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ABSTRACT 

The accurate imaging of subsurface structures requires the fusion of data collected 
from large arrays of seismic sensors. The fusion process is formulated as an 
optimization problem and yields an extremely complex “energy surface’). Due 
to the very large number of local minima to be explored and escaped from, the 
seismic imaging problem has typically been tackled with stochastic optimization 
methods based on Monte Carlo techniques. Unfortunately, these algorithms are 
very cumbersome and computationally intensive. Here, we present TRUST - a 
novel deterministic algorithm for global optimization that we apply to seismic 
imaging. Our excellent results demonstrate that TRUST may provide the necessary 
breakthrough to address major scientific and technological challenges in fields as 
diverse as seismic modeling, process optimization, and protein engineering. 

INTRODUCTION 

In many geophysical tasks, seismic energy is detected by receivers which are regularly spaced 
along a grid that covers the explored domain. A source is positioned at some grid node to produce 
a shot. Time series data is collected from the detectors for each shot; then the source is moved to 
another grid node for the next shot. A major degradation of seismic signals usually arises from near- 
surface geologic irregularities [l, 21. These include uneven soil densities, topography, and significant 
lateral variations in the velocity of seismic waves. The most important consequence of such 
irregularities is a distorted image of the subsurface structure, due to misalignment of signals caused 
by unpredictable delays in recorded travel times of seismic waves in a vertical neighborhood of 
every source and receiver. To improve the quality of the seismic analysis, timing adjustments (called 
“statics corrections”) must be performed. One typically distinguishes between “fieZd statics”, which 
correspond to corrections that can be derived directly from topographic and well measurements, 
and “residuaZ statics” , which incorporate adjustments that must be inferred statistically from the 
seismic data. The common occurrence of severe residual statics (where the dominant period of 
the recorded data is significantly exceeded), and the significant noise contamination render the 
automatic identification of large static shifts extraordinarily difficult. Thus, multisensor fusion 
must be invoked [3]. This problem has generally been formulated in terms of global optimization 



and, to date, Monte-Carlo techniques (e.g., simulated annealing, genetic algorithms) have provided 
the primary tools for seeking a potential solution. 

The objective function associated with the task of fusing data from an array of seismic sensors 
depends on a very large number of parameters. Finding the extrema and, in particular, the absolute 
extremum of such a function turns out to be painstaking difficult. The primary difficulty stems 
from the fact that the global extremum, say minimum, of a real function is - despite its name 
- a local property. In other words, significant alteration of the location and magnitude of the 
global minimum can be carried out without affecting at all the locations and magnitudes of the 
other minima. Short of exhaustive search, it would then appear extraordinarily unlikely to design 
unfallible methods to locate the absolute minimum for an arbitrary function. In recent years 
there has been a remarkable surge of interest in global optimization [5 - 81. Although significant 
progress has been achieved in breaking new theoretical ground [9 - 191, the need for efficient and 
reliable global optimization methods remains as urgent as ever. In particular, a major need exists 
for a breakthrough paradigm which would enable the accurate and efficient solution of large-scale 
problems. In response to that need, we have been focusing, at OWL’S Center for Engineering 
Systems Advanced Research (CESAR), on two innovative concepts, namely subenergy tunneling 
and non-Lipschitzian terminal repellers, to ensure escape from local minima in a fast, reliable, and 
computationally efficient manner. The generally applicable methodology is embodied in the TRUST 
algorithm [4], which is deterministic, scalable, and easy to implement. Benchmark results show 
that TRUST is considerably faster and more accurate than previously reported global optimization 
techniques. Hence, TRUST may provide the enabling means for addressing major scientific and 
technological challenges in fields as diverse as seismic modeling, process optimization, and protein 
engineering. 

The classical theory of optimization started to develop almost concomitantly with classical 
mechanics by trying to find extremal values (minima or maxima) of certain functions that bear 
special physical meaning and practical significance. For instance, Newton studied projectile 
trajectories and obtained their maximum range by taking into account the friction with the 
atmosphere. He was also interested in minimizing resistance by modifymg the shape of an object 
propelled through water. The Bernoulli brothers, who were active in Switzerland between 1670 and 
1720, discovered that the shortest time of descent between two points under gravity is achieved not 
on the straight line joining the two points, but on a convex curve, called brachistocrone. Another 
famous optimization problem is to find the greatest area enclosed between a straight line and an 
arbitrary curve of k e d  length joining two points on the line. By Virgil’s account (Aeneid, Book I, 
line 367), Queen Dido solved the problem by determining the shape of the curve and the position 
of the points, thereby founding Carthage. 

The completion of the main body of classical physics around the turn of the century came with 
the realization that many natural processes take place according to extremal principles such as: 
(i) the principle of stationary (minimum) action in mechanics and electrodynamics; (ii) the principle 
of minimal potential energy in stable mechanical equilibrium states; (iii) the principle of maximal 
entropy in isolated thermodynamic systems at equilibrium; and (iv) the principle of motion along 
geodesics (Fermat’s principle in geometrical optics and Einstein’s principle in relativity theory). 
Thenceforth extremal principles and, more generally, optimization problems have been perceived 
as a systematic and elegant framework for addressing and solving more complex problems with 
applications to economy, investment policies, and social or political negotiations. In these domains, 
optimization is, in turn, used to determine “the best” model for a complex situation , to make “the 
best” choice within a given model, and to solve the associated, purely technical, subproblems that 



occur in the mathematical analysis and implementation of the model. In this context, optimality 
is, almost always, to be obtained under certain constraints and/or at the expense of a certain price. 

The generic global optimization problem can be stated as follows. The overall performance 
of a system is described by a multivariate function, called the objective function. Optimality of 
the system is reached when the objective function attains its global extremum, which can be a 
maximum or a minimum, depending on the problem under consideration. From an algorithmic 
perspective, however, there is essentially no difference between the two. 

THE TRUST ALGORITHM 

We now define the global optimization problem considered in more rigorous terms. Let 
f(x) : 2, ---$ R be a function with a finite number of discontinuities, and x be an n-dimensional 
state vector. At any discontinuity point, x6, the function f(-) is required to satisfy the inequality 
lim,,,a inf f(x) 2 f(x6) (lower semicontinuity condition). Hereafter, f(x) will be referred to as 
the objective function, and the set 2, as the set of feasible solutions (or the solution space). The 
goal is to find location of the global minimum, i.e. the value x g m  of the state variables which 
minimizes f (x) , 

f(xg") = min{f(x) I x E D} . 

Without loss of generality, we shall take D as the hyperparallelepiped 

where pzT and 

monotonic mapping: 

denote, respectively, the lower and upper bound of the z-th state variable. 

We define the subenergy tunneling transformation of the function f (x) by the following nonlinear 

In Eq. (3), .f(x) = f(x) - f(x*), a is a constant that affects the asymptotic behavior, but not the 
monotonicity, of the transformation, and x* is a fixed value of x, whose selection will be discussed 
in the sequel. Whenever f is differentiable, the derivative of Esub(X, x*) with respect to x is given 
bY 

which yields 

aEsub(X,X*)/ax = 0 * af(x)/ax = 0 . ( 5 )  

It is clear that Es&(X,x*) has the same discontinuity and critical points as f(x),  and the same 
relative ordering of the local and global minima. In other words, Esub(x,x*) is a transformation 
of f (x) which preserves all properties relevant for optimization. In addition, this transformation 



is designed to ensure that: (i) Esub(x,x*) quickly approaches zero for large positive f^(x); and 
(ii) E&(X,x*) rapidly tends toward f^(x), whenever f(x) << 0. 

An equilibrium point xeq of the dynamical system x = g(x) is termed an attractor (repeller) 
if no (at least one) eigenvalue of the n x n matrix M ,  M = dg(xeq)/ax has a positive real part. 
Typically, a certain amount of regularity (Lipschitz condition) is required to guarantee the existence 
of a unique solution for each initial condition x(0) and, in those cases, the system’s relaxation time 
to an attractor, or escape time from a repeller, is theoretically infinite. If the regularity condition 
at equilibrium points is violated, singular solutions are induced, such that each solution approaches 
a terminal attractor or escapes from a terminal repeller in finite time. The above concepts are 
at the foundation of our Terminal Repeller Unconstrained Subenegy Tunneling (TRUST) global 
optimization algorithm. 

Let f(x) be a function one wishes to globally minimize over 2). We define the TRUST virtual 
objective function 

In the above expression e(.) denotes the Heaviside function, that is equal to one for positive values 
of the argument and zero otherwise. The first term on the right-hand side of Eq. (6) corresponds to 
the subenergy tunneling function; the second term is referred to as the repeller energy term. The 
parameter p > 0 quantifies the strength of the repeller. Application of gradient descent to E(x, x*) 
results in the dynamical system(i = 1, A) 

ii = -(af(x)/azi)(l/[l+ exp(f”(x) + a ) ] )  + p(zi - Z ~ > ~ / ~ O ( ~ ^ ( X > >  . (7) 
Figure 1 illustrates the main characteristics of TRUST for a one-dimensional problem objective 

function E(x ,  z*). A schematical representation of a sufficiently smooth f(x) is shown, which has 
three local minima, one of which is the global minimum. We assume that the solution flows in 
the positive direction (i.e., away from the left boundary), and that the local minimum at x = PLZ 

is encountered by a local minimization method, gradient descent for example. The task under 
consideration is to escape this local minimum, in order to reach the valley of another minimum 
with a lower value. We set z* = px; then the objective function in Eq. (6) performs the following 
transformation (see Figure 1): 

0 the offset function f(z) = f(z) - f(z*) creates the curve parallel to f(x), such that the local 
minimum at x = x* intersects with the z-axis tangentially; 

0 the term Esub(z,z*) forms the portion of the thick line denoted by I1 (i.e., the lower valley) 
as a result of the properties of the subenergy transformation; 

0 the repeller energy term Erep(z, x*) essentially constitutes the portion of the thick line denoted 
by I; 

0 finally, as the complete thick line (i.e., I and 11) shows, the virtual objective function E(x ,  x*), 
which is a superposition of these two terms, creates a discontinuous but well-defined function 
with a global maximum located at the previously specified local minimum px. 
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FZgur\:l . Operation of TRUST, illustrated on the function 
f (z) = 4z2$4-’) sin[+(42 + 3)], with cy 21 1.22. 



To summarize, as seen in Figure 1, E(x,x*) of Eq. (7)  transforms the current local minimum of 
f(x) into a global maximum, but preserves all lower local minima. Thus, when gradient descent 
is applied to the function E(x ,  x*), the new dynamics, initialized at a small perturbation from the 
local minimum of f ( z )  (i.e., at x = x*+d, with x* = h), will escape this critical point (which is 
also the global maximum of E(x ,x*) )  to a lower valley of f(z) with a lower local minimum. It is 
important to note that the discontinuity of E(x ,  x*) does not affect this desired operation, since 
the flow of the gradient descent dynamics follows the gradient of E(x ,  x*), which is well-defined at 
every point in the region. It is clear that if gradient descent were to be applied to the objective 
function f(x) under the same conditions, escaping the local minimum at x = px would not be 
accomplished. 

Hence, application of gradient descent to the function E(x ,  x*) as defined in Eq. ( 6 ) ,  as opposed 
to the original function f(x), results in a system that has a global descent  property,  i.e., the new 
system escapes the encountered local minimum to another one with a lower functional value. This 
is the main idea behind constructing the TRUST virtual objective function of Eq. (6).  Additional 
details and formal derivations can be found in [4, 15, 181. 

BENCHMARKS AND COMPARISONS TO OTHER METHODS 

This section presents results of benchmarks carried out to assess the TRUST algorithm using 
several standard test functions taken from the literature. A description of each test function is 
given in Table 1. In Tables 2-3, the performance of TRUST is compared to the best competing 
global optimization methods, where the term “best” indicates the best widely reported reproducible 
results the authors could find for the particular test function. The criterion for comparison is the 
number of function evaluations. 

One of the primary limitations of conventional global optimization algorithms is their lack 
of stopping criteria. This limitation is circumvented in benchmark problems, where the value 
and coordinates of the global minima are known in advance. The achievement of a desired 
accurracy (e.g., E = is then considered as a suitable termination condition [6] .  For consistent 
comparisons, this condition has also been used in TRUST, rather than its general stopping criterion 
described earlier. For each function, corners of the domain were taken as initial conditions; each 
reported result then represents the average number of evaluations required for convergence to the 
global minimum of the particular function. The TRUST calculations were performed using the value 
a = 2, for which the subenergy tunneling transformation achieves its most desirable asymptotic 
behavior [15]. The dynamical equations were integrated using an adapitive scheme, that, within 
the basin of attraction of a local minimum, considers the local minimum as a terminal attractor. 
Typical base values for the key parameters A, and p were 0.05 and lo., respectively. 

In Table 2, the benchmark labels, i.e. BR (Branin), CA (Camelback), GP (Goldstein-Price), 
RA (Rastrigin), SH (Shubert) and H3 (Hartman), refer to the test functions specified in Table 1. 
The following abbreviations are also used: SDE is the stochastic method of Aluffi-Pentini [9]; EA 
is the annealing evolution algorithms of Yong, Lishan, and Evans [17] and Schneider [19]; MLSL 
is the,multiple level single linkage method of Kan and Timmer [lo]; IA is the interval arithmetic 
technique of Ratschek and Rokne [19]; TUN is the tunneling method of Levy and Montalvo [ll]; 
and TS refers to the Taboo Search scheme of Cvijovic and Klinowski 1161. The results demonstrate 
that TRUST is substantially faster than these state-of-the-art methods. 



Table 1. Standard Test Functions used for global optimization benchmarks. 

Name Definition Domain 

Branin f(x) = 152 - (5.1/4r2)z; + ( 5 / r ) s l  - 61' + lO(1 - l / d x ) c o s  5 1  + 10 -5. 5 21 5 +lo. 
0. 5 2 2  5 +15. 

Camelback f(x) = [4 - 2 . 1 4  + (~: /3)]  S: + 5 1 ~ 2  + (-4 + 4 4 ) 4  -3. 5 2 1  5 +3. 
-2. 5x2 5 +2. 

Goldstein-Price f(x) = [I + (51 + 5 2  + 1)2 (19 - 1411 + 31:  - 1422 + 62122 + 3zg)l -2. 5 xi 5 +2. 
X[30 + (211 - 312)' (18 - 3211 + 1212 + 4822 - 3 6 2 1 ~ 2  + 2 7 ~ ; ) ]  

Rastrigin f(x) = 2; + z; - COS(l8Sl) - cos(18z2) -1. 5 xi 5 +l. 

(*)The values of the parameters are given in ( [6], p. 185). 

Table 2. Number of function evaluations required by different methods to reach a global minimum 
of Standard Test Functions. 

~~~ ~~ 

Method BR CA GP RA SH H3 

SDE 2700 10822 5439 - 241215 3416 
EA 430 - 460 5917 
MLSL 206 - 197 148 

- - 7424 - IA 1354 326 
- - 12160 - TUN - 1469 

TS 492 - 486 540 727 508 
TRUST 55 31 103 59 72 58 

- - 
- - 

Table 3. Number of function evaluations and precision for Styblinski and Tang function. Global 
minimum FSA and SAS results taken from Ref. [13]. 

Method FSA SAS TRUST Exact 

cost 100,000 3,710 89 n/a 

2 1  -2.702844 -2.903506 -2.90353 -2.903534 
x2 -3.148829 -2.903527 - 2.90353 -2.903534 
x3 1.099552 1.000241 1.00004 1. 
x4 1.355916 0.999855 0.99997 1. 
x5 1.485936 1.000194 0.99997 1. 



In Table 3, FSA is the fast simulated annealing algorithm of Szu [12], and SAS denotes the 
stochastic approximation paradigm of Styblinski and Tang [13]. As can be observed, TRUST is 
not only much faster, but produces very consistent and accurate results. Therefore, it seemed the 
ideal candidate for the solution of the notoriously difficult problem of multisensor fusion for seismic 
imaging, formulated as residual statics optimiation. 

RESIDUAL STATICS CORRECTIONS FOR SEISMIC DATA 

Statics optimization is typically done in a surface consistent manner to seismic traces corrected 
for nomnul moveout [3]; consequently, the correction time shifts depend only on the shot and 
receiver positions, and not on the ray path from shot to receiver. Shot corrections S correspond to 
wave propagation times from the shot locations to a reference plane, while the receiver corrections 
R are propagation times from the reference plane to receiver locations. From an operational 
perspective, data Dft are provided by trace (t = 1,. . . Nt), and sorted to midpoint offset coordinates 
(common midpoint stacking). For each trace, the data consist of the complex Fourier components 
(f = 1, . . . N f )  of the collected time series. Each trace t corresponds to seismic energy travel from 
a source st to a receiver rt via a midpoint kt.  Assuming the availability of Nk common midpoints, 
we seek statics corrections S and R that maximize the total power E in the stacked data: 

The above expression highlights the multimodal nature of E which, even for relatively low 
dimensional S and R, exhibits a very large number of local minima. This is illustrated in Figure 2. 

To assess the performance of TRUST, we considered a problem involving 77 shots and 77 
receivers. A dataset consisting of 1462 synthetic seismic traces folded over 133 common midpoint 
gathers was obtained from CogniSeis Corporation (J. DuBose). It uses 49 Fourier components for 
data representation. Even though this set is somewhat smaller than typical collections obtained 
during seismic surveys by the oil industry, it is representative of the extreme complexity underlying 
residual statics problems. To derive a quantitative estimate of TRUST’S impact, let Ek denote the 
total contribution to the stack power arising from midpoint I C ,  and let B k  refer to the upper bound 
of EI, in terms of S and R. Using a polar coordinates representation for the trace data D f t ,  Le., 
writing Dft  = aft  exp(iwft), we can prove that 

The TRUST results, illustrated in Figure 3, show the dramatic improvement in the coherence 
factor of each common gather. This factor is defined as the ratio Kk = E k / B k ,  and characterizes 
the overall quality of the seismic image. 

CONCLUSIONS 

TRUST is a novel methodology for unconstrained global function optimization, that combines 
the concepts of subenergy tunneling and non-Lipschitzian “terminal repellers.” The evolution of a 
deterministic nonlinear dynamical system incorporating these concepts provides the computational 
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Figure 3. The coherence factors, i.e., the dimensionless ratios E, /Bk, are plotted for each common 
gather using the initial and the optimal time shifts (“residual statics”). Ideally, at the global 
optimum, these ratios should be equal to one. 



mechanism for reaching the global minima. The benchmark results demonstrate that TRUST 
is substantially faster, as measured by the number of function evaluations, than other global 
optimization techniques for which reproducible results have been published in the open literature. 
The application of TRUST to the problem of multisensor fusion for accurate seismic imaging 
(residual statics corrections) proves that the method is not a mere academic exercise for toy 
problems, but has the robustness and consistency required by large-scale, real-life applications. 

Acknowledgments 

The research described in this paper was performed at the Center for Engineering Systems 
Advanced Research, Oak Ridge National Laboratory. Funding for the effort was provided by 
the Engineering Research Program of the Office of Basic Energy Sciences, and by the Advanced 
Computing Technology Initiative Program of the U.S. Department of Energy, under contract DE- 
AC05-960R22464 with Lockheed Martin Energy Research, Corp. 

References 

[I] Rothman, D., Geophysics, 50(12), 2784-2796 (1985). 
[2] DuBose, J., Geophysics, 58(3), 399-407 (1993). 
[3] Yilmaz, 0.) Seismic Data Processing, Society of Exploration Geophysicists, 1988. 
[4] Barhen, J., V. Protopopescu, and D. Reister, Science, 276, 10941097 (1997). 
[5] Ratschek, H. and J. Rokne,New Computer Methods for Global Optimization, Ellis Honvood, 

[6] Torn, A. and A. Zilinskas, Global Optimization, Springer-Verlag, 1989. 
[7] Horst, R., P. M. Pardalos, and N. V. Thoai, Kluwer Academin Publishers, 1996. 
[8] Floudas, C. A. and P. M. Pardalos, State of the Art in Global Optimization: Computational 

[9] Aluffi-Pentini, F., V. Parisi, and F. Zirilli, Journal of Optimization Theory and Applications, 

[lo] Kan, A. H. and G. T. Timmer, in Numerical Optimization, eds. P. T. Boggs et al, pp. 245-262 

[ll] Levy, A. V. and A. Montalvo, SIAM Journal on Scientific and Statistical Computing, 6,15-29 

[12] Szu, H. and R. Hartley, Physics Letters, A 122, 157-162 (1987). 
[13] Styblinski, M. A. and T. S. Tang, Neural Networks, 3, 467-483 (1990). 
[14] Ammar, H. and Y. Cherruault, Math. Comp. and Modeling, 18, 17-21 (1993). 
[15] Cetin, B., J. Barhen, and J. Burdick, J. Opt. Theory and Appl., 77, 97-126 (1993). 
[16] Cvijovic, D. and J. Klinowski, Science, 267, 664-666 (1995). 
[17] Yong, L., K. Lishan, and D. J. Evans, PamlEel Computing, 21, 389-400 (1995). 
[18] Barhen, 3. and V. Protopopescu, in State of the Art in GZobal Optimization, C.A. Floudas and 

P.M. Pardalos eds., pp. 163-180, Kluwer Academic Press, 1996. 
[19] Schneider, J., and P. Schuchhardt, Biol. Cybern, 74, 203-207 (1996). 

1988. 

Methods and Applications, Kluwer Academic Publishers, 1996. 

47, 1-15 (1985). 

SIAM, 1985. 

(1985). 


