estimates only.

The "<u>Calculated Alkalinity</u>" and the "<u>Anions by ion chromatography</u>" sections are separate for the supernatant samples, but are combined for the sludge samples. For supernatant samples the pH is measured directly, and the anions are determined on the liquid samples after dilution with water. The pH and anions reported for the sludge samples are based on a water wash of the sludge, as discussed in section 3.3. Along with the inorganic anions, several water soluble organic acids are reported, which includes compounds classified as complexing agents such as citrate and oxalate.

The "<u>Beta/gamma emitters</u>" section summarizes the radionuclides that emit gamma-rays and beta particles. This section includes the gross beta activity, radionuclides identified by gamma spectrometry, and several "pure" beta emitters of interest. Many of the "pure" beta emitters (³H, ¹⁴C, and ⁹⁰Sr) require radiochemical separations prior to measurement by either liquid scintillation or gas-flow proportional counting. The ⁹⁹Tc was measured by ICP-MS without any prior chemical separation and the ¹⁵¹Sm were estimated by ICP-MS after a lanthanide group separation.

The "<u>Alpha emitters</u>" section summarize the actinide elements in the waste. These section includes the gross alpha activity, an estimate of the activity for each alpha emitter identified in a gross alpha spectrum, and plutonium isotopes determined by alpha spectrometry after a radiochemical separation. For supernatant samples, an estimate of the ²³²Th/²³⁹Pu mass ratio is included in this

section to address criticality concerns if enough thorium is present to calculate the ratio. For the sludge samples, this mass ratio is included with the plutonium mass spectrometry data.

The remaining sections include "<u>Uranium isotopes by TIMS</u>", "<u>Plutonium isotopes by TIMS</u>", and "<u>Uranium isotopes by ICP-MS</u>". These sections summarize the uranium and plutonium data measured by thermal ionization mass spectrometry and for comparison to the uranium isotopes measured by ICP-MS. Also, included in these sections are the isotopic mass dilution or "denature" ratios for uranium and plutonium based on the requirements in place when the waste was generated (see section 3.5). The plutonium section for the sludge samples also includes the activity for each plutonium isotope, which was calculated from the mass spectrometry data.

• . . • • . . . • •

Table 3Analytical Data for Liquids in Tanks W-24, W-25, and W-26

Characteristic (Analysis)	W-24 L	W-25 L	W-26 L	IDL ⁱ		
Physical properties and miscellaneous data						
Request number Sample numberTS*(mg/mL)TSS*(mg/mL)Density(g/mL)TC*(mg/L)TICd(mg/L)TOC*(mg/L)	7746C 960805-021 320 0 1.20 3630 3280 350	7746C 960805-022 360 0 1.22 2340 1730 610	7746B 960725-015 430 0 1.26 950 7.2 943	- - - 15 15 15		
RCRA Metals (±10%)						
Ag ^f (5) ^g (mg/L) As (5) (mg/L) Ba (100) (mg/L) Cd (1) (mg/L) Cr (5) (mg/L) Hg (0.2) (mg/L) Ni (5) (mg/L) Pb (5) (mg/L) Se (1) (mg/L) Tl (0.9) (mg/L)	< 0.03 0.0877 0.267 0.615 1.45 0.0763 0.526 0.335 < 0.03 < 0.03	< 0.03 0.0837 1.19 0.503 2.48 0.149 0.613 0.455 < 0.03 < 0.03	< 0.03 0.0942 2.99 0.407 1.03 0.877 4.23 0.0356 < 0.03 < 0.03	0.005 0.005 0.001 0.006 0.004 0.0002 0.009 0.005 0.005 0.005		
Process metals (±10%)						
AI (mg/L) B (mg/L) Be (mg/L) Ca (mg/L) Co (mg/L) Co (mg/L) Cu (mg/L) Cu (mg/L) Fe (mg/L) K (mg/L) Mg (mg/L) Ma (mg/L) Sb (mg/L) Si ⁱ (mg/L) Sr (mg/L) Th (mg/L)	$\begin{array}{c} 20.0 \\ 1.14 \\ 0.0284 \\ 1.60 \\ < 0.032 \\ 0.260 \\ 0.266 \\ 0.015 \\ 21500 \\ < 0.042 \\ < 0.002 \\ 70700 \\ 30.8 \\ < 0.33 \\ 205 \\ 0.675 \\ < 0.084 \end{array}$	$\begin{array}{c} 0.352\\ 1.19\\ 0.0033\\ 2.01\\ < 0.032\\ 0.225\\ 0.132\\ < 0.0067\\ 19000\\ < 0.042\\ < 0.002\\ 79800\\ 27.9\\ < 0.33\\ 222\\ 1.18\\ < 0.084\\ \end{array}$	$< 0.057 \\ 0.641 \\ < 0.002 \\ 1390 \\ 0.618 \\ 0.516 \\ 0.324 \\ 0.020 \\ 41400 \\ 243 \\ 0.0134 \\ 80200 \\ 14.4 \\ < 0.33 \\ 87.7 \\ 38.0 \\ < 0.084 $	$\begin{array}{c} 0.02\\ 0.012\\ 0.0009\\ 0.01\\ 0.007\\ 0.005\\ 0.002\\ 0.003\\ 0.08\\ 0.020\\ 0.0009\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.13\\ 0.07\\ 0.0003\\ 0.04\end{array}$		
U (mg/L) V (mg/L) Zn (mg/L)	7.10 < 0.17 11.6	3.33 < 0.17 3.67	7.77 < 0.17 0.660	0.07 0.02 0.02		

Characteristic (Analysis)		W-24 L W-25 L		W-26 L	IDL ⁱ		
Semi-quantitative metals by ICP-MS (±30-50 %)							
Bi, bismuth Ce, cerium Ga, gallium I, iodine La, lanthanum Li, lithium Mo,molybdenum Nb, niobium Rb, rubidium Sn, tin Ti, titanjum	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	0.005 0.014 0.052 18 0.005 43 2.5 0.003 1.7 0.44 0.28	0.012 0.015 0.12 22 < 0.001 43 2.7 0.003 2.0 0.26 < 0.10	$\begin{array}{c} 0.009\\ 0.019\\ 0.26\\ 22\\ 0.002\\ 51\\ 1.9\\ 0.005\\ 3.3\\ 0.036\\ 0.42\\ \end{array}$			
W, tungsten	(mg/L)	0.23	0.19	0.027	-		
Zr, zirconium	(mg/L)	0.013	0.017	0.051	-		
Calculated Alkalin	1ity 		· · ·	_ ·····			
рН	(pH)	12.3	12.6	8.44	-		
Hydroxide Carbonate Bicarbonate	(m <u>M</u>) (m <u>M</u>) (m <u>M</u>)	20 55 0	40 29 0	0.0 < 0.1 < 0.1	-		
Anions by ion chro	omatography	(±10%)	· · · ·				
Inorganic Bromide Chloride Chromate Fluoride Nitrate Nitrate Nitrate Phosphate Sulphate	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	4490 < 20 74.1 254000 4.10 1790 10.5 2060	4590 < 20 64.9 297000 4.79 2000 < 10 2130	4540 < 20 < 5.0 361000 5.82 2260 < 10 3170	0.05 0.05 0.01 0.05 0.10 0.10 0.20 0.10		
Organic Acetate Citrate Formate Oxalate Phthalate	(mg/L) (mg/L) (mg/L) (mg/L)	332 < 10 169 303 < 10	297 < 10 167 307 < 10	465 < 10 224 < 10 < 10	- - - - -		
Characteristic (Analysis)		W-24 L	W-25 L	W-26 L	IDL ⁱ		
--	----------------	----------------------	----------------------	----------------------	------------------	--	--
Beta/gamma emitters (±10%)							
Gross beta	(Bg/mL)	1.2 c+ 06	1.3 c+ 06	1.7e+06	, _		
⁶⁰ Co	(Ba/mL)	2.0e+02	1.8 c+ 02	2.2e+03	-		
%Sr/%Y	(Bg/mL)	5.8 c+ 03	1.6 e+ 03	2.5 c+ 04	-		
⁹⁹ Tc	(Ba/mL)	7.7 e+ 02	7.4 c+ 02	1.9 c+ 03	-		
1291	(Bq/mL)	2.5e -01	2.9e -01	7.8e -02	-		
134Cs	(Bg/mL)	4.0e+04	4.5 c+ 04	2.0e+04	-		
137Cs	(Bq/mL)	1 1 e+ 06	1.1 e+ 06	1.4 e+ 06	-		
152E11	(Bq/mL)	< 6.0e+02	< 5.0e+02	< 9.0e+02	-		
154 _{E11}	(Bq/mL)	< 4.0 + 02	< 4.0e+02	< 5.0e+02	-		
155 _{Eu}	(Bq/mL)	< 2.0 e+03	< 2.0e+0.3	<2.0e+03	-		
Alpha emitters (:	±10%)	r		·			
Gross alpha	(Bq/mL)	36	<1	77	-		
²⁴⁴ Cm	(Bq/mL)	-	-	-	-		
²³⁹ Pu/ ²⁴⁰ Pu	(Bq/mL)	- 1	-	-	-		
²³⁸ Pu/ ²⁴¹ Am	(Bq/mL)	-	-	-	-		
					-		
<u>Total Pu alpha</u>	(Bq/mL)	1.8	0.96	<1	-		
²³⁸ Pu	(Bq/mL)	1.1	0.59	<1	-		
²³⁹ Pu/ ²⁴⁰ Pu	(Bq/mL)	0.67	0.35	<1	-		
²⁴² Pu	(Bq/mL)	0.01	0.03	<1	-		
Uranium isotopic:	s by TIMS (±0).5%)	······				
233T T	(atom 9/)	0.11	0.11	0.14	0.01		
2341 1	(atom %)	< 0.01	< 0.01	< 0.14	0.01		
2351 1	(atom %)	0.01	0.01	< 0.01 0.26	0.01		
2367 1	(atom %)	0.29	0.55	° < 0.20	0.01		
2381 1	(atom %)	0.01	0.01	0.01	0.01		
0	(atom 76)	99.39	7 9.33	99.00	0.01		
233U/MS	(ng/mL)	7.7	3.6	10.6	-		
235U/MS	(ng/mL)	20.3	11.5	19.9	-		
²³⁸ U/ ²³⁵ U FEM	-	231	203	225	-		
U activity							
233U	(Bg/mL)	2.7	1.3	3.8	~		
234U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-		
235U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-		
²³⁶ U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-		
238U	(Bq/mL)	0.1	< 0.1	0.1	-		
(a)Total solids, (b) TSS is zero because suspended solids were removed prior to analysis, (c) Total carbon, (d) Total inorganic carbon, (e) Total organic carbon, (f) nitric-hydrochloric acid prep., (g) RCRA regulatory limits, (h) measured by ICP-MS, (i) nitric-hydrofluoric acid prep., (j) Instrument detection limits.							

. .

•

.

.

•

•

.

. .

• .

.

• •

Table 4Analytical Data for Liquids in Tanks W-27, W-28, and W-31

Characteristic (Analysis)	W-27 L	W-28 L	W-31 L	IDL ⁱ			
Physical properties and miscellaneous data							
Request numberSample numberTS*TSbTSSbDensityCcTIC4TOCc(mg/L)	7746B 960725-016 390 0 1.24 401 161 240	7746A 960711-009 580 0 1.34 811 36.3 775	7746A 960711-028 440 0 1.26 1156 407 749	- - - 15 15 15			
RCRA Metals (±10%)							
Agf (5) ^g (mg/L) As (5) (mg/L) Ba (100) (mg/L) Cd (1) (mg/L) Cr (5) (mg/L) Hg (0.2) (mg/L) Ni (5) (mg/L) Pb (5) (mg/L) Se (1) (mg/L) Tl (0.9) (mg/L)	< 0.03 < 0.03 5.21 < 0.03 2.98 0.288 0.919 0.0917 < 0.03 < 0.03		< 0.03 0.0316 1.38 0.431 7.74 2.28 0.544 0.154 < 0.03 < 0.03	0.005 0.005 0.001 0.006 0.004 0.0002 0.009 0.005 0.005 0.005			
Process metals (±10%)				· ·			
Al (mg/L) B (mg/L) Be (mg/L) Ca (mg/L) Co (mg/L) Co (mg/L) Cu (mg/L) Cu (mg/L) Fe (mg/L) K (mg/L) Mg (mg/L) Ma (mg/L) P (mg/L) Sb (mg/L) Sr (mg/L)	$ \begin{array}{c} < 0.037 \\ 0.428 \\ < 0.002 \\ 117 \\ < 0.03 \\ 0.104 \\ 0.008 \\ < 0.007 \\ 9970 \\ 0.331 \\ < 0.002 \\ 91100 \\ 12.6 \\ < 0.33 \\ 41.0 \\ 381 \\ \end{array} $	$\begin{array}{c} 2.99\\ 0.590\\ < 0.002\\ 9300\\ 0.0735\\ 0.161\\ 0.586\\ 0.175\\ 32200\\ 1760\\ 0.020\\ 117000\\ 7.23\\ < 0.33\\ 108\\ 81 3\end{array}$	$2.29 \\ 0.593 \\ < 0.002 \\ 7.20 \\ < 0.03 \\ 0.202 \\ 0.272 \\ 0.0418 \\ 16600 \\ 1.33 \\ 0.005 \\ 103000 \\ 28.9 \\ < 0.33 \\ 248 \\ 1.35 \\ 1.35 \\ 0.005 $	0.02 0.012 0.0009 0.01 0.007 0.005 0.002 0.003 0.08 0.020 0.009 0.02 0.02 0.02 0.13 0.07 0.003			
Sr (mg/L) Th (mg/L) U (mg/L) V (mg/L) Zn (mg/L)	30.1 < 0.08 0.708 < 0.17 0.220	 61.5 < 0.08 145 < 0.17 0.421 	0.200 60.8 < 0.17 0.486	0.0003 0.04 0.07 0.02 0.02			

Characteristic (Analysis)		W-27 L	W-28 L	W-31 L	IDL ⁱ			
Semi-quantitative metals by ICP-MS (±30-50 %)								
Bi, bismuth Ce, cerium Ga, gallium I, iodine La, lanthanum Li, lithium Mo,molybdenum Nb, niobium Rb, rubidium Sn, tin Ti, titanium W, tungsten Zr gisconium	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	0.009 < 0.001 0.48 9.9 0.007 34 0.95 0.011 1.4 2.2 0.40 0.031 0.045	< 0.001 0.011 0.53 7.4 0.002 120 0.79 0.003 3.1 < 0.001 0.53 0.011 0.066	$\begin{array}{c} 0.017\\ 0.022\\ 0.13\\ 17\\ < 0.001\\ 27\\ 1.3\\ 0.003\\ 2.2\\ 3.1\\ 0.069\\ 0.052\\ 0.018\end{array}$				
Calculated Alkalinity								
рН	(pH)	12.8	7.3	10.0	-			
Hydroxide Carbonate Bicarbonate	(m <u>M</u>) (m <u>M</u>) (m <u>M</u>)	63 2.7 0.0	0.0 < 0.6 < 0.6	0.1 6.8 0.0	- - -			
Anions by ion chr	omatography	(±10%)						
Inorganic Bromide Chloride Chromate Fluoride Nitrate Nitrate Nitrate Phosphate Sulphate	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	3160 < 20 < 5 340000 5.48 2070 < 10 1510	5820 < 20 < 5 506000 8.16 1430 < 10 2070	4200 56.2 17.9 391000 6.31 4430 < 10 1850	0.05 0.05 0.01 0.05 0.10 - 0.10 0.20 0.10			
Organic Acetate Citrate Formate Oxalate Phthalate	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	145 <10 119 <10 <10	596 < 10 208 10.3 < 10	350 < 10 249 165 < 10	- - - -			

Characteristic (Analysis)	,	W-27 L	W-28 L	W-31 L	IDL ⁱ			
Beta/gamma emit	Reta/gamma emitters (+10%)							
2000 galine one								
Gross beta	(Bq/mL)	4.4e+05	9.8e+05	5.4e+05	-			
⁶⁰ C0	(Bq/mL)	3.2e+02	3.7e+03	2.7e+02	-			
90SI/20Y	(Bq/mL)	9.5e+04	1.50+05	1.5e+04	-			
³⁹ Tc	(Bq/mL)	2.2e+02	4.1e+02	5.8 e+ 02	-			
129	(Bq/mL)	1.4e -02	1.9e -02	6.5e -02	-			
134Cs	(Bq/mL)	6.3e+02	2.4e+03	8.0e+03	-			
¹³⁷ Cs	(Bq/mL)	2.8e+05	5.7e+05	4.3e+05	-			
¹⁵² Eu	(Bq/mL)	< 8.0e+01	< 2.0e+02	<2.0e+02	-			
¹⁵⁴ Eu	(Bq/mL)	< 9.0c+01	< 2.0e+02	<2.0e+02	-			
¹⁵⁵ Eu	(Bq/mL)	< 5.0e+02	< 6.0e+02	< 6.0e+02	-			
Alpha emitters (:	±10%)							
Gross alpha	(Bq/mL)	4.4	140	32	-			
²⁴⁴ Cm	(Bq/mL)	-	-	-	-			
²³⁹ Pu/ ²⁴⁰ Pu	(Bq/mL)	-	-	-	-			
²³⁸ Pu/ ²⁴¹ Am	(Bq/mL)	-	-	-	-			
Total Pu alpha	(Ba/mL)	<1	<1	6.2	-			
238p11	(Ba/mL)	<1	<1	3.7	-			
239P11/240P11	(Bq/mL)	<1	<1	2.5	_			
²⁴² Pu	(Bq/mL)	<1	<1	< 0.1	-			
Uranium isotopic	s by TIMS (±).5%)						
233Y J	(atom %)	0.10	0.12	0.11	0.01			
23411	(atom %)	< 0.01	< 0.01	< 0.01	0.01			
23511	(atom %)	0.26	0.24	0.30	0.01			
23611	(atom %)	< 0.01	< 0.01	0.01	0.01			
23811	(atom %)	99.63	99.63	99.58	0.01			
	(0.00.00 / 0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
233U/MS	(ng/mL)	0.7	170	65.5	-			
235U/MS	(ng/mL)	1.8	344	180	-			
²³⁸ U/ ²³⁵ U FEM	-	256	252	226	-			
<u>U activity</u>								
233U	(Bq/mL)	0.2	.60.8	23.4	-			
²³⁴ U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-			
²³⁵ U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-			
236U	(Bq/mL)	< 0.1	< 0.1	< 0.1	-			
²³⁸ U	(Bq/mL)	< 0.1	1.8	0.8	-			
(a)Total solids, (b) inorganic carbon, ICP-MS, (i) nitric) TSS is zero be (e) Total organi -hydrofluoric ac	cause suspended solids w c carbon, (f) nitric-hydrod id prep., (j) Instrument de	ere removed prior to and chloric acid prep., (g) RO etection limits.	alysis, (c) Total carbon, (CRA regulatory limits, (h	d) Total) measured by			

· .

. . .

· · ·

.

. . .

٠

.

Table 5Analytical Data for Sludge in Tanks W-24, W-25, and W-26

Characteristic (Analysis)		W-24 S	W-25 S	W-26 S	IDL		
Physical properties and miscellaneous data							
Request number Sample number		7749C 960806-006	7749D 960822-036	7749E 960830-044			
pH		12.8	12.6	9.7	-		
Water ^a TS ^b Bulk density TC ^c TIC ^d TOC ^c	(%) (mg/g) (g/mL) (mg/Kg) (mg/Kg) (mg/Kg)	51.2 488 1.37 13700 13700 < 15	50.9 491 1.36 15700 15700 < 15	50.9 491 1.38 13500 11600 1900	- 15 15 15		
RCRA Metals (±	10%)				•		
Ag ^f (100) ^s As (100) Ba (2000) Cd (20) Cr (100) Hg (4) Ni (1000) Pb (100) Se (20) T1 (18)	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	< 1.9 < 5.3 75.5 13.9 61.6 38.0 45.2 303 < 5.3 < 5.3	<1.8 <1.3 105 11.9 92.1 73.2 56.8 442 <1.3 <1.3	< 1.9 < 1.4 63.1 19.8 74.4 12.7 42.8 212 < 1.4 < 1.4	0.005 0.005 0.001 0.006 0.004 0.0002 0.009 0.005 0.005 0.005		
Process metals (±	:10%)	I		L	I		
Al B Be Ca Co Cu Cs ^h Fe K Mg Mn Na P Sb	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	$\begin{array}{r} 3330 \\ 4.35 \\ 4.45 \\ 51200 \\ 2.42 \\ 28.5 \\ 0.900 \\ 1250 \\ 13400 \\ 9280 \\ 84.7 \\ 48800 \\ 1240 \\ < 19 \end{array}$	5810 3.76 6.91 50800 5.86 37.0 0.857 1810 8850 7650 140 52100 1850 114	1980 11.3 1.85 45900 2.69 29.0 1.53 1010 25300 14700 102 48900 1070 52.8	0.02 0.012 0.0009 0.01 0.007 0.002 0.005 0.003 0.003 0.08 0.020 0.0009 0.02 0.02 0.02 0.02 0.13		
Si ⁱ Sr Th U V Zn	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	3820 283 3270 6780 2.23 479	8890 325 9250 7660 3.85 285	2100 254 3280 19400 2.32 405	0.013 0.0003 0.04 0.07 0.02 0.02		

31

-

Characteristic (Analysis)		W-24 S	W-25 S	W-26 S	IDL ⁱ		
Semi-quantitative metals by ICP-MS (±30-50 %, * indicates data from water leach)							
Au, gold Bi, bismuth Ce, cerium Er, erbium Eu, europium Ga, gallium Gd, gadolinium Ho, holmium I, iodine La, lanthanum Li, lithium Mo,molybdenum Nb, niobium Rb, rubidium Sn, tin Ti, titanium W, tungsten	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	1.5 170 6.5 0.25 1.1 5.3 1.2 1.0 * 13 9.1 * 170 * 2.1 0.93 * 1.4 12 21 1.0	0.28 250 9.4 0.02 2.1 8.1 1.7 2.0 * 12 18 * 33 * 2.0 0.72 * 1.0 18 47 0.61	0.92 78 5.5 0.24 2.3 4.0 6.4 1.0 * 12 4.8 * 76 * 2.2 0.22 * 2.5 7.3 3.2 1.5			
Zr, zirconium (mg/Kg) 8.4 16 5.4 -							
<u>Inorganic</u> Bromide Chloride Chromate Fluoride	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	< 50 2770 < 20 103	< 50 2110 95.5 118	< 50 3070 < 20 < 50	0.05 0.05 0.01 0.05		
Nitrate Nitrite Phosphate Sulphate <u>Organic</u>	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	165000 2250 < 20 1370	162000 4967 < 20 1750	214000 1652 < 20 2120	0.10 0.10 0.20 0.10		
Acetate Citrate Formate Oxalate Phthalate	(mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)	242 < 20 175 690 < 20	318 < 20 247 521 < 20	336 < 20 243 44.2 < 20	- - - -		
Beta/gamma emit	ters (±10%)						
<u>Gross beta</u> ⁵⁹ Ni ⁶³ Ni ⁶⁰ Co ⁹⁰ Sr/ ⁹⁰ Y ⁹⁹ Tc ¹²⁹ T	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	4.6e+06 < 2.5e+01 3.3e+03 2.8e+04 1.4e+06 4.5e+02	8.3e+06 < 2.5e+01 3.4e+03 2.5e+04 3.2e+06 1.0e+02	3.5e+06 < 3.0e+01 4.0e+03 5.8e+04 7.1e+05 1.2e+03	-		
¹³⁴ Cs ¹³⁷ Cs ¹³⁷ Sm ¹⁵² Eu ¹⁵⁴ Eu ¹⁵⁵ Eu ²²⁷ Ac ²⁴¹ Pu	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	1.3e+04 5.3e+05 < 6.0e+02 8.9e+04 3.8e+04 1.0e+04 < 4.7e+03 1.4e+04	6.0e+03 4.7e+05 < 5.5e+02 7.1e+04 3.7e+04 - 8.4e+03 < 5.3e+03 2.6e+04	1.2e+04 8.9e+05 < 5.8e+02 6.4e+05 2.9e+05 6.3e+04 < 9.3e+03 1.5e+04	- - - - - - - -		

Characteristic						
(Analysis)		W-24 S	W-25 S	W-26 S	100	
Alpha emitters (±10%)						
Gross alpha	(Bq/g)	34000	83000	52000	-	
²³² Th	(Bq/g)	13	38	13	-	
233U	(Ba/g)	1600	2800	10000	-	
234	(Ba/g)	77	100	180	-	
235U	(Bq/g)	2.6	3.2	4.0	-	
238U	(Ba/g)	1.0	1.1	2.8	-	
237Np	(Ba/g)	10	10	2	-	
241Am	(Ba/g)	3900	9300	3900	-	
²⁴⁴ Cm	(Ba/g)	22000	58000	28000	-	
250Cf	(Ba/g)	< 100	< 100	< 100	-	
252Cf	(Ba/g)	< 100	< 100	< 100	-	
	(- 18)					
Total Pu alpha	(Ba/g)	6600	13000	7600	-	
235Pu	(Ba/g)	4000	7700	5300	-	
239Pu/240Pu	(Bq/g)	2600	4900	2300	-	
²⁴² Pu	(Bq/g)	-	-	-	-	
	(-10)					
TRU activity						
Pu+Am (3700)	(Bq/g)	10500	22300	11500	s	
Uranium isotopic	s by TIMS (±).5%)			· · · · · · · · · · · · · · · · · · ·	
		<u> </u>				
2330	(atom %)	0.054	0.088	0.132	0.001	
234U	(atom %)	0.003	0.006	0.003	0.001	
2350	(atom %)	0.496	0.542	0.268	0.001	
200	(atom %)	0.005	0.006	0.005	0.001	
2380	(atom %)	99.442	99.358	99.592	0.001	
23311/MS	(mg/Kg)	3 58	6 60	25.1	-	
2351 J/MS	(mg/Kg)	33 2	45.2	51.3	-	
238U/235U FEM	-	177	153	227	-	
Uranium isotopic	s by ICP-MS (±2%)			[
230	(atom %)	0.067	0.103	0.152	0.001	
2 ²⁴ U	(atom %)	0.005	0.006	0.004	0.001	
250	(atom %)	0.543	0.597	0.296	0.001	
1 ²⁰ U	(atom %)	0.006	0.006	0.006	0.001	
²⁴ U	(atom %)	99.379	99.289	99.543	0.001	
2331 J/MS	(mg/Kg)	4.45	7.72	28.9	-	
235U/MS	(mg/Kg)	36.4	45.2	56.7	-	
238U/235U FEM	-	159	137	202	-	

Characteristic (Analysis)		W-24 S	W-25 S	W-26 S	IDL			
Plutonium isotopics by TIMS (±1%)								
238Pu 239Pu 240Pu 241Pu 242Pu 242Pu 244Pu	(atom %) (atom %) (atom %) (atom %) (atom %)	0.63 87.14 10.81 0.37 1.05 < 0.01	0.72 84.95 12.42 0.40 1.51 < 0.01	1.23 82.27 15.11 0.57 0.81 < 0.01	- - - - -			
Pu activity ²³⁸ Pu ²³⁹ Pu ²⁴⁰ Pu ²⁴¹ Pu ²⁴² Pu ²⁴⁴ Pu	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	3800 1900 870 14000 1.5 < 0.1	7800 3400 1800 26000 3.8 < 0.1	5400 1300 890 15000 0.8 < 0.1	- - - -			
(²³⁹ Pu) ²³² Th/ ²³⁹ Pu	(ng/g)	960 3920	1700 6320	700 5730	-			

(a) Free water content of sludge, (b) Total solids, (c) Total carbon, (d) Total inorganic carbon, (e) Total organic carbon, (f) nitric-hydrochloric acid prep., (g) RCRA regulatory limits, (h) measured by ICP-MS or GFAA, (i) nitric-hydrofluoric acid prep., (j) Instrument detection limits.

Table 6Analytical Data for Sludge in Tanks W-27, W-28, and W-31

			T						
Charac	cteristic								
(Analy	sis)		W-27 S	W-28 S	W-31 S	IDL ⁱ			
Physic	Physical properties and miscellaneous data								
Reques	t number		7749F	7749B	7749A	_			
Sample	number		960904-248	960724-060	960717-023	-			
pН			12.3	12.3	9.9	-			
117-49		(0)							
water		(%)	54.9	47.3	51.4	-			
		(mg/g)	451	527	486	-			
	ensity	(g/mL)	1.44	1.37	1.44	-			
		(mg/Kg)	12400	12800	10200	15			
		(mg/Kg)	10000	10200	5300	15			
100		(mg/Kg)	2400	2600	4900	15			
RCRA	Metals (±	10%)							
Ag ^f	(100) ^s	(mg/Kg)	< 1.8	<18	<19	0.005			
As	(100)	(mg/Kg)	<1.4	< 5.0	< 5.0	0.005			
Ba	(2000)	(mg/Kg)	41.8	43.3	124	0.005			
Cd	(20)	(mg/Kg)	14.8	24.9	9.03	0.001			
Cr	(100)	(mg/Kg)	55.3	54.8	130	0.000			
Hg	(4)	(mg/Kg)	29.0	6 55	70 7	0.004			
Ni	(1000)	(mg/Kg)	48.9	53.6	104	0.0002			
Pb	(100)	(mg/Kg)	157	195	764	0.005			
Se	(20)	(mg/Kg)	<1.4	< 50	< 5.0	0.005			
Tl	(18)	(mg/Kg)	< 1.4	5.97	< 5.0	0.005			
Process	metals (±	10%)	<u> </u>						
		(m = [][=]	0050						
		(mg/Kg)	2250	571	12700	0.02			
D		(mg/Kg)	5.98	1.33	11.6	0.012			
		(mg/Kg)	1.10	1.30	21.0	0.0009			
Ca		(mg/Kg)	43700	45800	24100	0.01			
Cu		(mg/Kg)	2.57	3.33	4.70	0.007			
Cal		(mg/Kg)	14.2	28.0	80.2	0.002			
Fe		(mg/Kg)	025	0.480	0.543	0.005			
ĸ		(mg/Kg)	555 6070	14600	2820	0.003			
Ma		(mg/Kg)	7920	14000	0320	0.08			
Mn		(mg/Kg)	1020	14300	2170	0.020			
Na		(mg/Kg)	59200	91.0	247	0.0009			
P		(mg/Kg)	36200	00010	60600	0.02			
Sh		(mg/Kg)	27 4	907	4240	0.02			
Si		(mg/Kg)	37.4	1000	< 19	0.13			
Sr.		(mg/Kg)	3000	1080	10200	0.013			
Th		(mg/Kg)	10/	151	174	0.0003			
TT TT		(mg/Kg)	11700	1300	20700	0.04			
v		(mg/Kg)	2 21	16500	19800	0.07			
Zn		(mg/Kg)	360	1.54	/.18	0.02			
		(116/116/	500	210	120	0.02			

Characteristic		W 27 6	NV 29 S	W 21 S	TDI			
(Analysis)		<u> </u>	W-20 5	W-31 S				
Semi-quantitative metals by ICP-MS (±30-50 %, * indicates data from water leach)								
Au, gold	(mg/Kg)	0.62	1.9	2.6	-			
Bi, bismuth	(mg/Kg)	130	12	1200	-			
Ce, cerium	(mg/Kg)	7.2	7.9	20	-			
Er, erbium	(mg/Kg)	0.12	0.07	0.85	-			
Eu, europium	(mg/Kg)	0.80	1.5	0.54	-			
Ga, gallium	(mg/Kg)	4.2	3.1	12	-			
Gd, gadolinium	(mg/Kg)	1.9	6.0	0.75	-			
Ho, holmium	(mg/Kg)	1.6	0.97	0.22	-			
I, iodine	(mg/Kg)	* 6.8	* 9.1	* 20	-			
La, lanthanum	(mg/Kg)	7.3	2.0	54	-			
Li, lithium	(mg/Kg)	* 53	* 170	* 81	-			
Mo, molybdenum	(mg/Kg)	* 2.0	* 2.3	* 1.4	-			
Nb, niobium	(mg/Kg)	0.56	0.30	2.0	-			
Rb, rubidium	(mg/Kg)	* 1.2	* 1.9	* 1.3	-			
Sn, tin	(mg/Kg)	4.0	5.9	40	-			
Ti, titanium	(mg/Kg)	99	4.1	34	-			
W, tungsten	(mg/Kg)	1.3	1.4	1.3	-			
Zr, zirconium	(mg/Kg)	4.0	1.8	, 51	-			
Anions by ion chromatography in water wash of sludge (±10%)								
Inorganic								
Bromide	(mg/Kg)	< 50	< 50	< 50	· 0.05			
Chloride	(mg/Kg)	2280	3460	2570	0.05			
Chromate	(mg/Kg)	< 20	< 20	51.5	0.01			
Fluoride	(mg/Kg)	< 50	< 50	125	0.05			
Nitrate	(mg/Kg)	210000	248000	197000	0.10			
Nitrite	(mg/Kg)	2283	1120	3470	0.10			
Phosphate	(mg/Kg)	< 20	< 20	< 50	0.20			
Sulphate	(mg/Kg)	549	1773	1090	0.10			
<u>Organic</u>								
Acetate	(mg/Kg)	196	325	237	-			
Citrate	(mg/Kg)	< 20	<20	< 50	-			
Formate	(mg/Kg)	200	271	251	-			
Oxalate	(mg/Kg)	16.0	19.1	89.8	-			
Phthalate	(mg/Kg)	< 20	< 20	< 50	-			
Beta/gamma emit	ters (±10%)	•						
Gross beta	(Bq/g)	1.6e+06	3.1e+06	2.4e+07	-			
⁵⁹ Ni	(Bq/g)	< 2.0e+01	<2.5e+01	< 3.3 c+ 01	-			
⁶³ Ni	(Bq/g)	1.7e+03	3.3e+03	4.4e+03	-			
⁶⁰ Co	(Bq/g)	1.2 c+ 04	4.2 c+ 04	2.2e+04	-			
⁹⁰ Sr/ ⁹⁰ Y	(Bq/g)	4.5e+05	7.0e+05	1.1e+07	-			
⁹⁹ Tc	(Bq/g)	8.7 c+ 01	1.2e+02	1.4 c+ 02	-			
¹²⁹ I	(Bq/g)	-	4.1e - 02	4.5e - 02	-			
¹³⁴ Cs	(Bq/g)	< 8.1e+02	< 1.2e+03	2.5e+03	-			
¹³⁷ Cs	(Bq/g)	3.9e+05	3.1 c+ 05	4.3 c+ 05	-			
¹⁵¹ Sm	(Bq/g)	< 5.7 c+ 02	< 5.6e+02	< 6.0e+02	-			
¹⁵² Eu	(Bq/g)	4.1 c+ 04	8.0e+05	3.0 c+ 04	-			
¹⁵⁴ Eu	(Bq/g)	1.7 c+ 04	2.7 c+ 05	2.0e+04	-			
¹⁵⁵ Eu	(Bq/g)	<2.7 c+ 03	7.0e+04	< 3.4 c+ 03	-			
²²⁷ Ac	(Bq/g)	< 6.2e+03	< 6.7 c+ 03	< 5.8e+03	-			
²⁴¹ Pu	(Bq/g)	6.5 c+ 03	1.2e+04	2.4 c+ 04	-			

Characteristic (Analysis)		W-27 S	W-28 S	W-31 S	IDL ⁱ			
Alpha emitters (±10%)								
Gross alpha ²³² Th ²³³ U ²³⁴ U ²³⁵ U ²³⁸ U ²³⁷ Np ²⁴¹ Am ²⁴¹ Cm ²⁵⁰ Cf ²⁵² Cf	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	26000 5.2 1000 53 2.5 1.7 12 2800 17000 <100 <100	44000 5.5 5200 130 3.8 3.1 16 4600 25000 <100 <100	160000 84 5200 310 10 1.9 21 14000 110000 < 100 < 100				
<u>Total Pu alpha</u> ²³⁸ Pu ²³⁹ Pu/ ²⁴⁰ Pu ²⁴² Pu <u>TRU activity</u> Pu+Am (3700)	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	3400 2200 1200 - 6200	4400 2700 1700 - 9000	19000 13000 6200 - 33000	- - -			
Uranium isotopics	by TIMS (±0	.5%)			L <u></u>			
2 ²³³ U 2 ³⁴ U 2 ³⁵ U 2 ³⁶ U 2 ³⁸ U 2 ³³ U/MS 2 ³³ U/MS 2 ³⁵ U/MS 2 ³⁵ U/2 ³⁵ U FEM	(atom %) (atom %) (atom %) (atom %) (atom %) (mg/Kg) -	0.022 0.002 0.309 0.005 99.662 2.52 35.7 298	0.066 0.003 0.253 0.007 99.671 12.0 46.2 296	0.056 0.004 0.621 0.002 99.316 10.9 121 145	0.01 0.01 0.01 0.01 0.01 - -			
Uranium isotopics	by ICP-MS (±2%)						
233U 234U 235U 236U 238U 233U/MS	(atom %) (atom %) (atom %) (atom %) (mg/Kg)	0.025 0.002 0.308 0.006 99.660 2.86	0.081 0.003 0.296 0.007 99.613 14.7	0.075 0.007 0.750 0.004 99.165 14.5	0.01 0.01 0.01 0.01 0.01			
²³⁵ U/MS ²³⁸ U/ ²³⁵ U FEM	(mg/Kg) -	35.6 296	54.1 249	150 118	-			

· •

Characteristic (Analysis)		W-27 S	W-28 S	W-31 S	IDL ⁱ			
Plutonium isotopics by TIMS (±1%)								
238Pu 239Pu 240Pu 241Pu 242Pu 242Pu 244Pu	(atom %) (atom %) (atom %) (atom %) (atom %)	1.08 84.88 12.64 0.49 0.91 < 0.01	< 1.06 81.54 15.93 0.70 0.76 0.01	< 1.16 81.94 14.55 0.34 1.9 0.11				
<u>Pu activity</u> ²³⁸ Pu ²³⁹ Pu ²⁴⁰ Pu ²⁴¹ Pu ²⁴² Pu ²⁴⁴ Pu	(Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g) (Bq/g)	2400 670 370 6500 0.5 < 0.1	3000 830 600 12000 0.5 < 0.1	13000 3400 · 2200 24000 5.1 < 0.1	- - - - -			
(²³⁹ Pu) ²³² Th/ ²³⁹ Pu	(ng/g)	350 4390	440 3750	1820 13800	-			

(a) Free water content of sludge, (b) Total solids, (c) Total carbon, (d) Total inorganic carbon, (e) Total organic carbon, (f) nitric-hydrochloric acid prep., (g) RCRA regulatory limits, (h) measured by ICP-MS or GFAA, (i) nitric-hydrofluoric acid prep., (j) Instrument detection limits.

5.2 Discussion of MVST Supernatant Characteristics

The analytical data for the MVST supernatant samples are presented in Tables 3 and 4. This data is based on samples that were first clarified by centrifugation and then stabilized with nitric acid. Extra care was taken to remove suspended particles from the liquid samples because the particulate material was an artifact of the sampling technique and could bias the liquid phase data. If the pH is above 12, most compounds of thorium, uranium and other actinide elements in the ORNL waste tanks form an insoluble precipitate. This chemical behavior is apparent with the supernatant data when the pH is compared to the uranium concentration and the alpha activity. For example, with tanks W-28 at pH=7.3 and W-31 at pH=10, the uranium increases to 145 mg/L and 60.8 mg/L, respectively. With tanks W-24, W-25, and W-27, where the pH>12, the uranium concentration is less than 10 mg/L. If higher levels of uranium are observed at pH>12, it usually indicates that there are suspended particles of insoluble uranium present.

The Group IA elements, sodium and potassium, are very soluble in the supernatant at any pH. In general, the concentration of Group IIA metals, calcium and strontium, increases in the supernatant as the pH decreases. These Group IIA metals remain somewhat soluble in the liquid phase, even at high pH, unless the supernatant has absorbed some carbon dioxide from the air, which forms insoluble carbonate compounds with both calcium and strontium. The general distribution of radioactivity in the MVST tanks is a function of the pH, where at higher pH the ¹³⁷Cs dominates the beta activity in the liquid phase and the ⁹⁰Sr/⁹⁰Y is the predominate source of the beta activity in the sludge phase. At high pH, the actinide elements are mostly insoluble which corresponds to most of the alpha activity being concentrated in the sludge phase.

As expected, the concentration of silicon compounds increases in the supernatant as the pH increases. Many of the other common metals found in the waste, such as iron and magnesium, are less soluble as the pH increases. In general, as the pH decreases, the total dissolved solids in the supernatant increases. Figure 1 and Fig. 2, illustrate the distribution of major cations and anions in the MVST liquid samples. Figure 2 is similar to Fig. 1, but with the sodium and nitrate removed to show more detail for species present at lower concentrations.

Figure 2Distribution of Selected Ionic Species in Liquid Phase

The sludge layers in the ORNL waste tanks are typically high in several RCRA metals, including chromium, mercury, and lead. At high pH these RCRA metals are below the hazard limits in the supernatant, but as the pH decreases the concentration of these RCRA metals can increase to the point where the regulatory limits are exceeded in the liquid phase.

A good check for data completeness is the mass and charge balance, which are summarized in Table 7 for the MVST supernatant samples. The mass balance check is based on the summation of cation and anion concentrations divided by the total solids concentration. The total solids concentration is measured directly by weighing a known volume of sample that has been dried to a constant weight. The mass balance data shows a high bias of 12-20% for the MVST supernatant samples. The charge balance checks are less accurate than the mass balance check because one must make an assumption about the chemical form and oxidation state for each species present in solution. The charge balance data is based on the summation of the molar cation charge divided by the summation of the molar anion charge. The charge balance data shows fair agreement but with a positive bias ranging from 22-34% for the MVST liquid samples. The charge balance data is acceptable considering the assumptions required for the calculation. The loss of nitrate as volatile oxides of nitrogen is one possible explanation for the high bias observed for both the total solids and the charge balance. For both the mass and charge balance checks on the supernatant samples, the calculations were dominated by the sodium, potassium, and nitrate concentration.

Tank	Mass Balance (TS _{calc} /TS _{meas})	Charge Balance (M ⁺ /A ⁻)	рН	¹³⁴ Cs+ ¹³⁷ Cs (%)	⁹⁰ Sr/ ⁹⁰ Y (%)	Beta Recovery (%)
W-24	1.12	1.22	12.3	99.06	0.87	111
W-25	1.13	1.28	12.6	99.69	0.24	103
W-26	1.15	1.31	8.4	96.83	2.93	101
W-27	1.15	1.34	12.8	63.21	36.68	118
W-28	1.17	1.29	7.3	68.70	30.87	99
W-31	1.19	1.34	10.0	92.79	5.55	100

 Table 7
 Summary of Quality Checks for MVST Supernatant Data

The beta recovery listed in Table 7 is based on the summation of the activity for the known beta emitters divided by the gross beta activity. Considering the typical analytical errors associated which radiochemical measurements, the beta recoveries listed in Table 7 are excellent. The gross beta data reported is based on a total activity measurement by liquid scintillation counting which includes contributions from the conversion and Auger electrons. To determine the beta recovery, the total activity measurement minus the alpha activity is the gross beta value that is compared to the summation of the individual radionuclides identified. Also, one must take into account the large effect that analytical error for the radioactive strontium activity can have on the value of the beta recovery. Since the ⁹⁰Sr is in secular equilibrium with the ⁹⁰Y, any error on the ⁹⁰Sr activity would be doubled when calculating the beta recovery.

Another point of interest in Table 7 is that the distribution of ¹³⁷Cs is independent of pH, and that the ⁹⁰Sr activity is a function of both pH and carbonate concentration. At the most basic pH observed, almost all of the ⁹⁰Sr is precipitated into the sludge. As the basic environment becomes more acidic, the ⁹⁰Sr activity slowly increases in the supernatant. There was a significant jump in the relative ⁹⁰Sr activity observed in the supernatant when the pH dropped below pH=9.

Tank W-27 appears to be an exception to this behavior, however, the elevated levels of radioactive strontium observed in the highly basic environment was due to the recent history with the tank chemistry. Tank W-27 had a pH in the same range as tank W-28 (pH=7.3) until one month prior to the sample being collected. Sodium hydroxide was added to tank W-27 until the pH was greater than pH=12 and the supernatant was allowed to set undisturbed until the samples were taken for this project. The solubility of the strontium is dependent upon the concentration of carbonate, which was very low prior to the addition of the sodium hydroxide. There was insufficient time for the basic liquid to absorb carbon dioxide from the air and increase the carbonate concentration to a level that would precipitate the strontium (the calcium is also higher than expected at the high pH for the same reason).

Under conditions where the pH was high and the carbonate concentration was low, it is possible for the ⁹⁰Sr to remain soluble and the ⁹⁰Y to precipitate as the hydroxide and disrupt the secular

equilibrium. It is important to understand any conditions that could disrupt this equilibrium because some radiochemical screening techniques and the interpretation of beta dose assume that the ⁹⁰Y activity is equal to the ⁹⁰Sr activity. The separation of the strontium from the yttrium is frequently observed with ⁹⁰Sr contaminated water moving through soil. The soluble ⁹⁰Sr moves with the water and the ⁹⁰Y is absorbed to the soil by an ion exchange process. Past practices used clay based materials as a mobilizing agent for pumping sludge. Therefore, the sludge may have an ion exchange affinity for yttrium or other radionuclides, which could interfere with the expected behavior for some radionuclides or other chemical species.

In general, the beta/gamma emitters found in the supernatant represent what would be expected for fission product waste that had been aged for several years. The relative distribution of the beta activity in the MVST supernatant is summarized in Table 8. The distribution of the activity in these MVST supernatant samples is typical of ORNL liquid waste. The ORNL liquid waste is normally stored at a caustic pH and the radioactive cesium dominates the activity. The pH in tank W-28 is lower than normal and there is a corresponding increase in the strontium and uranium in the liquid phase.

7 7. 1.	рН	Pe	T T •			
Тапк		⁹⁰ Sr/ ⁹⁰ Y (%)	⁹⁹ Tc (%)	¹³⁴ Cs (%)	¹³⁷ Cs (%)	(mg/L)
W-24	12.3	0.87	0.06	3.04	96.02	7.1
W-25	12.6	0.24	0.06	3.43	96.26	3.3
W-26	8.4	2.93	0.11	1.19	95.64	7.8
W-27	12.8	36.68ª	0.04	0.12	63.09	0.71
W-28	7.3	30.87	0.04	0.25	68.45	150
W-31	10.0	5.55	0.11	<u> </u>	92.79	61

Table 8	Distribution	of Beta Activity	in Supernatant

^a See previous discussion on tank W-27 concerning high strontium activity.

The alpha activity in the supernatant is low, as would be expected with a caustic pH. The small amount of alpha activity that is observed in the liquid phase can not be accounted for with the uranium present, however, the mass of the uranium present is much higher than the other actinide elements. Below pH = 12, the uranium forms a complex with the carbonate present and becomes more soluble as the pH decreases. As can be seen in Table 8, at the higher pH the uranium concentration is generally below 10 mg/L, but in tank W-28 where the pH drops to 7.3, the uranium concentration increases significantly.

The alpha content in the MVST supernatant is usually very low at higher pH, but can increase if the pH is allowed to decrease too low. The alpha activity for the supernatant samples varies from <1 to 140 Bq/mL. Based on past experience, the alpha activity is likely due to suspended particles which are usually dominated by the ²⁴⁴Cm alpha activity present. The uranium contribution to the total alpha activity is typically minor relative to the ²⁴⁴Cm activity present in ORNL waste.

5.3 Discussion of MVST Sludge Characteristics

Determination of the mass and charge balance for the sludge samples are more difficult than for the supernatant samples. Not only are there assumptions required about the chemical form and the oxidation state of the species present in the sludge, but many of the compounds in the sludge are mixed oxides which are not directly measured. Also, the sludge is actually a slurry with a high water content. The interstitial liquid is in close contact with the sludge, and there are many ionic solubility equilibriums. The anion data for the sludge samples are based on the water soluble anions that would be available to a water wash. The water wash would not account for the insoluble hydroxides, carbonates, and mixed oxides present. The insoluble species do not contribute to the charge balance, and the cation charge is not used in the calculation, as indicated in Table 9. Most of the nitrate reported for the sludge is due to the interstitial liquid. Considering these limitations, the compounds listed in Table 9 were used to estimate the mass and charge balance.

Cation	Chemical Form	Cation Charge Used	Gravimetric Factors
Al ³⁺	Al ₂ O ₃	0	1.890
Ca ²⁺	CaCO ₃	0	2.497
Fe ³⁺	Fe ₂ O ₃	0	1.430
K⁺	K*NO3-	+1	2.586
Mg ²⁺	Mg(OH) ₂	0	2.399
Mn ²⁺	Mn(OH) ₂	0	1.619
Na⁺	Na ⁺ NO ₃ -	+1	3.697
Th⁴⁺	Th(OH) ₄	0	1.293
UO2 ²⁺	UO ₂ ((OH) ₂ -H ₂ O	0	1.353

Table 9Assumption Used for Major Compounds in MVST Sludge

Table 10 summarizes the mass and charge balance for the MVST tank sludge samples. Considering the limitations of these calculations, the mass balance is within the analytical error ($\pm 20\%$) for these sludge samples. The charge balance is more influenced by the chemical form assumptions, and the results have a larger corresponding error range.

					<u></u>	
Tank	Mass Balance (TS _{calc} /TS _{meas})	Charge Balance (M ⁺ /A ⁻)	рН	¹³⁴ Cs+ ¹³⁷ Cs (%)	⁹⁰ Sr/ ⁹⁰ Y (%)	Beta Recovery (%)
W-24	0.831	0.752	12.8	17.4	77.3	79.4
W-25	0.879	0.745	12.6	7.8	89.6	87.0
W-26	0.908	0.693	9.7	29.3	39.6	104.0
W-27	0.889	0.705	12.3	31.7	62.7	91.2
W-28	0.857	0.673	12.3	12.2	47.3	96.8
W-31	0.928	0.807	9.9	2.2	97.2	94.9

 Table 10
 Summary of Quality Checks for MVST Sludge Data

The beta recovery results are listed in Table 10, and most of the discussion for the supernatant samples also applies to the sludge samples. As discussed before, the variability for the beta recovery is probably due to the analytical error on the ⁹⁰Sr measurement. Any measurement error for the ⁹⁰Sr activity would be doubled when considering the beta recovery calculation.

The distribution, by weight percent, of the major compounds from Table 9 are illustrated in Fig. 3 for each MVST sludge sample. The distribution of the total uranium and thorium concentration for each MVST sludge sample are shown in Fig. 4.

Figure 3 Distribution of Major Compounds in MVST Sludge

The distribution of the beta emitters found in the MVST sludge samples are summarized in Table 11. The distributions of the beta activity are shown to be dependent upon the radionuclides present, which is a function of the age of the radioactive waste, and the pH of the supernatant found over the sludge. Under the typical basic conditions for ORNL waste tanks, the major difference in the beta distribution between the supernatant and the sludge is that the distribution of the longer lived fission products (⁹⁰Sr and ¹³⁷Cs) are reversed due to the differences in solubility. The Group IA metals (¹³⁴Cs and ¹³⁷Cs) and the radionuclides that form anionic species (⁹⁹TcO₄⁻, ¹²⁹I⁻, and ¹²⁹IO₃⁻) are more soluble in the supernatant. The solubility of the Group IIA metals (⁹⁰Sr) in the supernatant are a function of both pH and carbonate concentration. At high pH most of the other metals, lanthanides, and actinide elements form insoluble hydroxides and mixed oxides, which are found in the sludge. The ⁹⁹Tc activity is higher in the supernatant than the sludge. The source of most of the ⁹⁹Tc found in the sludge samples was the interstitial liquid, and not insoluble forms of technetium. The shorter lived radionuclides observed include the europium (¹⁵²Eu, ¹⁵⁴Eu, and ¹⁵⁵Eu) isotopes and to some extent ¹³⁴Cs.

		Percent of Total Beta Activity					
Tank	рн	⁹⁰ Sr/ ⁹⁰ Y (%)	¹³⁴ Cs+ ¹³⁷ Cs (%)	⁶⁰ Co (%)	⁹⁹ Tc (%)	^{152,154,155} Eu (%)	²⁴¹ Pu (%)
W-24	12.8	77.3	17.4	0.8	< 0.1	3.9	0.4
W-25	12.6	89.6	7.8	0.4	< 0.1	1.7	0.4
W-26	9.7	39.6	29.3	1.6	< 0.1	28.8	0.4
W-27	12.3	62.7	31.7	0.8	< 0.1	3.9	0.5
W-28	12.3	47.3	12.2	1.4	< 0.1	38.3	0.4
W-31	9.9	97.2	2.2	0.1	< 0.1	0.2	0.1

Table 11Distribution of Beta Activity in MVST Sludge

	W-24	W-25	W-26	W-27	W-28	W-31
Actinide	(% α)					
²³² Th	0.04	0.05	0.03	0.02	0.01	0.06
233U	4.68	3.36	20.12	4.11	13.20	3.51
²³⁴ U	0.23	0.12	0.36	0.22	0.33	0.21
235U	< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01
238U	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
²³⁷ Np	0.03	0.01	< 0.01	0.05	0.04	0.01
²³⁸ Pu	11.12	9.37	10.87	9.87	7.62	8.77
²³⁹ Pu	5.56	4.08	2.62	2.76	2.11	2.29
²⁴⁰ Pu	2.55	2.16	1.79	1.52	1.52	1.48
²⁴¹ Am ^a	11.41	11.17	7.85	11.52	11.68	9.45
244Cm	64.38	69.67	56.35	69.92	63.47	74.21
Gross α (Bq/g)	34000	83000	52000	26000	44000	160000

 Table 12
 Summary of Actinide Elements in MVST Sludge

^a The ²⁴¹Am data is based on subtracting the ²³⁸Pu by TIMS from the alpha peak measured at 5.15 MeV (238 Pu + 241 Am) in the alpha spectrum.

The distribution of the alpha activity is summarized in Table 12, which includes the percent alpha for each MVST sludge sample. In general, the alpha activity in the MVST system is strongly weighted by the ²⁴⁴Cm, which has a high specific activity. The list of actinides in Table 12 required several radiochemical and inorganic analytical measurements to generate the best estimates for each of the alpha activities. The ²³²Th activity is calculated from the total thorium measured by ICP-AES. The other thorium isotopes (²²⁸Th, ²²⁹Th, and ²³⁰Th) are present in the ORNL sludge waste at such low mass, their presence would not effect the ICP-AES measurement. The uranium isotopes are measured by TIMS. The atom % results are converted to weight %, which is used to calculate the concentration of each uranium isotope from the total uranium results obtained by ICP-AES. The activity for each uranium radionuclide is then calculated from the specific activity for each isotope. The plutonium isotopes are first measured by TIMS, and the total plutonium alpha activity, measured after a chemical separation, is used to calculate the activity for each isotope. The ²⁴⁴Cm was measured directly by alpha spectrometry without any chemical separation. The ²⁴¹Am activity is

determined by subtracting the ²³⁸Pu activity from the sum of the ²³⁸Pu + ²⁴¹Am measured by alpha spectrometry. Both ²³⁸Pu and ²⁴¹Am have an alpha energy of about 5.50 MeV and can not be resolved by alpha spectrometry. There was no chemical separation of the plutonium and americium for this project because of cost concerns.

5.4 RCRA Characteristics for the MVST System

The RCRA regulatory limits are listed in Table 13, which also includes the limits for the EPA Toxicity Characteristic Leaching Protocol (TCLP) extract and the functional total metal limits for a solid or sludge waste. The total metal limits are a factor of twenty times higher than the TCLP extraction limits and are based on the 1:20 dilution used for the TCLP extraction procedure.

Metals		TCLP Extract and Liquids (mg/L)	Solid/Sludge Total Metal (mg/Kg)
Silver	(Ag)	5	100
Arsenic	(As)	5	100
Barium	(Ba)	100	2000
Cadmium	(Cd)	1	20
Chromium	(Cr)	5	100
Mercury	(Hg)	0.2	4
Nickel	(Ni)	50	1000
Lead	(Pb)	5	100
Selenium	(Se)	1	20
Thallium	(Tl)	0.9	18

 Table 13
 Summary of RCRA Regulatory Limits

If the RCRA metal concentrations are found to be below the total metal limits, the solid waste can not fail the TCLP leach test. If the RCRA metal concentrations exceed the total metal limits, the TCLP leach test must be done to determine if the solid waste is hazardous. For solid samples, the

TCLP leach test is only valid for the final waste form ready for disposal. The total metal concentration data can be used as acceptable process knowledge if the final waste form only results in a dilution of the RCRA metal concentrations. Examples of waste forms that result in a dilution of a solid waste includes grouting (2 fold dilution) and vitrification (3 fold dilution). If the total metal limit is exceeded after stabilizing the waste, the TCLP leach test would be required for only the metals that had the potential to exceed the regulatory limits.

Several of the supernatant samples from the MVST tanks exceed the RCRA regulatory limits. Waste tanks W-26, W-27, W-28, and W-31 slightly exceed the limit for mercury. Waste tanks W-24, W-25, W-26, and W-31 come close to exceeding the limits for cadmium and could be considered over the limit depending on the confidence limits used. The current technology used for long term storage of the liquid waste is a solidification process that results in a final waste form that passes the TCLP leach test. The nickel and thallium are proposed RCRA metals and are included in the data for future waste management decisions.

All of the MVST tank sludge samples exceed the total metal limits for lead and mercury, and two tanks are over or near the limit for chromium. Most of the ORNL radioactive waste sludge samples, characterized to date, have exceeded the total metal limits for these three RCRA metals. Based on past experience, it is expected that solidification of the ORNL MVST sludge would fix these RCRA metals such that the final waste form would pass the TCLP leach test.

5.5 TRU Classifications for LLLW System

The DOE definition for Transuranic (TRU) Waste includes the following conditions,

- TRU activity \geq 3700 Bq/g (100 nCi/g),
- TRU isotopes must be alpha emitting actinide with Z > 92 (uranium),
- TRU isotopes must have a half life ≥ 20 years.

This definition excludes all thorium and uranium isotopes. The short lived actinide ²⁴⁴Cm ($t_{1/2} = 18.1$ years), which is common to ORNL waste, falls outside the TRU definition. Also, the plutonium isotope, ²⁴¹Pu, would be excluded from calculation of the TRU activity because it is a pure beta

emitter. The primary actinide elements common to ORNL waste, that are present at sufficient levels to meet the TRU definition, include ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Am. There is some current work at the Radiochemical Engineering Development Center (Mark-42 fuel assembly processing) that could generate enough ²⁴³Am to make a significant contribution to TRU alpha content of the waste. The remaining actinide elements present in ORNL waste are generally not available at high enough activity, and/or do not have a long enough half-life to meet the TRU definition.

None of the MVST supernatant samples discussed in this report had enough alpha activity to be considered as TRU waste. All of the MVST sludge that has been characterized to date has been classified as TRU waste based on only the plutonium and americium activity. The alpha activity reported is based on wet weight, if adjusted for dry weight the activity would almost double. The MVST sludge samples contained enough plutonium and americium activity to easily satisfy the WIPP waste acceptance criteria¹² for transuranic waste. Based on the TRU activity, any dilution of the sludge that would result from a solidification process such as grouting or vitrification would most likely not effect the TRU classification.

5.6 Distribution of Fissile Material in LLLW System

As discussed in section 3.5, the ORNL LLLW waste acceptance criteria (WAC) requires the fissile isotopes of uranium and plutonium to be diluted with ²³⁸U and ²³²Th, respectively. Table 14 summarizes the dilution or "denature" ratios for the MVST supernatant samples. All the dilution ratios for the MVST liquid phase exceed the required dilution factors. Only one of the supernatant samples, W-31, had enough thorium and plutonium to allow estimates for the plutonium dilution ratios. A summary of the dilution ratios for fissile material in the sludge samples is provided in Table 15. All the dilution ratios for the MVST sludge samples exceed the required dilution factors for the fissile isotopes of uranium and plutonium. All the dilution ratios listed in Table 14 and 15 are based on equations discussed in section 3.5 of this report.

Tank	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	²³⁸ U/ ²³⁵ U (eq. 3)	²³⁸ U/ ²³³ U (eq. 4)	²³² Th/ ²³⁹ Pu (eq. 2)	pH
W-24	231	273	632	na ^a	12.3
W-25	203	226	571	na	12.6
W-26	225	281	521	na	8.4
W-27	256	312	729	na	12.8
W-28	252	321	626	na	7.3
W-31	226	263	622	184	10.0

 Table 14
 Summary of Denature Ratios for MVST Supernatant

^a Concentration of thorium and plutonium to low to calculate ratio.

Table 15 Summary of Denature Ratios for MVS	Sludae
---	--------

Tank	$\begin{array}{c} {}^{238}\mathrm{U}/{}^{235}\mathrm{U}f_{35}\\ (\mathrm{eq.}\ 1) \end{array}$	²³⁸ U/ ²³⁵ U (eq. 3)	²³⁸ U/ ²³³ U (eq. 4)	²³² Th/ ²³⁹ Pu (eq. 2)	pН
W-24	177	181	862	. 3920	12.8
W-25	153	153	470	6320	12.6
W-26	227	279	545	5730	9.7
W-27	298	313	3070	4390	12.3
W-28	296	347	1120	3750	12.3
W-31	145	144	581	- 13900	9.9

The dilution ratios listed in Tables 14 and 15 are base on the ratio of weight %, not the ratio of atom % given in the data tables. There is a small difference between atom %, reported for the uranium and plutonium, and weight %, which is needed for many calculations performed with the analytical data. To convert from atom % to weight %, we used the following equation,

$$W_i = \frac{a_i M_i}{\sum_{i}^{n} a_i M_i} X \ 100\%$$

where, W_i = weight %, M_i = nuclidic mass a_i = atom %.

An example of this calculation is provided in Table 16, which shows there is not much difference between the atom % and the weight %.

Isotope	Nuclidic mass (g/mol)	atom %	(a _i M _i)	weight %
²³³ U	233.039629	0.056	13.0502	0.0548
²³⁴ U	234.040947	0.004	0.9362	0.0039
235U	235.043924	0.621	145.9623	0.6132
²³⁶ U	236.045563	0.002	0.4721	0.0020
238U	238.050785	99.316	23642.2518	99.3260
Total		99.999	23802.6726	99.9999

Table 16Example of Converting Atom % to Weight % for W-31 Sludge

The distribution of plutonium isotopes by alpha activity are illustrated in Fig. 5 for each of the MVST samples. For comparison, Fig. 6 shows the distribution of the plutonium isotopes by concentration for each of the MVST sludge samples. One should note that the ²³⁸Pu dominates the alpha activity and the ²³⁹Pu is the major isotope by weight or concentration.

Figure 5 Distribution of Plutonium by Alpha Activity in MVST Sludge

Figure 6 Distribution of Plutonium by Concentration in MVST Sludge

5.7 Discussion of the Total Anion Content in the Sludge

As discussed in section 3.3, there were three sample preparation methods used to investigate the total anion content of the sludge samples, which included (1) water leach, (2) oxygen bomb combustion, and (3) sodium peroxide/sodium hydroxide fusion. A summary and comparison of these sludge preparation methods are given in Table 17.

Anion	Method	(mg/Kg)						
		W-24	W-25	W-26	W-27	W-28	W-31	
Bromide	Water Leach ¹	<47	< 49	< 50	<48	< 48	< 45	
	Bomb	213	158	322	117	133	118	
	Fusion	320	236	420	290	287	240	
Chloride	Water Leach	2770	2110	3070	2280	3460	2570	
	Bomb	2740	2170	2800	1850	3210	2150	
	Fusion	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	
Fluoride	Water Leach	103	118	< 50	< 48	< 48	125	
	Bomb	41	71	81	44	64	218	
	Fusion	nd ²	nd ²	nd ²	nd ²	nd ²	nd ²	
Nitrate	Water Leach	165000	162000	214000	210000	248000	197000	
	Bomb	111000	101000	148000	120000	167000	119000	
	Fusion	90400	71800	113000	143000	204000	157000	
Nitrite	Water Leach	2250	4970	1650	2280	1120	3470	
	Bomb	7310	8090	5820	6090	8090	6190	
	Fusion	32400	39000	38000	38400	11600	10300	
Phosphate	Water Leach Bomb Fusion ICP-AES ICP-MS	< 19 114 277 3800 -	<20 <51 340 5670 4350	<20 89 211 3280	< 19 < 36 < 190 3070 -	< 19 117 < 190 2780	< 45 253 1540 13000 9430	
Sulfate	Water Leach Bomb Fusion ICP-MS	1370 1520 2540 -	1750 2070 2950 29300	2120 2460 4600 -	549 752 4270	1770 1810 3260	1090 1030 1650 9500	

Table 17	Summary	of Total	Anion Data	for MVST	Sludge

¹ Unable to resolve bromide peak from nitrate on ion chromatography column used for this sample. ² Unable to quantify by ion chromatography due to interference from fusion matrix.

5.7.1 Nitrate/Nitrite

It is difficult to compare the yield for these two anions between the three preparation methods. The majority of the compounds present in the MVST waste system that contain nitrate and nitrite readily dissolve in water and are accounted for in the water leaches. This can be argued by looking at the

cation/anion charge balance calculations for the sludge analysis. These calculations show acceptable agreement between the anionic species and the cationic species (which are accurately determined by conventional methods) present in the sludges. The majority of the anion contribution is by far due to the nitrate ion with the other anions contributing just a fraction of the total negative molar charge. Based on this calculated charge balance it is believed that the majority of the nitrates are accounted for in the water leaches. When the sludge is prepared using either the bomb or fusion method the sample is subject to an oxidizing environment which will not only change the nitrate/nitrite ratio in the sample but will also oxidize any nitrogen present in the sample to nitrate or nitrite. The ratio of the nitrate/nitrite measured after the bomb or fusion methods does not represent the ratio in the original sample. The mole percent of nitrite relative to the sum of the nitrate and nitrite ranged from 0.6 % to 4 % in the water leach samples and represents the nitrite content of the samples as recieved. The mole percent of nitrite observed after the bomb combustion ranged from 5 % to 9.7 %, and after the fusion preparation ranged from 7.1 % to 42 %. The change in the mole percent of nitrite is a function of the oxidizing environment from each preparation method.

5.7.2 Halides (fluoride, chloride, bromide)

The data in Table 17 shows that there is no benefit for using a bomb combustion over a water leach of the MVST sludges for fluoride and chloride. For the bromide results the water leach was analyzed using a Dionex AS4A ion exchange column while the bomb combustion and fusion results were analyzed using a new Dionex AS14 ion exchange column. The older AS4A column separation of the bromide and nitrate peaks is not as good as the AS14 and due to the high levels of nitrate present in the sludges the bromide peak could not be resolved from the nitrate peak using the AS4A column. Therefore, a comparison could not be made between the water leaches and the other methods for bromide. It does appear that the fusion method yields slightly higher bromide values than the bomb.

Due to the extremely high levels of sodium in the sample matrix after the fusion it was impossible to determine fluoride or chloride concentrations using ion chromatography. The matrix caused large interfering peaks to elute off of the column at the beginning of the analysis run where fluoride is detected; then a large negative dip occurred in the chromatogram where chloride is eluted. It may

be possible to measure fluoride and chloride in the fusion matrix after using a clean-up procedure prior to analysis. Possible solutions are being investigated.

5.7.3 Phosphate

It is believed that a large fraction of the phosphate in the MVST sludge is present as tributyl phosphate and degradation products dibutyl- and monobutyl phosphate. The tributyl phosphate has low solubility in water and would not be seen in the water leach. This is illustrated in the table showing phosphate values below the detection limit of the instrument. When the sludges were prepared using the Parr bomb some phosphate was detected but still at low levels. The explanation for this could be due to poor combustion of the sludge. In order to obtain an adequate combustion 5000 calories of heat must be produced in the bomb. Since the MVST sludges are not comprised of combustible material all of the heat must be generated by the combustion aid (mineral oil). Using the heat of combustion for mineral oil, 0.5 mL was determined to be able to produce greater than 5000 calories and therefore provide for an adequate combustion. After a material undergoes complete combustion it should have an ash like appearance. By visual observation after the sludge was combusted it appears to be just dried out sludge with a crusty appearance. Based on this and the fact that only low levels of phosphates were detected it is felt that the bomb is a poor choice for preparation of the sludge for anion determination. A good sample for bomb combustion would have some combustibility with the combustion aid acting as a catalyst to start the reaction. The MVST sludges have no combustible properties.

When phosphate was determined using the fusion method slightly higher values were obtain. However, four matrix spiked samples were analyzed with the fusion batches and all spike recoveries were zero percent. This indicates that phosphate is lost during the fusion preparation and therefore the method used as is, is not adequate for the analysis of phosphate in the sludges.

Also shown in the Table 17 are the phosphate results by ICP-AES for each MVST sludge sample and two results by ICP-MS for W-25 and W-31. These phosphate values are calculated results based on the analysis of total phosphorus by the ICP methods after a closed vessel microwave acid digestion of the sludge. The ICP-AES values are currently considered to be the best results for the

total phosphorus in the sludge. The ICP-MS measurements are estimates done to confirm the high levels of phosphorus observed in the MVST sample. The water leach, bomb combustion, and fusion methods all yielded phosphate results much lower than the ICP measurements after an acid digestion.

5.7.4 Sulfate

The analysis of sulfate between the water leaches and the bomb combustion show good agreement but there may be sulfate compounds present in the sludge that are not water soluble and would not be accounted for using the bomb procedure due to the problems discussed earlier. The fusion results show an appreciable increase in the measured sulfate concentration. But one needs to keep in mind that this is a total sulfur determination and the sulfate measured does not necessarily have to come from a sulfate compounds. Similar to the phosphate, sulfate is lost during the fusion preparation phase. Four matrix spikes analyzed with the fusion batch averaged out to only a thirty percent spike recovery. Two cursory measurements for sulfur by ICP-MS on the W-25 and W-31 sludge samples produced much higher sulfate equivalent values than the other sample preparation methods. The ICP-MS technique for sulfur needs additional investigation to ensure molecular mass interference problems are properly accounted for with the sludge samples. This investigation would have been out of scope for this project.

5.7.5 Summary

There is no ideal method to obtain a total anion content on the MVST sludges. The water leaches are considered to be adequate for nitrate, nitrite, and the halides. The total phosphate and sulfate content however will not be obtained by a water leach and any method used that oxidizes the sample would be considered to be a total phosphorus or sulfur. The best preparation method for total phosphorus or sulfur appears to be closed vessel microwave digestion followed by analysis by ICP-AES or ICP-MS. Other DOE sites that have experience with caustic high nitrate sludge samples and have worked with the bomb and fusion procedures, have related similar observations which include poor yields and heavy matrix interferences associated with these preparation methods.
5.8 Solubility of MVST Sludge in Water

The MVST sludge samples were taken through a water wash to determine the water soluble anions and measure the effect of the sludge on pH. Since this water leach solution was available, several of the lower cost analytical measurements, including the metals by ICP-AES, gross alpha/beta, and gamma emitters, were measured on the wash solution to evaluate the relative solubility of the sludge in water. The water wash experiment consisted of taking 5 grams of wet sludge and diluting the sample to 50 mL with deionized water. The sludge was leached with the water on a vortex mixer for several minutes and the clarified liquid was then removed for analysis. Results from the water leaching experiment are summarized in Table 18.

Analytical		% Rec	overy in Wa	ter Leach of	Sludge	
Measurement	W-24	W-25	W-26	W-27	W-28	W-31
Selected metals						
pH of water wash	12.8	12.6	9.7	12.3	12.3	9.9
Al	14.75	2.82	< 0.01	0.80	< 0.01	0.06
Ca	1.06	0.95	3.07	14.49	32.75	2.29
Cr	7.47	33.55	1.53	8.3	0.91	12.46
Fe	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
K	102.99	108.59	103.56	114.78	105.48	103.49
Mg	0.01	0.01	5.51	< 0.01	< 0.01	0.38
Na	105.94	102.69	110.02	107.22	111.80	106.44
Th	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01
U	0.04	0.04	0.03	< 0.01	< 0.01	1.15
Selected radionuclid	<u>es</u>					
Gross alpha	0.38	0.13	0.18	0.12	0.07	< 0.01
Gross beta	10.44	2.29	28.57	30.63	16.77	1.33
⁶⁰ Co	0.27	0.24	2.07	1.00	0.95	0.50
¹³⁷ Cs	71.70	31.92	96.63	84.62	93.55	48.84
¹⁵² Eu	< 0.01	< 0.01	0.09	< 0.01	0.14	< 0.01

 Table 18
 Recovery of Selected Species in Water Leach

The water leach appears to remove more of the sodium and potassium than the total digestion with nitric acid, however, the high recovery is more likely due to the difference in sample size used for each sample preparation. Only 0.5 g of sample was used for the nitric acid digestion as compared to the 5 g used for the water leach. The larger sample size would be more representative of the overall sludge and introduces less sampling error. The water wash does not remove many of the metals (i.e. uranium) that cause spectral interference problems. Therefore, both analytical and sampling errors most likely contribute to the high bias for the sodium and potassium recovery. In general, the lighter alkali metals are quantitatively removed from the sludge along with the nitrate. Some of the cesium (see ¹³⁷Cs recovery) appears to be bound to the sludge, which could be due to differences in ion exchange properties between the cesium and the lighter alkali metals. The incomplete removal of ¹³⁷Cs from the sludge with water, caustic, and low acid washing has been observed in past experiments with the MVST sludge.

As expected, the actinide and lanthanide elements are not significantly removed by the water wash and this behavior is illustrated by the uranium, thorium, ¹⁵²Eu, and gross alpha recovery listed in Table 18. The water solubility of the alkaline earth elements, represented by calcium in Table 18, are a function of both the pH and the carbonate concentration. The recovery of the calcium ranges from <1% to about 33 % for the MVST sludge samples, and this behavior would also be expected for the ⁹⁰Sr activity. Most of the other major metals are usually insoluble in a water wash except for the chromium which is probably present as an the anion chromate, and many anionic species tend to be soluble in water.

5.9 Estimates for Compliance with WIPP WAC, Rev. 5 for MVST Sludge

The purpose of this section is to establish upper boundary estimates, based upon a 55-gal. drum shipping container, for several of the nuclear properties criteria and requirements for RH-TRU waste as specified in the WIPP WAC, Revision 5. Specifically, this section will develop estimates for the ²³⁹Pu Fissile Gram Equivalent (FGE), ²³⁹Pu Equivalent Activity, and Thermal Power or decay heat limits per RH-TRU canister. The RH-TRU limits per waste canister for each of these nuclear criteria are listed as follows,

•	²³⁹ Pu FGE	< 325 g
•	²³⁹ Pu Equivalent Activity	< 1000 Ci
•	Thermal Power	< 300 watts.

For the MVST sludge, the ²³⁹Pu FGE can be estimated by the summation of the gram-equivalents for ²³³U, ²³⁵U, and ²³⁹Pu. As shown in Table 19, the ²³⁵U dominates the total ²³⁹Pu FGE for the MVST sludge samples and the ²³⁹Pu is less than 5% of the total fissile gram equivalent. Based on packaging the wet sludge in 55-gal. drums, none of the MVST sludge would approach the RH-TRU limit of 325 g per canister for the ²³⁹Pu FGE. Estimates for the total weight (Kg) of sludge in a 55 gal. drum, for each MVST sludge sample, are listed in Table 22.

Isotope	²³⁹ Pu FGE factor	W-24 (mg/Kg)	W-25 (mg/Kg)	W-26 (mg/Kg)	W-27 (mg/Kg)	W-28 (mg/Kg)	W-31 (mg/Kg)
²³³ U	0.865	3.58	6.6	25.1	2.52	12.0	10.9
235U	0.641	33.2	41.0	51.3	35.7	46.2	121
²³⁹ Pu	1.000	0.84	1.46	0.57	0.29	0.36	1.49
²³⁹ Pu FGE	(mg/Kg)	25.22	33.45	55.16	25.35	40.35	88.48
²³⁹ Pu FGE	in 55 gal. (g)	7.2	9.5	15.8	7.6	11.5	26.5

 Table 19
 Estimates for ²³⁹Pu FGE with the MVST Sludge

Estimates for the total ²³⁹Pu equivalent activity (Ci) in a 55-gal. drum for each of the MVST sludge samples are listed in Table 20. The ²³⁹Pu equivalent activity is based on following calculation,

²³⁹Pu Equivalent Activity =
$$\sum_{i=1}^{A_i} \frac{A_i}{F_i}$$
 (6)

where A_i is the activity of radionuclide *i*, and F_i is the ²³⁹Pu equivalent activity weighting factor for radionuclide *i*. The weighting factors for the major radionuclides found in the MVST sludge are listed in Table 20. As shown in the last row of Table 20, all of the MVST sludge estimates for ²³⁹Pu Equivalent activity would be less than 1 Ci for a 55 gal. drum, which is well below the RH-TRU limits. The MVST sludge is well below the CH-TRU limit of 80 Ci of plutonium equivalent activity for untreated waste in a 55-gal. drum and will not approach the 1000 Ci WAC limit for a RH-TRU canister, which holds three 55-gal. drums.

Isotope	²³⁹ Pu wt. factor ^a	W-24 (Bq/g)	W-25 (Bq/g)	W-26 (Bq/g)	W-27 (Bq/g)	W-28 (Bq/g)	W-31 (Bq/g)
²³³ U	3.9	1600	2800	10000	1000	5200	5200
²³⁸ Pu	1.1	3800	7800	[,] 5400	2400	3000	13000
²³⁹ Pu	1.0	1900	3400	1300	670	830	3400
²⁴⁰ Pu	1.0	870	1800	890	370	600	2200
²⁴¹ Pu	52.0	14000	26000	15000	6500	12000	24000
²⁴¹ Am	1.0	3900	9300	3900	2800	4600	14000
²⁴⁴ Cm	1.9	22000	58000	28000	17000	25000	110000
²³⁹ Pu Eqy.	(Bq/g)	22382.98	53335.17	28588.50	15350.60	23479.27	91107.79
²³⁹ Pu Eqv.	in 55 gal. (Ci)	0.17	0.41	0.22	0.12	0.18	0.74

 Table 20
 Estimates for ²³⁹Pu Equivalent Activity with the MVST Sludge

^a Radionuclide-specific weighting factors for the ²³⁹Pu equivalent activity taken from Appendix A of DOE/WIPP-069, Rev.5

There is concern about the thermal power from the decay heat of the radionuclides present in waste packages prepared for WIPP disposal. These concerns are addressed in Revision 5 of the WIPP WAC, with limits of 40 watts for a TRUPACT-II container for CH-TRU waste and a limit of 300 watts for a RH-TRU canister. High decay heat is also an indicator for potential problems with hydrogen gas generation. The major radionuclides found in the MVST sludge are listed in Table 21 along with the "Q" values needed to calculate the decay heat for each isotope.

An estimate of the decay heat distribution by radionuclide for the MVST sludge samples are listed in Table 22 along with an estimate for an upper boundary for total decay heat that would be in a 55 gal. drum full of wet sludge. These estimates indicate that the decay heat from MVST sludge is far below any of the WIPP WAC limits for thermal power and should have no impact on packaging requirements. For general interest, the relative percent distributions of the decay heat by radionuclide, beta activity, and alpha activity are listed in Table 23. The distribution of decay heat as a function of MVST tank and radionuclide is illustrated in Fig. 7 for beta decay, and in Fig. 8 for alpha decay. Although ²⁴¹Pu is a pure beta emitter, it is included with the other actinides for illustration. It is interesting to note that the beta activity dominates the decay heat output and that the heat from alpha decay is generally less than 10% of the total thermal power.

Isotope	"Q" value	"Q" value	W-24	W-25	W-26	W-27	W-28	W-31
	(W/Ci)	(W/Bq)	(Bq/g)	(Bq/g)	(Bq/g)	(Bq/g)	(Bq/g)	(Bq/g)
⁶⁰ Co	1,54E-02	4.16E-13	2.80E+04	2.50E+04	5.80E+04	1.20E+04	4.20E+04	2.20E+04
90Sr	1.16E-03	3.14E-14	1.40E+06	3.20E+06	7.10E+05	4.50E+05	7.00E+05	1.10E+07
Y ⁰⁶	5.54E-03	1.50E-13	1.40E+06	3.20E+06	7.10E+05	4.50E+05	7.00E+05	1.10E+07
¹³⁷ Cs	1.01E-03	2.73E-14	5.30E+05	4.70E+05	8.90E+05	3.90E+05	3.10E+05	4.30E+05
^{137m} Ba	3.94E-03	1.06E-13	5.01E+05	4.45E+05	8.42E+05	3.69E+05	2.93E+05	4.07E+05
¹⁵² Eu	7.65E-03	2.07E-13	8.90E+04	7.10E+04	6.40E+05	4.10E+04	8.00E+05	3.00E+04
¹⁵⁴ Eu	9.08E-03	2.45E-13	3.80E+04	3.70E+04	2.90E+04	1.70E+04	2.70E+05	2.00E+04
¹⁵⁵ Eu	7.59E-04	2.05E-14	1.00E+04	8.40E+03	6.30E+04	0.00E+00	7.00E+04	0.00E+00
Total beta (Ci/Kg)	· · · · ·	1.08E-01	2.02E-01	1.07E-01	4.69E-02	8.64E-02	6.20E-01
²³³ U	2.86E-02	7.72E-13	1.60E+03	2.80E+03	1.00E+04	1.00E+03	5.20E+03	5.20E+03
²³⁸ Pu	3.26E-02	8.81E-13	3.80E+03	7.80E+03	5.40E+03	2.40E+03	3.00E+03	1.30E+04
²³⁹ Pu	3.02E-02	8.17E-13	1.90E+03	3.40E+03	1.30E+03	6.70E+02	8.30E+02	3.40E+03
²⁴⁰ Pu	3.06E-02	8.26E-13	8.70E+02	1.80E+03	8.90E+02	3.70E+02	6.00E+02	2.20E+03
²⁴¹ Am	3.28E-02	8.87E-13	3.90E+03	9.30E+03	3.90E+03	2.80E+03	4.60E+03	1.40E+04
²⁴¹ Ρu β ⁻	3.20E-05	8.65E-16	1.40E+04	2.60E+04	1.50E+04	6.50E+03	1.20E+04	2.40E+04
244Cm	3.44E-02	9.29E-13	2.20E+04	5.80E+04	2.80E+04	1.70E+04	2.50E+04	1.10E+05
Total alpha	(Ci/Kg)	·	9,21E-04	2.25E-03	1.34E-03	6.55E-04	1.06E-03	3.99E-03
Total beta in) 55 gal. drum (C	i):	30.80	57.05	30.61	14.01	24.55	185.61
Total alpha i	in 55 gal. drum (Ci):	0.37	0.83	0.50	0.25	0.39	1.39

Table 21	Isotopes that	Contribute to	o the Decay	y Heat in the	e MVST Sludge
----------	----------------------	---------------	-------------	---------------	---------------

•

Table 22Distribution of Decay Heat in MVST Sludge

Isotope	"Q" value	"Q" value	W-24	W-25	W-26	W-27	W-28	W-31
	(W/Ci)	(W/Bq)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)	(W/Kg)
⁶⁰ Co	1.54E-02	4.16E-13	1.17E-05	1.04E-05	2.42E-05	5.00E-06	1.75E-05	9.16E-06
90Sr	1.16E-03	3.14E-14	4.39E-05	1.00E-04	2.23E-05	1.41E-05	2.19E-05	3.45E-04
90Y	5.54E-03	1.50E-13	2.10E-04	4.79E-04	1.06E-04	6.74E-05	1.05E-04	1.65E-03
¹³⁷ Cs	1.01E-03	2.73E-14	1.45E-05	1.28E-05	2.43E-05	1.06E-05	8.46E-06	1.17E-05
^{137m} Ba	3.94E-03	1.06E-13	5.34E-05	4.73E-05	8.97E-05	3.93E-05	3.12E-05	4.33E-05
¹⁵² Eu	7.65E-03	2.07E-13	1.84E-05	1.47E-05	1.32E-04	8.47E-06	1.65E-04	6.20E-06
¹⁵⁴ Eu	9.08E-03	2.45E-13	9.33E-06	9.08E-06	7.12E-06	4.17E-06	6.63E-05	4.91E-06
¹⁵⁵ Eu	7.59E-04	2.05E-14	2.05E-07	1.72E-07	1.29E-06	0.00E+00	1.44E-06	0.00E+00
271 • •								
2330	2.86E-02	7.72E-13	1.24E-06	2.16E-06	7.72E-06	7.72E-07	4.02E-06	4.02E-06
²³⁸ Pu	3.26E-02	8.81E-13	3.35E-06	6.87E-06	4.76E-06	2.11E-06	2.64E-06	1.15E-05
²³⁹ Pu	3.02E-02	8.17E-13	1.55E-06	2.78E-06	1.06E-06	5.48E-07	6.78E-07	2.78E-06
²⁴⁰ Pu	3.06E-02	8.26E-13	7.19E-07	1.49E-06	7.35E-07	3.06E-07	4.96E-07	1.82E-06
²⁴¹ Am	3.28E-02	8.87E-13	3.46E-06	8.25E-06	3.46E-06	2.48E-06	4.08E-06	1.24E-05
²⁴¹ Ρu β ⁻	3.20E-05	8.65E-16	1.21E-08	2.25E-08	1.30E-08	5.62E-09	1.04E-08	2.08E-08
²⁴⁴ Cm	3.44E-02	9.29E-13	2.04E-05	5.39E-05	2.60E-05	1.58E-05	2.32E-05	1.02E-04
Total (W/Kg)			3.92E-04	7.49E-04	4.51E-04	1.71E-04	4.52E-04	2.20E-03
Density	(Kg/L):		1.37	1.36	1.38	1.44	1.37	1.44
Total in 55 ga	al drum (Kg):		285	283	287	300	285	300
Total in 55 g	al drum (Watt):		0.112	0.212	0.130	0.051	0.129	0.660

Isotope	"Q" value	"Q" value	W-24	W-25	W-26	W-27	W-28	W-31
	(W/Ci)	(W/Bq)	(% Watt)					
⁶⁰ Co	1.54E-02	4.16E-13	2.98%	1.39%	5.35%	2.92%	3.87%	0.42%
90Sr	1.16E-03	3.14E-14	11.20%	13.39%	4.93%	8.25%	4.85%	15.66%
90Y .	5.54E-03	1.50E-13	53.51%	63.93%	23.57%	39.38%	23.18%	74.80%
137Cs	1.01E-03	2.73E-14	3.69%	1.71%	5.39%	6.22%	, 1.87%	0.53%
^{137m} Ba	3.94E-03	1.06E-13	13.63%	6.32%	19.87%	22.96%	6.91%	1.97%
¹⁵² Eu	7.65E-03	2.07E-13	4.70%	1.96%	29.32%	4.95%	36.57%	0.28%
¹⁵⁴ Eu	9.08E-03	2.45E-13	2.38%	1.21%	1.58%	2.44%	14.66%	0.22%
¹⁵⁵ Eu	7.59E-04	2.05E-14	0.05%	0.02%	0.29%	0.00%	0.32%	0.00%
Total beta l	neat (%):		92.15%	89.93%	90.30%	87.13%	92.23%	93.88%
233U	2.86E-02	7.72E-13	0.32%	0.29%	1.71%	0.45%	0.89%	0.18%
²³⁸ Pu	3.26E-02	8.81E-13	0.85%	0.92%	1.05%	1.24%	0.58%	0.52%
²³⁹ Pu	3.02E-02	8.17E-13	0.40%	0.37%	0.24%	0.32%	0.15%	0.13%
240Pu	3.06E-02	8.26E-13	0.18%	0.20%	0.16%	0.18%	. 0.11%	0.08%
²⁴¹ Am	3.28E-02	8.87E-13	0.88%	1.10%	0.77%	1.45%	0.90%	0.56%
²⁴¹ Ρu β ⁻	3.20E-05	8.65E-16	0.00%	0.00%	0.00%	0.00%	0.00%,	0.00%
244Cm	3.44E-02	9.29E-13	5.22%	7.19%	5.77%	9.23%	5.14%	4.64%
Total alpha	heat (%):		7.85%	10.07%	9.70%	12.87%	7.77%	6.12%

 Table 23
 Summary of Relative Decay Heat in MVST Sludge

Figure 8Distribution of Alpha Decay Heat in MVST Sludge

6.0 Summary of Organic Analytical Results

The organic content of the MVST samples was very low, with almost nothing above the detection limits observed in the supernatant and only trace amounts observed in the sludge samples. The few organic compounds observed consisted of products from the Purex and other actinide separation processes used by past chemical processing plants within the Laboratory. The target compound list (TCL) hits and the tentatively identified compounds (TIC) from the GC-MS analyses are listed in Table 24 for the supernatant samples and Table 25 for the sludge samples. For the organic chemical characterization results the following reporting conventions are used:

Reporting limits	The reporting limits are the concentrations above which the response of the instrument for the calibrated range of concentrations is linear.							
В	Data qualifier meaning that the compound was also found in the accompanying laboratory blank sample.							
D	Data qualifier meaning sample dilution was required.							
E	Data qualifier indicating that the reported concentration of the compound exceeded the calibration range of the instrument.							
J	Data qualifier meaning that the compound was estimated at a concentration below the reporting limit; also used to indicate that the concentrations for tentatively identified compounds (TICs) are estimates.							
U	Data qualifier meaning compound was not detected and method detection limits was reported.							
TIC	Tentatively identified compound. The identification is based upon mass spectral data only, and the quantitation is based upon the response factor of the nearest eluting internal standard. All TIC values are estimates and are flagged with the "J" qualifier.							

.

.

,

1

.

	Concentration in Liquid, mg/L								
Target Compound	W-24	W-25	W-26	W-27	W-28	W-31			
Non-halogenated Volatile O	rganic Compo	ounds (NH-V	ОА)						
Methanol	2 U	2 U	2 U	2 U	2 U	2 U			
Acetone	2 U	2 U	2 U	2 U	2 U	2 U			
Methyl Ethyl Ketone	2 U	2 U	2 U	2 U	2 U	2 U			
Isobutanol	2 U	2 U	2 U	2 U	2 U	2 U			
Butanol	2 U	2 U	2 U	2 U	2 U	2 U			
Pyridine	2 U	2 U	2 U	2 U	2 U	2 U			
Volatile Organic Compound	ls (VOA)								
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U	1 U			
Trichlorofluoromethane	· 1 U	1 U	1 U	1 U	1 U	1 U			
Ethyl Ether	1 U	1 U	1 U	1 U	1 U	1 U			
1,1,2-Trichloro-1,2,2- trifluoroethane	1 U	1 U	1 U	1 U	1 U	1 U			
1,2-Dichloroethylene	1 U	1U	1 U	1 U	1U	1 Ü			
Methylene Chloride	1 U	1 U	1 U	1 U	1 U	1 U			
Chloroform	1 U	1 U	1 U	1 Ú	1 U	1 U			
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U			
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U			
Carbon Tetrachloride	1 U	1 U	1 U	1 U	1 U	1 U			
Benzene	1 U	1 U	1 U	1 U	1 U	1 U			
Trichloroethylene	1 U	1 U	1 U	1 U	1 U	1 U			
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U			
Bromoform	1 U	1 U	1 U	1 U	1 U	1 U			
Toluene	1 U	1 U	1 U	1 U	1 U	1 U			
Tetrachloroethylene	1 U	1 U	1 U	1 U	1 U	1 U			
Chlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U			
Ethylbenzene	1 U	1 U	1 U	1 U	1 U	1 U			
m&p-Xylenes	1 U	1 U	1 U	1 U	1 U	1 U			
o-Xylene	1 U	1 U	1 U	1 U	1 U	1 U			
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U	1 U			
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 ប			
Ortho-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 []			

Table 24 Analytical Organic Data for MVST Liquid Samples

•

71

	Concentration in Liquid, mg/L								
Target Compound	W-24	W-25	W-26	W-27	W-28	W-31			
Tentatively Identified Volati	le Organic Co	mpounds							
Tetrahydrofuran	-	-	· -	-	-	0.01 J			
3-Heptanone	-	-	-	-	-	0.02 J			
Unknown	0.04 J (3)ª	0.06 J (3)ª	0.11 J (5)ª	0.24 J (9)ª	0.22 J (8)ª	0.3 J (11) ^a			
Unknown Hydrocarbon	-	-	-		- '	0.03 J (2)ª			
Semivolatile Organic Compounds (SVOA)									
2-Methyl Phenol	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
Hexachloroethane	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
4-Methyl Phenol	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
Nitrobenzene	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
2,4-Dinitrotoluene	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
2,4-Dinitrophenol	0.05 J	0.05 U	0.05 U	0.30 J	0.09 J	0.41 J			
Hexachlorobenzene	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U			
Pentachlorophenol	0.05 U	0.05 U	0.05 U	0.05 U	0.05 J	0.05 U			
Tentatively Identified Semiv	olatile Organ	ic Compound	\$						
Benzenesulfonamide, N- butyl	-	0.47 J	-	-	0.37 J	-			
Benzoic acid	-	-	-	-	-	0.56 J			
2-Butanamine	-		0.03 J	-	-	-			
Dimethyl sulfone	-	-	0.06 J	-	-	-			
Di-n-octyl phthalate	-	0.40 J	0.03 J	-	-	-			
Heptanal	0.07 J	-	-	· _	-	-			
Tributylphosphate (TBP)	0.66 J	1.1 J	-	0.94 J	0.14 J	0.72 JD			
Unknown	2.0 J (19) ^a	4.6 J (16) ^a	0.7 J (19)ª	4.9 J (19) ^a	5.8 J (19)ª	10 J (20) ^a			

^a Number of compounds grouped together listed in parenthesis.

	Concentration in Sludge, mg/Kg									
Target Compound	W-24	W-25	W-26	W-27	W-28	W-31				
Semivolatile Organic Con	apounds (SVC	A)		· · · · ·	······································					
2-Methyl Phenol	5 U	10 UD	5 U	5 U	5 U	5 U				
Hexachloroethane	5 U	10 UD	5 ប	5 U	5 U	5 U				
4-Methyl Phenol	5 U	10 UD	5 U	5 U	5 U	5 U				
Nitrobenzene	5 U	10 UD	5 U	5 U	5 U	5 U				
2,4-Dinitrotoluene	0.3 U	0.6 UD	0.3 U	0.3 U	0.3 U	0.3 U				
2,4-Dinitrophenol	5 U	10 UD	5 U	5 U	5 U	5 U				
Hexachlorobenzene	0.3 U	0.6 UD	0.3 U	0.3 U	0.3 U	0.3 U				
Pentachlorophenol	5 U	10 UD	5 U	5 U	5 U	5 U				
Tentatively Identified Sen	nivolatile Org	anic Compour	ıds							
Benzene, diethyl-	7.4 J (2) ^a	21 JD (2) ^a	-	-	-	-				
Benzene, 1,3-bis(1- methylethyl)-	3.0 J	9.0 JD	-	-	-	-				
Benzophenone	-	-	0.99 J	1.0 J	1.1 J	2.8 J				
Dibutyl phthalate	-	-	1.4 J	1.2 J	1.2 J	-				
1-Docosene	-	-	1.2 J	-	-	-				
Dodecane	3.5 J	7.3 JD	1.0 J	1.9 J	0.7 J	3.5 J				
1-Dotriacontanol	-	-	-	1.2 J	-	-				
Ethanone, 1-(4- ethylphenyl)-	-	-	1.3 J	-	-	-				
Heptadecane	-	-		0.9 J	-					
Heptane, 4-ethyl-2,2,6,6- tetramethyl	3.6 J	-	-	-	-	5.3 J				
1-Hexanol, 2-ethyl	-	-	-	-	0.54 J	-				
Hexadecanoic acid	-	-	1.8 J	-	-	-				
Nonadecane	-	-	-	1.1 J	-	-				
1- Nonadecanol	-		3.1 J	-	-	-				
Octadecane	-	-	-	1.6 J	-	-				
1-Octanamine, N-nitroso- n-octyl-	1.4 J	-	-	-	-	-				
Pentadecane	-	-	-	1.1 J		-				
Tetradecane	8.7 J	11 JD	2.3 J	3.7 J	1.5 J	2.3 J				

Table 25 Analytical Organic Data for MVST Sludge Samples

	Concentration in Sludge, mg/Kg							
Target Compound	W-24	W-25	W-26	W-27	W-28	W-31		
Tributylphosphate (TBP)	2.5 J	14 JD	-	-	2.1 J	15 J		
Tridecane	11 J	13 JD	2.2 J	4.5 J	1.4 J	3.6 J		
Undecane	3.3 J	6.8 J	-	1.7 J	*	5.1 J		
Unknown Hydrocarbons	4 J (2) ^a	56 JD (9)ª	-	-	-	28 J (8)ª		
Polychlorinated Biphenyl	Polychlorinated Biphenyls (PCB) Analysis							
Aroclor-1016	0.048 U	0.050 U	nd ^b	nd	0.050 U	0.050 U		
Aroclor-1221	0.048 U	0.050 U	nd	nd	0.050 U	0.050 U		
Aroclor-1232	0.048 U	0.050 U	nd	nd	0.050 U	0.050 U		
Aroclor-1242	0.049 J	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U		
Aroclor-1248	0.048 U	0.050 U	nd	nd	0.050 U	0.050 U		
Aroclor-1254	0.048 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U		
Aroclor-1260	0.048 U	0.050 U	nd	nd	0.050 U	0.050 U		

^a Number of compounds grouped together listed in parenthesis.
 ^b Compounds not detected and calibration was not available to calculate detection limit.

6.1 Discussion of Organic Analysis

Some difficulties were encountered during the extraction preparation for samples W-26 and W-28 supernatant samples. These problems appear to have impacted the semivolatile and PCB analysis for W-26 as explained below. Although the hold time requirements from the sample collection to the sample extraction were satisfied, the hold time from extraction to analysis for PCB analysis was exceeded by thirteen days for sludge samples from tanks W-28 and W-31 because of instrument downtime. The surrogate recoveries for these samples were within control limits and thus there is considered to be no impact to data quality due to the missed holding time.

During the extraction of the W-26 liquid sample the extraction mixture formed three layers. The bottom and middle layers appeared to be emulsions and the top layer was clear. The top layer was determined to be methylene chloride, which was not expected because methylene chloride is more dense than water. Additional methylene chloride extractions were performed on the emulsions to try to recovery any organic compounds which may have been trapped in the emulsified layers. Including all attempts to recover the methylene chloride, only 50% of the total volume used in the extraction was actually recovered. The PCB surrogate recoveries were below the control limits for this sample. The semivolatile surrogate recoveries were comparable to the other MVST supernatant samples but still were low.

During the W-28 extraction there was no layer formation after the addition of methylene chloride even after centrifuging the extraction. It is interesting to note that the sample density was determined to be 1.34 g/mL for the W-28 liquid sample which is the same density of methylene chloride at 20 °C. This similarity in density explains the absence of any separation of the organic and aqueous phase. The sample was acidified using sulfuric acid which increased the density of the aqueous phase and an organic phase separated out on top of the aqueous. After acidification the added methylene chloride volume was fully recovered and the subsequent extractions were successfully performed on the acidified sample portion. The PCB and semivolatile surrogate recoveries for this sample were comparable to other MVST supernatant samples. •

. . . .

REFERENCES

- 1. T. D. Hylton, Sampling and Analysis Plan for the Bethel Valley Evaporator Service Tanks and the Melton Valley Storage Tanks, ORNL/M-5224, July 1996.
- 2. F. J. Peretz, B. R. Clark, C. B. Scott, and J. B. Berry, *Characterization of Low-Level Liquid Wastes at the Oak Ridge National Laboratory*, ORNL/TM-10218, December 1986.
- M. B. Sears, J. L. Botts, R. N. Ceo, J.J. Ferrada, W. H. Griest, J. M. Keller, and R. L. Schenley, Sampling and Analysis of Radioactive Liquid Wastes and Sludges in the Melton Valley and Evaporator Facility Storage Tanks at ORNL, ORNL/TM-11652, September 1990.
- 4. J. M. Keller, J. M. Giaquinto, and W. H. Griest, *Characterization of Selected Waste Tanks* from the Active LLLW System, ORNL/TM-13248, August 1996.
- 5. M. B. Sears, Results of Sampling the Contents of the Liquid Low-Level Waste Evaporator Feed Tank W-22, ORNL/TM-13234, September 1996.
- 6. S. M. DePaoli, Oak Ridge National Laboratory, personal communication to J. M Keller, December 12, 1996.
- U. S. Environmental Protection Agency, *Test Methods for Evaluating Solid Waste*, SW-846, 3rd ed, Office of Solid Waste and Emergency Response, Washington, D.C., November 1986; Update I, July 1992; and Final Update II, September 1994.
- 8. J. M. Giaquinto, A. M. Essling, and J. M. Keller, Comparison of SW-846 Method 3051 and SW-846 Method 7471A for the Preparation of Solid Waste Samples for Mercury Determination, ORNL/TM-13236, July 1996.
- 9. Transuranic Waste Characterization Quality Assurance Program Plan, Rev. 0, CAO-94-1010, April 30, 1995
- 10. Radioactive Materials Analysis Laboratory Oak Ridge National Laboratory (RMAL-ORNL) Quality Assurance Project Plan (QAPjP) for the Transuranic Waste Characterization Program (TWCP), Rev. 1, QAP-X-CASD/RML-002, January 1996.
- 11. Radioactive Materials Analysis Laboratory Quality Assurance Plan for the Characterization of Radioactive Waste, QAP-X-CASD/RML-001, Rev. 1, June 1996
- 12. Waste Acceptance Criteria for the Waste Isolation Pilot Plant, WIPP-DOE-069, Rev. 5.0, April 1996.

APPENDIX A

Radioactive Materials Analytical Laboratory QC Acceptance Criteria for Radioactive Liquid/Solid Waste Samples

Analysis	Method (s) CASD-AM-	Quality Control Check (per batch)	SW-846 Acceptance Criteria (%D, %R, RPD) ^e	RMAL Acceptance Criteria (%D, %R, RPD) ^e
Metals by ICP-AES (inductively coupled plasma atomic emission spectroscopy)	SW846-6010A	high standard calibration verifications (ICV & CCV) ⁴ calibration blank & checks (ICB & CCB) ⁶ method blank (sample prep) ⁶ matrix spike matrix spike duplicate or sample duplicate laboratory control sample (sample prep) ⁶ serial dilution (if interference suspected) post digestion spike ⁴	±5%D ±10%D <3 x IDL <3 x IDL ±20%D ±20 RPD none specified ±10%R ±20%D	±5%D ±10%D <3 × IDL 3 × IDL ±25%D (liq.), ±30%D (solid) ±20 RPD (liq.), ±30 RPD (solid) ±20%D ±10%R ±25%D (liq.), ±30%D (solid)
Metals by ICP-MS (inductively coupled plasma- mass spectrometry)	SW846-6020	calibration verifications (ICV & CCV) ⁴ calibration blank & blank checks (CCB) ⁶ method blank (sample prep) ⁶ matrix spike matrix spike duplicate or sample duplicate laboratory control sample (sample prep) ⁶ internal standard post digestion spike ⁴	±10%D <3 x IDL none specified none specified ±20 RPD none specified 30-120% R ±10%D	±10%D <3 × IDL <10 × IDL ±25%D (liq.), ±30%D (solid) ±20 RPD (liq.), ±30 RPD (solid) ±20%D ±30%D ±20%D
Metals by GFAA (graphite furnace atomic absorption)	SW846-7000A	high standard calibration verifications (ICV & CCV)* method blank (sample prep)* matrix spike matrix spike duplicate laboratory control sample (sample prep)* serial dilution (if interference suspected) post digestion spike*	not required ±10%D (ICV), ±20%D (CCV) none specified none specified none specified ±10%R ±15%D	±5%D ±10%D (ICV), ±20%D (CCV) ≤3 x IDL ±25%D (liq.), ±30%D (solid) ±20 RPD (liq.), ±30 RPD (solid) ±25%D ±10%R ±25%D (liq.), ±30%D (solid)
Mercury by CVAA (cold vapor atomic absorption)	SW846-7471A SW846-7470	instrument blank calibration verification (ICV & CCV) [*] method blank (sample prep) ^e laboratory control sample (sample prep) ^e matrix spike matrix spike duplicate or sample duplicate post digestion spike ⁴	none specified none specified none specified none specified none specified none specified none specified	<5 x IDL ±10%D <5 x IDL ±25%D ±25%D (liq.), ±30%D'(solid) ±20 RPD (liq.), ±30 RPD (solid) ±25%D (liq.), ±30%D (solid)
Carbon (total organic carbon, total carbon, total inorganic carbon)	SW846-9060	instrument blank calibration verification (ICV & CCV) [*] matrix spike matrix spike duplicate	none specified none specified none specified none specified	≤3 x IDL ±10%D (ICV.), ±20%D (CCV) ±25%D (liq.), ±30%D (solid) ±20 RPD (liq.), ±30 RPD (solid)
Anions by Ion Chromatography (IC)	SW846-9056	calibration verification (ICV & CCV)* matrix spike sample duplicate	±10%D (ICV), ±5%D (CCV) none specified none specified	±10%D (ICV), ±15%D (CCV) ±25%D ±20 RPD
pH measurement	SW846-9040A SW846-9045B	check standard sample duplicate	none specified none specified	±10%D ±20%D
Total and dissolved solids (TS & TDS)	EPA600-160.2 EPA600-160.3	sample duplicate check standard	none specified none specified	±10 mg/ 10mL sample ±10%D
Carbonate and bicarbonate titration	AC-MM-1 003105	sample duplicate check standard	none specified none specified	±20 RPD ±20%D
Gross alpha/beta	EPA-900.0 RML-RA02 RML-RA12	background check calibration verification method blank (optional) ^f sample duplicate matrix spike	none specified none specified none specified none specified none specified	 < 3 sigma daily change ±10%D evaluated for contamination ±25 RPD (liq.), ±30 RPD (solid) ±25%D (liq.) & ±30%D (solid)
Nuclides by gamma spectrometry	EPA-901.1	background check calibration verification sample duplicate	none specified none specified none specified	<3sigma daily change ± 10%D ±25%D (liq.) & ±30%D (solid)

A-1

1 . 1

Analysis	Method (s) CASD-AM-	Quality Control Check (per batch)	SW-846 Acceptance Criteria (%D, %R, RPD) ^e	RMAL Acceptance Criteria (%D, %R, RPD) ^e
Sr-90 determination	RML-RA13 EPA-905.0	method blank (optional) ^f laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for contamination ⁴ 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gross alpha/beta criteria
Tc-99 determination	DOE Compendium RP550 RML-RA05	method blank (optional) ^r laboratory control sample matrix spike matrix spike or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	<3 x IDL 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see ICP-MS criteria
H-3 determination	EPA-906.0	method blank (optional) ^f laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for contamination ¹ 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gross alpha/beta criteria
Cm-244	RML-RA06	method blank (optional) ^f laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for contamination ⁴ 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gross alpha/beta criteria
Pu-238,239/240	RML-RA11 RML-RA08	method blank (optional) ⁶ laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for contamination ⁴ 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gross alpha/beta criteria
U-233/234	RML-RA10	method blank (optional) ⁶ laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for constants 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gross alpha/beta criteria
Th Determination	EPA-901.1 RML-RA09	method blank (optional) ⁶ laboratory control sample matrix spike matrix spike duplicate or sample duplicate associated instrument QC	none specified none specified none specified none specified none specified	evaluated for contamination ⁴ 20%D ±25%D (liq.) & ±30%D (solid) ±25 RPD (liq.), ±30 RPD (solid) see gamma spectrometry criteria
PCBs (polychlorinated- biphenyls)	SW846-8080	calibration verification (ICV & CCV) ^s method blank (sample prep) ^c surrogate standard matrix spike matrix spike duplicate sample duplicate laboratory control sample (sample prep) ^c	refer to method 8080 none specified none specified none specified none specified none specified none specified	to be specified < regulatory limit (2ppm) ± 50-150%R ± 50-150%R ± 50-150%R to be specified to be specified
Volatile organics	SW846-8260	calibration verification (ICV & CCV) ⁴ method blank (sample prep) ⁶ surrogate standard matrix spike matrix spike duplicate sample duplicate laboratory control sample (sample prep) ⁶	see SW846 8260, Sept. *86	± 20% D 3 X MDL refer to supplement Table A refer to supplement Table A refer to supplement Table A refer to supplement Table A refer to supplement Table A
Nonhalogenated volatile organics	SW846-8015	calibration verification (ICV & CCV) ⁴ method blank (sample prep) ⁶ surrogate standard matrix spike matrix spike duplicate sample duplicate laboratory control sample (sample prep) ⁶	see SW846-8015, Sept. '86	± 15% D 3 X MDL refer to supplement Table B refer to supplement Table B refer to supplement Table B refer to supplement Table B refer to supplement Table B
Semivolatile organics	SW846-8270	calibration verification (ICV & CCV)* method blank (sample prep)* surrogate standard matrix spike matrix spike duplicate sample duplicate laboratory control sample (sample prep)*	see SW846-8270, Sept. '86	± 20% D 3 X MDL refer to supplement Table C refer to supplement Table C refer to supplement Table C refer to supplement Table C refer to supplement Table C

A-2

- a Initial calibration verification (ICV) is typically performed at the beginning of a run to check the calibration and must be independent of the calibration standards. The continuing calibration verification (CCV) must also be independent of the calibration standards, but may be the same standard as the ICV. The CCV is typically analyzed every 10 samples and at the end of the run for metals analysis or every 12 samples for organic analysis.
- b The calibration blank is an instrument blank used in the calibration to initially determine the blank value and therefore used as blank subtraction. The continuing calibration blank (CCB) is also an instrument blank which is analyzed every 10 samples and at the end of the run, but is not used in blank subtraction, but only to monitor instrument contamination.
- c Method blanks and laboratory control samples are only required if a sample preparation is performed before analysis. Sample preparation does not include dilutions or transfers to containers.
- d Post digestion spikes are not necessary if the pre-digestion spike is in control. If this control does not meet the QC acceptance criteria, the post digestion spike should be performed.
- Acceptance criteria:
 %D = % deviation from true value
 %R = % recovery of true value
 RPD = relative percent difference between two compared values
- f Method blanks for radiochemical analysis are used to monitor cross contamination. However, due to the levels of radioactivity present in samples at the RMAL, the effect of contamination may be insignificant in most cases. Therefore, the requirement to analyze a method blank for radiochemical analysis is optional (i.e. at the discretion of the chemist or supervisor).
- g Acceptance criteria for the method blanks performed for radiochemical analysis varies based upon the level of activity in the samples and the amount of background activity. A qualified chemist reviews the data from method blanks to determine if significant contamination is present.
- h The acceptance criteria for PCB analyses which are not identified in this table, shall be specified at a later date. Currently, the Analytical Methods Group group leader specifies the QC criteria if different from SW846 and if not specified by the sample generator.

SUPPLEMENT TABLE A Volatile Organic Analyses QC Limits

CAS #	Compound	Precision (RPD)	Accuracy (% R)	MDL (mg/Kg)	PRQL (mg/Kg)	LCS (% R)
75-01-4	Vinyl Chloride	≤ 200	D-251	1	4	34-100
75-69-4	Trichlorofluoromethane	≤ 110	17-181	1	10	47-103
76-13-1	1,1,2-Trichloro-1,2-2-Trifluoroethane	≤ 50	60-150	1	10	49-105
75-35-4	1,1-Dichloroethylene	≤ 250	D-234	1	10	43-100
75-9-2	Methylene Chloride	≤ 50	D-221	1	10	67-108
75-15-0	Carbon Disulfide	≤ 50	60-150	1	10	36-100
67-66-3	Chloroform	<u>≤ 44</u>	51-138	1	10	72-111
107-6-2	1,2-Dichloroethane	≤ 42	49-155	1	10	76-112
71-55-6	1,1,1-Trichloroethane	≤ 33	52-162	1	10	71-110
56-23-5	Carbon Tetrachloride	≤ 3 0	70-140	1	10	54-115
71-43-2	Benzene	<u>≤</u> 45	37-151	1	10	70-109
79-1-6	Trichloroethylene	<u>≤</u> 36	71-157	1	10	80-120
79-0-5	1,1,2-Trichloroethane	≤ 38	52-150	1	10	80-120
75-25-2	Bromoform	≤ 47	45-169	1	10	61-115
108-88-3	Toluene	≤ 29	47-150	1	10	80-120
127-18-4	Tetrachloroethylene	≤ 29	64-148	1	10	80-120
108-90-7	Chlorobenzene	≤ 38	37-160	1	10	80-120
100-41-4	Ethylbenzene	≤ 43	37-162	1	10	80-120
1330-20-7	Xylenes	≤ 50	60-150	1	10	80-120
79-34-5	1,1,2,2-Tetrachloroethane	≤ 55	46-157	1	10	67-117
106-46-7	1,4-Dichlorobenzene	≤ 6 0	18-190	1	10	80-120
95-50-1	ortho-Dichlorobenzene	≤ 60	18-190	1	10	80-112
60-29-7	Ethyl Ether	≤ 5 0	60-150	1	10	54-100
Surrogates						e y e x yme 2 y e
	1,2-Dichloroethane-d4		61-129			
	Toluene-d ₈		89-118			
	4-Bromofluorobenzene		93-107			

A-4

SUPPLEMENT TABLE B Nonhalogenated Volatile Organic Analyses QC Limits

CAS#	Compound	Precision (RPD)	Accuracy (% R)	MDL (mg/Kg)	PRQL (mg/Kg)	LCS (% R)
67-56-1	Methanol	≤ 50	60-150	10	100	49-145
67-64-1	Acetone	≤ 50	60-150	10	100	61-136
78-93-3	Methyl Ethyl Ketone	≤ 50	60-150	10	100	62-134
78-83-1	Isobutanol	≤ 50	60-150	10	100	52-126
71-36-3	Butanol	≤ 50	60-150	10	100	50-110
110-86-1	Pyridine	≤ 50	60-150	10	100	64-122
Surrogate						
71-23-8	n-Propanol		60-150			

SUPPLEMENT TABLE C Semivolatile Organic Analyses QC Limits

CAS#	Compound	Precision (RPD)	Accuracy (% R)	MDL (mg/Kg)	PRQL (mg/Kg)	LCS (% R)
95-48-7	2-Methylphenol	≤ 50	60-150	5	40	46-104
67-72-1	Hexachloroethane	≤ 44	40-113	5	40	38-100
106-44-5	4-Methylphenol	≤ 50	60-150	5	40	46-114
98-95-3	Nitrobenzene	≤ 72	35-180	5	40	46-100
121-14-2	2,4-Dinitrotoluene	<u>≤</u> 46	39-139	0.3	2.6	54-146
118-74-1	Hexachlorobenzene	≤ 319	D-152	0.3	2.6	52-115
87-86-5	Pentachlorophenol	≤ 128	14-176	5	40	54-130
51-28-5	2,4-Dinitrophenol	≤ 119	D-172	5	40	47-100
Surrogates						
367-12-4	2-Fluorophenol		D-107			
	Phenol-d ₅		8-142			
	Nitrobenzene-d ₅		28-117			
321-60-8	2-Fluorobiphenyl		24-144			
	2,4,6-Tribromophenol		D-100			
	Terphenyl-d ₁₄		D-226			

APPENDIX B

This section includes three tables of information and measurements that may be of value to the data users. The first Table B1, includes the field measurements taken from the top of the tank to each phase change (air/liquid, liquid/sludge, and bottom of the tank). Table B1 also includes the total mass and/or activity for some of the major species in the sludge of general interest to the data users.

The dose measurement taken in during the field sampling for the liquid and sludge samples are included in Table B2 and Table B3. The dose measurements were taken at contact with the sampling container (250 mL I-Chem jar) for the liquids and at contact with the one inch core sludge sampling device.

Measurement		W-24	W-25	W-26	W-27	W-28	W-31	
Depth to top of liquid	(in.)	192	140	139	184	140	148	
Depth to top of sludge	(in.)	225	204	214	206	235	218	
Depth to top of hard sludge	e (in.)	258	258	255	249	256	247	
Depth to bottom of tank	(in.)	258	258	255	· 257	256	256	
Depth of supernatant	(in.)	33	64	75	22	95	70	
Depth of soft Sludge	(in.)	33	54	41	43	21	29	
Depth of hard Sludge	(in.)	0	0	0	8	0	9	
Total depth of Sludge	(in.)	33	54	41	51	_21	38	
Summary of tank volu	mes and s	ludge mas	3					Total
Volume of Supernatant	(L)	51500	101500	124200	37900	150300	126100	591500
Volume of Sludge	(L)	32900	65500	44700	60600	17000	40100	260800
Density of Sludge	(Kg/L)	1.37	1.36	1.38	1.44	1.37	1.44	
Mass of Sludge	(Kg)	45073	89080	61686	87264	23290	57744	364137
Concentration of select	ted specie	s of interes	in sludge					
Thorium	(mg/Kg)	3270	9250	3280	1290	1360	20700	
Uranium	(mg/Kg)	6780	7660	19400	11700	18500	19800	
Plutonium	(mg/Kg)	0.96	1.73	0.70	0.35	0.45	1.82	
²³³ U	(mg/Kg)	3.6	6.6	25.1	2.5	12.0	10.9	
²³⁵ U .	(mg/Kg)	33.2	45.2	51.3	35.7	46.2	121.0	
²³⁹ Pu	(mg/Kg)	0.84	1.46	0.57	0.29	0.36	1.49	
Activity for selected sp	pecies of i	nterest in s	ludge					
⁹⁰ Sr	(Bq/g)	1400000	3200000	710000	450000	700000	11000000	
¹³⁷ Cs	(Bq/g)	530000	470000	890000	390000	310000	430000	
²³³ U	(Bq/g)	1600	2800	10000	1000	5200	5200	
²³⁸ Pu	(Bq/g)	3800	7800	5400	2400	3000	13000	
²⁴¹ Am	(Bq/g)	3900	9300	3900	2800	4600	14000	
²⁴⁴ Cm	(Bq/g)	22000	58000	28000	17000	25000	110000	
Total mass for selecter	d species	of interest	in sludge					Total
Thorium	(Kg)	. 147.4	824.0	202.3	112.6	31.7	1195.3	2513.3
Uranium	(Kg)	305.6	682.4	1196.7	1021.0	430.9	1143.3	4779.8
Plutonium	(Kg)	0.043	0.154	0.043	0.030	0.010	0.105	0.386
²³³ U	(Kg)	0.162	0.588	1.548	0.220	0.279	0.629	3.427
²³⁵ U	(Kg)	1.496	4.026	3.164	3.115	1.076	6.987	19.866
²³⁹ Pu	(Kg)	0.038	0.130	0.035	0.026	0.008	0.086	0.323
Total activity for select	ed species	of interest	in sludge					Total
⁹⁰ Sr	(Ci)	1705.46	7704.22	1183.70	1061.32	440.62	17167.14	29262.5
¹³⁷ Cs	(Ci)	645.64	1131.56	1483.80	919.81	195.13	671.08	5047.0
²³³ U	(Ci)	1.95	6.74	16.67	2.36	3.27	8.12	39.1
²³⁸ Pu	(Ci)	4.63	18.78	9.00	5.66	1.89	20.29	60.2
²⁴¹ Am	(Ci)	4.75	22.39	6.50	6.60	2.90	21.85	65.0
²⁴⁴ Cm	(Ci)	26.80	139.64	46.68	40.09	15.74	171.67	440.6

Table B1	Total Mass and Activity	y for Selected S	pecies of Interest in a	Sludge

B-2