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Abstract - This paper discusses some entropy based bounds for the case of real and limited integer 
weights neural networks. It is shown that a neural network using real weights can solve a dichotomy of 
m=m+ +m- patterns using a number of bits less than #bits< max(m+,m) .n{~log(D/d)]+2}  where 

n is the number of dimensions and D and d are the maximum and minimum distance between patterns in 
opposite classes, respectively. In the case of limited integer weights, it is shown that a neural network 
using integer weight in the range [-p,p] can solve a dichotomy of patterns in general positions with a 

number of bits greater than #bits > min(m+ , rn-) .n . r log2pDl.  

1. Introduction 

In recent years, multilayer feedforward neural networks (NN) have been shown to be very effective tools in 
many different applications [Arbib, 1995; Fiesler, 19961. A natural and essential step in continuing the 
diffusion of these tools in our day by day use is their hardware implementation which is by far the most cost 
effective solution for large scale use. When the hardware implementation is contemplated, the issue of the 
size of the NN becomes crucial because the size is directly proportional with the cost of the implementation. 
In this light, any theoretical results which establish bounds on the size of a NN for a given problem is 
extremely important. In the same context, a particularly interesting case is that of the neural networks using 
limited integer weights. These networks are particularly suitable for hardware implementation because they 
need less space for storing the weights and the fixed point, limited precision arithmetic has much cheaper 
implementations in comparison with its floating point counterpart. 

This paper presents an entropy based analysis which completes, unifies and correlates results partially 
presented in [Beiu, 1996, 1997a1 and [Draghici, 19971. Tight bounds for real and integer weight neural 
networks are calculated. 

2. Previous results 

The problem to find the smallest size NN which can realize an arbitrary function given a set of m vectors 
(examples, or points) in n dimensions is not new. Many results have been obtained for NNs having a 
threshoZd activation function. This is probably due to the fact that this line of research was continuing on 
the rigorous results already obtained in the literature dealing with threshold logic from the mid 60s (see 
references in [Beiu, 1997b; Fiesler, 19961). Probably the first lower bound on the size of a threshold gate 

circuit for "almost all" n-ary Boolean functions was given by Neciporuk in 1964: size>2(2" /n)y2 

[Neciporuk, 19641. Later, Lupanov has proven a very tight upper bound for the case in which depth-: 

size 5 2 2" / n  * 1+ 2" i n  [Lupanov, 19731. Similar existence exponential bounds can be found in 

[Bruck, 19891, while in [Siu, 19911 a R(2"'3)existence lower bound for arbitrary Boolean functions has 

been presented. 

For classification problems, one of the first result was that a NN with only one hidden layer having m-1 
nodes could compute an arbitrary dichotomy (sufficient condition). The main improvements are: 
0 Baum in [Baum, 19881 presented a NN with one hidden layer rml n1 neurons capable of realizing an 

arbitrary dichotomy on a set of m points in general position in R"; if the points are on the corners of the 
n-dimensional hypercube (i.e., binary vectors), m-1 nodes are still needed; 

( r { [( r] 
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a slightly tighter bound was proven in [Huang, 19911: only rl -I- (rn - 2) / n1 neurons are needed in the 

hidden layer for realizing an arbitrary dichotomy on a set of rn points which satisfy a more relaxed 
topological assumption (only 'some' points are required to be in general position); also, the m-1 nodes 
condition was shown to be the least upper bound needed; 
Arai in [Arai, 19931 showed that m-1 hidden neurons are necessary for arbitrary separability (any 
mapping between input and output for the case of binary-valued units), but improved the bound for the 
two-category classification problem to d 3  (without any condition on the inputs). 

These results show that for binary inputs the size grows exponentially (as rn 5 2" ). Some existence lower 

bounds for the arbitrary dichotomy problem are (see [Hassoun, 19951): 
a depth-2 NN requires at least rn / [n log( m / n)]  hidden neurons (if rn 2 3n ); 

a depth-3 NN requires at least 2(rn / logrn) 

bound is identical to the one presented in [Neciporuk. 19641 for m = 2" ; 
an arbitrarily interconnected NN without feedback needs (2m / 10grn)''~ neurons (if m >> n2) .  

112 neurons in each of the two hidden layer (if m >> n' ); this 

Several other bounds for arbitrary Boolean functions can be found in [Paugam-Moisy, 19921. All of these 
are: (i) revealing a gap between the upper and the lower bounds, thus encouraging research efforts to reduce 
(or even close) these gaps; (ii) suggesting that networks with more hidden layers might have a smaller size. 

3. Theoretical considerations 

3.1 Existence issues: Does a solution exist? 

Before trying to establish any bounds for the necessary number of bits, one has to investigate whether the 
problem can be solved with the given tools. This issue is simpler in the case of the real weight networks. In 
this case, it is sufficient to show that a solution exists. Since the network uses real weights, if a solution 
exists, such a solution can be implemented1 (because the hyperplanes can be placed in any position required 
by the solution). The issue becomes a little more complicated for the case of limited precision integer 
weights. In such situation, the hyperplanes are restricted to only certain discrete positions. The answers to 
these questions are given by the following propositions. 

Proposition 1. 

A set of patterns from two classes in n dimensions for which the minimum distance between two patterns of 
opposite classes is d, can always be separated using a uniform quantization of the space with elementary 

hypercubes of side d / (k&) where bl. 
The proof is constructive and can be found in [Beiu, 19961. For space reasons, it will be omitted here. In 
[Beiu, 1996b], it is shown that the problem can always be solved even for the more convenient k=l. 

Proposition 2 

Using integer weights in the range [-p, p], one can correctly classify any set of patterns for which the 
minimum distance between two patterns of opposite classes is dmin=l/p. 

The proof is based on induction on p and on the number of dimensions n. Again, due to space limitations, 
the proof will be omitted here but can be found in [Draghici, 19971. 

Note that this paper does not deal with the training i.e. the existence of an algorithm able to find a given 
solution. We are only interested in the possibilities of a network (or architecture). A nenvork can solve a 
problem if and only if a solution exists, independently of the existence of an algorithm able to find this 
solution. 



3.2 Complexity issues: how big a network does one need in order to solve a given problem? 

The interesting issue we have proposed to tackle is how complex should the network be for a given 
problem? Are there any bounds for the complexity of a network? In order to answer these questions, we 
must briefly discuss how we are going to measure the complexity of a network. 

Many measures of complexity have been proposed. Among them, there are the depth (the number of edges 
on the longest input to the output path) and the size (the number of nodes). For VLSI implementation 
purposes, the depth can be put into correspondence with the delay and the area can be put into 
correspondence with the area of a VLSI chip. However, these measures are not the best criteria because the 
area of a neuron depends on the precision of its associated weights. Better criteria are the total number of 
connections [Hammerstrom, 1988; Abu-Mostafa, 1988; Klaggers, 1993; Phatak, 1994; Mason, 19951, the 
total number-of-bits needed to represent the weights [Bruck, 1990; Williamson, 19911 or the sum of all the 
weights and thresholds [Beiu, 1993, 1994, 1994bl. The total number ofbits is discussed further in [Denker, 
1988; Beiu, 19941 etc. Keeping in mind that our ultimate goal is to build hardware implementations, we will 
adopt the total number of bits as an appropriate measure for the complexity of a neural network. 

We shall now consider the case of a set of patterns of two classes with the minimum distance between two 
patterns from opposite classes d=dmin and we shall calculate some bounds on the number of bits necessary 
for both the case of real and limited integer weights. 

Proposition 3 

Let us consider the dichotomy of m = m+ f m -  examples from R" . Then, the number of bits necessary for 
the separation of the patterns (in general positions) using real weights is bounded by: 

#bits < max(m+ , m- ) . n[log( D / d ) ]  + 2 .  , 

Proof 

Find the examples (from the two classes) which are closest to one another: xd, yd (the distance between them 
is d). Translate the origin in xd  and rotate the axes such that G, Yd become the opposite corners of a 
hypercube. The side length is E = d / & and we can use it as a step to quantize the whole space. As there 
are no patterns situated at a distance smaller than d, it is certain that no hypercube will contain examples 
from opposite classes. 

l 

e 

Fig. 1 Bounding the sub-space for a given set of examples 

Because the largest distance between two patterns is D, there is a ball in R" of radius D which contains all m 
examples (see Fig. 1). All the m+ (respectively m) examples are contained inside a ball of radius D 
centered in that example from the opposite class which is used to determine the largest distance D: YD and 
xD. Furthermore, there are only three possible cases: 

all the examples are in the sub-space determined by the intersection of two balls; all m examples are 
inside the intersection of two balls of radius D; 
there are positive examples situated on the other side (with respect to xD) of the hyperplane orthogonal 
to the segment XDYD and containing yD; select the furthest positive example and use it as the center of a 
third ball of radius D; all negative examples m are inside a subspace of the intersection of two balls of 
radius D; 
there are negative examples situated on the other side (with respect to yD) of the hyperplane orthogonal 
to the segment XDYD and containing xD; now, all the m+ examples are inside a sub-space of the 
intersection of two balls of radius D. 



It is now clear that a bound on the number of bits can be obtained if one chooses to separate the least 
numerous class which contains minimum of m and m+ patterns. 

From [Beiu, 19971, the volume of the intersection of two balls of radius r in R", placed such that the center 
&2 

of each one is on the boundary of the other one, is V (  r ,  n)  = 2a(n - 1)r" . u( n)  where a(.) = 

tl - 1 
the volume of the unit ball in R" and u(n)  = -.u(n - 2) - - . Then, a bound on the number of bits 

T (n /2+1) i s  
+')I2 

n n ' 2" 
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From the same reference a(n) < I (&/2)"de = by using Stirling's formula 
zJ6 

n ! > & . ( ~ ~ / e ) ~  weobtain: 

r n  1 n n 1 1 +-log K - -1ogn + n log( D / d )  + log K - log 3 +-log 3 - n + -1ogn --log n - 
- 2 2 2 2 2 

- -log( n - 1) - -log( n - 1) + - +-log e 
1 n - 1  n -1  n - 1  
2 2 2 2 

'bitsexampie - 

We can choose M=max(m, m+) so we make sure that the result is independent of the case chosen in Fig. 1 
and, by multiplication with M, the proof is concluded. 

Proposition 4 

Let us consider a set of m = m, + m- patterns of two classes in the hypersphere of radius D<=l centred in 
origin of R". Let us consider d&=l/p the minimum distance between two patterns belonging to different 
classes. Then, the number of bits necessary for the separation of the patterns (in general positions) using 
weights in the set { -p, -p- 1, . . .,O, 1, . . .,p} is bounded by 

#bits > min(m+ , m-). IZ - [log 2pD1 

Proof 

From proposition 2, it follows that one can divide the space using hyperplanes implemented with the given 
limited precision weights such that the maximum internal distance in any one region is less than Up. 

The proof of proposition 2 is based on geometrical considerations which are illustrated in Fig. 2 and Fig. 
3. Fig. 2 shows the hyperplanes which can be implemented with integer weights in the range [-3,3] (drawn 
in the square [-1,1]). There will be a certain number of 'large' volumes in which the maximum internal 
distance is 1/3-& (Up-& in the general case) and a number of smaller voiumes. Fig. 3 presents one of the 
'large' volumes in 3D. 

One can calculate the number of bits necessary for the representation of one example pi as 

where Vtod is the total volume of the problem and Vi, is the individual volume of the region which encloses 
(and separates) the pattern pi. But all individual volumes are smaller or equal to the 'large' volumes which 



have the maximum internal distance l / p - ~  (see [Draghici, 19971). In turn, this volume is convex (from 
construction) and therefore smaller than the volume Vhs of the hypersphere of diameter Up. Therefore: 

Fig. 2 The hyperplanes which can be implemented 
with integer weights in the range [-3,3] drawn in the 
square [-1,1]. 

For n even we have: 

r r 

i 
Y 

Fig. 3 The volume V3 (in 3D). The largest distance 
between two points in this volume is OB along the x 
axis and is Up-E. 

1 

But, from hypothesis, all patterns are included in the sphere of radius D centered in the origin. Note that 
1/2p<D<1. The first inequality comes from the fact that l/p is the minimum distance in-between two 
patterns and 2D is the diameter of the hypersphere containing all patterns. The second one is necessary 
because proposition 1 was proved for the hypercube [-1,1]” . In these conditions, Vbd is the volume of the 
sphere of radius D and the bound can be written as: 

By multiplying with min(m+,m-) Le. the number of patterns in the smallest class, we obtain 

#bits > min(m+, m- ) . n . [log 2pD1. A similar expression can be obtained for n odd. QED. 

This lower bound must not be interpreted as an absolute one. For a particular problem, when the patterns 
are in particularly favourable positions, more than one pattern from the same class can share the same 
volume and thus, the number of bits can be further reduced. 

The upper bound holds even for the limited integer weight case. Therefore, for this case: 

min(m+ , m - ) .  n {[log( +)I} <#bits < max(m+ , m-) . IZ. log - + - . {I (31 :i 
4. Conclusions 

This paper has addressed two issues. Firstly, it has been shown that both in the case of real and limited 
integer weights, the problem can always be solved. Then, based on the entropy of the data set, tight lower 
and upper bounds for the case of real and limited integer weights neural networks have been calculated. 



Although the proof for the given bounds is constructive, the shape of the bounding space can not be easily 
used in practice because it is too expensive computationally. In practice, the simplest bounding space is a 
hypercube. By taking a hypercube of side lenght 2D, the problem can be soived but the upper bound - - 

becomes m log !zD” < mr5n / 2 + n log( D / d )  + ( n  log E )  / 21 = O(mn log n )  . In other words, this has 
( d / & r  

lead to a logarithmic increase on the upper bound. 
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