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SUMMARY. The dynamic behavior of metal matrix composite (MMC) plates is considered. In 
particular, the influence of inelastic deformations and delamination at the interfaces of the lamina 
on the macroscopic and local response of Al203lAl plates are studied. The work is carried out 
using a recently developed plate theory which models both delamination and localized history- 
dependent effects such, as inelasticity. A linear debonding model for the interface is employed 
for the current work. The theory models both the initiation and growth of delaminations without 
imposing any restrictions on the location, size, or direction of growth of the delamination. In the 
current work the response of the individual lamina in the plate are modelled using the Method 
of Cells (MOC) micromechanical model. The inelastic behavior in the matrix is modelled using 
the unified viscoplastic theory of Bodner and Partom. 

The behavior of a A1203/Al plate under dynamic cylindrical bending subjected to a ramp and 
hold type of loading is examined. For simplicity, the plate is assumed to be composed of a 
cross-ply layup. It is shown that both inelastic deformations and delamination have a strong 
influence on dynamic plate behavior. The inelastic deformations have stronger effect on the 
axial displacement while delamination has greater influence on the deflection. 

KEYWORDS: Delaminated composite plates, interfacial constitutive laws, dynamic plate 
behavior, micromechanics, Method of Cells, Viscoplasticity 

INTRODUCTION 

Laminated composite structures have many potential applications in a variety of engineering 
fields. However, laminated structures are susceptible to delaminations between iayers. 
The presence of delaminations can cause significant degradation of the structural response 
characteristics, as compared to perfectly bonded structures. Additionally, it must be recognized 
that history-dependent inelastic deformations evolve in composite plates under many loading 
situations. Therefore, it is 
necessary that analytical tools which can accurately predict these effects must be developed 
and subsequently employed in the design and analysis process. 

Furthermore, these mechanisms can be highly interactive. 

A review of work which considers the ineiastic dynamic behavior of homogeneous plates is 
given in [l]. More recently, work has been done to study the inelastic behavior of composite 
plates [2]. To date, relatively little work has been done considering the dynamic behavior of 
inelastic delaminated composite plates. 

One potential method for analyzing delamination initiation and growth is through the use of 
interfacial constitutive models [3-61 The general form of such constitutive relations are given by 

A* = .fz(As, k) (1) 

where A% are the displacement jumps and t ,  are the interfacial tractions. The relationship of these 
types of models to fracture mechanics is provided in [6]. 
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f A recently developed plate formulation is employed to study the dynamic behavior of inelastic 

delaminated composite plates [7,8]. The plate theory is based on an approximate higher-order 
discrete layer analysis. The theory is capable of incorporating any general nonlinear interfacial 
model behavior in an internally consistent fashion. No assumptions concerning the location, 
direction of growth, or number of delaminations are made in the theory. The plate theory is 
sufficiently general that any inelastic constitutive model can be employed. The plate theory 
has been shown to provide excellent agreement with both exact static elastic solutions and 
approximate dynamic solutions [7,8]. 

PLATE THEORY FORMULATION 

Consider a single layer. It is assumed that the displacement field within this layer is approximated 

(2) 
where j = I ,&.  . . , N .  N is the order of the polynomial expansion. The functions p ( ~ )  
are specified functions of the transverse coordinate z and the YJ(z, 9, t )  are the associated 
displacement coefficients. The governing equations for the layer are obtained by substituting 
the above displacement field into the principle of virtual work 

(3) 

by 
% (2, Y, z,  t )  = v;' (2, Y, t )  V(r> 

< + N;la,a - R: + F,' = Im3VT 

where m, j = I, 2,.  . . , N .  The corresponding inplane boundary conditions are 

( 4 4  

T;' = N:ana on H l 2  (4b) 

Kj = specified on aR1 

where = aR1 + aR2 and X2 is the plate boundary. Explicit satisfaction of both the continuity of 
the interfacial tractions and the jump conditions on the interfacial displacements are utilized to 
couple the equations governing the behavior of different layers to obtain the governing equations 
for the laminate. These interfacial conditions are given by 

(5a) ( yl) k+l  - (q")k = A t  = f, ( A , * , T , ~ )  

(..j>k + (<)k+l  = 0 

The above results are completely general and the displacement jumps are expressed in a direct 
and consistent fashion as a function of the fundamental unknowns in the theory, r/;j and T,?. 

Additionally, the interfacial delamination relations can easily incorporate the constraint that the 
layers cannot interpenetrate. 

The above formulation has been carried out in a sufficiently general fashion that any constitutive 
law for the behavior of the layer or interface may be incorporated and, therefore, any evolution 
laws for the local effects can be consistently incorporated into the formulation. 

The general theory has been implemented in an explicit finite element (E) code. In the FE code 
it is assumed that the temporal gradient in the equation of motion is approximated as 

21 - VI) 
V = -  

At 

where v0 and At are the velocity at the preceding time and the time increment, respectively. Also 
the left hand side of the equation of motion is evaluated at the previous time step. It is noted that 
the gradient terms are evaluated using the Mean-Value Theorem. 

Use of these expressions in the definitions of the force resultants, iVja and Ril then using these 
results in the governing equations as known forcing terms allows the new velocities for the layers 
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to be determined. The new velocities are used to update the rate-of-deformation tensor using 
an expression based on the Mean-Value theorem similar to the above expression. The stresses 
throughout the plates are then updated by substituting the new rate-of-deformation tensor into 
the constitutive model for the materials within each layer. Once the stresses are computed, the 
boundary conditions for the plate are updated and the algorithm pursues advancing the velocities 
at the next time step. This process in continued until the problem is complete. Further details 
of the dynamic implementation of the theory are given in [8]. 

METHOD OF CELLS MODEL 

The Method of Cells [3] represents an efficient and accurate micromechanical model for 
predicting the inelastic behavior of composite materials. The analysis considers the behavior of 
a composite composed of a doubly periodic array of fibers which implies that it is only necessary 
to model the behavior of a unit cell, Fig. 1. The unit cell is subsequently considered to consist 
of four subcells. A linear velocity expansion is used to model the behavior in each subcell. 

where cx and p are used to denote the subcells and&  and^^ denote local sucell coordinates. Using 
the strain displacement relations the infinitesimal strains within each subcell can be expressed 
as functions of the and the +:a7s). Imposing the velocity and traction continuity conditions 
between subcells 

hllai$9B) + h218i$@) = hi;2 for i=1,3 

hal1i$') + ha/2i$32) = lig for i=1,3 

a,P=l 

in conjunction with the periodicity of the velocity fields provides closed form expressions for 
the effective macroscopic constitutive relations for a composite. 

BODNER-PARTOM VISCOPLASTIC MODEL 

The simplest form of the unified viscoplastic theory of Bodner and Partom [9] is used to model 
the inelastic behavior of the matrix phase in the composite. The fiber is assumed to be elastic. 
A Prandtl-Reuss type flow rule is used in this theory. 

i:, = Astj (11) 

where 
A = ( % )  

1 n + l  A2 = -Z2 3 (y) 
2 = 21 - (21 - Zo) ezp  ( -mWp/Zo) 

where i:j is the inelastic strain rate, W, is the plastic work, and J2 = $sZjsa, and szj = or3 - g b k k 6 a j .  

The material viscoplastic response is characterized by the constants n, m, Do, Z,, and 21. 
The Bodner-Partom theory as presented models the inelastic material behavior using isotropic 
hardening only. 

1 
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RESULTS 

For this work the dynamic response of a cross-ply (0/90) composite plate subjected to cylindrical 
bending is examined. The aspect ratio of the plate is 5 .  Thus the plate can be consider to be a 
thick plate. In such a plate significant transverse stresses are observed. The plate is composed 
of alumina fibers A1203 embedded in an alumimun matrix. The fiber is elastic and the matrix 
supports inelastic deformation. The material properties of the constituent phases are given in 
Table 1. A fiber volume fraction of 64% is used generate the results. The plate is subjected to a 
ramping half sine load for 1 p s  where the peak value changes from 0 to qo = 1 GPa. The load is 
subsequently held at this peak value for 4 p s .  

TABLE I .  Material properties for A1203lAl constituents. 

Three cases are considered. In the first case the plate is modelled as inelastic but perfectly 
bonded (PB). In case 2 both inelastic behavior and debonding (DB) are modelled. For this 
case, a linear interfacial constitutive model is employed for simplicity, (At = RT,), where the 7, 
are the appropriate interfacial stresses obtained directly from the theory. The interfacial model 
parameters for the debonded analysis are R, = R, = 0.1 cm/GPa where the subscipts n and s 
denote the normal and shearing responses. Initially the laminate in case 2 is perfectly bonded. 
The final case models the plate as elmtic and perfectly bonded. 

The transverse displacement as a function of time for the three cases is given in Fig. 1. The 
following discussion is based on simple 1D wave propagation arguments considering the effects 
of the internal waves. The quoted times apply to case 3 (the elastic, perfectly bonded case). The 
transverse sound speed in the lamina is about 0.8. The transverse sound speed of the lamina 
is about 0.8 cdps .  Initially, the top surface of the plate is rapidly accelerated by the applied 
loading. Both the interface and the bottom surface remain at rest. At approximately 1.2 ps the 
maximum amplitude of the wave reaches the interface. The presence of the interface results 
in a reflected wave in the top lamina and a transmitted wave in the bottom lamina. The initial 
transmitted waves due to the beginning of the applied loading reach the outer surfaces of the 
plate at this time. This begins a rapid acceleration of the back surface. The reflected waves 
at the top surface begin to cause some deceleration of this surface. At approximately 2 ps the 
initial wave reflections from the outer surfaces reach the interface. The midsurface of the plate 
then begins to accelerate. Additionally, at this point in time, the maximum wave amplitude has 
reached the outer surfaces of the plate. This results in the greatest acceleration at the bottom 
surface and rapid deceleration of the top surface. Similar wave reflection and interaction process 
continues throughout the rest of the calculations and corresponding interpretations of the wave 
effects can be made. 

Incorporating inelastic deformations into the calculation, case 1, results in similar effects in the 
deflection versus time response. However, the trends occur at delayed times as compared to 
case 3. The delays in the trends are due to the fact that the inelastic deformations migitate the 
effects of the elastic waves. The presence of the inelastic deformations "soften" the plate and 
result in larger deformation magnitudes. The amount of delay in case 1 as compared to case 3 is 
relatively small due to the relatively large volume fraction of the elastic fiber. If the fiber were 
inelastic or a lower fiber volume fraction were considered then the delays in the effects due to 
the presence of inelastic deformations would be larger. 

Consideration of the response for case 2 (debonding and inelastic deformations) shows that the 
presence of delamination results in the same trends as cases 1 and 2. Similar to case 1, the trends 
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, are delayed as compared to case 1. These delays are greater than those observed in case 1. The 

presence of the debonding at the interface results in an impedance mismatch. This impedance 
results in stronger reflected wave effects within the top lamina and weaker transmitted wave 
effects in the bottom lamina. As the value of R increases the impedance becomes larger and the 
reflected wave effects become stronger. Large values of R result in the plate approaching the 
debonded state with the top lamina being ejected as a solid body. In general, the displacement 
magnitudes are larger for case 2 than for cases 1 and 3. This is consistent with the "softer" 
behavior induced by the presence of both the inelastic deformations and the debonding. It is 
evident from these results that the presence of delamination results in displacement jumps across 
the interface which are significant in comparison with the variation of the displacement change 
across the laminate at various times. Examination of all three sets of results indicates that for 
the current laminate debonding has a larger effect on the response than plasticity. 

The distributions of the axial displacement through the thickness at the end of the plate for all 
three cases are given in Fig. 2. It is evident from these results that both plasticity and debonding 
have a strong impact on the plate deformation at the local level. The largest deviations due to the 
presence of these effects occur in the region around the midplane of the plate. The maximum 
deviation between cases 2 and 3 does occur at the midplane and represents about 61 % of the total 
variation in the distribution. The presence of plasticity has a relatively stronger influence on the 
axial displacement than does the presence of delamination. Consideration both plasticity and 
delamination only results in an additional variation, as compared to case 1, of about 13%. The 
displacement jump in case 2 due to delamination represents about 10% of the overall variation 
in the distribution. 

The transverse displacement distributions through the thickness of the plate at the middle of 
the plate for all three cases are given in Fig. 3. The presence of plasticity has a much smaller 
effect on the deflection than was seen in the axial displacements. The maximum deviation from 
distribution of case 3 is 5%. The presence of the delamination has a more significant impact on 
the deflection than observed for the axial displacement. In this case, the maximum deviation 
from the case 3 distributions is about 30%. The jump due to delamination represents about 22% 
of the variation in the deflection distribution. 

Finally, the transverse stress distributions through the thickness of the plate for all three cases 
at the middle of the plate a e  given in Fig. 3. As was observed in the deflection distributions, 
the presence of plasticity has a much smaller influence on the transverse stress as compared to 
the presence of the delamination. The maximum deviations between the distributions for cases 
land 3 is about 0.07 while a maximum deviation of about 0.57 is observed between cases 2 and 
3. 

CONCLUSIONS 

A discrete layer plate theory has been used to consider the relative influence of both inelastic 
deformations and delamination on the dynamic behavior of a 0/90 Al2O3/A1 plate. The inelastic 
deformations of the composite were modelled using the Bodner-Partom viscoplastic theory in 
the micromechanical models known as the Method of Cells. A simple linear debonding model 
for the interfacial behavior was used in this study. 

It was seen that the presence of plasticity and delamination have a significant effect on both the 
macroscopic and local behavior of the plate. Consideration of the macroscopic behavior indicated 
that the delamination had a stronger influence than the inelastic deformations. This was in part 
due to the fact that the debonding at the interface acted as an impedance which results in stronger 
wave effects in the top lamina as compared to the bottom lamina. Consideration the effects of 
delamination and plasticity on the local behavior indicated that these phemenona had different 
influences. The presence of inelasticity had a stronger influence on the axial displacement than 
did the presence of delamination. Alternatively, the presence of the delamination had a much 
stronger influence on the deflection and the transverse stress than did inelasticity. 
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Figure I Transverse displacement at the middle of the plate as a function of time. 
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Figure 2. Through the thickness distributions of the axial displacement at the end of the plate. 
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Figure 3. Through the thickness distributions of the deflection at the middle of the plate. 
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Figure 4. Through the thickness distributions of the transverse stress at the middle of the plate. 


