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MLB: Multilevel Load Balancing for Structured Grid 
Applications * 

Dan Quinlan t Markus Berndt 

Abstract 

The Multilevel Load Balancing algorithm (MLB) is a parallel algorithm that 
determines the communication schedule that is necessary to balance a distributed 
discrete load function. The MLB algorithm focuses on structured grid computations 
and their load balancing requirements, which we feel are largely unsupported within the 
load balancing community. The interface to MLB is inherently simple; a distributed 
discrete load function is provided by the user and a communication schedule is returned. 
The load function can, for example, map to one or more distributed arrays. So far the 
implementation includes a parallel version of only the one dimensional MLB algorithm 
and produces a communication schedule that requires at most log(p) communication 
steps, where p is the number of processors (log() stands for the logarithm of base two). 
MLB was first described by Dan Quinlan and Steve McCormick [l, 2, 71. This work 
forms just one of the object-oriented class libraries within the OVERTURE Framework 
[5],  an object-oriented environment for the numerical solution of partial differential 
equations in serial and parallel environments. 

1 Introduction 
This paper focuses upon load balancing appropriate for structured grid computations. We 
present two things in this paper, first a simple interface for structured grid load balancing, 
and second the MLB algorithm itself. The interface represents a simple application interface 
we have found useful for load balancing our own parallel adaptive mesh refinement (AMR) 
[4, 7, 21 applications. We expect that the interface is saciently simple to permit a wide 
number of application areas to use MLB for load balancing of structured computations. We 
present the MLB algorithm using this interface because we think it is useful for structured 
grid applications and because we hope that others might adopt it to more readily permit 
interchangeability of load balancing algorithms within structured grid computations. We 
feel that load balancing has most commonly been too intimately linked to the structured 
grid applications where it has been used. This has not been true of unstructured grid 
computations because the load balancing and distribution of data are more orthogonal 
issues to the unstructured grid computations. 

Within load balancing there are two principle methods, graph partitioning and 
geometric decomposition. Each have advantages and disadvantages. The graph partitioning 
work is well suited to unstructured grid computations, but the requirements of structured 
grid computations are not well addressed. Within structured grid computations the 
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resulting decomposition is most readily handled if the partitions of the domain represent 
a set of rectangular subdomains. Geometric decomposition of the domain can accomplish 
this requirement readily. MLB is a parallel load balancing algorithm which internally works 
by means of a geometric decomposition of the domain. MLB produces simple rectangular 
subregions. Since the cost of load balancing is often less that that of the shuffling of data 
as required to balance the loads, the particular focus in MLB is upon the generation of 
efficient communication schedules for the transfer of data within the parallel environment. 
This has been an important concern because of the high latency of the parallel machines 
used at Los Alamos. Communication costs with structured grid computations are less of an 
issue since they are most generally uniform across the processors owning the load balanced 
grids. 

2 Interface Description 
The interface to a load balancer based on graph partitioning methods is most often a 
graph of the connections between elements of the domain to be load balanced. This edge 
connection graph is inappropriate for the load balancing of structured grid domains because 
it both does not take advantage of the regular nature of the structured grid and it does not 
embed the constraints that the subdomains found through load balancing be rectangular. 
The later constraint is most important within structured grid computations. 

The interface for the MLB code is a simple distributed multidimensional integer array. 
The elements of the load array define relative weights of computational load, typically. 
No attempt is made thus far  to represent or balance the communication loads, but the 
communication loads are more uniform within the structured grid methods and so not 
considered as significant an issue within our own driving applications (Adaptive Mesh 
Refinement). The load array may be chosen to have any discretization of actual problem 
domain that is considered suitable, this permits tradeoffs in memory and computation for 
quality in the resulting load balanced distribution. 

Though a simple interface, we yould propose general geometric based load balancers 
could readily use this and thus form the basis for a comparison and sharing of geometric 
load balancers which is presently not possible. This would substantially simplify the use of 
load balancing for structured grid computations. Further, we feel this would encourage the 
abstraction of load balancing from applications where for structured grid applications the 
two are often mixed. 

3 
The input for this algorithm is a distributed array of nonnegative integers, the discrete 
load function. The user provides a meaningful mapping of this array to some distributed 
structure to be load balanced. The numbers in the array can be thought of as representing 
a computational load associated with a certain region in the distributed structure that is 
to be load balanced. The output of the algorithm is a communication schedule, that leads 
to a balanced computational load. 

For simplicity consider a number of processors that is a power of two. We can number 
these processors successively by their rank from 0 to p-1, where p = 2d. Now we map these 
numbers to a graycode of of order d, which means that we need d bits to represent the 
graycode. The mapping for d = 2 is 

Description of the 1D Algorithm 
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Note that graycodes of processors with successive ranks differ only by one bit. We chose a 
unique mapping by mapping rank 0 to the zero graycode and changing bits starting with 
the least significant one. Every processor in a hypercube of dimension 2d has d edges. We 
number the edges in the following way: The 0-edge is the connection to the processor with 
a graycode that differs from the current one in the least significant bit, the (d-1)-edge is 
the connection to the processor with a graycode that differs from the current one in the 
most significant bit. All the other edges are defined accordingly. 

The algorithm can be divided up into four phases: 

3.1 
Given the piece of the discrete load function that is local to the processor we calculate the 
total load associated with this processor (by summing up all the numbers in the local piece 
of the load function). Now we assume to have a coarser level of 2d-1 processors. Each of 
these processors calculates the sum of the loads of two processors on the next finer level. For 
example in the case where d=5 the processor with graycode 10010 on level d-1 calculates 
the sum of the loads on the processors with graycodes 100101 and 100100. Recursively 
this defines a hierarchy of levels where on the coarsest level (where d=O) we only have 
one processor. This processor’s load is the total load that is associated with the whole 
distributed discrete load function. This hierarchy of processors can be easily represented 
in a binary tree, where the finest level corresponds to the leaves and the coarsest level 
corresponds to the root, like in the following example with d=2. 

Phase 1: Accumulation of the Load on Sub-Hypercubes 

0 (00) 1 (01) 2 (11) 3 (10) 

0 (4 
Here the graycodes are displayed in parentheses. A typical example for the tree of processors 
after accumulating the loads is the following. The numbers represent the loads on the 
corresponding processors. 

5 1 2 10 

6 12 

18 

This accumulation can be done in log(p) steps of communication, since we only 
need to do interlevel communication. There are lo&) + 1 levels, hence lo&) steps of 
communication are needed. 

3.2 Phase 2: Calculation of the Desired Loads 
In order to determine how much load has to be moved from one subhypercube to another we 
have to calculate the desired load for each processor in the tree. On the coarsest processor 
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the desired load is equal to the total load that has been determined in the previous phase. 
On the next finer level there are only two processors (we will call them child-processors), 
each of which should represent one half of the discrete load function of their parent. Thus 
the desired load for both is half the desired load on the coarser processor. Since we are 
dealing with integer valued loads, the remainder of the division has to go on one of the 
child-processors. This introduces an discretization error that is bounded by log(p) on the 
finest level. More precisely, the desired loads on the finest level differ by at most log@). On 
a parallel computer one can not always come up with an additional p-1 processors in order 
to build the binary tree. So each processor keeps the data that is on all its parent nodes 
and siblings along edge number 0 (flip least significant bit in the graycode) in the tree. This 
strategy does not affect the complexity in phase 1 and does not require any communication 
during phase 2 at all. The computational complexity on each node is of order log@). 

3.3 
In this phase we find the communication schedule that is associated with a constant discrete 
load function (where each array element in the load array is equal to one). In order to do 
that we need not deal with the load function itself. Considering the accumulated loads and 
desired loads on each processor is enough. 

We traverse the tree starting at the root. The first step is easy: looking at the desired 
load and the accumulated load on each child-node we can easily determine, how much load 
each child has to send to or receive from its sibling. On the next finer level (four processors) 
the situation is already more involved. Each node has two siblings, one along the 0-edge 
and one along the 1-edge in the 22 hypercube. The communication schedule determined 
on the next coarser level tells us how much load the two leftmost nodes have to send to, or 
have to receive from, the two rightmost nodes (same for the two rightmost nodes). Given 
the information about the accumulated loads on the four nodes and the communication 
schedule for the next coarser level we can determine the communication schedule along the 
1-edge. The communication along the 0-edge, which corresponds to communication with 
the direct sibling in the tree, is now easily computed, taking in account the communication 
along the 1-edge, the accumulated loads and the desired loads. 

The following is an example, showing the schedule for optimal balancing of the given 
loads on four processors. 

Phase 3: Optimal Balancing of the Accumulated Loads 

El 
Here the number in the center of each node is the accumulated load, the number behind 
that in parenthesis is the desired load. The columns on the left and on the right of each 
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node contain the amount of load that has to be received or sent along the specified edge in 
the hypercube. 

In case we have to send to a node that is to the left of the current node, then we have to 
take that amount of load off the available load from the left. The calculated schedule has 
to be interpreted in the following order. First a node sends to or receives from its neighbor 
along the coarsest edge (the (d-1)-edge), then it communicates with the next finer one and 
so forth until it communicates with the finest one ( the O-edge). 

On each level, 1, we need to communicate along each edge of the sub-hypercube that 
the level represents, that makes for order log(29, which is equal to 1. We need to do that 
sequentially for each level, starting at the coarsest, so the complexity is of order (log(p))2, 
since 1 + 2 + 3 + ... + log@) = log(p)(log(p) - 1)/2. 

W h y  doesn't this part of the algorithm fail, due to  lack of available data? Processing a 
given edge we only know about the accumulated load on that node and the load that was 
sent to it along coarser edges. There are cases where a node has to both send and receive 
along the same edge. However, it can never happen that a node needs to send data that 
it receives along the same edge, since that would just mean sending load back, to where it 
came from. 

3.4 
After phase 3 we have all the information we need to deduce the communication schedule 
that leads to the optimal balancing of the load. Unfortunately this only holds for constant 
load functions. In the more general case we cannot always guarantee that we can achieve 
the optimal balancing, since the discrete load function may contain big as well as small 
values. This may lead to a situation where we want to send a certain load along an edge, 
but are not able to, since the entries in the load function do not add up to that particular 
load. In that case we should send a load that is as close as possible to the optimal load 
that is to be sent. 

We process only the finest level and in the following way. Starting with the coarsest 
edge we determine what the amount of load is that we have to send and where we have 
to send it. Then looking at the discrete load function and the pieces of load function that 
were already sent to us, we determine what the piece of load function is that we have to 
send. The difference of the load that is associated and that of this piece is added to the 
loan variable. This variable is added to the load to be sent on the next finer levels. Then 
we send the piece to the neighbor along the current edge and proceed with the next finer 
level. Upon receipt of a piece of load function from a neighbor we have to subtract the 
difference of the load of that piece with the load that is expected along that edge. 

The introduction of the loan variable ensures that we take into account on finer levels 
that we may have sent more than we were supposed to, or have received less than we were 
supposed to along a coarser edge. If we send more than we are supposed to, we send data, 
was supposed to be sent along a finer edge, hence we are taking out a loan from finer edges. 

Since we need to send and receive at most once along each edge on the finest level the 
complexity according to the communication is of order log@). 

W h y  doesn't the loan variable method cause problems in a situation where data has to 
jus t  pass through a node? Let node (a) and node (b) be connected by a k-edge. If node 
(a) sends data to node (b), which has to hand it through to node (c), then node (b) and 
node (c) are connected by the (k+l)-edge. Hence if node (a) sends less (or more) than it is 
supposed to, node (b) finds out about it and adjusts its loan variable. This loan variable is 

Phase 4: Handling of Indivisable Loads 
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taken into account for the communication along the (k+l)-edge. If node (b) receives more, 
it is going to send more along the next finer edge by the exact amount that it receives more 
from node (a). Similarly, if it receives less it is going to send less along the (k+l)-edge, 
by the exact amount that it receives less from node (a). So the loan variable mechanism 
preserves the contiguity of the load array in a hand through situation as described above. 

4 Complexity of the Algorithm 
The complexity of the load balancing algorithm is interesting, but the dominate cost of the 
use of load balancing is in the redistribution of the data. This is why so much effort has 
been made to generate an efficient communication schedule for this latter phase. 

The complexity of the algorithm is really broken up into two parts, computational 
complexity and communication complexity. The obvious computational complexity is that 
each element of the load array is summed on each processor, this is a simple process and 
typical within load balancing. Since the load array is distributed this complexity is of order 

The more important complexity is the computational complexity since the cost of the P' 
load balancing is dominated by the communication required. Phase 1 of the MLB algorithm 
is of complexity log@), since data has to be communicated along each edge of each node. 
Phase 2, the calculation of the desired loads, does not require any communication, hence 
the complexity is of order 1. The pre-processing step, or phase 3 of the algorithm, is of 
complexity On every level I we have to do I - 1 steps of communication. Since 
there are log(p) levels the compexity is of order 

d(d-  1) 
2 

E1 = 
k l  

in the case where p = 2d. In phase 4 communication along every edge has to be performed, 
so the complexity is of order log(p). 

However, 
the complexity of generated communication schedule is of order log@). 

Overall the communication complexity of the MLB algorithm is 

5 Extension to more Dimensions 
The MLB algorithm can be extended to higher dimensional problems in a rather straight- 
forward way by applying the one dimensional algorithm to the coordinate axis successively. 
In order to do that we have to restrict the way in which the load function can be distributed. 
The following figure illustrates this for a 4 x 4 processor array. 
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Cuts in one coordinate direction have to go all the way through the load function, the 
distribution along the other coordinate direction can be random. In the two dimensional 
case the MLB algorithm can be thought of as first adjusting the vertical cuts in such a way 
that the load is balanced over all the vertical strips. Then parts of the load function have 
to be communicated in order to actually obtain the balanced state. Now the communicated 
parts of the load function have to be rearranged such that we obtain a distribution in every 
strip that only shows straight horizontal cuts. Eventually the MLB algorithm is applied 
again, now to each strip, which results in a balanced distribution of the load. Present 
work on MLB is being done to address load balancing of multidimensional load arrays as 
can occur within multidimensional structured applications. Within the load balancing for 
our adaptive mesh refinement we use the one dimensional MLB algorithm, even though 
the problems are two and three dimensional. Thus we get effective use of the MLB 
algorithm even for higher dimensional applications, and even though the multidimensional 
applications are distributed along all axis. Thus the dimension of the structured grid 
application is not necessarily tied to the dimension of the load balancing. 

6 Availability of Software 
The the time of this writing this software is not available in its multidimensional form. 
We would like to wait until this work is finished before releasing the software publicly. 
However, we do intend to release this software mid summer 1997. Details will be available 
from http://www.c3.lanl.gov/cicl9/teams/napc/~ 
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