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ABSTRACT 

Scientific visualization is the process whereby numerical data is transformed i k o  a visual form to augment 
the process of discovery and understanding. Visualizing the data generated by large-scale, transient, three- 
dimensional finite element simulations poses many challenges due to geometric complexity, the presence 
of multiple materials and multiple element types, and the inherent unstructured nature of the meshes. 
In this paper, the direct use of finite element data structures, nodal assembly procedures, and element 
interpolants for volumetric adaptive surface extraction, surface rendering, vector grids and particle tracing 
is discussed. A brief description of a “direct-t-disk” animation system is presented, and case studies which 
demonstrate the use of isosurfaces, vector plots, cutting planes, reference surfaces and particle tracing are 
then discussed in the context of several case studies for transient incompressible viscous flow, and acoustic 
fluid-structure interaction simulations. An overview of the implications of niassively parallel computers 
on visualization is presented to highlight the issues in parallel visualization methodology, algorithms, data 
locality and the ultimate requirements for temporary and archival data stomge and network bandwidth. 

1. INTRODUCTION 

The Methods Development Group (MDG) at Lawrence Livermore National Laboratory (LLNL) has been 
developing finite element simulation tools for over 15 years. These tools range from mesh generators 
to data visualizers and include the suite of codes shown in Table 1. The sirnulation tools include high- 
rate Lagrangian (DYNA2D, DYNA3D), low-rate and quasi-static Lagrangian (NIKESD, NIKESD), and 
purely Eulerian codes (TOPAZSD, TOPAZSD, and HYDRA). These simulation tools put demanding 
requirements on the visualization tools which must handle a broad variety of tasks ranging from simple 
2-D temperature contour plots to 3-D, time-dependent particle traces in a flow simulation. 

The power of visualization for complex transient simulations derives in part from the fact that approx- 
imately 50% of the brain’s neurons are associated with vision, and that scientific visualization exercises 
this neurological machinery (McCormick, et al., 1987). In practice, the ultimate goal of visualization is 
to provide the engineer or scientist insight into the results produced by large scale scientific simulations. 
For transient simulations, effective visualization tools must rely upon the ability to interactively probe 
and interrogate data to the fullest extent. 

The treatment of complex geometry, with unstructured and heterogeneous meshes poses many chal- 
lenges for the design and implementation of effective visualization tools. Here, a heterogeneous mesh is 
defined to be a single mesh which contains 1-D, ZD, and 3-D elements. The unstructured topology in 
a finite element mesh precludes the use of simple ( i , j , k )  indexing schemes for block-logical grids which 
are typically employed in finite difference or finite volume codes and their da.ta visualizers. Indeed, finite 
element data visualizers must be robust in terms of the ability to treat arbitrarily complex geometry with 
inherently unstructured and even heterogeneous meshes. 

In addition to geometrical and topological complexity, many finite element simulations use spatially 
varying material properties. For example, a typical time-dependent flow simulation with conjugate heat 
transfer would include a region of the mesh which is fluid and a region which is solid. Solid and struc- 

’1 Work performed under the auspices of the U. S. Department of Energy by the Lawreno: Livermore National Laboratory 
under contract No. W-7405-ENG-48. 
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Finite Element Tools 
Mesh Generation 

Implicit Solid/Structural Mechanics 
Explicit Solid/Structural Mechanics 

Mark A. Chtiston 

2-D 3-D 
MAZE INGRID 

NIKE2D NIKE3D 
DYNA2D DYNA3D 

Table 1: The Methods Development Group’s suite of finite element simulations tools. 

Acoustic Fluid-Structure Interaction 
Incompressible, Viscous Flow 

PING PING 
HYDRA mFLA 

II Thermal Analysis I TOPAZZD I TOPAZ3D 11 

It Scientific Visualization I ORION/GRIZ I GRZZ 11 

tural mechanics finite element models frequently include special features such as sliding interfaces and 
frequently use multiple material definitions. 

In a Lagrangian framework, both contact and impact of multiple deformable bodies with complex 
material models and mesh adaptivity must be treated in an efficient manner in order for visualization to 
be useful. Further, many solid and structural problems are nonlinear in both the material and geometric 
sense, Le., plastic deformation with large deformations and rotations are possible. Figure 1 shows a typical 
largescale, transient, Lagrangian computation with both material and geometric nonlinearity in addition 
to sliding interfaces. 

In contrast, timedependent, Eulerian, finite element simulations for computational fluid dynamics 
(CFD) typically require high-resolution, unstructured meshes and frequently involve complex geometry. 
Unlike their Lagrangian counterpart, CFD meshes are homogeneous (i.e., a single element type) although 
usually of higher resolution. Figure 2 shows the geometric and topological complexity involved in a typical 
computational fluid dynamics simulation. 

Both Eulerian and Lagrangian finite element simulations require the ability to abstract scalar, vec- 
tor and tensor data for rendering purposes. However, one of the key components for visualizing t ime  
dependent results is the ability to rapidly perform surface extraction for rendering purposes while main- 
taining both topological adaptivity in the finite element mesh and volumetric information for data ab- 
straction and rendering. While there are many visualization requirements which are common to .both 
Lagrangian and Eulerian transient finite element simulations, visualizing fluid-structure simulations re- 
quires the ability to view both structural and fluid variables and combine many aspects of Lagrangian 
and Eulerian rendering techniques. 

Other key aspects of an effective finite element data visualizer include the ability to selectively display 

Fig. 1: DYNA3D impact simulation demonstrating contact surfaces. 
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material components of the mesh, provide palette manipulation, map derived physical quantities into 
color, and perform in-betweening for animations. This must be done without inhibiting the user's ability 
to move randomly through large datasets viewing individual states in simulation time. 

Remark 1. in-betweening refers to the specialized interpolation procedures used in key-frame animation 
to generate the requisite graphics frames for playback of video at 30 frames per second. 

This paper first presents an overview of the use of finite element data structures for visualization. In 
this section, the SEVA (Surface Extraction with Volumetric Adaptivity) algorithm for performing rapid 
surface extraction 'while permitting volumetric adaptivity is presented. In addition, this section outlines 
the computation of continuous vertex normals for rendering, the use of isosurfaces for cutting planes, and 
the calculation of vector grids and particle traces. A brief description of the video animation system in 
use by the Methods Development Group is described in section 3. Several visualization case studies are 
presented in section 4, and finally, some of the issues involved in visualizing the data produced by parallel 
simulations are discussed in section 5. 

2. FINITE ELEMENT DATA STRUCTURES FOR VISUALIZA!CION 

In the finite element method, the physical domain of interest is approximated by afinitenumber of smaller 
sub-domains referred to as elements. Nodes in a fmite element mesh are attached to elements according 
, to a canonical local numbering scheme. However, the global node and element numbering scheme can 
appear essentially random from a spatial point of view. Unlike finite difference grids which are logically 
regular, finite element meshes are topologically based. 

In a finite element mesh, nodal connectivity data relates global node xiumbers to elements and is 
represented by Cij where i E [l,NerJ, j E [1,NnPe]. Here, Nei is the number of elements, and Nnpe 
is the number of nodes per element. The elements used in the MDG simulation codes consist of eight 
node hexahedra (hex elements), four node quadrilaterals (shell elements), and two node beams. Figure 
3 shows these element types and their associated canonical local node numbering schemes. Typically, 
finite element codes group l i e  elements together to simplify the connectivity and to avoid ragged data 
structures (e.g., the connectivity is blocked according to the hex, shell and beam elements). 

For the hex elements, Cij is comprised of six reduced sets of connectivity data which associate local 
nodal numbers with the faces of the hex elements. Thus, the reduced connectivity relates global node 
numbers to individual faces of elements. Here, the reduced connectivity is Sij where i E [1,6Nhez], j E 
[l, Nnse], and NnSe is the number of nodes per surface element. The canonical reduced nodal connectivity 
is shown in Table 2 for the hex element in Figure 3. The connectivity data plays a key role in performing 
rapid surface extraction. 
Surface Extraction 

For the purposes of surface extraction, both beams and quadrilateral elements may be ignored for obvious 
reasons. However, the hex elements require special attention because of the requirement for topological 
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Hex Element 

Shell Element 

n1 nz 
h - 5  

Beam Element 

Fig. 3: Canonical local node numbering scheme in computational space for hex, shell, and beam elements 
(-1 5 r' I 1 where r'= ((1 7 ,  +)I. 

adaptivity when rendering only external surfaces and the associated nodal point data. Topological adap- 
tivity requires the ability to preserve volumetric data while permitting incremental surface extraction 
both during the interactive interrogation process for data exploration and the in-bet.weening process for 
animation. Before describing the volume adaptive surface extraction algorithm, a brief overview of two 
alternative schemes is presented. 

The first surface extraction algorithm is referred to as the assembled surface normal (ASN) algorithm 
(Belytschko and Law, 1985). In the ASN algorithm, surface connectivity (Sij) is used to construct normal 
vectors at the nodes of all surfaces of the hex elements. For example, at node nl on face 1, n,, = 
(xn2 - x,,) x (xns - x,,), where n is the normal vector. The use of Sij here is simply to gather the 
appropriate global nodal coordinates required for the computation of the local nodal normals on each 
face. The local unit vector is computed as: Gj = nj/llnjll. 

By making use of the global nodal numbering scheme embedded in the connectivity data (Sij), the 
local normal vectors are assembled as (see Hughes, 1987 for an example of the FEM assembly procedure): 

4i) where n is the assembled global normal vector, and ej is the local normal vector computed at each node 
of surface (i). In Eq. 1, Sij scatters from a local (canonical) node number of an element face to a global 
node number during the finite element assembly procedure. Global unit normal vectors are computed as: 
e'= n/llnll. 

After the global assembly has been performed, all nodal points associated with surface elements which 
are interior to the mesh will have a global unit normal whose components are zero. Thus, using ASN, 

Table 2: Face nodal connectivity for the hex element. 
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internal surfaces are eliminated by noting that paired surfaces (see Figure 4 )  will generate vertex unit 
normals which essentially cancel during a nodal assembly process. In effect, the finite element assembly 
process in ASN identifies the external surface of the domain and produces unique; averaged normals on 
this surface. 

While providing a robust surface extraction mechanism, the ASN algorithm fails to retain both volu- 
metric and topological information which is central to any adaptive scheme. That is, ASN discards all 
interior data and retains only the polygons associated with the empty shell for rendering. Further, the 
ASN algorithm approach proves to be computationally intensive requiring 24Nhez unit normal computa- 
tions plus the global assembly operations for a given 3-D mesh. 

The second surface extraction algorithm is the polygon-search/cancel (PSC) algorithm (Winget, 1988) 
which also relies upon the node-to-element connectivity, Cij, and avoids some of the floating point effort 
involved in the ASN algorithm. However, one dficulty with PSC is that it relies on a linear search which 
results in approximately 0((61Vhe,)2) operations. This can be improved by using a hash table lookup, 
but requires chaining to resolve collisions in the hash table. Neither the ASN nor the PSC algorithm 
inherently deals with volumetric adaptivity which is an important type of adaptivity and is found in solid 
mechanics finite element codes like DYNA3D (Whirley and Englemann, 1993) (albeit, only one form of 
adaptivity). 

It is possible to apply the ASN or PSC algorithm after each time step in which the mesh topology 
changes. However, this involves considerable computational overhead which can be avoided. The ASN 
and PSC algorithms form the starting point for the description of a two p a s  surface extraction algorithm 
that accommodates volumetric adaptivity. 

By viewing internal surfaces as paired surfaces between adjacent elements (e.g., as shown in Figure 4 
for the ASN algorithm), it is. possible to combine features of the ASN and PSC algorithms to efficiently 
construct the data structures necessary to perform an incremental surface extraction while accounting , 
for volumetric adaptivity. The incorporation of adaptivity for beam and shell elements is essentially 
automatic given the simplicity of these elements. 

To begin, the node numbering scheme in the finite element method does not permit redundant nodes 
(i.e., two node numbers with identical spatial coordinates) except where there are special model features 
such as sliding interfaces or constrained nodal pairs. Therefore, the key to incremental surface extraction 
with volumetric adaptivity is the identification of paired internal surfaces in the mesh. This identification 
is considered to be the first pass in the two pass extraction algorithm which is referred to herein as the 
SEVA (Surface Estraction with Volumetric Adaptivity) algorithm. 

For the discussion of the SEVA algorithm, a hash function is defined which will be used in a table of 
length 6A'he,. Note that 6Nhe ,  entries are required to account for the worst possible case in which all 
faces of the hex elements are exterior faces (a possibility in the most general case). 

Nnse 
~ i =  W j S i j  

Here Sij is the local surface connectivity sorted in ascending order, and wj is a nodal weight. 

Shared (?aired) Surface 

Shared Nodes with Shared Spatial Coordinates 

Fig. 4: Internal paired surfaces between hex elements. 



6 Mark A .  Chrisfon 

The nodal numbering scheme in the finite element method ensures that there are no repeated nodal 
numbers, that is, nj E [l,Nnp] where Nnp is the total number of nodal points in the mesh. Because 
of the locally ordered nodal connectivity used in Eq. 2, it is possible to define the nodal weighting as: 
wj = lO(j-I). This choice of weights helps to maintain a-relatively high degree of dispersion in the hash 
keys, but by no means ensures that each hash value will be unique (Tenenbaum, et al., 1990). However, 
the goal here is not to use the hash keys for direct address calculation, but to identify paired surfaces 
in the volume. Therefore, the hash keys are entered into the hash table in sequential order as they are 
computed. 

During the construction of the hash table, the element and face number associated with each hash 
key are also entered in the table. An indexed heap sort (an O(Nln(N) algorithm (Press, et al.,1987)) is 
used to generate a list of hash values in ascending order. By traversing the sorted list of hash values, it 
is possible to identify any paired surfaces in the volume because such surfaces will yield identical hash 
function values which are adjacent to each other in the sorted hash list. Note that hash keys for shell 
elements could be included in the surface extraction process to handle the situation where shell elements 
lie on top of hex elements. 

Traversing the hash table, a master surface list which identifies paired surfaces (Le., surfaces which are 
back-to-bajr) is constructed. For each hash value a maximum of two element and two face numbers are 
included with a surface counter in the master surface list for later use in the second-pass, volume adaptive, 
surface extraction. The construction of the hash table, the heap sort and subsequent construction of the 
master surface list in the first pass of the algorithm is only performed once. The master surface list 
contains all the necessary data for subsequent adaptive surface extraction computations. 

In the second pass of the SEVA algorithm, the master surface list is used to generate a polygon vertex 
pointer list which includes the global node numbers for the polygon vertices, and an element material 
number. Initially, only unpaired surfaces, Le., external surface elements (with a surface count of l ) ,  from 
the master surface list are included in the polygon list. Any active shell elements are then concatenated 
onto the polygon vertex pointer list. The vertex pointer is then used to gather the appropriate vertex 
coordinates and normals for rendering. 

One of the key applications for SEVA is in problems which require volumetric adaptivity with sliding 
interfaces which may be found in DYNA3D simulations (Christon and Spelce, 1992, Whirley and Engle- 
mann, 1993). In this application elements may fail at a sliding interface and subsequently be removed 
from the computation based upon a maximum strain failure criteria. An activity vector is included in the 
graphics database for this specific case and is used to remove inactive surfaces from the polygon pointer 
list, as well as, to split paired surfaces where failed elements have been removed. Figure 5 illustrates the 
situation when an element has become inactive revealing the previously hidden interior surfaces. 

Splitting paired surfaces is accomplished by reducing the surface count in the master surface list for 
all faces of an element which has failed. Any surfaces in the master surface list with a count of 1, Le., 
occurring only one time, are considered to be valid surfaces for rendering purposes. The canonical local 
node numbering scheme for the hex elements ensures that freshly exposed polygon normals face outwards 
in the animation scene at all times which guarantees consistent lighting calculations during rendering. 

The SEVA algorithm was initially implemented in a finite element data visualizer used for interpolating 
between discrete states of simulation results for video animation (Christon and Spelce, 1992). The process 
of temporal interpolation is often referred to as "in-betweening" , and the original visualization code was 
called the TWEENER. A modified version of the SEVA algorithm is currently in use in GRIZ (Dovey 
and Spelce, 1993). 

Verier Normals for Rendering 

Vertex normals are required for lighting and shading computations during the rendering process. In order 
to represent smooth surfaces, spatially varying, but continuous surface normals are necessary. Vertex 
normals may be computed using the following two-step process. First local nodal normals are computed 
for all active surfaces, and then they are assembled into a global normal vector. The assembly is similar 
to that used in the ASN algorithm, but occurs only for those nodes attached to active surface elements 
in the master surface list. Using the polygon vertex list, Pjj , 

where hTs,j is the number of active surfaces for rendering. Here, the vertex list is used to scatter the 
appropriate local nodal normals to the global nodes. 
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for Rendering 

Failed ‘Hex Element 

Fig. 5: Elimination of a hex element and the resulting exposure of new surfaces for rendering. 

During the assembly of the global normals, the number of polygons contributing to each nodal normal 
is accumulated and stored. This allows average normals to be computed on the external surface of the 
domain by simply dividing the nodal normal by the accumulated number of polygons contributing to a 
given nodal normal. To account for “sharp” corners, a simple heuristic based upon the dot product of 
a vertex normal and its corresponding globally averaged normal is employed to decide when to use the 
averaged normal, and when to use the local normal. 

Isosurfaces and Cuiplanes for Volumetric Interrogation 
Isosurfaces and cutplanes are commonly used visualization techniques for volumetric interrogation of 3-D 
data. An isosurface is the three dimensional equivalent of a single contour line because it spatially maps 
out the presence of a specific scalar value in three-dimensions. A modified version of the well-known 
marching cubes algorithm (Lorensen and Cline, 1987) is used to generate the polygonal surface based 

, upon the element local nodal values of a specified scalar quantity. Note that the scalar quantity may be 
an abstracted value such as helicity, velocity magnitude or effective stress. 

Isosurfaces provide a global view of the variation of a single quantity in the spatial domain, However, it 
is often of interest to cut a physical domain in a specific way in order to visudize the variation of a specific 
variable on a given plane. The cutplane geometry and field quantities are obtained using the isosurface 
algorithm with a simple modification. Rather than applying the isosurface algorithm to  a scalar quantity 
such as pressure, the normal distance to the cutplane is used. 

The configuration of a cutplane is simply defined by a point on the plane and a unit normal vector. 
The normal distance of all nodes from the cutplane is computed and supplied to the isosurface algorithm. 
By computing an isosurface corresponding to a field variable which is zero, the cutplane is generated. 
During the isosurface computation, the scalar physical quantity of interest is interpolated at the triangle 
vertices in the isosurface. The vertex values are then color mapped and rendered on the cutplane. 

Vector Grids 
Although typically used for CFD data, the display of instantaneous velocity distributions is also useful for 
Lagrangian computations where rigid body motion is of interest. However, the rendering of nodal vectors 
on graded and unstructured finite element meshes is problematic because often the areas of interest are 
obscured by the density of vectors in highly refined areas of the mesh. 

While i t  is possible to conditionally render vectors, for example, at every other node, generally the 
results are inadequate. However, the finite element method provides a direct mechanism for evaluating 
data in element interiors and forms the basis for computing overlaid vector grids which can have a grid 
point density or spatial dimensionality different from the computational grid. 

One of the key aspects of using an interpolated, overlaid grid is that the interpolation is performed 
using the same shape functions that are used in the simulation code. The variation of the field variables 
is known and continuous everywhere in a given element. This is a clear advantage over interpolation 
schemes for finite difference and finite volume grids which introduce errors above and beyond the normal 
discretization errors from the simulation. 
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Omitted vector 

Fig. 6: 5x7 Vector grid and vector plot on a portion of a 2-D mesh with a hole. 

For the computation of a vector grid, the expansion of both the nodal coordinates and velocities in 
Eq.'s 4-5 are required. Here, 5 i  represents known (i.e., prescribed) spatial coordinates of the vector grid, 
ii is the velocity to be interpolated at the given spatial coordinate, I =  (e, q, +), and xi and ui are the 
known nodal coordinates and velocities. 

Nnpe 

(5) 
Nnpe 

ii= c Ni(5)Ui 
i=l 

In two dimensions, the computation of the vector grid requires the specification of a bounding box and 
the corresponding size of the vector grid, e.g. a 5x7 grid overlaid on a portion of a 2-D domain as shown 
in Figure 6. Once the prescribed vector grid coordinates are known, Eq. 4 must be solved for which 
then may be used to evaluate Eq. 5 and sample the velocity field at each vector grid coordinate. 

For the two-dimensional case, Eq. 4 may be expanded and written in terms of the unknown natural 
coordinates (<, q )  as in Eq. 6. The coefficients in Eq. 6 are derived from the known nodal coordinates as 
shown in Eq. 7. 

Ql = -21 + 2 2  + x3 - 24, y1 = -y1+ y2 + y3 - y4 

Q2 = -a -22+X3+X4, y2 =-y1- y2 +y3+ y4 
21 -x2 4-23  -x4, 73 = y1 -y2 + y3 -y4 Q3 = 

(7) 

The solution of Eq. 6 for [ and q is achieved by first solving the quadratic equation in Eq. 8 for q, and 
then substituting the result in Eq. 9 to compute 5. After computing (I, q), the shape functions, Ni, may 
be evaluated, and the velocity vector at ii evaluted. 



Visualization Methods for  High-Resolution, Tmnsient, 3-0, Finite Element Simulations 9 

5 = (bl - a2q)/(a1+ a3q) i (9) 
In three dimensions, the inverse computation for the natural coordinates is somewhat more involved. 

To begin, the following system must be solved for (5, q, $). 

The p and y coefficients may be computed by substituting the y and z grid and nodal coordinates in Eq. 
11. 
Eq. 10 may be written as f(i) = 0 for the purpose of applying a Newton iteration. The solution to Eq. 

10 then proceeds by usins Cramer's rule to first solve the linear problem in Eq. 12 for an initial estimate 
for 6 .  This estimate for ,$ is then used as a starting point in a Newton iteration using Eq.'s 13-14. 

where 

Newton% method delivers quadratic convergence and is guaranteed to converge if the initial estimate 
for ( is in the neighborhood of the solution. Eq. 12 provides a reasonable estimate for and results in a 
solution in only 3-4 iterations with a residual of This is arelatively inexpensive 
computation on a per vector grid point basis. 

In both the 2-D and 3-D case, element bounding boxes are used to determine if a grid point is resident 
in a candidate element. The computation of natural coordinates which are not bounded by &1 signals 
that the next candidate element should be used for the current vector grid point. 

&e., 11f(t))11 5 

Particle Traces 
Another commonly used technique for flow visualization is particle tracing. In this work, particle tracing 
refers to the process of tracing out the path which a particle would follow when subjected to a time 
dependent velocity field. The realization of particle tracing can take the form of continuous traces of 
particle paths, or snapshots of particles emitted at a fixed frequency which are referred to as "time lines". 
Here, the emphasis is on the former. 

Continuous particle traces can be constructed by computing a sequence of points (xo,xl, ..., xn) by 
integrating the following system of ordinary differential equations numerically. 

x = u(x, t )  

The initial conditions for Eq. 15 are given in the form of a particle rake, i.e., the particle rake provides 
the initial set of coordinates at t = 0 for the subsequent particle tracing. The integration of Eq. 15 
is performed using a second-order accurate Runge-Kutta integrator. There are many time integration 
algorithms suitable for the system in Eq. 15. However, second-order Runge-Kutta provides a reasonable 
trade-off between accuracy and interactivity. 

Figure 7 shows a simple schematic of a particle path being traced through several elements in the 
boundary layer near a cylinder wall. As illustrated in'the schematic, the particle trace passes through 
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elements which may be numbered in essentially a random order, e.g., elements I and J in Figure 7 need 
not be numbered contiguously. 

The algorithm used to compute particle traces-is as follows. First, a particle rake is specified as the seed 
point (initial conditions) for the integration of Eq. 15. A time step is taken holding the current velocity 
field fixed, and new coordinates for all particle positions are evaluated. Using the new known particle 
positions the current natural coordinates (i) are computed according to the vector grid algorithm outlined 
above. The particle velocities are then evaluated at the new time level. Note that a new velocity field 
may be read from disk if necessary for in-betweening during this step. Using the current set of particle 
natural coordinates, the new velocity field is sampled, and the next time integration step is taken. This 
sequence continues until a user specified time or until the end of the simulated time. 

During the computation of the natural coordinates, the fact that the natural coordinates are bounded 
is used t_o establish criteria for moving to an adjacent element. If a natural coordinate exceeds its bounds 
(-1 5 5 5 1) during the solution of Eq. 10, then the natural coordinate is used to determine which 
face of the element the particle has traversed. For example, < 1 1 signals that the particle has crossed 
face 1 of the element (refer to Figure 3 and Table 2). The element number and face number are used 
to first compute a hash value. Then this hash value is used to identify the paired surfaces in the master 
surface list and their corresponding element numbers. Knowing the current element number, the adjacent 
element number is retrieved from the master surface list and used for subsequent natural coordinate 
computations. 

As pointed out in Hultquist (1994), the use of element adjacency can speed up the process of particle 
tracing. However, the spatial coherence which Hultquist relies upon can not be implemented in a sim- 
ple (i, j ,  k) form for a finite element mesh. Further, specifics about geometry can not be used without 
sacrificing the ability to treat arbitrarily complex geometry. 

Fig. 7: Schematic of particle tracing. 

Data Abstraction 

The surface rendering techniques employed in both the TWEENER and in GRIZ allow the specification 
of user defined material properties such as specularity, diffusivity, and color, as well as the color and 
position of up to eight light sources in a simplified scene description. Both vector (wire frame) and solid 
images (i.e., surface rendering) can be generated interactively, with field variables such as timedependent 
pressure or effective stress optionally mapped onto the surface of the time-varying geometry. 

Mapping field variables onto surface color implies that a physically meaningful scalar field is available 
which can adequately represent the results. To perform a table lookup or function evaluation for vertex 
color specification, the derived scalar valued field variable must be appropriately scaled. The scalar valued 
variable, 4, is computed as: 

In Eq. 16, Omin and Om,, are global minimums and maximums over the entire simulation, Le., both 
spatially and temporally. The scalar valued function, Q, is normalized (Le., 0 5 Q 5 1) for use as the 
entry into either a color lookup table, or for a color map function evaluation procedure. Here, 0 can be 
taken to represent the scalar valued function of interest, e.g., vorticity magnitude, velocity magnitude, 
helicit.y, effective stress, etc. 
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3. Video Animation System 

The type of animation technique used for the finite element data considered herein is referred to as 
key-frame animation because it relies on “key frames” of data computed at discrete time levels by the 
simulation code. In order to produce enough animation frames for video (30 frames per’second of video), 
it is necessary to interpolate between the key-frames produced by the analysis code. This section briefly 
discusses the type of interpolation used for animating the key-frame data, and the use of a “direct-tc+ 
videodisk” animation strategy. 

In-Beiweening and Animation Straiegy 

The in-betweening process for Eulerian key-frame animations relies on the linear interpolation of data at 
discrete time intervals. However, Lagrangian finite element datasets can require special treatment when 
rigid body dynamics and contact/impact of deformable bodies are of interest. 

As an example, great care must be taken when applying an in-betweening algorithm to  the flight 
of an object before impact. In this case, user input is required to identify objects by material in the 
mesh for material specific conditional interpolation. The conditional interpolation must be activated and 
de-activated at the appropriate times in the animation to capture the impact event adequately. If this 
approach is not taken, artifacts can be produced when key-frames span an important event such as the 
impact of two bodies. The alternative is to store as many time states as possible at times just before and 
after the impact event, since it may be practically impossible to place a key-frame precisely at the time 
of impact. When rigid body dynamics are not important, a simple linear in-betweening is sufficient for 
both the spatial coordinates and the corresponding field variables. 

In the in-betweening process, “disk-based” animation systems require the animator to render and store 
images on rotating disk, only to later re-display, scan convert and record the images on video tape or 
videodisk. The scan conversion step is also referred to as digital encoding, and is the process whereby 
RGB color signals are converted to composite signals such as NTSC (National Television Standards 
Committee) (Winkler, 1991). In a disk based animation system, 60 seconds of animation using 24bit 
frames with a resolution of 640x480 pixels requires about 1.66 Gigabytes of disk (i.e., 1.66 GB per minute 
of video play time). By comparison, a videodisk holds approximately 24 minutes of video. 

In the disk-based model, animations are batch processes at best, often requiring batch rendering, and 
consuming large amounts of disk resources. The approach adopted in MDG was to avoid the use of 
rotating disk for animation frames by recording the frames directly to a laser videodisk. The desired 
interactivity of the visualization application dictated the use of a hardware rendering platform, and the 
ability to perform scan conversion to a format appropriate for recording video (e.g. NTSC or PAL) “on 
the fly”. 

For this purpose, the Silicon Graphics Video Framer was chosen because it provides a secondary low- 
resolution frame buffer for use during digital encoding and recording. Additionally, the Video Framer 
provides a V-LAN (Video Local Area Network) transmitter enabling the code for control of the video 
t.ransport device to be essentially independent of the actual video transport device. For example, the same 
coded instructions can be used with a frame accurate video tape recorder instead of a laser videodisk. 
Figure 8 shows the MDG video equipment, workstation, and preview monitors for the direct-to-disk 
animation strategy. 

The trade-off with the “direct-to-disk” animation system is that the hardware rendering process can 
produce somewhat lower image quality in comparison to other rendering techniques (e.g., ray tracing). 
However, it offers the ability for the analyst or researcher to immediately preview dynamic processes 
both interactively on the workstation, and via playback from the videodisk. In addition, key frames may 
be previewed individually, and optionally written to a 24bit HDF file (NCSA, 1989) for the generation 
of 35mm slides or viewgraphs. Alternatively, key frames may be viewed in an NTSC mode to permit 
the user to compensate for color changes and image degradation characteristic of NTSC video. When 
compared to disk-based animation schemes, this approach reduces the total time required to produce an 
animation segment and the impact on computing resources. 

Temporal Aliasing 

The accurate transformation of temporally discrete key-frames into a continuous video segment requires 
some knowledge of the time scales for the physics involved in the simulation. A failure to consider the 
important time scales in a simulation can result in misleading behavior in the video. For example, aliasing 
occurs when the Nyquist sampling theorem for the key frames is violated. 

A good example to illustrate this problem is vortex shedding behind a circular cylinder. The Nyquist 
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theorem states that a sampling frequency of at least twice the highest frequency should be used. For a 
Reynolds number of 100, the Strouhal number (non-dimensional frequency) is 0.21. For the case when 
N,,, samples per period are made, and the simulation is carried out for r time units, the number of 
key-frames which must be stored can be computed as: 

Considering the case of laminar vortex shedding, experience suggests that a sampling rate of about 
10 - 20 samples per period is required to accurately represent the temporal behavior. Thus, for the 
vortex shedding example with r = 100 time units, St = 0.21, and Np,, = 20, Nsomp = 420. In this 
example, a temporal undersampling can result in vortices moving upstream in the video when they 
should be convected downstream. Of course during a non-periodic transient, the appropriate sampling 
rate is difficult to estimate. However, a good rule of thumb is to sample at a rate of at least 10 key-frames 
per time constant. For example, the time constant could be the time for an elastic longitudinal wave to 
propagate 1 characteristic length in a solid. For periodic wavclike phenomena, the characteristic grid 
frequency, i.e., the highest frequency which the grid can adequately resolve, may be used to estimate time 
scales of interest. 

4. Visualization Case Studies 

In this section, several examples are presented to illustrate the application of the visualization algorithms 
described in the previous sections. The first problem considered is time-dependent vortex shedding for 
flow past a circular cylinder at Reo = 100 based upon the cylinder diameter. 

Figure 9a shows a snapshot of the stream function, while 9b shows the instantaneous vorticity. In 
both cases, the colormap was specifically designed to emphasize zero crossings and clearly discriminate 
between positive and negative values of stream function and vorticity in order to reveal the Karman 
vortex street downstream of the cylinder. The effect of the colormap on the stream function is to provide 
pseudo-contours which emphasize stream function values which are close to the stagnation stream function 
value. 

In Figure 9b, the colormap helps to discriminate regions of positive and negative vorticity. The dark 
colored regions of vorticity show fluid which is rotating counter clockwise, while the light colored regions 
are rotating clockwise. The separation in color near the zero-vorticity value helps to discriminate the 
attached secondary vortex in the near-wake from the upper and lower vortices which are being shed. 

A 20x20 vector grid is shown overlaid on the finite element mesh in Figure 9c. This vector grid demon- 
strates the use of a uniform vector grid with a non-uniform mesh and reveals the counter clockwise 
recirculation zone of the attached eddy in the near wake of the cylinder. With a vector grid, elements 
may be sub-sampled or super-sampled during the generation of vector plots in regions where the mesh is 
graded. 



. Visualization Methods for  High-Resolution, Transient, 3-0, Finite Element Simulations 13 

While field plots of vorticity and velocity ve~tors are useful, a complete synthesis of transient results 
can not be made quantitative without the use of time history data. Figure 9d shows a velocity time 
history plot for a grid point on the centerline of the wake downstream of the cylinder. The time history 
data in this plot is required to extract the frequency content of the velocity field, i.e., in order to obtain 
a Strouhal number. 

The second case involves the flow over a flat plate with a x5nxlar post attached. Figure 10a shows 
instantaneous pressure isosurfaces at T = 400 time units for Reo = 100. The isosurfaces are raised slightly 
above the plate revealing the stagnation point at the leading edge of the plate. Similarly, a stagnation point 
can be observed in the isosurface attached to the upstream side of the post. The sculptured isosurface 
in the downstream pressure field corresponds to the regions of high and low pressure associated with the 
regions of high and low vorticity. 

Figure 10b shows the instantaneous vertical component of vorticity at r = 400 time units. The dark 
isosurfaces indicate regions where the vertical vorticity component is positive, and the lighter isosurfaces 
show regions where the vorticity is negative. Along the top symmetry plane, the vorticity isosurfaces 
provide contour lines which are very similar to the vorticity snapshot shown in Figure 9b. 

While the vertical vorticity component appears to be somewhat twc+dimensional, the particle traces in 
Figure 1Oc clearly reveal the three-dimensional nature of the flow field in the wake of the cylinder. The 
particle trace snapshot at r = 100 time units is based upon the particle paths taken by 4 particles released 
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Fig. 9: 2-D Vortex shedding with Reo = 100. a) Stream Function, b) Vorticity, c) 2 0 ~ 2 0  Vector Grid, d) 
Time History Plot. 
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at r = 10 just upstream of the post. The particle paths show that there is a strong upward component of 
velocity during the quasi-steady period (10 5 r 5 100) during which two symmetric vortices stand just 
downstream of the post. That is, the standing vortices in this case are the three-dimensional counterpart 
of the standing vortices for the two-dimensional vortex shedding problem. 

In Figure 10, all of the snapshots make use of a reference surface, i.e., a l i t  of polygons which is used 
to defme the no-slip surfaces in the flow problem. In Figure lOc, the pressure has been color mapped 
onto the reference surface to provide a visual cue by illustrating the upstream stagnation point and the 
downstream separation points. Thus, the reference surface is used not only to highlight geometric aspects, 
but to give visual hints on the flow direction to the observer. 

Figure 11 shows pressure isosurfaces in the fluid surrounding an elastic streamline body in an acous- 
tic fluid-structure interaction problem. In this image, the scaled displacements are shown on the inset 
elastic body with the fluid pressure color mapped onto the surface (a color-mapped reference surface). A 
horizontal cutplane is used with isosurfaces and the edge definitions of the mesh in order to emphasize 
both spatial length scales and to highlight the orientation of the computational domain. This example 
shows the importance of combining visualization techniques for fluid-structure problems (Le., reference 
surfaces, cutplanes, isosurfaces, edges, and exaggerated Lagrangian displacements). 

In Figure 12, a simulation which made use of a form of volumetric adaptivity is shown. The top row 
of images show snapshots of the geometry only, while the second row shows effective stress, and the 
third row shows effective plastic strain. A vertical plane of symmetry is used to permit visualization of 

Fig. 10: Vortex shedding with a post and plate Reo = 100. a) Pressure Isosurfaces at T = 400, b) 
%vorticity Isosurface at T = 400, c) Particle traces for 10 5 T 5 100. 
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Fig. 11: Perturbation pressure isosurfaces and shell displacements (displacement scale factor 3000). 

the volumetric adaptive region where the projectile impacts the plates. For the bottom row of images, 
thresholding was applied to cutoff the color mapping at 10% effective plastic strain. This technique is 
useful when the variable being color mapped is somewhat spatially localized. This example demonstrates 
the applicability of the SEVA algorithm for large-scale, nonlinear continuum mechanics computations 
where sliding interfaces and adaptivity are important. 

5. Parallel Visualization Issues 

Scientific visualization requirements for grand challenge problems, i.e., problems with lo6 to lo9 grid 
points, pose many difficulties in light of the current generation of parallel computers. In the model of 
analysis whereby the process of mesh generation, simulation, and visualization may be repeated several 
times as part of a computational investigation, the implicit assumption is that there will be sufficient 
disk space available to hold the required data for a subsequent visualization study. 

In a visualization study, derived quantities such as vorticity, wall shear stress, stress components, 
effective stress, etc. are required for data abstraction. It is important to note that the investigator may 
not know a priori that visualization of a specific quantity, e.g., effective stress, is even required until after 
some initial interrogation of the data has been performed. This requires two things: first, the original 
primitive data must be available for the computation of the derived variables, and second, .there must 
be sufficient compute power to perform the necmary operations for the Visualization process. While this 
is usually the case for traditional CRAY supercomputers (and the problem size which they can handle), 
when considering the increased number of grid points which will be used in simulations on massively 
parallel computers (MPCs), the available disk space on these machines is far from adequate. 

Consider the example of an acoustic fluid-structure interaction simulation where a highly discretized 
fluid region is required. PING (Christon, 1993) output is usually in the form of 3 pressure components: 
the incident pressure, the elastic-scattered pressure, and the tottil perturbation pressure (neglecting the 
smaller number of structural displacements, velocities and accelerations). Assuming for the moment that 
32-bit floating poiit values are sufficient to represent the data, and neglecting the data defining how nodes 
are connected to  elements, the number of states to faithfully represent temporal wave-like phenomenon 
in the pressure field as set by the Nyquist theorem can be estimated in terms of the grid frequency. 



16 

n 

No. of No. of Storage per Total Storage 
Grid Points States State [MBytes] [GBytes] 
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Table 5: PING - State Disk Storage Requirements for a lo6 - lo9 grid Point Problem. 

The term "grid frequency" refers to the highest discrete frequency which can be resolved by a given 
mesh. The Nyquist theorem states that a sampling frequency twice the highest frequency of interest 
must be used to avoid temporal aliasing. This translates into the number of states of data which must 
be saved if an accurate animation of wave propagation is to be created. For the 256 processor Meiko 
CS-2 at LLNL, upwards of lo6 node simulations will be tractable in terms of the necessary FLOP rate 
and available memory per processor. Table 5 shows estimates of the storage requirements for PING data 
based on calculations with lo6 - lo9 grid points. 

In Table 5, the number of states is based upon a sampling rate of 20 states per temporal cycle, and the 
storage per state is based upon storing 3 32-bit floating point values per grid point. Clearly, if visualization 
is to occur after the simulation, and permit the computation of derived results, then 6 GBytes of disk 
space will be required for a lo6 grid point mesh while 48 TBytes would be necessary for a lo9 grid point 
computation. The disk requirements for a lo9 grid point probIem may make the data management difficult 
and possibly intractable. These estimates for disk storage account only for the output state datasets and 
do not include the disk storage required for the mesh, or the time history datasets. 

Fig. 12: Snapshots of particle-plate impact showing displacements (top), effective stress (middle), and 
plastic strain (bottom). 
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Of course, this estimate of required disk space assumes that the temporal behavior is of enough in- 
terest to prompt the investigator to look at transient phenomena. This estimate also assumes that the 
visualization study will make use of the high quality volume data which was computed on the MPC. 
For example, isosurfaces of the pressure field i6 the volume of the discrete domain will be visualized, as 
opposed to essentially gutting the entire volume of data in favor of performing visualization studies on 
the external boundary of the domain. 

The reason for the interest in the interior volume data stems from several things. First, it is assumed 
that the MPC simulation was performed to obtain all the data, and discarding the interior volume of 
data would be a gross waste of both time and money in terms of the computer resources expended for the 
simulation. Second, visualizing boundary data is usually not interesting, especially when the boundary 
conditions are well known and a specified part of the problem. The interesting and unknown results are 
typically in the volume of data for which the computation was performed. 'Thus, "dataset gutting" does 
not appeal to the practical user who is interested in solving real problems. In fact, the idea of gutting , 

datasets clearly falls in the category of ways to say nothing with scientiiic visualization (Globus and 
Raible, 1992). 

Another alternative for MPC visualization is the idea of co-processing as proposed by Haimes (1994). 
The basic concept is that because it will not be possible to store the 10 - 100 GBytes of data from 
the simulation, the visualization must be done on the fly while the simulation is running. Of course, 
this forces the computational part of the visualization software to run on the MPC concurrently with 
the simulation. One difficulty with this approach is that the user must select the derived variable to be 
visualized at the time the simulation is run. Because the data is essentially viewed and discarded, any 
change in the derived variable requires the simulation and visualization to be re-run. Clearly for a grand 
challenge problem which requires all the processors of the MPC, rerunning problems just because the 
user wishes to view velocity magnitude instead of a vorticity component is impractical. Such a paradigm 
shift for analysis and visualization is in vogue, but the model is only suitable for the hero model of 
supercomputing where a single user may absorb virtually all of the MPC and network resources for an 
import ant computation (Nielsen, 199 1). 

While the hero model may be workable under certain circumstances, the use of MPC's for production, 
general purpose computing will necessitate the intelligent use of both computer and network resources. 
The idea of graphical extracts (Globus, 1992) for visualization of transient computational fluid dynamics 
problems makes use of the ability to communicate graphical primitives to high performance graphics 
workstations for rendering. This approach requires a distributed visualization application where the 1/0 
and compute intensive portion of the visualization application runs on the MPC, and only primitives 
such as polygons and derived vertex data are communicated to the workstation. In this visualization 
model, the amount of data to be moved to the workstation is reduced to a workable level and ultimately 
avoids discarding volumetric data. Further, this model for MPC visualization permits the user to per- 
form geometric transformations (i.e., rotate, translate, scale), as well as operations such as color palette 
manipulation interactively on the workstation without being impeded by interactive response on the 
MPC. 

In the distributed, parallel implementation of a Visualization tool at LLNL, it is assumed that the 
processor-local disk space of the Meiko C S 2  will be used. Figure 13 shows a schematic for a parallel, 
distributed visualization tool. While this is currently limited to approximately 1/2 GByte per processor, 
the advantages of the processor-local disk space are significant. The processor-local disk is key because 
the re-assembly of sequential graphics datasets is a sequential bottleneck in a parallel FEM application. 
Further, the visualization of a grand challenge problem will require parallel computations. If a sequential 
database were constructed, then this data will ultimately have to be re-partitioned and redistributed for 
the visualization study. 

Further, not even a super-workstation will handle the sequential dataset for a problem with greater 
than lo6 grid points. Many graphics operations such as the computation of isosurfaces, cutting planes, 
and vector plots, are embarrassingly parallel. Thus if each processor writes a stand-alone graphics state 
dataset on the processor local disk, there is no sequential bottleneck for the analysis code, and the 
visualization process can easily exploit the distributed state data. For example, using processor local 
stand-alone state datasets, the user may wish to first interrogate results on an interesting subdomain 
before attempting a global view of the data. 

The network based MPC visualization model relies upon the communication of graphical primitives 
via networks. Current ethernet speeds are sufficient to support point-to-point communication of approxi- 
mately 10,000 polygons per second (assuming a polygon consists of a set of 4 vertex coordinates, 4 vertex 
normals, and 1 scalar derived quantity per vertex). Thus, the one diEculty is with the network load 
when many processors are trying to communicate with a single workstation. Interactivity may ultimately 
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dictate the use of Gigabit networks for parallel distributed visualization in a production environment 
where an MPC is serving a group of users rather than an individual in the hero model. Ultimately, the 
network visualization model requires that that there be sufficient disk space available on-the MPC to hold 
the graphics datasets from a transient simulation, and that the network bandwidth must be sufficient to 
permit the rapid communication of a relatively large number of polygons from multiple processors of the 
MPC to the workstation. 

6. S u m m a r y  

The successful application of the two-pass surface extraction algorithm (SEVA) to high resolution finite 
element simulation data has been demonstrated for a broad class of rendering/animation applications. 
This algorithm permits the compIex topology of finite element meshes with arbitrary geometries to be 
handled efficiently without discarding volumetric data which is crucial to adaptive problems. Further, the 
implementation of the "directt*disk" animation process has proven invaluable in placing an interrogation 
and animation tool in the hands of the analysts performing the finite element simulations. This tool 
enables analysts to gain new insight into the voluminous data generated by large scale simulations which 
ultimately increases the value of such simulations. 

The issues regarding the use of parallel supercomputers for both grand challenge problems and routine 
production computing are somewhat involved and are related in general to the need for additional disk 
space, high bandwidth networking, continued scientific visualization software development, and efficient 
input/output (I/O). Although the emphasis herein has been upon the Meiko CS2, similar issues are valid 
for the INTEL Paragon, the IBM SP-2 and CRAY T3D. The issues which will hamper the progress of 
FEM applications and visualization on MPC's are itemized below. 

0 The processor-local disk space of the Meiko CS2 is one of its key architectural advantages over com- 
peting parallel supercomputers. For both production and grand challenge problems, sufficient disk and 
archival storage (ranging from O(10) GBytes to O(100) TBytes) is necessary to fully utilize the Meiko. 
Using the processor-local disk is key to having effective parallel distributed visualization tools. 

0 Network infrastructure in the form of Gigabit networks for distributed visualization as well as for 
archival storage will be required for production, general purpose supercomputing. 

0 The current 1/0 options for unstructured grid applications pose sequential bottlenecks for parallel FEM 
codes. Constructing sequential graphics databases for grand challenge problems will not be feasible in 
the limit of machine capacity problems. 

Processor local disk with 
distributed eraDhics database 

1 

Wor %st at ion I Gra hits I 
Fig. 13: Network based distributed visualization model. 
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