
i

LA-U R s

Approved for public release:
distribution is unlimited P *

Title:

Author@):

Submitted to:

Los Alamos
National Laboratory

MLB: Multilevel Load Balancing for Structured Grid
Applications

Daniel J. Quinlan
Markus Berndt

Proceedings of Eighth SlAM Conference on Parallel
Processing for Scientific Computing
March 14-17, 1997
Minneapolis, Minnesota

Los Alamos National Laboratoty, an affirmative actiodequal opportunity employer, is operated by the University of California for the
US. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher’s right to publish as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

Form 836 (1 0/96)

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
dOCUment

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

MLB: Multilevel Load Balancing for Structured Grid
Applications *

Dan Quinlan t Markus Berndt

Abstract

The Multilevel Load Balancing algorithm (MLB) is a parallel algorithm that
determines the communication schedule that is necessary to balance a distributed
discrete load function. The MLB algorithm focuses on structured grid computations
and their load balancing requirements, which we feel are largely unsupported within the
load balancing community. The interface to MLB is inherently simple; a distributed
discrete load function is provided by the user and a communication schedule is returned.
The load function can, for example, map to one or more distributed arrays. So far the
implementation includes a parallel version of only the one dimensional MLB algorithm
and produces a communication schedule that requires at most log(p) communication
steps, where p is the number of processors (log() stands for the logarithm of base two).
MLB was first described by Dan Quinlan and Steve McCormick [l, 2, 71. This work
forms just one of the object-oriented class libraries within the OVERTURE Framework
[5], an object-oriented environment for the numerical solution of partial differential
equations in serial and parallel environments.

1 Introduction
This paper focuses upon load balancing appropriate for structured grid computations. We
present two things in this paper, first a simple interface for structured grid load balancing,
and second the MLB algorithm itself. The interface represents a simple application interface
we have found useful for load balancing our own parallel adaptive mesh refinement (AMR)
[4, 7, 21 applications. We expect that the interface is saciently simple to permit a wide
number of application areas to use MLB for load balancing of structured computations. We
present the MLB algorithm using this interface because we think it is useful for structured
grid applications and because we hope that others might adopt it to more readily permit
interchangeability of load balancing algorithms within structured grid computations. We
feel that load balancing has most commonly been too intimately linked to the structured
grid applications where it has been used. This has not been true of unstructured grid
computations because the load balancing and distribution of data are more orthogonal
issues to the unstructured grid computations.

Within load balancing there are two principle methods, graph partitioning and
geometric decomposition. Each have advantages and disadvantages. The graph partitioning
work is well suited to unstructured grid computations, but the requirements of structured
grid computations are not well addressed. Within structured grid computations the

'This work supported by the U.S. Department of Energy through Contract W-7405-ENG-36.
+Computing, Information and Communications Division, Los Alamos National Laboratory, Los Alamos,

$University of Colorado at Boulder, http://amath-www.colorado.edu/appm f student/berndt/Home.html
NM. http: f /www.c3.lanl.gov/~quinlan/home.html, http://www.c3.lanl.gov/cicl9 /teams/napc f

1

http://amath-www.colorado.edu/appm
http://www.c3.lanl.gov/cicl9

' t 2

resulting decomposition is most readily handled if the partitions of the domain represent
a set of rectangular subdomains. Geometric decomposition of the domain can accomplish
this requirement readily. MLB is a parallel load balancing algorithm which internally works
by means of a geometric decomposition of the domain. MLB produces simple rectangular
subregions. Since the cost of load balancing is often less that that of the shuffling of data
as required to balance the loads, the particular focus in MLB is upon the generation of
efficient communication schedules for the transfer of data within the parallel environment.
This has been an important concern because of the high latency of the parallel machines
used at Los Alamos. Communication costs with structured grid computations are less of an
issue since they are most generally uniform across the processors owning the load balanced
grids.

2 Interface Description
The interface to a load balancer based on graph partitioning methods is most often a
graph of the connections between elements of the domain to be load balanced. This edge
connection graph is inappropriate for the load balancing of structured grid domains because
it both does not take advantage of the regular nature of the structured grid and it does not
embed the constraints that the subdomains found through load balancing be rectangular.
The later constraint is most important within structured grid computations.

The interface for the MLB code is a simple distributed multidimensional integer array.
The elements of the load array define relative weights of computational load, typically.
No attempt is made thus far to represent or balance the communication loads, but the
communication loads are more uniform within the structured grid methods and so not
considered as significant an issue within our own driving applications (Adaptive Mesh
Refinement). The load array may be chosen to have any discretization of actual problem
domain that is considered suitable, this permits tradeoffs in memory and computation for
quality in the resulting load balanced distribution.

Though a simple interface, we yould propose general geometric based load balancers
could readily use this and thus form the basis for a comparison and sharing of geometric
load balancers which is presently not possible. This would substantially simplify the use of
load balancing for structured grid computations. Further, we feel this would encourage the
abstraction of load balancing from applications where for structured grid applications the
two are often mixed.

3
The input for this algorithm is a distributed array of nonnegative integers, the discrete
load function. The user provides a meaningful mapping of this array to some distributed
structure to be load balanced. The numbers in the array can be thought of as representing
a computational load associated with a certain region in the distributed structure that is
to be load balanced. The output of the algorithm is a communication schedule, that leads
to a balanced computational load.

For simplicity consider a number of processors that is a power of two. We can number
these processors successively by their rank from 0 to p-1, where p = 2d. Now we map these
numbers to a graycode of of order d, which means that we need d bits to represent the
graycode. The mapping for d = 2 is

Description of the 1D Algorithm

a -
/ rank I graycode I

3

Note that graycodes of processors with successive ranks differ only by one bit. We chose a
unique mapping by mapping rank 0 to the zero graycode and changing bits starting with
the least significant one. Every processor in a hypercube of dimension 2d has d edges. We
number the edges in the following way: The 0-edge is the connection to the processor with
a graycode that differs from the current one in the least significant bit, the (d-1)-edge is
the connection to the processor with a graycode that differs from the current one in the
most significant bit. All the other edges are defined accordingly.

The algorithm can be divided up into four phases:

3.1
Given the piece of the discrete load function that is local to the processor we calculate the
total load associated with this processor (by summing up all the numbers in the local piece
of the load function). Now we assume to have a coarser level of 2d-1 processors. Each of
these processors calculates the sum of the loads of two processors on the next finer level. For
example in the case where d=5 the processor with graycode 10010 on level d-1 calculates
the sum of the loads on the processors with graycodes 100101 and 100100. Recursively
this defines a hierarchy of levels where on the coarsest level (where d=O) we only have
one processor. This processor’s load is the total load that is associated with the whole
distributed discrete load function. This hierarchy of processors can be easily represented
in a binary tree, where the finest level corresponds to the leaves and the coarsest level
corresponds to the root, like in the following example with d=2.

Phase 1: Accumulation of the Load on Sub-Hypercubes

0 (00) 1 (01) 2 (11) 3 (10)

0 (4
Here the graycodes are displayed in parentheses. A typical example for the tree of processors
after accumulating the loads is the following. The numbers represent the loads on the
corresponding processors.

5 1 2 10

6 12

18

This accumulation can be done in log(p) steps of communication, since we only
need to do interlevel communication. There are lo&) + 1 levels, hence lo&) steps of
communication are needed.

3.2 Phase 2: Calculation of the Desired Loads
In order to determine how much load has to be moved from one subhypercube to another we
have to calculate the desired load for each processor in the tree. On the coarsest processor

4

the desired load is equal to the total load that has been determined in the previous phase.
On the next finer level there are only two processors (we will call them child-processors),
each of which should represent one half of the discrete load function of their parent. Thus
the desired load for both is half the desired load on the coarser processor. Since we are
dealing with integer valued loads, the remainder of the division has to go on one of the
child-processors. This introduces an discretization error that is bounded by log(p) on the
finest level. More precisely, the desired loads on the finest level differ by at most log@). On
a parallel computer one can not always come up with an additional p-1 processors in order
to build the binary tree. So each processor keeps the data that is on all its parent nodes
and siblings along edge number 0 (flip least significant bit in the graycode) in the tree. This
strategy does not affect the complexity in phase 1 and does not require any communication
during phase 2 at all. The computational complexity on each node is of order log@).

3.3
In this phase we find the communication schedule that is associated with a constant discrete
load function (where each array element in the load array is equal to one). In order to do
that we need not deal with the load function itself. Considering the accumulated loads and
desired loads on each processor is enough.

We traverse the tree starting at the root. The first step is easy: looking at the desired
load and the accumulated load on each child-node we can easily determine, how much load
each child has to send to or receive from its sibling. On the next finer level (four processors)
the situation is already more involved. Each node has two siblings, one along the 0-edge
and one along the 1-edge in the 22 hypercube. The communication schedule determined
on the next coarser level tells us how much load the two leftmost nodes have to send to, or
have to receive from, the two rightmost nodes (same for the two rightmost nodes). Given
the information about the accumulated loads on the four nodes and the communication
schedule for the next coarser level we can determine the communication schedule along the
1-edge. The communication along the 0-edge, which corresponds to communication with
the direct sibling in the tree, is now easily computed, taking in account the communication
along the 1-edge, the accumulated loads and the desired loads.

The following is an example, showing the schedule for optimal balancing of the given
loads on four processors.

Phase 3: Optimal Balancing of the Accumulated Loads

El
Here the number in the center of each node is the accumulated load, the number behind
that in parenthesis is the desired load. The columns on the left and on the right of each

5

node contain the amount of load that has to be received or sent along the specified edge in
the hypercube.

In case we have to send to a node that is to the left of the current node, then we have to
take that amount of load off the available load from the left. The calculated schedule has
to be interpreted in the following order. First a node sends to or receives from its neighbor
along the coarsest edge (the (d-1)-edge), then it communicates with the next finer one and
so forth until it communicates with the finest one (the O-edge).

On each level, 1, we need to communicate along each edge of the sub-hypercube that
the level represents, that makes for order log(29, which is equal to 1. We need to do that
sequentially for each level, starting at the coarsest, so the complexity is of order (log(p))2,
since 1 + 2 + 3 + ... + log@) = log(p)(log(p) - 1)/2.

W h y doesn't this part of the algorithm fail, due to lack of available data? Processing a
given edge we only know about the accumulated load on that node and the load that was
sent to it along coarser edges. There are cases where a node has to both send and receive
along the same edge. However, it can never happen that a node needs to send data that
it receives along the same edge, since that would just mean sending load back, to where it
came from.

3.4
After phase 3 we have all the information we need to deduce the communication schedule
that leads to the optimal balancing of the load. Unfortunately this only holds for constant
load functions. In the more general case we cannot always guarantee that we can achieve
the optimal balancing, since the discrete load function may contain big as well as small
values. This may lead to a situation where we want to send a certain load along an edge,
but are not able to, since the entries in the load function do not add up to that particular
load. In that case we should send a load that is as close as possible to the optimal load
that is to be sent.

We process only the finest level and in the following way. Starting with the coarsest
edge we determine what the amount of load is that we have to send and where we have
to send it. Then looking at the discrete load function and the pieces of load function that
were already sent to us, we determine what the piece of load function is that we have to
send. The difference of the load that is associated and that of this piece is added to the
loan variable. This variable is added to the load to be sent on the next finer levels. Then
we send the piece to the neighbor along the current edge and proceed with the next finer
level. Upon receipt of a piece of load function from a neighbor we have to subtract the
difference of the load of that piece with the load that is expected along that edge.

The introduction of the loan variable ensures that we take into account on finer levels
that we may have sent more than we were supposed to, or have received less than we were
supposed to along a coarser edge. If we send more than we are supposed to, we send data,
was supposed to be sent along a finer edge, hence we are taking out a loan from finer edges.

Since we need to send and receive at most once along each edge on the finest level the
complexity according to the communication is of order log@).

W h y doesn't the loan variable method cause problems in a situation where data has to
jus t pass through a node? Let node (a) and node (b) be connected by a k-edge. If node
(a) sends data to node (b), which has to hand it through to node (c), then node (b) and
node (c) are connected by the (k+l)-edge. Hence if node (a) sends less (or more) than it is
supposed to, node (b) finds out about it and adjusts its loan variable. This loan variable is

Phase 4: Handling of Indivisable Loads

6

taken into account for the communication along the (k+l)-edge. If node (b) receives more,
it is going to send more along the next finer edge by the exact amount that it receives more
from node (a). Similarly, if it receives less it is going to send less along the (k+l)-edge,
by the exact amount that it receives less from node (a). So the loan variable mechanism
preserves the contiguity of the load array in a hand through situation as described above.

4 Complexity of the Algorithm
The complexity of the load balancing algorithm is interesting, but the dominate cost of the
use of load balancing is in the redistribution of the data. This is why so much effort has
been made to generate an efficient communication schedule for this latter phase.

The complexity of the algorithm is really broken up into two parts, computational
complexity and communication complexity. The obvious computational complexity is that
each element of the load array is summed on each processor, this is a simple process and
typical within load balancing. Since the load array is distributed this complexity is of order

The more important complexity is the computational complexity since the cost of the P'
load balancing is dominated by the communication required. Phase 1 of the MLB algorithm
is of complexity log@), since data has to be communicated along each edge of each node.
Phase 2, the calculation of the desired loads, does not require any communication, hence
the complexity is of order 1. The pre-processing step, or phase 3 of the algorithm, is of
complexity On every level I we have to do I - 1 steps of communication. Since
there are log(p) levels the compexity is of order

d(d- 1)
2

E1 =
k l

in the case where p = 2d. In phase 4 communication along every edge has to be performed,
so the complexity is of order log(p).

However,
the complexity of generated communication schedule is of order log@).

Overall the communication complexity of the MLB algorithm is

5 Extension to more Dimensions
The MLB algorithm can be extended to higher dimensional problems in a rather straight-
forward way by applying the one dimensional algorithm to the coordinate axis successively.
In order to do that we have to restrict the way in which the load function can be distributed.
The following figure illustrates this for a 4 x 4 processor array.

I

t ' .
7

Cuts in one coordinate direction have to go all the way through the load function, the
distribution along the other coordinate direction can be random. In the two dimensional
case the MLB algorithm can be thought of as first adjusting the vertical cuts in such a way
that the load is balanced over all the vertical strips. Then parts of the load function have
to be communicated in order to actually obtain the balanced state. Now the communicated
parts of the load function have to be rearranged such that we obtain a distribution in every
strip that only shows straight horizontal cuts. Eventually the MLB algorithm is applied
again, now to each strip, which results in a balanced distribution of the load. Present
work on MLB is being done to address load balancing of multidimensional load arrays as
can occur within multidimensional structured applications. Within the load balancing for
our adaptive mesh refinement we use the one dimensional MLB algorithm, even though
the problems are two and three dimensional. Thus we get effective use of the MLB
algorithm even for higher dimensional applications, and even though the multidimensional
applications are distributed along all axis. Thus the dimension of the structured grid
application is not necessarily tied to the dimension of the load balancing.

6 Availability of Software
The the time of this writing this software is not available in its multidimensional form.
We would like to wait until this work is finished before releasing the software publicly.
However, we do intend to release this software mid summer 1997. Details will be available
from http://www.c3.lanl.gov/cicl9/teams/napc/~

References

[l] S. McCormick, D. Quinlan, Multilevel Load Balancing, Internal Report, Computational
Mathematics Group, University of Colorado, Denver, 1987.

[2] S. McCormick, D. Quinlan, Asynchronous Multdlevel Adaptive Methods for Solving Partial
Differential Equations on Multiprocessors: Performance Results, Parallel Computing, Vol. 12,

[3] S. McCormick, D. Quinlan, Dynamic Grid Refinement for Partial Differential Equations on
Parallel Computers, Proceedings of the Seventh International Conference on Finite Element
Methods in Flow Problems, 1989, pp 1225-1230.

[4] D. Balsara, D. Quinlan, Parallel Object-Oriented Adaptive Mesh Refinement, in this proceed-
ings, SIAM, 1997.

[5] D. L. Brown, G. S. Chesshire, W. D. Henshaw, and D. Quinlan, OVERTURE: An Object-
Oriented Software System for Solving Partial Dafferential Equations in Serial and Parallel
Environments, in this proceedings, SIAM, 1997.

[SI K. D. Brislawn, D. L. Brown, G. S. Chesshire, and D. J. Quinlan, Overture code, 1996. Los
Alamos National Laboratory Computer Code LA-CC-96-04.

[7] D. Quinlan, Adaptive Mesh Refinement for Distributed Parallel Processors, PhD thesis,
University of CoIorado, Denver, June 1993.

1989, pp. 145-156.

