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Abstract 

In this paper we analyze the average off-training-set behavior of the Bayes-optimal and 
Gibbs learning algorithms. We do this by exploiting the concept of refinement, which 
concerns the relationship between probability distributions. For non-uniform sampling dis- 
tributions the expected off training-set error for both learning algorithms can rise with 
training set size. However we show in this paper that for uniform sampling and either 
algorithm, the expected error is a non-increasing function of training set size. For uniform 
sampling distributions, we also characterize the priors for which the expected error of the 
Bayes-optimal algorithm stays constant. In addition we show that when the target function 
is fixed, expected off-training-set error can increase with training set size if and only if the 
expected error averaged over id targets decreases with training set size. Our results hold 
for arbitrary noise and arbitrary loss functions. 
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1 Introduction 
This paper is concerned with the supervised learning problem: There is an unknown target rela- 
tionship f between an input space and an output space. A training set of i-o pairs is generated by 
sampling the target relationship. The problem is to use the training set to guess the input-output 
relationship which best fits the target relationship according to some suitable cost function. Such 
a guessed relationship from questions to outputs is known as a hypothesis relationship. An al- 
gorithm which produces a hypothesis relationship from a training set is called a generalizer or a 
learning algorithm. 

Conventionally, a learning algorithm’s performance is measured using test sets produced by 
the same process that generated the training set. Such an “iid” error function allows overlap 
between training and test sets. If one instead concentrates on off training-set (OTS) error, a set 
of “no-free-lunch” (nfl) theorems apply: averaged over all targets or averaged over all priors, all 
(fixed) generalizers perform the same [4]. However these theorems do not address the issue of 
how well a generalizer performs if it is coupled to the prior. 

This paper is an investigation of this issue. We analyze several different aspects of the off- 
training-set behavior of Bayes-optimal and Gibbs learning algorithms [I, 2, 3,4] in the case where 
the algorithms, assumption for the prior is correct. 

One of the differences between our work and recent work by Haussler et al [l] is that we 
concentrate on OTS error learning curves averaging over both the input and output components 
of the training set. In contrast, the work of Haussler et al. deals either with the case where the 
training set inputs are fixed (while the outputs can vary), or, when those inputs are free to vary, 
considers the iid error function. Another important difference is that Haussler et al. restrict 
their attention to the noise-free case where the output space is binary and the loss function is 
the zero-one loss. In contrast, (most of) our results hold for arbitrary noise, arbitrary output 
spaces, and arbitrary loss functions. 

Section 2 presents the mathematical framework we will use. It then presents a summary of 
why OTS error is of interest and briefly reviews the nfl theorems. In Section 3 we define the 
concept of a refinement and present some lemmas concerning refinement. As it turns out, OTS 
error can increase with training set size, on average, even for the Bayes-optimal algorithm (see 
[4].) In Section 4 we use our lemmas concerning refinement to show that this can not happen 
when the input space sampling distribution is uniform. We go on in that section to show under 
what conditions the OTS error of the Bayes optimal algorithm is constant and relate this to 
specific properties of the prior. We then prove similar results for the Gibbs algorithm. Full 
versions of proof sketches are provided in [5] .  
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2 Preliminaries 

2.1 The mat hemat ical formalism and not at ion 

This paper uses the extended Bayesian formalism ([4]. n and r are the number of elements in X 
(the input space) and Y (the output space) respectively. Most of our results are not limited to 
finite input and output spaces. However those cases are the simplest to present. 

Our primary random variables are target relationships f ,  hypothesis relationships h, training 
sets d ,  and cost or error values c. In addition, it will be useful to relate these variables to one 
another using three other random variables. Testing (involved in determining the value of c) is 
done at the X value given by the random variable q. Y values associated with the hypothesis 
are denoted by yh, and Y values associated with the target are denoted by yf. 

In this paper the target and the hypothesis relationships are defined by X-conditioned dis- 
tributions over Y values. Formally: 

If for each q, h(q, yh) is a delta function over yh (;.e., if it specifies a single-valued function from 
X to Y), then h is called single-valued. 

The value d of the training set random variable is axt ordered set of m input-output examples. 
Those examples are indicated by { d x ( i ) ,  dy(i)};=l..,. The set of all input values in d is d x  and 
similarly for dy. The number of distinct values in d x  is denoted by m’. In the case of iid 
generation of d ,  d is formed by sampling X according to a sampling distribution T ( Z )  and then 
sampling f at the those points in X. More formally, the likelihood is 

As an example, in the noise-free iid case, f is single-valued and P(d I f )  is given by b(d C 
f ) n i r ( d x ( i ) ) ,  where 6(d C_ f) = 1 if d agrees with f ,  and 0 otherwise. In this paper though we 
are not assuming a noise free situation - our results hold for arbitrary f.  Note that this means 
that two elements in the training set can have the same X values but different Y values. The 
posterior is the Bayesian inverse of the likelihood, P ( f  I d). 

Any learning algorithm is specified by P(h  1 d ) .  It is deterministic if the same d always gives 
the same h (;.e., if for fixed d P(h I d )  is a delta function about one particular h). In supervised 
learning P ( h  1 f ,  d)  = P ( h  I d)  (;.e., the learning algorithm only sees d in making its guess, not 
f). We will say that the full P “has” or ‘specifies” the generalizer given by P(h  I d). 

In the case of iid error, P(q d) = T ( Q ) .  In the case of OTS error, 
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where 6(z)  = 1 if z is true, 0 otherwise. 
The cost c is defined by c = L(yh, yf). For example, zero-one loss has L(a, b) = 1 - & b ,  and 

quadratic loss has L(a,  b)  = ( a  - b)2. It is easy to show that the expected cost given f ,  h and d 
is E(c I f, h, d )  = CYhryf,4 L(yh, yf)h(q,yh)f(q, yj )P(q  I dx). Unless explicitly stated otherwise, 
from now on, whenever referring to cost, we are implicitly referring to OTS cost. 

2.2 OTS Error and the nfl theorems 

Since iid error allows the test set to overlap with the training set, it gives a generalizer credit for 
simply memorizing the training set. If one instead wishes to measure the generalization ability 
of the generalizer, it is appropriate to use OTS error. In addition, in a number of real-world 
scenarios, we are explicitly interested only in OTS error. For example, this is the case in much 
of protein structure prediction for drug design [4]. 

Unfortunately, for OTS error we have the “no-free-lunch theorems” [4] limiting the assumption- 
free utility of any learning algorithm. In particular, consider the uniform average, over all dis- 
tributions P(f), of the expected cost given m, E(c  I m) = Cf,h,dE(c I f, h, d )  P ( f ,  h,d I m). For 
the zero-one loss function, this is the same for all learning algorithms. So loosely speaking, there 
are “just as many” priors in which any algorithm A has superior behavior to that of any other 
algorithm B as vice-versa, for OTS error. Similar results hold for other loss functions, and for 
other conditioning events. In this paper we investigate the case where the uniform average over 
priors is relaxed, so that the learning algorithm and P(f) are coupled. 

2.3 The Gibbs and Bayes-optimal generalizers 

Ttie Bayes-optimal generalizer is the one that minimizes expected cost given d, E(c  I d). In other 
words it produces the best (as far as expectation value is concerned) guess one could, given the 
training set at hand. It is deterministic, with its hypothesis h* given by 

h*(z) = argmi%W(z,y) (2) 

where W ( z ,  y) E J dfL(f(z), y)P(f I d)  (See [l, 2, 41). (In cases of multiple minima of W ( z ,  y), 
any tie-breaking scheme will do.) 

For the eero-one L(., .) and single-valued f (i.e., P(f) that equal 0 for non-single-valued f ) ,  
h*(z) = argmax, 6(f(z), y)P(f I d). In particular, if P(f) is uniform across all single-valued 
f in some “target class” U and zero otherwise, and if Y = {O,l}, then for any x, h*(z) = 1 if 
the number of f in U that are consistent with d and go through the point {z,l} exceeds the 
number of f in U that are consistent with d and go through {z,O}. 

A Gibbs generalizer is one that obeys 

3 



where G(h) is a distribution and the proportionality constant (sometimes called a “partition 
function”) is set by normalization and only depends on d [l, 2, 3, 41. A “correct” Gibbs gener- 
alizers is a Gibbs generalizer for which G(h) = P(f)l f=h. (In this paper we restrict attention to 
correct Gibbs generalizers.) 

Distributions in which P ( h  1 d) is the Bayes-optimal generalizer will be subscripted with 
“BO”. For Gibbs generalizers we will subscript with “G”. Note that in the absence of noise, 
both generalizers produce hypotheses that agree exactly with d. 

It turns out that for some non-uniform sampling distributions EBO(C 1 m‘) is an increasing 
function of m’ [4, 51 for all m‘. The same is true for Gibbs generalizers. Note that in general, if 
EBO(C I m‘ = 0) = EG(C I m’ = 0), then since EG(C I m’ = k) 2 EBO(C I m’ = IC), if EBO(C I m’) 
increases when m’ goes from 0 to IC, so must EG(C I m‘). 

3 Distribution refinements 

For our purposes, the crucial characteristic of the relationship between a distribution conditioned 
on training set size m and one conditioned on training set size m + 1 is whether the latter is a 
refinement of the former. 

Definition The distribution P over the variables q, d, z is a refinement of the distribution @ over 
the same variables if there exists a function T such that for all values of q,  d, and z ,  

Changing the choice of the variable z changes the meaning of refinement. Note that for any 
random variable z, if one distribution is a refinement of the other with variable list (4, d ,  z ) ,  then 
by marginalization the same is true with variable list (q ,  d) .  

An example of refinement is the case where P(q I d )  is iid, so that probabilities involving any 
training set d of size m can be found by summing probabilities involving those training sets of 
size m + 1 whose first m elements are d:  

Lemma 1. For iid P(q I d )  and z = yf, the distribution conditioned on training set size m + 1 
is a refinement of the distribution conditioned on training set size m. 

Proof sketch: Expanding in terms of f and plugging in our likelihood (see Eq. 1) 
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To establish refinement for this scenario, we must show that 

where “d(m)” means the myth pair in d and “d  - d(m)” is the first m - 1 pairs in d. (Here 
T(q’,d’) (q’,(d’ - d’(m)).) By normalization, c , f (z ,y)  = 1, and xz7r(z) = 1. So breaking 
the into first a sum over dy(m) and then one over dx(m) establishes refinement. QED 

For OTS error, although P(q I d, f) = P ( q  I d )  as in the derivation of lemma 1, we no longer 
have P(q I d)  = ~ ( q ) .  Plugging in the OTS P(q I d),  we obtain P ( d , q , y f  I m) = 

As before, to establish refinement we must prove (6). Whether it holds depends on ~ ( 3 ) .  In 
particular, there are non-uniform T ( Z )  for which it doesn’t hold (since there are such ~ ( z )  for 
which expected error increases with m and, as shown below, refinement implies non-increasing 
expected error). However we have the following special case: 

Lemma 2. For OTS P(q I d)  and z = yf, the distribution conditioned on training set size m + 1 
is a refinement of the distribution conditioned on training set size m, if T ( Z )  is uniform. 

Proof sketch: Dropping the subscript f on y, from (7) we get 

A similar expression holds for P(d - d(m), q, y I m - 1). We want to sum P(d, q, y I m) over 
all d(m) to get that expression for P(d - d(m), q, y I m - 1). First summing P(d, q, y 1 m) over 
all d y ( m ) ,  we get 

where ”m’(-l)” means the number of distinct elements in the first (m - 1) elements of d. 
Now expand 

The only thing affected by the value of dx(m) is the {.} term and m‘. Moreover, it is not hard 
to show that Cdxcm,{.)/(n - m’) = n/(n - m’(-l)). This completes the proof sketch. QED 
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4 Refinement and Generalization 
It is not hard to show that 

E ( c  I = L(Yf7 Yh)'(Yh I d, Q)'(Yf, d, 4 I 4. 
Yf  ,Yhid,q 

Now E(c  I m) is minimized by the Bayes-optimal generalizer [4]. Given Eq. 8, this implies that 
for any distribution P,  if P B ~  has a Bayes-optimal generalizer, then 

(the conditioning on m being implicit). This is the underlying reason why, in many scenarios, 
expected cost shrinks as training set size increases for the Bayes-optimal generalizer. Formally: 

Theorem 1. If P2 is a refinement of PI with z = yf and if both PI and P2 have Bayes-optimal 
generalizers, then E2(C) 5 EI(C),  where the subscript indicates the distribution. 

Proof sketch: we can replace Pl(yf, d, q )  with C ( q f , d f ) : T ( q f , d f ) = ( q , d )  Pz(q', d', yf), because '2 is a 
refinement of PI. Doing this in the expansion for El(c )  gives 

Now for any q and d there is a q' and a d' such that T(q,  d) = (q', d'). Therefore for any (!) q 
and d, if we check all q' and d' we will find one such pair for which T(q,  d)  = (q', d'). Therefore 
our sum must extend over all q and d. Accordingly, we can rewrite our sum as 

By Bayes-optimality, this is greater or equal to 

By this theorem and the refinement lemmas, if either a) we have iid error; or b) we have OTS 
error and a uniform sampling distribution; then E(c I m) 2 E(c  I m + 1) for all rn for the Bayes 
optimal generalizer. Note that this result holds for any ' ( 4  I d,, f) (i.e., any noise process) and 
any loss function L. 
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4.1 Context of these results 

It is important to note that for non-uniform ~ ( z ) ,  E ( c  1 m) may increase with m (an example is 
given in [4]). In fact, even more "intuitively obvious" results than that of theorem (1) can fail 
to hold for OTS error when n(z )  is non-uniform. For example, it is proven in [5] that 

Lemma 3. For uniform ~ ( z )  and P(h I d)  = G(h,g(z ) )  for some function g(z), E ( c  I m') is 
independent of m'. 

It may seem obvious that the expected cost of the generalizer that always guesses the same 
function, no matter what the data, doesn't vary with the size of that data. However this is not 
true in general for non-uniform x ( z )  and OTS error. An example is the scenario presented in [4] 
for which the OTS error of the Bayes optimal generalizer increases with m'. 

The fact that x's being uniform is important both for theorem (1) and lemma (3) is no 
coincidence; the two results are closely related, as the following lemma (proven in 151) shows: 

Lemma 4. For uniform x ( z )  and 0 < k < n, ESO(C I m' = k) = EBO(C I m' = 0) iff there exists 
a data-independent g(z) such that EBO(C I m' = k) = E,(c I m' = k). 

Any generalizer that minimizes E ( c  I m) necessarily makes the same guesses as the Bayes- 
optimal generalizer for all d such that P(d)  # 0 [4]. (Recall that if more than one h minimize 
E ( c  I d)  for some d, then saying a generalizer is "Bayes-optimal" simply means that it guesses 
one of those optimal h in response to d.) Accordingly, lemma (4) tells us that EBO(C I m' = 
k) = EBO(C I m' = 0) if and only if one Bayes-optimal generalizer guesses some function g(z) in 
response to all allowed training sets, 

4.2 Constant OTS error and Ideals 
An interesting problem is to determine the conditions under which the OTS error is constant for 
all m' < n (so that OTS error is defined). We analyze this problem for the simple case where Y 
is binary, there is no noise, and x ( z )  is uniform. In this case, all targets are vectors living at the 
vertices of the hypercube 21'4. In addition, the only d such that P(d)  = 0 are those that lie on 
an f for which P ( f )  = 0. For u,v  E 2ln], let u @ v denotes the pointwise exclusive OR between 
u and u. Let u 2 v mean that u; 2 vi for every i .  

Definition Let P be a probability distribution on 2["1. P is a reEative ideal iff there exists a 
g E 2["1 (the center of P) such that for all u,v E 2["1 with u @ g 2 v @ g, P(u)  5 P(u).  

A simple example of a relative ideal is a P that is constant for all vectors within some 
Hamming distance R of 9, and zero otherwise. 

Theorem 2 BBo(c1rn') is constant for all m' up to m' = n - 1 iff P(f) is a relative ideal. 
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Proof sketch: Suppose that E B O ( C ~ ~ ' )  is constant for all m' up to m' = n - 1. Then by the 
discussion following lemma (4), one Bayes optimal generalizer (there may be more than one) 
guesses the same function g E 2inl in response to any allowed training set having m' < n. 
Suppose that t is the function defined by a training set d having m' = n - 1. (The domain 
of t is dx.) Let i be the only input not seen. The only targets consistent with d are the two 
extensions of t defined by tio) 9; and ti') z gi $ 1. Since g is a Bayes optimal hypothesis, 
P(f) l f=t( l ,  5 P(f)J,(o). This inequality holds no matter what t is (so long as it lies on an f with 
non-zero prior probability), and no matter what input remains to be seen. 

Now suppose that u $9 2 v $g, and that P(f)lf=U # 0. (If P(f)Ij=U = 0, then it trivially 
follows that P(f)\j,% 5 P(f)Ij=,,.) Since P(f ) l f=u  # 0, any training set lying on u is allowed. 
Furthermore, since u @ g 2 v @ g ,  there is a chain 'UO = u, v1, . . . , v k  = v such that v; @ g 2 @ g 
and v; and v;+1 differ in only one position. This implies that P(f)I f=ui  5 P(f)lf=ui+l for each i 
(use the argument of the preceding paragraph with t defined to be the n - 1 points on which 21; 
and v;+~ agree). Hence, P(f)lj=U I P(f)If=,. 

To prove the other direction, suppose that P is a relative ideal with center g and that we are 
given a d with m' = n - 1. As in the previous paragraph, let t be the function defined by d, let i 
be the sole element of X not in d x ,  and define the two extensions of t by tp) gi and ti1) f g;@l. 
The inequality of the definition of relative ideals implies that g is a Bayes optimal guess for input 
i (choose v = and u = t[l]). Since this is true for any d, it is also true when we average over 
d's. The inequality also implies that g is the Bayes optimal guess when no training examples 
have been seen (choose v = g) .  So the Bayes-optimal generalizer is identical to the generalizer of 
lemma (3) for these two m' values, for points outside of the training set. Accordingly, by lemma 
(3), E~o(c1m') is the same for those two m' values. Therefore by theorem (l), it is independent 
of m'. QED 

Next consider EBO(C I f*,m'), where f* is some target with non-zero prior probability. Even 
for a uniform n(z) this expected cost can increase with increasing m' [4]. However the following 
corollary of theorem (2) allows us to rule out such behavior in many cases. 

Corollary 1. For a uniform n(z) ,  for any target f* whose prior probability does not equal zero, 
E ~ o ( c  I f*,m'), can increase with m' only if P(f) is not a relative ideal. 

Proof sketch: By theorem (2), if P(f) is a relative ideal, &o(c I m') is a constant function of 
m'. By lemma (4), that would imply that a Bayes-optimal generalizer (there may be more than 
one) always guesses the same function g(z) in response to any allowed training set. This in turn 
would mean that the value of EBO(C 1 f*, m') for the actual (relative ideal) prior at hand is equal 
to the value of E,(C I m') under the prior P ( f )  = S(f - p). By lemma (3) however this latter 
expression can not increase with m'. QED 

Now EBO(C I m') = Cr EBO(C I f,m')P(f). So by Cor. (1) and Thm. (2), if EBO(C I m') 
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does not vary with m’, it has the same value as EBO(C I f,m’) for any of its “constituent” f’s. 
In this sense it has no variability over f .  The inverse is as easily established: EBO(C 1 m‘) is a 
decreasing function of m’ iff there is variability over f in the value of Ego(c I f,m’). 

4.3 Refinement and Gibbs. generalizers 
We can also use refinement to infer off-training set behavior for correct Gibbs generalizers. 

Theorem 3. Let PI and P2 have Gibbs generalizers where P2 is a refinement of PI. If L(y,y’) 
is a non-positive definite matrix over the subspace perpendicular to r, then E2(C) 5 E1(C). 

Proof Define v; (y f ,d ,q)  = P;(yj I d,q) ,  where i can be 1 or 2. Define t as the pair (d ,  4). Now 

Replace Pz(t’) in the summand with P2(t‘, T(t’) = t) .  By refinement, Pl(t )  = &:T(tt)=t P2(t I -  ) = 

Pz(t‘ : T(t’) = t )  . Therefore, with w(t’,t) = P2(t’ I T(t’) = t ) ,  

El(C) = E L(Y,y‘)P~(t)va(y,t’)vz(Y’,t”)w(t‘, t)w(t”,t) 
y,y’ ,t,t’,t” :T( t‘)=t ,T( t” )=t 

We want to express E2(C) as a similar sum. To that end, write 

The only difference between the expression for &(C) and &(C) is whether the summand 
contains v2(y‘, t”) or 4 y ’ ,  t‘). It is this difference that establishes the theorem. Write 

Now rewrite this expression by interchanging t’ and t”. Add our two expressions for &(C) - 
&(C) and divide by 2. The result is &(C) - &(C) = 
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Since it is the difference of two probability distributions, each [ . . I  term, considered as a vector 
indexed by y (or y’ as the case may be), is perpendicular to the unit vector. Given that L is 
non-positive definite by hypothesis, we see that &(C) 5 &(C). QED 

Both the zero-one and the quadratic L’s have the required property. Intuitively, those loss 
functions for which the Gibbs generalizer’s learning curve increases are those for which the loss 
shrinks as h and f get f u r t h e r  apart. Interestingly, the learning curve is non-increasing for the 
Bayes-optimal generalizer even for such a “backwards” loss function. 

5 Discussion 
In this paper we introduce the refinement concept. We use it to prove that for a uniform sampling 
distribution ~ ( s ) ,  for any loss function and any noise process, the learning curve for OTS error 
for a Bayes optimal generalizer is non-increasing. (It can increase for non-uniform ~(s).) We 
also characterize those priors for which the learning curve is constant. We also use refinement to 
prove that for a uniform T ( Z )  the Gibbs generalizer has a non-increasing learning curve, provided 
certain (common) conditions on the loss function are met. 

There are many questions that this analysis raises. Examples are: i) What is the behavior 
of E,(c I m) - EBO(C I m)? ii) What are the widths (as one varies f, varies d, etc.) of the 
distributions whose means are examined above? iii) For non-uniform ~ ( z ) ,  is it possible for 
E(c 1 m) to  increase for one region of values of m and decrease for another, for a fixed P(f)? 
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