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Semicoarsening Multigrid for Systems* 

???, J. E. Dendy, Jr.t, and ??? 

Abstract. Previously we examined the black box multigrid approach to systems 
of equations. The approach was a direct extension of the methodology used for scalar 
equations; that is, interpolation and residual weighting were operator induced, and coars- 
ening employed a Galerkin strategy. The application was to standard coarsening of the 
unknowns. In this paper we consider a semicoarsening approach and find that there are a 
few differences in what is generally effective. 
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1. Introduction. In [D3] we extended to systems of equations the ideas contained 
in [Dl] and [D2]. More specifically, let us consider multigrid with standard coarsening on 
a rectangular grid of points; that is, the coarse grid offspring of the grid GM = { z i , j  : 

1,. . . , Ln/2J}. And let us consider the system 
i = 1 ,..., rn; j = 1 ,..., n} is the grid GM-' = { % 2 & 4 2 j 4  : i = 1 ,..., Lrn/2J; j = 

LU = F, 

i.e., 

and its discrete approximation on grid G M :  

L'UM = F M ,  

i.e., 
P 

EL; = ( F " M , i  = 1,. . . , p .  
j=l 

We assume that each ( U j ) M  is defined on G M .  We also assume that detL = d e t ( l j j )  # 0 
and that detLM = d e t ( L t )  # 0. Let interpolation be denoted by IE-' : (GM-')p + 
(GM)P, where the notation (Gk)P means 

Gkx**-xGk 
p t i m e s  ' 
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And let residual weighting be denoted by I;-' : (GM)p -+ (GM-l)p. Then a two level 
method is given by: 
1. Perform v1 smoothing iterations on LM = F M .  
2. solve ~ M - l v M - 1  = fM-1 = - M  1 M - l  ( F M  - LMuM) ,  directly. 
3. Perform uM c u 
4. Perform u2 smoothing iterations on LM = F'. 
Recursion yields a multigrid method, specifically one V-cycle of a multigrid method. That 
is, step 2 can be replaced by the two level method on G'-l, etc.; eventually M levels are 
employed, where M is chosen by the constraint that direct solution on G1 is inexpensive. 

There are several details that need to be prescribed. The smoothing in steps 1 and 
4 above was taken in ED31 to be collective point Gauss-Seidel with lexicographic ordering. 
That is, Gk is swept in lexicographic order with Uk being,updated at q E Gk so that the 
residual is zero at q. This process requires the solution of a p x p system at q. As in the 
case of p = 1, collective point Gauss-Seidel gives an acceptable smoothing factor unless 
more than mild anisotropies are present. In the case of general anisotropies, alternating 
collective line Gauss-Seidel would be needed; this possibility was not investigated in [D3]. 

+ Ig-,VM--I. 

In [D3] and here, we restrict attention to operators with templates of the form 

where N W ,  N, N E ,  W ,  C, E ,  S W ,  S ,  and S E  are all p x p matrices. If (1.1) gives the 
template of the operator at ( b ,  I ) ,  then C is the matrix relating U z l ,  n = 1,. . . , p ,  W is 
the matrix relating UFl, n = 1,. . . , p  to ?7;-l,r, n = 1,. . . , p ,  etc. 

we temporarily assume symmetry of 
Lk.  For fine grid points coinciding with coarse grid points, I$-I is just the identity. For a 
fine grid point (if,jf) horizontally between two coarse grid points ( i c , j c )  and (ic+ l , jc ) ,  

For a brief description of the derivation of 

(c - s - N ) ( I ; - , V ~ - - ~ ) ~ ~ + ~ , ~ ~  = (NW + w + SW)W;G; + ( N E  + E + SE)&; ,~~ ,  

where NW,N,  etc. are evaluated at (if + 1,jf) and where it is assumed that C - S - N 
is invertible. A similar formula holds for fine grid points vertically between two coarse 
grid points. Then there is enough information to use the operator to express fine grid 
points in the center of four coarse grid points in terms of these four coarse grid points. 
Under the assumption of symmetry, we can take I:-' = (I,"-,)*. Finally L"' is defined 
by ~ k - 1  = Ik-lLkIk 

k k-1.  
For ease of exposition, let us denote by I with block entries Iaj, so that 

In [D3] it is shown that in the constant coefficient case, Iij = 0 for i # j. Thus for 
smooth coefficient problems, one would expect I;j, i # j ,  to be small. Thus an alternative 
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which is explored in [D3] is to ignore Lfj ,  i # j ,  reducing the derivation of operator induced 
interpolation to the scalar case, in terms of the Operators Lii, i = 1,. . . , p .  Obviously, there 
are immediate counterexamples to the well-pmedness of this procedure. For example if 
p = 2 and L.ff = 0 for i # j ,  then by interchange of block rows, the system can be rewritten 

so that if = 0, i = 1,2. Such obvious counterexamples aside, there is a numerical example 
in [D3] which indicates that it is marginally better to avoid this latter procedure of basing 
interpolation on scalar blocks, rather than on the whole system. 

In practice, isotropic operators seldom appear. Either there are inherent anisotropies 
in the physical system, or gridding effects introduce them. Because of the necessity of 
alternating collective line Gauss-Seidel for semicoarsening in the presence of anisotropies, 
it seems natural to consider the possibility of a semicoarsening procedure. Another reason 
for considering semicoarsening is that the computation to form = I k - l L k I ~ - l  k is 
considerably simplified. In section 2, we introduce some semicoarsening algorithms, and 
in section 3, we give some numerical examples. 

2. Sernicoarsening. In semicoarsening multigrid procedures, the grid is coarsened 
in just one direction, which we choose to be y. Thus, the coarse grid offspring of a grid 
{xi,j : i = 1,. . . ,m; j = 1,. . . , T I }  is the grid { ~ ; , 2 j - 1  : i = 1 , .  . . ,m; j = 1,. . . , [~1/2j}. 
The robustness of line relaxation coupled with semicoarsening for constant coefficient , 
anisotropic, scalar problems was first reported in [W]. For scalar problems with anisotropic 
and discontinuous coefficients, a semicoarsening method was considered in [DMRRS] for 
three-dimensional scalar problems. The two-dimensional analogue of this method is con- 
sidered in [DIR] and [SW]. Both of these papers use a technique due to Schaffer [Sc]; 
without this technique, the semicoarsening method would not be competitive. 

To simplify the exposition, we describe this technique for symmetric scalar equations, 
p = 1. For odd lines of G k ,  is just the identity. For even lines, let 

A-V-  + A'V' + A+V+ = 0 

be the equation that would give the row V o  = ( 6 , j  : i = 1, - - , M )  in terms of the rows 
V -  = (V&1 : i = 1, . e - ,  M )  and V +  = (K,j+l : i = 1,. - - , M ) ,  for j even. Here A- ,  A', 
and A+ are all tridiagonal matrices; 

A- = tridiag(SW S SE),  

Then 

A' = tridiag(W C E ) ,  

and A+ = tridiag(NW N N E ) .  

V o  = -(A')-l(A-V- + A'V'). 

Unfortunately, use of (2.2) yields a nonsparse interpolation, leading to nonsparse coarse 
grid operators. Schaffer's idea [Sc] is to assume that -(A')-lA- and (-A')-lA+ can each 
be approximated by diagonal matrices in the sense that B- and B+ are diagonal matrices 
such that 

-A'B-e = A-e and - AoB+e = A+e, 
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where e is the vector (1, - - - , l)T. To find B- and B+ requires just two tridiagonal solves. 
The interpolation formula is 

V o  = B-V- + B+VS. 

The case for symmetric systems, p > 1, is the same, except that now B- and B+ are 
block diagonal matrices - i.e., B;i and B$ are diagonal - and A', A-, AS are block 
tridiagonal. Thus (2.3) no longer gives enough information to solve for B- and BS. One 
way to get enough information is to require 

-AoB-ej = A-ej and - A0B+ = A+ej, j = 1,. . . , p ,  

where e j  = (61 j ,  . . . , 6 p j ) T -  The unknowns can be ordered so that A' has 2p nonzero 
diagonals. 

For symmetric systems I:-' can be taken to be (I,"-,)* and A"' = I;-lAkIk k-1' For 
nonsymmetric systems, following the ideas in [D2] leads to forming I:-, by redefining A-,  
Ao, and A+ as 

(2.44 
A- = blocktridiag(symm(5'W) symm(S) symm(SE)), 

A' = bZocktridiag(W C E), 

and A+ = bEocktridiag(symm(NW) symm(N) symm(NE)), 

where symm(G) = $(G + G*). A more natural choice for A', perhaps, is 

A' = bZocktridiag(symm(W) symm(C) symm(E)), 

but experimentally this choice gives no better results than the above, and the above choice 
has the advantage of having to compute and store only once the banded LU decomposition 
of A', which is also needed to perform relaxation. Both choices reduce to A' in (2.1) when 
A is symmetric. I:-' is formed as (J,"-,)*, where (J,"-,)* is formed from 

(2.4b) 

A- = (bZocktridiag(SW S SE))*, 
A' = (bZocktridiag(W C E))*, 

and A+ = (bEocktridiag(NW N N E ) ) * .  

Again Ak-' = .Ik- k 1 A kIk k-l. 

In the above, it may be asked why the symmetric parts of the blocks are used instead 
of the true symmetric parts. Consider the case p = 2, and suppose that All = A22 = 0. 
Then using the true symmetric parts yields 

~ y r n r n ( A ~ ~ ) B ~  = symm'(A&) 

symm(Ai,)B.& = symm(A2) 

B,f=B&O. 
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Then the AI part of the coarse grid operator is 

clearly wrong, since this system is a set of decoupled scalar equations, and this methodology 
leads to the dependence of the coarse grid operator for A12 on an interpolation operator 
induced by A21. But (2.4b) yields 

A:lB& = symm(A2fi) 

Ay2B2f2 = symm(AF2) 
f -gf 

B12 - 21 = 0, 

and the AI part of the coarse grid operator is 

A similar argument shows that the residual weighting operator needs to be 

and that to achieve that goal, (2.4b) may be used. It is curious, however, that these 
heuristics suggest using the symmetric part of the blocks instead of the true symmetric 
part in the case of deriving whereas in the case of deriving If1 they suggest using 
the true transpose instead of the transposes of the blocks. We note that the factorization 
provided by the LINPACK routine used to factor the band matrix A' in (2.4a) also provides 
a factorization of A' in (2.4b), since one matrix is the transpose of the other. 

Using the notation of (1.2), we also consider ignoring the nondiagond components of 
That is we consider replacing (2.4a) by 

(2 .5~)  

and (2.4b) by 

(2.5b) 

A- = bZockdiag(symm(SW) symm(S) symm(SE)), 

A' = blockdiag(W C E) ,  

and A4 = blockdiag(symm(NW) symm(N) symm(NE)), 

A- = (blockdiag(SW S SEI)*, 

A' = (bZockdiag(W) C E))*, 

and A+ = (bZockdiug(NW N NE))* .  

Again A'-' = Ii-lA'I$-l. This algorithm assumes that the system can, and has, been 
written in a form in which the block diagonal is nonsingular. 
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3. Numerical Examples. The first example is the biharmonic equation written as 
a system: 

-AU1 = F in Ci = (0, I) x (0, I), 
U 1  - AU2 = o in a, 
U 2  = o on aCi, 
-- aU2 - o on a ~ ,  av 

where F is chosen so that U 2 ( z ,  y) = sin2msin2ry.  These boundary conditions are more 
realistic and harder than specifying U1 and U 2  on the boundary, an example considered 
in [D3]. (3.1) can be discretized as follows [E]: 

- A , h + M h U 2 = F o n R h = ( h  ,... , ( N - l ) h ) x ( h  ,..., ( N - 1 ) h ) )  
u1 - A,hu2 = o on a h ,  

where h = &, A,h is the five point Laplacian with zero boundary conditions, and 

-Zh-4, i f ( i , j ) = ( I , j ) , j = z  )..., N-2,  

( i , j )  = ( i ) l ) , i  = z,.. . ) N  -2, 
(i, j )  = (i, N - l), i = 2,. . . ) N - 2 

( i , j ) = ( N - l , j ) , j  =2 ,  ..., N - 2  

-4h-4, if ( i , j )  = (1, I), ( 1 , N  - I ) , ( N  - 1, I), or ( N  - 1 , N  - I), 
0,  otherwise. 

Tables 1 and 2 show the result of applying (2.4) and (2.5) respectively to (3.1). 

TABLE 1:PERFORMANCE OF (2.4) FOR(3.1) 

Size of Number CF - First CF - Last average CF 

9 x 9  10* 2.3 x lo1 8.5 5.7 
19 x 19 10* 9.3 x io3 1.7 x io8 2.1 x io4 
39 x 39 10* 4.3 x 101 8.9 1.1 x lo1 

Problem of Cycles Cycle Cycle 

* fails to converge in ten cycles 

TABLE 2:PERFORMANCE OF (2.5) FOR (3.1) 
__. ~ ~- - ~ 

Size of Number .CF - First CF - Last average CF 
Problem of Cycles Cycle Cycle 

9 x 9  10 .13 .14 .13 
19 x 19 13 .45 .19 .22 
39 x 39 19 1.2 .30 -32 
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' - I -  - 

This is problem (4.2) in [D3]. There the convergence factors for the last cycle for the 
9 x 9, 19 x 19, and 39 x 39 problems were, respectively, .12, .21, and .48 for nondiagonal 
interpolation (analogous to (2.4)) and .15, 26, and .57 for diagonal interpolation (analogous 
to (2.5)). 

The second problem is 

-V 

-V 

where 01 = [O, w1 

1 i f (s ,y)  E i l l ,  
0 otherwise. 

F1(z,y) = FZ(5,y) = 

Table 3 shows the result of applying (2.4) to (3.2). 

TABLE 3:PERFORMANCE OF (2.4) FOR (3.2) 

Size of w1 and wp Number CF - First CF - Last average CF 
Problem of Cycles Cycle Cycle 
15 x 15 7.) 16. 7 1.6 .06 .07 
31 x 31 15.) 32. 8 1.5 .07 .09 
63 x 63 31.,63. 9 1.2 .08 .10 
63 x 63 32.,63. 10 .39 .17 .14 

* fails to converge in ten cycles 

The results are the same for (2.5) for (3.2) to the number of decimal places reported. 
The same problem was done in [D3] with w1 = 23. and w2 = 40. On a 39 x 39 grid, 
the convergence factor for the last cycle was .48 and .57 for nondiagonal and diagonal 
interpolat ion respectively. 

Finally, we consider a problem that mimics the situation that arises in petroleum 
reservoir engineering when, instead of employing IMPES, equations implicit in pressure 
and saturation are employed: 

- p2  in SZ = ( 0 , ~ s )  x (0, w2) 
dU2 dU2 

dY 
(3.3) -v e (D21VU1) - v - (D22VU2) + 7&- +-- 

u1 = u2 = o on dR, 
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1 if(z,y) E 8, 
4 otherwise, Dll(%Y) = { 

1 if (qy) E 01, 

0 otherwise. 

Tables 4 and 5 give the results of (2.4) and (2.5) applied to (3.3). 

TABLE 4:PERFORMANCE OF (2.4)FOR(3.3) 

Size of w1 and 7.02 Number CF - First CF - Last average CF 
Problem of Cycles Cycle Cycle 
15 x 15 7.) 16. 10 -21 .12 .15 
31 x 31 15., 32. 10* .38 .17 .24 
63 x 63 31.,63. 10* .61 .26 .36 
63 x 63 32., 63. 10* -61 .26 .36 

* fails to converge in ten cycles 

TABLE 5:PERFORMANCE OF (2.5) FOR(3.3) 

Size of w1 and w2 Number CF - First CF - Last average CF 
Problem of Cycles Cycle Cycle 
15 x 15 7.) 16. 8 .15 .13 .12 
31 x 31 15., 32. 10 .25 .15 .17 
63 x 63 31., 63. 10* .41 -20 .24 
63 x 63 32.) 63. 10* .41 .20 .24 

* fails to converge in ten cycles 

These three examples illustrate that (2.5) is at least as effective as (2.4) in these three 
examples. The comparison for (3.1) is pwticuiarly compelling. In [D3], with standard 
coarsening, the method based on nondiagonal interpolation was always superior to the 
method based on diagonal interpolation. For semicoarsening apparently the reverse is 
true. One observation is that the influence of interpolation for the methods in [D3] is 
local. And for (2.5), the influence of interpolation becomes weaker as the distance from 
the interpolated point increases, since the inverse of a diagonally dominant matrix has this 
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property. But for (2.4)) no such claim can be made; indeed, for (3.1)) the presence of the 
nonzero terms in M& near the boundary has a global influence on the coarse grid operator. 
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