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Parallel Object-Oriented Adaptive Mesh Refinement * 

Dinshaw Balsara t Daniel J. Quinlan 

Abstract 

In this paper we study adaptive mesh refinement (AMR) for elliptic and hyperbolic 
systems. We use the Asynchronous Fast Adaptive Composite Grid Method (AFACx) 
[4], a parallel algorithm based upon the of Fast Adaptive Composite Grid Method (FAC) 
[5] as a test case of an adaptive elliptic solver. For our hyperbolic system example we 
use TVD and EN0 schemes for solving the Euler and MHD equations 125, 26, 271. 
We use the structured grid load balancer MLB [lo] as a tool for obtaining a load 
balanced distribution in a parallel environment. Parallel adaptive mesh refinement 
poses difficulties in expressing both the basic single grid solver, whether elliptic or 
hyperbolic, in a fashion that parallelizes seamlessly. It also requires that these basic 
solvers work together within the adaptive mesh refinement algorithm which uses the 
single grid solvers as one part of its adaptive solution process. We show that use 
of AMR++ [3], an object-oriented library within the OVERTURE Framework [ll], 
simplifies the development of AMR applications. Parallel support is provided and 
abstracted through the use of the P++ parallel array class [6, 7, 81. 

1 Introduction 
There are several areas of science and engineering where the numerical solution of physical 
problems on logically rectangular grids is highly desired. Such fields of study include 
physics, astrophysics, mechanical and aerospace engineering and geophysics to name but a 
few. In many of these fields of study useful algorithms have been evolved for quite some 
time. These algorithms have several requirements put on them, robustness, accuracy and 
stability being some of the many important criteria. While significant advances have been 
made in the design of unstructured mesh algorithms they do sometimes show deficiencies, 
especially in error analysis, speed, parallelism and ease of data management. For this reason 
we restrict our attention to structured mesh algorithms. While algorithmic excellence can 
often be ensured, these fields have another demanding requirement which consists of being 
able to solve problems where the interesting phenomena happen over a range of length 
scales. Should these phenomena happen all over the computational domain one has no 
option but to fully resolve the computational domain to the desired resolution. However, in 
several physical problems, phenomena requiring high spatial resolution occur only in small 
localized regions. It is in such situations that adaptive mesh refinement (AMR) techniques, 
originally pioneered by [29, 30, 121, to name but a few, come to the fore. Such techniques 
rely on detecting where extra resolution is needed and putting extra grid points in exactly 
those regions. Doing AMR in serial environments is, therefore, a mostly solved problem. 
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However scientists and engineers have an almost insatiable need for higher resolution. The 
speed increases in superscalar and vector supercomputers has been linear as a function of 
time for some time. Parallel computers, on the other hand, seem to be growing in size, 
speed, memory and bandwidth at a much faster pace, hence our interest in parallel adaptive 
mesh refinement. It is in such situations that the capabilities developed here become useful. 

Several of the problems in the above fields of study are of elliptic, parabolic or hyperbolic 
sort. We, therefore, focus on doing parallel AMR for elliptic and hyperbolic problems. 
General solution strategies often entail mixing multiple solvers in the same application. This 
produces yet another complication, especially in a parallel environment because multiple 
solvers have to work together and data associated with one type of solver has to be kept 
logically separate from data associated with another solver even as the two are required to 
share data. Furthermore, in a serial environment this data would be put in multidimensional 
arrays which occupy contiguous portions of memory, while in a parallel environment the 
data is distributed across several processors and has to be managed dynamicly across those 
processors. To add yet another layer of complexity, meshes of different topology might be 
required to handle boundaries. Thus mesh generation and mesh refinement are required to 
work together. A typical AMR application has a base grid and successive levels of refined 
grids nested one within the other. Each grid has a certain amount of computational work 
associated with it which may or may not be proportional to the number of grid points. 

Optimally scalable performance in such situations places two further requirements, both 
having to do with load balancing. Firstly, we would like to be able to build grids on 
processors that are relatively idle. Moreover, as time evolves, the grid hierarchy changes 
making it necessary for us to be able to shuttle existing grids from one set of processors to 
another. 

While the above paragraph is meant to lay out the problem, in this paragraph we 
present in a broad brush stroke fashion ( and without any details) the solution strategies 
that have been evolved. Details will be relegated to the ensuing sections. This paragraph 
may, therefore, be taken as a lexical and intuitive introduction to these solution strategies. 
Having the capability to have multiple solvers work together even in a serial environment 
raises the need for some form of data abstraction and encapsulation. A distinction has to be 
drawn between private and public data to ensure that one solver does not access data that 
was not intended for it. Furthermore, with multiple meshes represented in the AMR mesh 
hierarchy, an operation performed on data associated with one mesh should not access data 
on another mesh. This directly points to the need for an object oriented language to be used 
even in a serial environment. We use C++ here since it is currently one of the most popular 
and well-developed object-oriented languages. In a parallel environment, multidimensional 
arrays will be distributed across many processors. While single mesh applications can 
keep data across boundary zones coherent through explicit message passing, this would 
prove too daunting a task for an application that had an unusually large number of meshes 
each with multiple multidimensional arrays associated with it. For that reason we use the 
P++ class library, [6 ,  81 to provide a logically contiguous index space for multidimensional 
arrays. This also allows data parallel concepts to be used in achieving load balancing on 
each single logically rectangular mesh. Including mesh generation in the refinement process 
necessitates having an object oriented strategy for encapsulating information associated 
with the problem topology. This is done via the Overture class library, [ll]. The adaptive 
mesh refinement strategy, called AMR++ here, is a further class library which encapsulates 
strategies for handling multiple meshes on multiple levels of refinement. We instantiate the 
adaptivity for elliptic systems and hyperbolic systems. The elliptic system solver strategy 
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consists of using the AFAC and AFACx algorithms developed by [4, 181. The hyperbolic 
system solver, RIEMANN++, is based on TVD and EN0 based higher order Godunov 
strategies based on the papers by [21, 22, 23, 24, 25, 26, 271. 

We will not give extensive discussion of the 
class libraries mentioned above since those would each constitute several papers in and 
of themselves. But we will describe those facets of the libraries that have been useful for 
this work. In section 2 we describe OVERTURE and P++ and its role in AMR applications. 
In section 3 we describe the elliptic and hyperbolic solver parallelization strategy. In section 
4 we describe AMR++. And in section 5 we discuss the availability of this software. 

The plan of the paper is as follows. 

2 The OVERTURE Framework 
The OVERTURE Framework [14] is an object-oriented environment for the development 
of numerical applications. Specifically it is a large collection of C++ libraries which 
work together and build upon each other. The OVERTURE Framework supports both 
serial and parallel architectures and generally abstracts the details of parallel execution. 
Overture contains many class libraries and will not be discussed in any great detail within 
this paper. OVERTURE is the subject of an other paper which is a part of this same 
conference [ll]. Overture obtains its parallel support though the use of the A++/P++ 
class library internally. These class libraries are the principle mechanism by which the 
AMR++ applications we present in this paper are run in parallel. 

2.1 
A++ and P++ [19] are array class libraries for performing array operations in C++ in 
serial and parallel environments, respectively. P++ is the principle mechanism by which 
the OVERTURE framework operates in parallel. 

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not requiring 
any modification to the C++ compiler or language. A++ provides an object-oriented array 
abstraction specifically well suited to large scale numerical computation. It provides efficient 
use of multidimensional array objects which serves to both simplify the development of 
numerical software and provide a basis for the development of parallel array abstractions. 
P++ is the parallel array class library and shares an identical interface to A++, effectively 
allowing A++ serial applications to be recompiled using P++ and thus run in parallel. This 
provides a simple and elegant mechanism that allows serial code to be reused in the parallel 
environment. With the improvements in C++ compiler technology, the A++/P++ classes 
are presently being converted to the use of templates which provides greater flexibility, 
though at the likely cost of working with fewer C++ compilers. 

P++ provides a data parallel implementation of the array syntax represented by the 
A++ array class library. To this extent it shares a lot of commonality with FORTRAN 
90 array syntax and the HPF programming model. However, in contrast to HPF, P++ 
provides a more general mechanism for the distribution of arrays and greater control as 
required for the multiple grid applications represented by both the Overlapping Grid model 
and the Adaptive Mesh Refinement (AMR) model. Additionally, current work is addressing 
the addition of task parallelism as required for parallel adaptive mesh refinement. 

The use of P++ is a central part of the mechanism by which we develop the adaptive 
elliptic solvers. Though the actual multigrid solvers are more complex than the example 
code below, this example of Jacobi relaxation for Poisson’s equation shows some of the 
general mechanism’s used to execute the array statements used in the multigrid elliptic 
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solvers for serial and parallel architectures. Notice how the Jacobi iteration for the entire 
array can be written in one statement. 

// Solve u-xx + u-yy = f by a Jacobi Iteration 
Range R(0.n) 
floatArray u(R.R), f (R.R) // ... declare tvo two-dimensional arrays 
f = 1.; u = 0.; h = 2 . h ;  // ... initialize arrays and parameters 
Range I(l,n-l), J(1.n-1) ; // ... define ranges f o r  the interior 

// ... define a range of indices: 0,1,2, ..., n 

for (int iteration=O; iteration<100; iteration++) 
u(1,J) = .25*(u(I+i,J~+u(I-l,J)tu(I.J+l~+u~I,J-l)-f(I,J)*~h*h)); // . . . data parallel 

More detail on the mechanism for the execution of the above code can be found in [ll] 
within this conference proceedings. 

2.2 Role of P++ within AMR 
The P++ array class library is the principle mechanism by which the parallelism is exploited 
within our work. P++ provides several features that are focused on providing support for 
multiple grid applications generally and adaptive mesh refinement as a specific case. 

e Object-Oriented Dynamic Distribution Support 
The object-oriented distribution support occurs in two parts, first in the processor 
subsetting mechanism to manipulate the distribution objects, and second in the 
management of multiple array objects though a single distribution object. This 
provides a dynamic mechanism by which the load balancing can interact with an 
AMR application independent of the number of array objects in use or the specifics 
of the application. This provides a valuable means of abstraction for the redistribution 
associated with load balancing, plus a simplified means of controlling large numbers 
of grids which occur within many applications using the OVERTURE Framework. 

e Mixed Distribution Operations 
Operations between array objects with different distributions occur naturally within 
AMR applications. Such operations are a general part of the transfer of data between 
levels within the adaptively refined grid. P++ supports array operations regardless 
of the distribution of the operands in the array statement. This feature of P++ is 
fundamental in supporting complex data transfer between AMR levels in the parallel 
environment. 

There are different ways of using P++ depending on the user’s requirements and level 
of expertise with parallel programming. P++ can be used to represent all aspects of the 
numerical algorithms within an application or can be used in combination with FORTRAN 
or C code external to P++. This permits the use of existing single grid codes to simplify 
the move to related adaptive mesh refinement applications. 

3 Applications 
3.1 Elliptic Solver 
For the solution of elliptic equations on adaptively refined grids we use the most efficient 
solution methods presently available. The work on the Asynchronous Fast Adaptive 
Composite Grid Method (AFAC) [l, 41 and the more efficient AFACx [2, 181 variation of it 
represent parallel adaptive multigrid like methods, the most efficient parallel methods for 
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solution of large elliptic systems. There are many variations on use of multigrid techniques 
in the solution of adaptive refinement grid applications many are active research areas 
within both serial and parallel algorithms. 

The fast adaptive composite grid method (FAC) is an algorithm that uses uniform 
grids, both global and local, to solve partial differential equations. This method is known 
to be highly efficient on scalar or single processor vector computers, due to its effective 
use of uniform grids and multiple levels of resolution of the solution. On distributed 
memory multiprocessors, such methods benefit from their tendency to create multiple 
isolated refinement regions, which may be effectively treated in parallel. However, they 
suffer from the way in which the levels of refinement are treated sequentially in each region. 
Specifically, the finer levels must wait to be processed until the coarse-level approximations 
have been computed and passed to them; conversely, the coarser levels must wait until the 
finer level approximations have been computed and used to correct their equations. 

The asynchronous fast adaptive composite method (AFAC) eliminates this bottleneck of 
parallelism. Through a simple mechanism used to reduce inter-level dependence, individual 
refinement levels can be processed by AFAC in parallel. The result is that the convergence 
rate of AFAC is the square root of that for FAC. Therefore, since both AFAC and FAG 
have roughly the same number of floating point operations, AFAC requires twice the serial 
computational time as FAC, but AFAC may be much more efficiently parallelized. 

3.2 Hyperbolic Solver 
As explained in the introduction the hyperbolic system solvers that we focus on are of 
the TVD and E N 0  types. The ones implemented here are the algorithms in [25, 26, 271. 
While multidimensional in their flux update their implementation has a strong dimension 
by dimension bias. Such solvers have been implemented in parallel using message passing 
strategies but such strategies are not of much use here. For programming languages such as 
CRAFT and HPF that offer a contiguous logical grid in a distributed memory environment 
[28] have shown how to do implicit domain decomposition to parallelize such solvers. Their 
paper offers an extensive collection of strategies and results. In that paper they present two 
different strategies for parallelization. The first one is based on an SPMD-like approach 
that is available in CRAFT. The other is based on being able to easily redistribute data - 
a capability available in HPF. In tests the CRAFT-based strategy outperformed the HPF 
strategy by a slim margin. For that reason we focus on that strategy here. P++ can 
support either strategy though. P++ offers logically contiguous grids as well as an ability 
to redistribute data. The paper by [28] gives several details. Here we explain the gist of 
the idea in the next paragraph and then show how it is implemented in P++. 

Higher order Godunov schemes have a huge amount of work associated with updating 
a zone. This work consists of very computationally intensive interpolation and equally 
complex Riemann solvers. Typically this work is done on a dimension by dimension basis. 
Thus one dimensional data is extracted and passed on to a sequence of Fortran routines 
that do the interpolation and Riemann solver steps. After extensive processing the one 
dimensional data is handed back. The choice to use Fortran is one that is based on 
efficiency. In the code presented below we show how a y-directional sweep is performed 
in parallel in two dimensions. On processor base and bounds are extracted using P++ 
functionality. Then one escapes to an SPMD programming style where the data is locally 
extracted, processed by Fortran subroutines and then handed back. Other details such as 
timestepping and boundary updates are omitted. 
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main 0 
c 
int nx = 128, ny = 256, numberOfProcessors = 32, ghost-width = 2; 

// A simple partitioning is specified here with ghost boundaries 
Partition-Type Partn ( number0fProcessors) ; 
Partn.SpecifyDecompositionAxes ( 2); 
Partn. SpecifyInternalGhostBoundaryWidths ( ghost-width, ghost-width) ; 

int ixbegin, ixend, iybegin, iyend, ix, iy, timestep; 

// Here we make and distribute "arr2d-1 and arr2d-2". 
floatArray arr2d-1 ( nx, ny, Partn) , arr2d-2 ( nx, ny. Partn) ; 

// We want to have a copy of ltmy-copy-ld-arrll on all processors. 
// Notice that it is small enough to just cover local portion of array 
// with associated ghost cells. 
f 1oatSerialArray my-copy-ld-arr ( 36) ; 

for ( timestep = 1; timestep <= 100; timestep++) { 

// Each processor figures out its own local patch of data. It does 
// so in the global index space of the 2d arrays. 
ixbegin = arr2d-1 .getLocalBase ( 0) ; ixend = arr2d-1 .getLocalBound ( 0) ; 
iybegin = arr2d-1.getLocalBase ( 1); iyend = arr2d-1.getLocalBound ( 1); 

Optimization,Manager::satOptimizedScalarIndexing(On); // Turn off communication 

for ( ix = ixbegin; ix <= ixend; ix++) { 

// i.e. we want to load that processor's copy of "my-copy-Id-arr" with 
// one strip from the patch of 2d data it owns. 

// 

3 

for ( iy = iybegin - ghost-width; iy <= iyend + ghost-width; iy++) 
my-copy-ld-arr ( iy - iybegin + 1) = arr2d-1 ( ix, iy); 

this function does lots of float point intensive work on "my-copy-ld,arr". 
Lots-Of-Work ( iybegin, iyend, ghost-width, %my-copy-ld-arr) ; 

for ( iy = iybegin; iy <= iyend; iy++) 
arr2d-2 ( ix, iy) = my-copy-ld-arr ( iy - iybegin + 1); 

// End "ix1* loop. 

Optimization-Manager::setOptimizedScalarIndexing(off); // Turn on communication 

// Update ghost boundaries. 
arr2d-2 .updateGhostBoundaries 0 ; 
arr2d-1 = arr2d-2; 

3 // End timestep loop. 
3 // End main. 

4 
Adaptive mesh refinement is the process of permitting local grids to be added to the com- 
putational domain and thus adaptively tailoring the resolution of the computational grid. 
This results is greater computational efficiency but is difficult to support. AMRff  is a 

Adaptive Mesh Refinement - AMR++ 
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library within the OVERTURE Framework [14] which builds on top of the previously men- 
tioned components and provides support for OVERTURE applications requiring adaptive 
mesh refinement. AMR++ is current work being developed and supports the adaptive 
regridding, transfer of data between adaptive refinement levels, parent/child/sibling oper- 
ations between local refinement levels, and includes parallel AMR support. AMR++ is 
a parallel adaptive mesh refinement library because it is uses OVERTURE classes which 
derive their parallel support from the A++/P++ array class library. 

5 Software Availability 
AMR++ is not yet available publicly, however both A++/P++ and the OVERTURE 
Framework have been publicly available for several years. Future releases of the OVER- 
TURE Framework will include the AMR++ class library. These are available from 
ht tp://www.c3.lanl.gov/cicl9/teams/napc/. 
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