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Abstract. The ALEXIS’ (Array of Low Energy X-ray Imaging Sen- 
sors) (Priedhorsky et al., 1989) satellite scans nearly half the sky every 
fifty seconds, and downlinks time-tagged photon data twice a day. The 
standard science quicklook processing produces over a dozen sky maps at 
each downlink, and these maps are automatically searched for potential 
transient point sources. We are interested only in highly significant point 
source detections, and based on earlier Monte-Carlo studies (Roussel- 
Dupr6 et al., 1996), only consider p < which is about 5.2 “sigmas”. 
Our algorithms are therefore required to operate on the far tail of the dis- 
tribution, where many traditional approximations break down. Although 
an exact solution is available for the case of unweighted counts (Lampton, 
1994), the problem is more difficult in the case of weighted counts. We 
have found that a heuristic modification of a formula derived by Li and 
Ma (1983) provides reasonably accurate estimates of pvalues for point 
source detections even for very low pvalue detections. 

1. Introduction 

We test the null hypothesis of no point source (assuming a spatially uniform 
background) at a given location by enclosing that location with a source kernel 
(whose area Asrc is generally matched to the point-spread-function of the tele- 
scope) and then enclosing the source kernel with a relatively large background 
annulus (area Abak). Given Nsrc photons in the source kernel, and Nb& photons 
in the background annulus, the problem is to determine whether the number of 
source photons is significantly larger than expected under the null. 

More sensitive point source detection is obtained by weighting the photons 
to more precisely match the point-spread function of the telescope. Fhrther 
enhancements are obtained for ALEXIS data by weighting also according to 
instantaneous scalar background rate, pulse height, and position on the detector. 
In this case, we ask whether the weighted sum of photons in the source region 
is significantly larger than expected under the null. 
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2. Unweighted counts 

If counts are unweighted (Le. ,  all weights are equal), then it is possible to write 
down an exact, explicit expression for the probability of seeing Nsrc or more 
photons in the source kernel, assuming Ntotd = Nsrc + Nb& is fixed. This is a 
binomial distribution, and Lampton (1994) showed that the pvalue associated 
with this observation can be expressed in terms of the incomplete beta function: 
p = I f  (Nsrc, Nb& + 1) , where f = Asrc/ (Asrc + Ab&). See also Alexandreas et al. 
(1994), for an alternative derivation of an equivalent expression (the assumption 
that Ntotd is fixed is replaced by a Bayesian argument). 

If the count rate is high (or the exposure long), so that Nsrc and Nb& are 
large, then an appropriate Gaussian approximation can be used. In general, this 
involves finding a “signal” and dividing it by the square root of its variance. 

Case lu. The most straightforward approach uses the signal Nsrc - (YNb&, 
where Q = AsrJAw. Under the null hypothesis, this signal has an expected 
value of zero, and a variance - if Nsrc and Nb& are treated as independent 
Poisson sources - of Nsrc + a 2 N b ~ .  To get a pvalue, use 

where S(s)  = i ( 1  - erfc(s/fi)) converts “sigmas” of significance into a one- 
tailed pvalue. 

Case 2u. An alternative approach, suggested by Li and Ma (1983), treats 
the sum Ntotd = Nsrc + N w ,  as fixed, so that Nsn: and Nb& are binomially 
distributed. In particular, choose the signal Nsrc - fNtotai, and note that the 
variance of Nsn: is given by f (1  - f)Ntotd, while the variance of Nt0td is by 
definition zero. In that case 

Case 3u. By looking at a ratio of Poisson likelihoods, Li and Ma (1983) 
also derived a more complicated equation 

P = s ( 4 2  { Nsrc ln(Nsrc/fisrc) + Nbak ln(Nbak/fibak)} ) 2 (3) 

where Nsrc = fNtotal and Nb& = (1 - f)Ntotd. This is considerably more 
accurate than Eqs. (1,2) when Nsrc and Nb& are not large, but is still just 
an approximation to Lampton’s exact formula. Abramowitz and Stegen (1972) 
provide several approximations to the incomplete beta function, one of which 
(25.5.19) is an asymptotic series whose first term looks very much like the Li 
and Ma formula. The left panel of Figure 1 compares these cases, along with 
the Lampton (1994) formula, using a Monte-Carlo simulation. 

A 

3. Weighted counts 

Define Wsrc = CjESrCwi and Qsrc = & s r c ~ f ,  where wi is the weight of the 
i-th photon. Notice that when all the weights are equal to one, we have Qsrc = 
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Figure 1. Results of Monte-Carlo experiments with N = 100 pho- 
tons, with f = 0.1, and with T = lo7 trials. For the weighted experi- 
ment, N weights were uniformly chosen from zero to one, and assigned 
to the N photons. The photons were randomly assigned to the source 
kernel or background annulus with probabilities f and 1 - f respec- 
tively. Values of Wsrc, Wb&, Qsrc, and Qb& were computed, and a 
pvalue was computed using the formulas for the three cases. As the 
pvalues were computed, a cumulative histogram H(p)  was built indi- 
cating the number of times a pvalue less than p was observed. Since 
we expect H ( p )  = p T ,  we plotted H ( p ) / p T  as the frequency of “overoc- 
currence” of that pvalue. The plot is this overoccurrence as a function 
of “significance”, defined by - loglo p. 

wsrc = NS, and Qb& = w b &  = Nbak- Note also that Wsrc/Nsc = (Wi)iESrC, 
and that Qsrc/Wsrc = (w~)/(wi) .  We do not make any assumptons about weights 
averaging or summing to unity. (We define W a  and Qb& similarly.) 

Generalizing Case lu,  we define the signal as Wsrc - a W b &  and then 
treating source and background as independent, we can write the variance as 
QSrc + a2Qb&.  We can similarly generalize Case 2u and obtain: 

( 5 )  
~ a s e ~ w :  p = ~ (  wsrc - a w b a k  

dCYQsrc -I- aQbak 

Case 3w: It is not as straightforward to generalize Eq. (3), but we have 
tried the following heuristic: 

where *src = fWtotd and *b& = (1 -f)Wtotd. The Monte-Carlo results shown 
in Figure 1 indicate that this heuristic provides reasonably accurate p-values even 
for very small values of p. 
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4. Limit of precisely known background 

An interesting limit occurs as the background annulus becomes large. Here, 
Ab& + 00, and the expected backgrounds fisrc, *src, etc. are all precisely 
known. For the unweighted counts, the exact p-value can be expressed in terms 
of the incomplete gamma function: p = 1 -I'(N&, fisrc)/I'(Nsrc). The Gaussian 
estimate of significance is straightforward2 both for the unweighted case, p = 
S (.e), and for the weighted case: p = S ( a w e ) .  In this limit, 
Eq. (6) becomes 

Marshall (1994) has suggested an empirical formula p = S 

where A = 0.7Qsrc/Wsrc, which produced reasonable results in his simulations, 
but does not appear to be well suited for pvalues at the far tail of the distribu- 
tion. 
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'Babu and Feigeison (1996) incorrectly suggest p = S ((Nsrc - fisrc)/d-). 
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