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SPECTRAL PROPERTIES OF THE 2D HOLSTEIN t-J MODEL

H. Fehske!., G. Wellein!, B. Bauml! and R. N. Silver?,

! Physikalisches Institut, Universitat Bayreuth, D-95440 Bayreuth, Germany
IMS B262 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Employing the Lanczos algorithm in combination with a kernel polynomial moment expansion (KPM)
and the maximum entropy method (MEM), we show a way of calculating charge and spin excitations
in the Holstein t-J model, including the full quantum nature of phonons. To analyze polaron band
formation we evaluate the hole spectral function for a wide range of electron-phonon coupling strengths.
For the first time, we present results for the optical conductivity of the 2D Holstein t—J model.

Polaronic features of dopant-induced charge car-
riers have been observed in the isostructural
copper—based and nickel-based charge-transfer
oxides Las_«Sr«[Cu, Ni]Ouqy [1].

Studying (bi)polaron effects in such strongly
coupled electron-phonon (EP) systems, the Hol-
stein t-J model (HtJM) has recently attracted
much attention [2]. The HtJM Hamiltonian reads
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The first two terms take into account the phonon
part and the EP interaction, respectively, whereas
the last two terms represent the standard t-J
model acting in a Hilbert space without double
occupancy. In (1), doped holes (h; = 1 — #;)
are coupled locally to a dispersionsless optical
phonon mode (¢, - EP coupling constant, wg —
bare phonon frequency).

In this contribution, we investigate the HtJM
by performing exact diagonalizations on a square
ten—site lattice, where the phonon degrees of free-
dom are treated within a well-controlled Hilbert
space truncation procedure [3]. To obtain infor-
mation about dynamical properties of the model
under consideration, we combine the Lanczos al-
gorithm with the KPM and MEM approaches [4].

In order to address the problem of polaron
formation in an antiferromagnetic correlated spin
background, we have calculated the K-resolved
spectral function Az(E) for a single dynamical
hole at J = 0.4 (energies in units of ¢} [5]. The

positions of the two lowest peaks of Az (E), de-
noted by Eg/i(K), are displayed as a function
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Fig. 1: Polaron band formation in the 2D HtJM.
The wave function renormalization factors,

Zo(K) = T, 10" D(R)le_g 10 @), are
given as a functlon of sp in the insets.
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Fi 1g 2: Optical conductivity ¢L29(w) and w-integrated spectral weight in the dissipative part of ¢7%9,
S, = fo dw'o7e9(w’), for the 2D single-hole HtJM with 12 phonons (periodic boundary conditions).

of EP coupling strength in Fig. 1 for the al-
lowed K vectors at Awg = 0.8 and 3.0. As ex-
pected, in the very weak EP coupling limit the
low-lying excitations are t—J hole-quasiparticles
weakly dressed by phonons. For low and interme-
diate phonon frequencies, the energy to excite one
phonon lies inside the quasiparticle band of the
pure t~J model. Thus at arbitrarily small &, pre-
dominantly phononic states with a small admix-
ture of electronic character enter the low—energy
spectrum in all K-sectors [cf. the region about
E, ~ —5.2 in the inset of (a)]. With increasing
€p a strong mixing of holes and phonons takes
place, whereby both quantum objects completely
loose their own identity, and finally an extremely
narrow well-separated polaron band is formed at
large £,. This scenario is corroborated by the be-
havior of the K—dependent renormalization factor
Zo(l;; ) shown in the upper insets, which can be
taken as a measure of the “electronic” contribu-
tion to the polaronic quasiparticle (see insets). As
can be seen from Fig. 1 (b), the phonon induced
band renormalization is weakened in the non-
adiabatic regime, where retardation and multi-
phonon effects are of minor importantance.

To discuss the influence of the EP coupling
on the optical response of the system, let us eval-
uate the regular part of the optical conductivity
at finite energy transfer w

Ursg — Z l(gj |.717 11_17())‘ 5[w—(En—Eo)].
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Results for o7¢9(w) are presented in Fig. 2 for
ep = 0.1 (a), 2 (b), and 4 (c). In the weak
EP coupling region, we recover the main features

of the optical conductivity of the t-J model (in-
set Fig 2. (a)), e, (i) an “anomalous” broad
mid-infrared absorption band [J Sw <2}, sepa-
rated from the Drude peak [D§(w); not shown]
by a “pseudo-gap” ~ J. and (ii) an “incoherent”
tail up to w ~ 7t. At larger c,, we observe a
redistribution of spectral weight to higher ener-
gies (cf. AS,), which is much more pronounced
in the adiabatic regime. In particular, the transi-
tion to the (hole) polaron state is accompanied by
the development of a broad maximum in 6739 (w)
at w < 2¢,. whereas the optical response becornes
strongly suppressed at low w. Most notably,
079 (w) has an highly asymmetric lineshape at in-
termediate frequencies and coupling strengths as
observed, e.g., for Lag 9Srg.1NiQy4 [1]. This effect
can be traced back to a rather broad ground-
state phonon distribution function obtained for
¢p = 2,4 and hwg = 0.8 [5]. Contrary, in the anti~
adiabatic limit, the “electronic” lineshape is much
less affected, but ¢%¢9{w) shows additional super-
structures corresponding to “interband” transi-
tions between t—J-like absorption bands with dif-
ferent number of phonons [see Fig 2 (¢}, inset].
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